
1

Advanced Computer Architecture
Chapter 6

Static instruction scheduling, for instruction-level
parallelism

Software pipelining, VLIW, EPIC, instruction-set support

November 2022

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3rd and

4th eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

2

Overview
We have see dynamic scheduling:

out-of-order (o-o-o): exploiting instruction-level
parallelism in hardware

How much of all this complexity can you shift into
the compiler?

What if you can also change instruction set
architecture?

VLIW (Very Long Instruction Word)

EPIC (Explicitly Parallel Instruction Computer)
Intel’s (and HP’s) multi-billion dollar gamble for the future of
computer architecture: Itanium, IA-64

Started ca.1994…not dead yet – but has it turned a profit?

14

Recall example from Ch02

Loop: L.D F0,0(R1) ;F0=vector element

ADD.D F4,F0,F2 ;add scalar from F2

S.D 0(R1),F4 ;store result

DSUBUI R1,R1,8 ;decrement pointer 8B (DW)

BNEZ R1,Loop ;branch R1!=zero

NOP ;delayed branch slot

Where are the stalls?

• Using MIPS code:
[For the sake of a simple example, we count down to location zero]

for (i=1000; i>=0; i=i–1)

x[i] = x[i] + s;

15

Showing Stalls

9 clocks: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

1 Loop: L.D F0,0(R1) ;F0=vector element

2 stall

3 ADD.D F4,F0,F2 ;add scalar in F2

4 stall

5 stall

6 S.D 0(R1),F4 ;store result

7 DSUBUI R1,R1,8 ;decrement pointer 8B (DW)

8 BNEZ R1,Loop ;branch R1!=zero

9 stall ;delayed branch slot

16

Revised Loop Reducing Stalls

6 clocks, but just 3 for execution, 3 for loop overhead; How make faster?

1 Loop: L.D F0,0(R1)

2 stall

3 ADD.D F4,F0,F2

4 DSUBUI R1,R1,8

5 BNEZ R1,Loop ;delayed branch

6 S.D 8(R1),F4 ;altered when moved past DSUBUI

Swap BNEZ and S.D by changing address of S.D

Instruction Instruction Latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

17

Unroll the loop four times
• Four copies of the loop body

• One copy of increment and test

• Adjust register-indirect loads using offsets

1 Loop:L.D F0,0(R1)

2 ADD.D F4,F0,F2

3 S.D 0(R1),F4 ;drop DSUBUI & BNEZ

4 L.D F0,-8(R1)

5 ADD.D F4,F0,F2

6 S.D -8(R1),F4 ;drop DSUBUI & BNEZ

7 L.D F0,-16(R1)

8 ADD.D F4,F0,F2

9 S.D -16(R1),F4 ;drop DSUBUI & BNEZ

10 L.D F0,-24(R1)

11 ADD.D F4,F0,F2

12 S.D -24(R1),F4

13 DSUBUI R1,R1,#32 ;alter to 4*8

14 BNEZ R1,LOOP

15 NOP

• Re-use of registers creates WAR (“anti-dependences”)

• How can we remove them?

18

Loop unrolling…

1 Loop:L.D F0,0(R1)

2 ADD.D F4,F0,F2

3 S.D 0(R1),F4 ;drop DSUBUI & BNEZ

4 L.D F6,-8(R1)

5 ADD.D F8,F6,F2

6 S.D -8(R1),F8 ;drop DSUBUI & BNEZ

7 L.D F10,-16(R1)

8 ADD.D F12,F10,F2

9 S.D -16(R1),F12 ;drop DSUBUI & BNEZ

10 L.D F14,-24(R1)

11 ADD.D F16,F14,F2

12 S.D -24(R1),F16

13 DSUBUI R1,R1,#32 ;alter to 4*8

14 BNEZ R1,LOOP

15 NOP

The original “register renaming”

19

Unrolled Loop That Minimizes Stalls

What assumptions made
when moved code?

OK to move store past
DSUBUI even though changes
register

OK to move loads before
stores: get right data?

When is it safe for compiler to
make such changes?

1 Loop:L.D F0,0(R1)

2 L.D F6,-8(R1)

3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12

12 DSUBUI R1,R1,#32

13 BNEZ R1,LOOP

14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

23

How about this?

1 S.D 0(R1),F4 ; Stores M[i]

2 ADD.D F4,F0,F2 ; Adds to M[i-1]

3 L.D F0,-16(R1) ; Loads M[i-2]

4 DSUBUI R1,R1,#8

5 BNEZ R1,LOOP

24

Software Pipelining Example
Before: Unrolled 3 times
1 L.D F0,0(R1)

2 ADD.D F4,F0,F2

3 S.D 0(R1),F4

4 L.D F6,-8(R1)

5 ADD.D F8,F6,F2

6 S.D -8(R1),F8

7 L.D F10,-16(R1)

8 ADD.D F12,F10,F2

9 S.D -16(R1),F12

10 DSUBUI R1,R1,#24

11 BNEZ R1,LOOP

After: Software Pipelined
1 S.D 0(R1),F4 ; Stores M[i]

2 ADD.D F4,F0,F2 ; Adds to M[i-1]

3 L.D F0,-16(R1);Loads M[i-2]

4 DSUBUI R1,R1,#8

5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance

– Less code space than unrolling

– Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled

o
v
e
rl

a
p

p
e
d

 o
p

s

Time

Time

5 cycles per iteration

(3 if we can issue DSUBUI and BNEZ in parallel with other instrns)

25

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

1 2 3 4 5 6 7 8

Pipeline fills Pipeline full Pipeline drains

26

Including fill and drain phases:

-2 L.D F1,-0(R1) ; Loads M[N]

-1 L.D F0,-8(R1) ; Loads M[N-1]

0 ADD.D F4,F1,F2 ; Adds to M[N]

LOOP: ; on entry, i=R1=N

1 S.D 0(R1),F4 ; Stores M[i]

2 ADD.D F4,F0,F2 ; Adds to M[i-1]

3 L.D F0,-16(R1) ; Loads M[i-2]

4 DSUBUI R1,R1,#8

5 BNEZ R1,LOOP

6 S.D 0(R1),F4 ; Stores M[i-1]

7 ADD.D F4,F0,F2 ; Adds to M[i-2]

8 S.D -16(R1),F4 ; Stores M[i-2]

Fill

phase

Fully-

pipelined

phase

Drain

phase

27

Static overlapping of loop bodies:
“Software Pipelining”

Observation: if iterations from loops are independent, then
can get more ILP by taking instructions from different
iterations

Software pipelining: reorganizes loops so that each iteration
is made from instructions chosen from different iterations of
the original loop (~ Tomasulo in software)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

31

What if We Can Change the Instruction Set?

Superscalar processors decide on the fly how many
instructions to issue in each clock cycle

Have to check for dependences between all n pairs of instructions in a
potential parallel issue packet

Hardware complexity of figuring out the number of instructions to issue
is O(n2)

Entirely doable for smallish n, but tends to lead to multiple pipeline
stages between fetch and issue

Why not allow compiler to schedule instruction level
parallelism explicitly?

Format the instructions into a potential issue packet so
that hardware need not check explicitly for dependences

32

VLIW: Very Large Instruction Word
Each “instruction” has explicit coding for multiple
operations

In IA-64, grouping called a “packet”

In Transmeta, grouping called a “molecule” (with “atoms” as ops)

h
tt

p:
//

w
w
w
.c

s.
ui
uc

.e
d
u/

h
om

e
s/

lu
d
d
y
/P

R
O
C
E
S
S
O
R
S
/T

ra
ns

m
e
ta

C
ru

so
e
.p

d
f

h
tt

p:
//

w
w
w
.c

s.
ui
uc

.e
d
u/

h
om

e
s/

lu
d
d
y
/P

R
O
C
E
S
S
O
R
S
/T

M
S
3
2
0
C
6
4
x
.p

d
f

Transmeta’s Crusoe

Texas Instruments TMS320C64x
All the operations the compiler puts in the long instruction word
are independent, so can be issued and can execute in parallel

E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

Need compiling technique that schedules across several branches

(Transmeta were

cagey about details)

http://www.cs.uiuc.edu/homes/luddy/PROCESSORS/TransmetaCrusoe.pdf

33

Recall: Unrolled Loop that Minimizes Stalls
for Scalar

1 Loop: L.D F0,0(R1)

2 L.D F6,-8(R1)

3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12

12 DSUBUI R1,R1,#32

13 BNEZ R1,LOOP

14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle

ADD.D to S.D: 2 Cycles

34

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

L.D F0,0(R1) L.D F6,-8(R1) 1

L.D F10,-16(R1) L.D F14,-24(R1) 2

L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3

L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5

S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6

S.D -16(R1),F12 S.D -24(R1),F16 7

S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8

S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)

Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6)

37

Software Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock

reference 1 reference 2 operation 1 op. 2 branch

L.D F0,-48(R1) ST 0(R1),F4 ADD.D F4,F0,F2 1

L.D F6,-56(R1) ST -8(R1),F8 ADD.D F8,F6,F2 DSUBUI R1,R1,#24 2

L.D F10,-40(R1) ST 8(R1),F12 ADD.D F12,F10,F2 BNEZ R1,LOOP 3

Software pipelined across 9 iterations of original loop
In each iteration of above loop, we:

Store to m,m-8,m-16 (iterations I-3,I-2,I-1)

Compute for m-24,m-32,m-40 (iterations I,I+1,I+2)

Load from m-48,m-56,m-64 (iterations I+3,I+4,I+5)

9 results in 9 cycles, or 1 clock per iteration

Average: 3.67 (=11/3) instrs per clock, 73.3% utilisation (=11/15)

Note: Need fewer registers for software pipelining
(only using 7 registers here, was using 15)

42

Intel/HP IA-64 “Explicitly Parallel Instruction
Computer (EPIC)”

IA-64: Intel’s bid to create a new instruction set
architecture

EPIC = “2nd generation VLIW”?

ISA exposes parallelism (and many other issues) to
the compiler

But is binary-compatible across processor
implementations

Itanium™ first implementation (2001)
6-wide, 10-stage pipeline

Itanium 2 (2002-2010)

6-wide, 8-stage pipeline

http://www.intel.com/products/server/processors/server/itanium2/

Itanium 9500 (Poulson) (2012)

12-wide, 11-stage pipeline

(2017: Kittson “end of the

line”)

http://www.intel.com/products/server/processors/server/itanium2/

43

Instruction bundling in IA-64

IA-64 instructions are encoded in bundles, which are 128 bits wide.

Each bundle consists of a 5-bit template field and 3 instructions, each 41 bits in
length

One purpose of the template field is to mark where instructions in the bundle are
dependent or independent, and whether they can be issued in parallel with the
next bundle

Eg for Poulson, groups of up to 4 bundles can be issued in parallel

Smaller code size than old VLIW, larger than x86/RISC

h
tt

p
:/

/w
w

w
.r

e
a

lw
o

rl
d

te
c

h
.c

o
m

/p
a

g
e

.c
fm

?
A

rt
ic

le
ID

=
R

W
T

0
1

2
5

0
0

0
0

0
0

0
0

&
p

=
4

Instruction group: a sequence of
consecutive instructions with no register
data dependences

All instructions in a group could be
executed in parallel, if sufficient
hardware resources exist and if any
dependences through memory are
preserved

Instruction group can be arbitrarily long,
but compiler must explicitly indicate
boundary between one instruction
group and another by placing a stop
between 2 instructions that belong to
different groups

44

Instruction bundling in IA-64

Instructions can be explicitly sequential:

add r1 = r2, r3 ;;

sub r4 = r1, r2 ;;

shl r2=r4,r8

Or not:

add r1 = r2, r3

sub r4 = r11, r21

shl r12 = r14, r8 ;;

The “;;” syntax sets the “stop” bit that marks the end of
a sequence of bundles that can be issued in parallel

45

Hardware Support for Exposing
More Parallelism at Compile-Time

To help trace scheduling and software pipelining, the Itanium
instruction set includes several interesting mechanisms:

Register stack

Predicated execution

Speculative, non-faulting Load instructions

Rotating register frame

Software-assisted branch prediction

Software-assisted memory hierarchy

Job creation scheme for compiler engineers

We will look at several of these in more detail ….

Not covered in

lecture

46

IA-64 register stackGeneral-purpose registers
are configured to help
accelerate procedure calls
using a register stack

Registers 32-128 are used as a
register stack and each procedure is
allocated a set of registers (from 0 to
96)

The new register stack frame is
created for a called procedure by
renaming the registers in hardware;

a special register called the current
frame pointer (CFM) points to the set
of registers to be used by a given
procedure

Registers 0-31 are always accessible
and addressed as 0-31

(Mechanism similar to that developed
in the Berkeley RISC-I processor and
used in the SPARC architecture)

main calls

f(a,b,c)

f calls

g(d,e,f)

g()

a
b
c

d
e
f

d
e
f

a
b
c

Logical views Physical registers

Logical to

physical

register

mapping

“windows”

overlap for

parameters

and results

48

Predication…

64 1-bit predicate registers

(p1) add r1 = r2, r3 // executed if p1

(p2) sub r1 = r2, r3 ;; // executed if p2

shl r12 = r1, r8 J// executed alwaysD

Predication means

Compiler can move
instructions across
conditional branches

To pack parallel issue
groups

May also eliminate some
conditional branches
completely

Avoiding branch
prediction and
misprediction

A

B

BEQ Cond L

C

D

E

F

G

L: H

P=Cond A B P:C P:D BEQ P LI

J E F G !P:H !P:I !P:J

When a branch breack

49

Predication…
64 1-bit predicate registers

(p1) add r1 = r2, r3 // executed if p1

(p2) sub r1 = r2, r3 ;; // executed if p2

shl r12 = r1, r8 // executed always

Predication means

Compiler can move
instructions across
conditional branches

To pack parallel issue
groups

May also eliminate some
conditional branches
completely

Avoiding branch
prediction and
misprediction

A B BEQ Cond L

C D E F G

L:

H I J

P=Cond A B P:C P:D BEQ P L

E F G !P:H !P:I !P:J

When a branch would

break a parallel issue

packet, move

instructions and

predicate them

L:

50

Predication…Predication
means

Compiler can
move
instructions
across
conditional
branches

To pack
parallel issue
groups

May also
eliminate
some
conditional
branches
completely

Avoiding
branch
prediction and
misprediction

BEQ Cond L

A B C D E

L:

G H

I

P=Cond (P) A (P) B (P) C (P) D BEQ P L

E F

When a branch would

break a parallel issue

packet, move

instructions and

predicate them

L: J K L

…

(!P) G (!P) H I J K L

F

L L

…

… …

Lost due to branch

Lost due to label

Parallel issue packets

53

IA64 has several different mechanisms to enable the
compiler to schedule loads

ld.s – speculative, non-faulting

ld.a – speculative, “advanced” – checks for aliasing stores

Register values may be marked “NaT” – not a thing

If speculation was invalid

Advanced Load Address Table (ALAT) tracks stores to
addresses of “advanced” loads

http://www.stanford.edu/class/ee382a/handouts/L13-Vector.pdf

IA64 load instruction variants

54

IA64: Speculative, Non-Faulting Load

ld.s fetches speculatively from memory

i.e. any exception due to ld.s is suppressed

If ld.s r did not cause an exception then chk.s r is an NOP,
else a branch is taken to some compensation code

http://www.stanford.edu/class/ee382a/handouts/L13-Vector.pdf

55

IA64: Speculative, Non-Faulting Load

Speculatively-loaded data can be consumed prior to check

“speculation” status is propagated with speculated data via NaT

Any instruction that uses a speculative result also becomes speculative
(i.e. suppressed exceptions)

chk.s checks the entire dataflow sequence for exceptions

http://www.stanford.edu/class/ee382a/handouts/L13-Vector.pdf

56

IA64: Speculative “Advanced” Load

ld.a starts the monitoring of any store to the same address
as the advanced load

If no aliasing has occurred since ld.a, ld.c is a NOP

If aliasing has occurred, ld.c re-loads from memory

Allocate x

into Advance

Load Address

Table (ALAT)

Check x is

still in the

ALAT

When a store

is executed,

remove any

matching

entry from the

ALAT

59

IA-64 Registers

Both the integer and floating point registers
support register rotation for registers 32-128.

Register rotation is designed to ease the task
of register allocation in software pipelined
loops

When combined with predication, possible to
avoid the need for unrolling and for separate
prologue and epilogue code for a software
pipelined loop

makes software pipelining usable for loops with smaller
numbers of iterations, where the overheads would
traditionally negate many of the advantages

60

How Register Rotation Helps Software
Pipelining

Consider this loop for copying data:

L1: ld4 r35 = [r4], 4 // post-increment by 4

st4 [r5] = r37, 4 // post-increment by 4

br.ctop L1 ;;

The br.ctop instruction in the example rotates

the general registers (actually br.ctop does more as we shall see)

Therefore the value stored into r35 is read in r37 two

iterations (and two rotations) later.

The register rotation eliminated a dependence between

the load and the store instructions, and allowed the loop to

execute in one cycle.

h
tt

p
:/

/w
w

w
.c

s
.u

a
lb

e
rt

a
.c

a
/~

a
m

a
ra

l/
c
o

u
rs

e
s
/6

8
0
/w

e
b

s
li
d

e
s
/T

F
-H

W
S

u
p

S
o

ft
P

ip
e
li
n

e
/s

ld
0
2
3
.h

tm

The logical-to-physical register mapping is shifted by 1 each
time the branch (“br.ctop”) is executed

One issue packet

61

Software Pipelining Example in the IA-64

mov pr.rot = 0 // Clear all rotating predicate registers
cmp.eq p16,p0 = r0,r0 // Set p16=1
mov ar.lc = 4 // Set loop counter to n-1
mov ar.ec = 3 // Set epilog counter to 3

…
loop:
(p16) ldl r32 = [r12], 1 // Stage 1: load x
(p17) add r34 = 1, r33 // Stage 2: y=x+1
(p18) stl [r13] = r35,1 // Stage 3: store y

br.ctop loop // Branch back

Predicate mechanism activates successive stages of the software pipeline,
to fill on start-up and drain when the loop terminates

The software pipeline branch “br.ctop” rotates the predicate registers, and
injects a 1 into p16

Thus enabling one stage at a time, for execution of prologue

When loop trip count is reached, “br.ctop” injects 0 into p16, disabling one
stage at a time, then finally falls-through

h
tt

p
:/

/w
w

w
.c

s
.u

a
lb

e
rt

a
.c

a
/~

a
m

a
ra

l/
c
o

u
rs

e
s
/6

8
0
/w

e
b

s
li
d

e
s
/T

F
-H

W
S

u
p

S
o

ft
P

ip
e

li
n

e
/s

ld
0

2
7
.h

tm

One issue packet

62

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x1

32 33 34 35 36 37 38

General Registers (Physical)

0 01

16 17 18

Predicate Registers

4

LC

3

EC

x4
x5

x1
x2
x3

Memory

39

32 33 34 35 36 37 38 39

General Registers (Logical)

0

RRBh
tt

p
:/

/w
w

w
.c

s
.u

a
lb

e
rt

a
.c

a
/~

a
m

a
ra

l/
c
o

u
rs

e
s
/6

8
0
/w

e
b

s
li
d

e
s
/T

F
-H

W
S

u
p

S
o

ft
P

ip
e
li
n

e
/

63

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0 01

16 17 18

Predicate Registers

4

LC

3

EC

x4
x5

x1
x2
x3

Memory

x1

32 33 34 35 36 37 38

General Registers (Physical)

39

32 33 34 35 36 37 38 39

General Registers (Logical)

0

RRBh
tt

p:
//

w
w
w
.c

s.
ua

lb
e
rt

a
.c

a
/~

a
m
a
ra

l/
co

ur
se

s/
6
8
0
/w

e
b
sl
id

e
s/

T
F
-
H
W

S
up

S
of

tP
ip
e
li
ne

/

64

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0 01

16 17 18

Predicate Registers

4

LC

3

EC

x4
x5

x1
x2
x3

Memory

x1

32 33 34 35 36 37 38

General Registers (Physical)

39

32 33 34 35 36 37 38 39

General Registers (Logical)

0

RRBh
tt

p:
//

w
w
w
.c

s.
ua

lb
e
rt

a
.c

a
/~

a
m
a
ra

l/
co

ur
se

s/
6
8
0
/w

e
b
sl
id

e
s/

T
F
-
H
W

S
up

S
of

tP
ip
e
li
ne

/

65

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0 01

16 17 18

Predicate Registers

4

LC

3

EC

1

x4
x5

x1
x2
x3

Memory

x1

33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

-1

RRB

66

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 01

16 17 18

Predicate Registers

3

LC

3

EC

x4
x5

x1
x2
x3

Memory

x1

33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

-1

RRB

67

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 01

16 17 18

Predicate Registers

3

LC

3

EC

x4
x5

x1
x2
x3

Memory

x1

33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

x2

-1

RRB

68

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 01

16 17 18

Predicate Registers

3

LC

3

EC

x4
x5

x1
x2
x3

Memory

x1

33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1

-1

RRB

69

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 01

16 17 18

Predicate Registers

3

LC

3

EC

x4
x5

x1
x2
x3

Memory

x1

33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1

-1

RRB

70

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 01

16 17 18

Predicate Registers

3

LC

3

EC

x4
x5

x1
x2
x3

Memory

x1

33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1

-1

RRB

71

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11

16 17 18

Predicate Registers

2

LC

3

EC

1

x4
x5

x1
x2
x3

Memory

x1

34 35 36 37 38 39 32

General Registers (Physical)

33

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1

-2

RRB

72

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11

16 17 18

Predicate Registers

2

LC

3

EC

x4
x5

x1
x2
x3

Memory

x1

34 35 36 37 38 39 32

General Registers (Physical)

33

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1 x3

-2

RRB

73

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

y2

1 11

16 17 18

Predicate Registers

2

LC

3

EC

x4
x5

x1
x2
x3

Memory

34 35 36 37 38 39 32

General Registers (Physical)

33

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1 x3

-2

RRB

74

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11

16 17 18

Predicate Registers

2

LC

3

EC

x4
x5

x1
x2
x3 y1

Memory

y2

34 35 36 37 38 39 32

General Registers (Physical)

33

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1 x3

-2

RRB

75

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11

16 17 18

Predicate Registers

2

LC

3

EC

x4
x5

x1
x2
x3 y1

Memory

y2

34 35 36 37 38 39 32

General Registers (Physical)

33

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1 x3

-2

RRB

85

Execution continues…

In the central phase all stages of the software pipeline
are active – all predicate bits are set

We continue with start of pipeline drain phase

86

Software Pipelining Example in the IA-64

1 11

16 17 18

Predicate Registers

0

LC

3

EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3 y1

y2
y3

Memory

y2 x5 x4
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-4

RRB

87

Software Pipelining Example in the IA-64

1 10

16 17 18

Predicate Registers

0

LC

2

EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0

x4
x5

x1
x2
x3 y1

y2
y3

Memory

y2 x5 x4
37 38 39 32 33 34 35

General Registers (Physical)

36

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-5

RRB

93

Software Pipelining Example in the IA-64

0 10

16 17 18

Predicate Registers

0

LC

1

EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0

x4
x5

x1
x2
x3

y4

y1
y2
y3

Memory

y2 x5 y5
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-6

RRB

99

Software Pipelining Example in the IA-64

0 00

16 17 18

Predicate Registers

0

LC

0

EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0

x4
x5

x1
x2
x3

y4
y5

y1
y2
y3

Memory

y2 x5 y5
37 38 39 32 33 34 35

General Registers (Physical)

36

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-7

RRB

108

Comments on Itanium

Compare Itanium II

With IBM Power 4:

IPG FET ROT EXP REN REG EXE DET WRBWL.D

INST POINTER

GENERATION

FETCH ROTATE EXCEPTION

DETECT

EXECUTE WRITE-BACK

http://ixbtlabs.com/articles/ibmpower4/

112

Aces Hardware
analysis of SPEC
benchmark data
http://www.aces
hardware.com/S
PECmine/top.jsp

(ca.2007)

http://www.spec.org/cpu200
6/results/cpu2006.html

http://www.aceshardware.com/SPECmine/top.jsp

113

Summary#1: Hardware versus Software
Speculation Mechanisms

To speculate extensively, must be able to disambiguate

memory references

Much easier in HW than in SW for code with pointers

HW-based speculation works better when control flow

is unpredictable, and when HW-based branch

prediction is superior to SW-based branch prediction

done at compile time

Mispredictions mean wasted speculation

HW-based speculation maintains precise exception

model even for speculated instructions

HW-based speculation does not require compensation

or bookkeeping code

114

Summary#2: Hardware versus Software
Speculation Mechanisms cont’d

Compiler-based approaches may benefit from the ability

to see further in the code sequence, resulting in better

code scheduling

HW-based speculation with dynamic scheduling does

not require different code sequences to achieve good

performance for different implementations of an

architecture

may be the most important in the long run?

Example: ARM’s “big.LITTLE” architecture

Multicore processor with a mixture of large out-of-order cores

(A15) and small in-order cores (A7) (eg Exynos 5 Octa in

Samsung Galaxy S4)

Compiler is configured to schedule for in-order, assuming the

out-of-order processor is less sensitive to instruction scheduling

116

Extra slides for interest/fun

117

Associativity in floating point
(a+b)+c = a+(b+c) ?

Example: Consider 3-digit base-10 floating-point

1+1+1+1+1+1+1+1+…..+1+1+1+1+1+1+1+1+1+1+1+1000

1000+1+1+1+1+1+1+1+1+…..+1+1+1+1+1+1+1+1+1+1+1+1

Consequence: many compilers use loop unrolling and
reassociation to enhance parallelism in summations

And results are different!

But you can tell the compiler not to, eg:

“–fp-model precise” with Intel’s compilers

1000 ones

1000 ones

(What’s the right way to sum an array? See
http://en.wikipedia.org/wiki/Kahan_summation_algorithm)

118

Unrolling versus
software pipelining,
and unroll-and-jam

In the example processor that can only execute one instruction per cycle, unrolling is important because the loop control instructions
become the critical factor.

In machines that can issue multiple instructions per cycle, this is likely not the case - there are opportunities to issue some
instructions "for free" if you can schedule them into unused issue slots.

In that case, software pipelining should lead to better performance than unrolling, though the difference might be small with a
sufficiently-high unroll factor.

You might also consider the energy cost: unrolling means we cache and store more instructions. But software pipelining without
unrolling means we execute more loop-control instructions.

Obviously if loop unrolling were to lead to instruction-cache misses, that'd be bad.

So actually, the optimum strategy is likely to be a hybrid.

This is actually only the beginning. You can sometimes do better by unrolling an *outer* loop - this is called "unroll and jam",
because we unroll the outer loop to produce two copies of the inner loop, then we jam them together. Consider matrix-matrix
multiply (again!):

for(i=O; i<4; i++)

for(j=0; j<4; j++) {

c[i][j] = 0;

for(k=0; k<4; k++)

c[i][j] = a[i][k]*b[k][j]+c[i][j];

}

This has limited parallelism due to the (loop-carried dependence involved in the) summation into C[i][j]. After unroll-and-jam of the j-
loop by 1, we have:

for(i=O; i<4; i++)

for(j=0; j<4; j+=2) {

c[i][j] = 0;

c[i][j+1] = 0;

for(k=0; k<4; k++) {

c[i][j]=a[i][k]*b[k][j]+c[i][j];

c[i][j+1]=a[i][k]*b[k][j+1]+c[i][j+1];

} }

Now the inner loop has two summations to do, which are independent from one another. So it's more likely that you can fill the
schedule more tightly.

This example is taken from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.9319&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.9319&rep=rep1&type=pdf

120

VLIW example: Transmeta Crusoe

Instruction encoding

Transmeta’s
Crusoe was a
5—issue VLIW
processor

Instructions
were
dynamically
translated
from x86 in
firmware
“Code
Morphing”

Note hardware support for speculation

