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Advanced Computer Architecture

Chapter 3: Caches and Memory Systems
Part 2: miss rate reduction using software

October 2022

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and 
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th, 

5th and 6th eds), and on the lecture slides of David Patterson and John 
Kubiatowicz’s Berkeley course
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There are three ways to improve AMAT:

1. Reduce the miss rate, 

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache

Average memory access time:

AMAT = HitTime + MissRate×MissPenalty

We now look at each of these in turn…

In hardware
In software
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Reducing misses by software prefetching

Some processors have instructions to 

trigger prefetching explicitly, in 

software

Almost never worth using on 

sophisticated processors with good 

hardware prefetching

May be useful on simpler processors 

Some care is needed to ensure 

prefetch accesses don’t have 

unwanted side effects 

Eg memory-mapped i/o registers

(this is the function of the 

R10KCBARRIER macro)

Prefetch instructions may target 

addresses that would cause a page 

fault or protection violation

Prefetches of addresses that 

would result in a page fault or 

exception are silently squashed 

Example: MIPS “memcpy” library code – handwritten assembler –

unrolled 12 times, manually scheduled, with prefetching to 

initiate loading the source and destination cache lines into cache 

(heavy use of macros)

From https://elixir.bootlin.com/linux/v5.9.2/source/arch/mips/lib/memcpy.S

https://elixir.bootlin.com/linux/v5.9.2/source/arch/mips/lib/memcpy.S
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McFarling [1989]* 

reduced instruction 

cache misses by 75% 

on 8KB direct mapped 

cache, 4 byte blocks in 

software

Instructions

By choosing instruction 

memory layout based on 

callgraph, branch structure 

and profile data

Reorder procedures in 

memory so as to reduce 

conflict misses

(actually this really needs the 

whole program – a link-time 

optimisation)

* “Program optimization for instruction caches”, ASPLOS89, http://doi.acm.org/10.1145/70082.68200

Loop2Loop1 Loop3

Loop2Loop1 Loop3

Call graph

Packing code for each function into the I-cache

time

Reducing instruction-cache misses

Function E is placed to avoid conflicts with B and C, 

but can be placed in addresses that conflict with A
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Storage layout transformations
Merging Arrays: improve spatial locality by single array of 
compound elements vs. 2 arrays

Permuting a multidimensional array: improve spatial locality by 
matching array layout to traversal order

Improve spatial locality

Iteration space transformations
Loop Interchange: change nesting of loops to access data in 
order stored in memory

Loop Fusion: Combine 2 independent loops that have same 
looping and some variables overlap

Blocking: Improve temporal locality by accessing “blocks” of 
data repeatedly vs. going down whole columns or rows (wait for 
Chapter 4)

Can also improve temporal locality
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Array Merging - example/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key (example?)

Improve spatial locality (counter-example?)

• whether this is a good idea depends on access 
pattern

(actually this is a transpose: 2*SIZE -> SIZE*2)

“Array of Structs” vs 

“Struct of Arrays”

(AoS vs SoA)
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Consider matrix-matrix multiply (tutorial ex)

MM1:

for (i=0;i<N;i++)

for (j=0;j<N;j++)

for (k=0;k<N;k++)

C[i][j] += A[i][k] * B[k][j]; 

MM2:

for (i=0;i<N;i++)

for (k=0;k<N;k++)

for (j=0;j<N;j++)

C[i][j] += A[i][k] * B[k][j]; 

Row-major storage layout (default for C):

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Row 0 Row 1 Row 2 Row 3 Row 4

Column-major storage layout (default for Fortran):

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Col 0 Col 1 Col 2 Col 3 Col 4
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MM1: ijk

MM2: ikj

MM3: tiled

MM3: tiled
but with 

different 

storage 

layout

256 bytes 512B 1024B 2048B 4096B 8192B

32 doubles 64 128 256 512 1024

Problem size: 192 doubles, 1536 bytes per row
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Traverses B and C in row-major order

Which is great if the data is stored in row-major order

If data is actually in column-major order…

Matrix-matrix 
multiply on 
Pentium 4

“ikj” variant:

for i 

for k 

for j     

C[ij]+=A[ik]

*B[kj]
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1511

1410

73

62

139

128

51

40

Row major 

mapping to 

linear address:

Column major:
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Permuting multidimensional arrays to improve spatial locality

Blocked layout offers compromise between row-major and column-
major

Some care is needed in optimising address calculation to make this 
work (Jeyan Thiyagalingam’s Imperial PhD thesis)

Using a blocked (“quadtree” or “Morton”) 

layout gives a compromise between row-major 

and column-major

1514

1312

1110

98

76

54

32

10

A variant of 

Morton-order 

layout is used 

for texture 

caching in 

some GPUs

Morton-order mapping to 

linear address
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Loop Interchange: example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses: instead of striding 
through memory every 100 words; 
improved spatial locality
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Loop Fusion: example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After fusion */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. 
one miss per access; improve 
spatial locality

/* After array contraction */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ cv = c[i][j];

a = 1/b[i][j] * cv;

d[i][j] = a + cv;}

The real payoff comes if 
fusion enables Array 
Contraction: values 
transferred in scalar 
instead of via array

S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2 S2

S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2 S2

S1:

S2:

S1:

S2: S2:

S1:
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Fusion is not always so simple

Dependences might not align nicely

Example: one-dimensional convolution filters

• “Stencil” loops are not directly fusable

for (i=1; i<N; i++)

V[i] = (U[i-1] + U[i+1])/2

for (i=1; i<N; i++)

W[i] = (V[i-1] + V[i+1])/2



16

We make them fusable by shifting:

V[1] = (U[0] + U[2])/2

for (i=2; i<N; i++) {

V[i] = (U[i-1] + U[i+1])/2

W[i-1] = (V[i-2] + V[i])/2

}

W[N-1] = (V[N-2] + V[N])/2

The middle loop is fusable

We get lots of little edge bits

Loop fusion – code expansion
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We make them fusable by shifting:

V[1] = (U[0] + U[2])/2

for (i=2; i<N; i++) {

V[i%4] = (U[i-1] + U[i+1])/2

W[i-1] = (V[(i-2)%4] + V[i%4])/2

}

W[N-1] = (V[(N-2)%4] + V[N%4])/2

The middle loop is fusable

We get lots of little edge bits

Loop fusion – code expansion

Contraction is trickier

We need the last two Vs

We need 3 V locations

Quicker to round up to four

This transformation 

is important in 

image-processing 

filters, finite 

difference solvers, 

and convolutional 

neural networks
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Summary
We can reduce the miss rate at the software level …..

By using prefetch instructions

If they work better than predictive prefetch hardware

By transforming storage layout

Might help with spatial locality 

Might help with associativity conflicts

Can’t help with temporal locality

Storage layout optimisations are disruptive – they affect all the 
code that might use that data

Loop interchange, fusion, tiling

Can get really messy to implement by hand

Can lead to a large space of possible schedules – it can be 
hard to know what will work best

Loop fusion can be very powerful but often breaks 
abstraction boundaries
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Further reading
Algorithms and locality: cache-oblivious algorithms:

https://en.wikipedia.org/wiki/Cache-oblivious_algorithm

Compilers that optimise for locality:

Michael E. Wolf and Monica S. Lam. 1991. A data locality optimizing algorithm. 
PLDI91.

Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. 1996. Improving data 
locality with loop transformations. ACM Trans. Program. Lang. Syst. 18, 4 (July 
1996)

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A 
practical automatic polyhedral parallelizer and locality optimizer. PLDI08

Programming Abstractions for Data Locality

https://sites.google.com/a/lbl.gov/padal-workshop/

Optimisations for convolutional neural networks

Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, Yida Wang. 
Optimizing CNN model inference on CPUs.  USENIX ATC’19.

https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
https://sites.google.com/a/lbl.gov/padal-workshop/

