Advanced Computer Architecture

Chapter 4. Caches and Memory Systems
Part 3: Miss penalty reduction

November 2023
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3, 4th.
5th and 6t eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Average memory access time:

AMAT = HitTime + MissRate X MissPenalty

There are three ways to improve AMAT:

1. Redu

. Reduce the miss penalty, o;ea;
3. ' to hit in th e

We now look at each of these In turn...

Write policy:
Write-through vs write-back

® Write-through: all writes update cache and underlying
memory/cache
& Can always discard cached data - most up-to-date data is in memory
& Cache control bit: only a valid bit

® Write-back: all writes simply update cache

@ Can’t just discard cached data - may have to write it back to memory
& Cache control bits: both valid and dirty bits

® Other Advantages:

& Write-through:

@ memory (or other processors — or just the next level of the cache)
always has latest data

@ Simpler management of cache

& Write-back:
® much lower bandwidth, since data often overwritten multiple times
@ Better tolerance to long-latency memory?

Write policy 2:
Write allocate vs non-allocate
(What happens on write-miss?)

® Write allocate: allocate new cache line in cache

@®Usually means that you have to do a “read miss” to fill in
rest of the cache-line!

@ Alternative: per/word valid bits
® Write non-allocate (or “write-around”):

& Simply send write data through to underlying
memory/cache - don’ t allocate new cache line!

Reducing Miss Penalty:
Read Priority over Write on Miss

® Consider write-through with write buffers

@® RAW conflicts with main memory reads on cache
misses

CPU

in out

allowing read

@ Could simply wait for write buffer to empty, before
T ‘ @ Risks serious increase in read miss penalty (old

MIPS 1000 by 50%)
® Solution:

* Check write buffer contents before read;
if no conflicts, let the memory access

Cache

| continue

write ® If you use write-back, you also need a write
buffer buffer buffer to hold displaced blocks

‘ @ Read miss replacing dirty block

DRAM @ Normal: Write dirty block to memory, and then do the
read
(or lower mem)

@ Instead copy the dirty block to a write buffer, then do
the read, and then do the write

& CPU stall less since restarts as soon as do read

CPU
in out
Cache
|
write
buffer
DRAM

(or lower mem)

Write buffer issues

® Size: 2-8 entries are typically sufficient for caches
& But an entry may store a whole cache line

& Make sure the write buffer can handle the
typical store bursts...

@ Analyze your common programs, consider
bandwidth to lower level

® Coalescing write buffers

& Merge adjacent writes into single entry

@ Especially useful for write-through caches
® Dependency checks

& Comparators that check load address against
pending stores

& If match there is a dependency so load must
stall

® Optimization: load forwarding

@ If match and store has its data, forward data to
load...

@® Integrate with victim cache?

Reduce miss penalty:
early restart and critical word first

Cache block

— Requested word

® The processor can continue as soon as the requested word
arrives

® Don’t wait for full block to be loaded before restarting CPU

@ Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

@ Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block.

® Generally useful only in large blocks,

& (Access to contiguous sequential words is very common — perhaps a
simple scheme will work pretty well most of the time?)

Early restart and critical word first and sectored
cache lines

Cache block

— Requested word

® Some care Is needed: what If processor issues another
load to another word in the cache line, before it arrives?

Cache block
0 0 1 0 Per-sector validity bit

® Divide cache line into “sectors” — each with its own validity
bit (maybe “dirty” bits too)

® We allocate in units of cache lines, but we deliver data in
units of sectors

® We can fetch the sectors in any order, perhaps even
leaving them invalid until requested
® Eg IBM Power9: 128B lines, 32B sectors (https://en.wikichip.org/wiki/ibm/microarchitectures/power9)

https://en.wikichip.org/wiki/ibm/microarchitectures/power9

Reduce miss penalty: non-blocking caches to
reduce stalls on misses

® Non-blocking cache or lockup-free cache allows data cache to
continue to supply cache hits during a miss
@ requires full/empty bits on registers or out-of-order execution
@ requires multi-bank memories

® “hit under miss” reduces the effective miss penalty by working
during miss instead of ignoring CPU requests

® “hit under multiple miss” or “miss under miss” may further lower
the effective miss penalty by overlapping multiple misses

@ Significantly increases the complexity of the cache controller as there can be
multiple outstanding memory accesses

@ Requires multiple memory banks (otherwise cannot support)
@ Eg IBM Power5 allows 8 outstanding cache line misses

Compare:
prefetching: overlap memory access with pre-miss instructions,
Non-blocking cache: overlap memory access with post-miss instructions

Eg for ARM-A15 see http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_al5 r2p0_trm.pdf (esp page 6-6)

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf

What happens on a Cache miss?
® For in-order pipeline, two options:
@ Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall ... stall Mem Wr
IF ID EX stall stall stall ... stall stall Ex Wr

@ Use Full/Empty bits in registers + MSHR queue

® MSHR = “Miss Status/Handler Registers” (Kroft*)
Each entry in this queue keeps track of status of outstanding memory
requests to one complete memory line.
» Per cache-line: keep info about memory address.
» For each word: register (if any) that is waiting for result.
« Used to “merge” multiple requests to one memory line

® New load creates MSHR entry and sets destination register to “Empty”. Load
is “released” from pipeline.

® Attempt to use register before result returns causes instruction to block in
decode stage.

@ Limited “out-of-order” execution with respect to loads.
Popular with in-order superscalar architectures.
® Out-of-order pipelines already have this functionality built in...
(load queues, etc). Cf also Power6 “load lookahead mode”

* David Kroft, Lockup-free instruction fetch/prefetch cache organization, ICCA81 http://portal.acm.org/citation.cfm?id=801868

Hit Under i Misses Value Of Hlt Under

2 1 Miss for SPEC
18 +
16 +
4T O o1 0->1
12 1 . -
AMAT (incycles) 1 T m ; 1->2
08 1 ” 2->04
06 1 Wese | Base

04 1 “Hit under n Misses”

0.2 -+

0]

eqntott
espresso
xlisp
compress
mdljsp2
ear
fpppp
tomcatv
m256
doduc
su2cor
waveb
mdljdp2
hydro2d
alvinn
nasa’
spice2g6
ora

Integer Floati:\g Point
® FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
® Int programs on average: AMAT=0.24 -> 0.20 -> 0.19 -> 0.19
® 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

® Hit-under-miss implies loads may be serviced out-of-order...
® Need a memory “fence” or “barrier” (http://www.linuxjournal.com/article/8212)
&® PowerPC eieio (Enforce In-order Execution of Input/Output) Instruction

Add a second-level cache

® L2 Equations
AMAT = Hit Time ; + Miss Rate ; x Miss Penalty, ,

Miss Penalty, ; = Hit Time , + Miss Rate , X Miss Penalty,,

AMAT = Hit Time , +
Miss Rate , x (Hit Time , + Miss Rate, , x Miss Penalty|,)

® Definitions:

@ Local miss rate— misses in this cache divided by the total number of memory
accesses to this cache (Miss rate,)

@ Global miss rate—misses in this cache divided by the total number of memory
accesses generated by the CPU
(Miss Rate ; x Miss Rate|,)

& Global Miss Rate is what matters

L1I: 32KB

L1D: 32KB

Multiple levels of cache - example

L1: 32KB, 8-way associative | and D
L1D: writeback, two 256-bit loads and a 256-bit store
every cycle

64B/cy}le328lc>{cle L2: 256KB, 8-way writeback with ECC. Can provide a

L2: '256KB

L3: 45MB (2.5MB per core)

DRAM

full 64B line to the data or instruction cache every
cycle, 11 cycle minimum latency and 16 outstanding
misses.

328/c{cle
L3: Size varies from device to device. Shared by all

cores on chip. Connected by ring interconnect
(actually two connected rings)

® Example: Intel Haswell e5 2600 v3
® 18 cores, 145W TDP, 5.56B transistors

http://www.realworldtech.com/haswell-cpu/5/

http://www.realworldtech.com/haswell-cpu/5/

o
i I I I | L 3
Il e | e e |
1' Nk v X 15 X 15 I Glohally
\ | R 2 FCI | e g

P il = Rl) A A N Bl = il =
® Example: Intel Haswell e5 2600 v3
® Q: do all LLC hits have same latency?

® Q: do all LLC misses have same latency?

http://www.realworldtech.com/haswell-cpu/5/

http://www.realworldtech.com/haswell-cpu/5/

® Multi-level inclusion : : :
@L2 cache contains everything in L1 Multilevel inclusion

&L ., cache contains everything in L,

® We might allocate into L1 but not into L2
® We might allocate into L2 but not into L1
® We might allocate into L1 and L2 but not LLC

@13 (Last-level cache) is sometimes managed as a victim
cache — datais allocated into LLC when displaced from
L2 (eg AMD Barcelona, Apple A9)

@Example: Intel’s Crystalwell processor has a 128MB
DRAM L4 cache on a separate chip in the same package
as the CPU, managed as a victim cache

® Issues:
@replacement of dirty lines?

@Cache coherency - invalidation
@ With MLI, if lineis notin L2, we don’t need to invalidate it in L1

Summary

We can reduce the miss penalty.....
® By choosing write back instead of write-through

@ (because reducing traffic to the next level of the memory
system may mean you don’t stall later)

® Using a write buffer

#®0n aload, check in the write buffer in parallel with cache
access

® By choosing between write-allocate and write-no-allocate wisely
® Early restart and critical-word first
® Avoid stalling on misses: non-blocking cache, hit-under-miss
® Add a second cache
® Add a third, fourth cache
@®Multi-level inclusion? Why does it matter?
® Look in your neighbour’s cache

	Slide 1: Advanced Computer Architecture Chapter 4: Caches and Memory Systems Part 3: Miss penalty reduction
	Slide 2: There are three ways to improve AMAT:
	Slide 3: Write policy: Write-through vs write-back
	Slide 4: Write policy 2: Write allocate vs non-allocate (What happens on write-miss?)
	Slide 5: Reducing Miss Penalty: Read Priority over Write on Miss
	Slide 6: Write buffer issues
	Slide 7: Reduce miss penalty: early restart and critical word first
	Slide 8: Early restart and critical word first and sectored cache lines
	Slide 9: Reduce miss penalty: non-blocking caches to reduce stalls on misses
	Slide 10: What happens on a Cache miss?
	Slide 11: Value of Hit Under Miss for SPEC
	Slide 12: Add a second-level cache
	Slide 13: Multiple levels of cache - example
	Slide 14
	Slide 15: Multilevel inclusion
	Slide 16: Summary

