
1

Advanced Computer Architecture
Chapter 7:

Multi-threading

November 2022

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3rd and

4th eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

3

C
o

m
p

a
q

 A
lp

h
a

 2
1

4
6

4
 -

h
tt

p
:/

/r
e

s
e

a
rc

h
.a

c
.u

p
c

.e
s
/p

a
c
t0

1
/k

e
y
n

o
te

s
/e

m
e

r.
p

d
f

http://research.ac.upc.es/pact01/keynotes/emer.pdf

4

C
o

m
p

a
q

 A
lp

h
a

 2
1

4
6

4
 -

h
tt

p
:/

/r
e

s
e

a
rc

h
.a

c
.u

p
c

.e
s
/p

a
c
t0

1
/k

e
y
n

o
te

s
/e

m
e

r.
p

d
f

Different threads in

different cycles:

“FGMT”

Dynamic scheduling

of operations from a

pool of threads:

“SMT”

http://research.ac.upc.es/pact01/keynotes/emer.pdf

5

SMT

Alpha 21464

One CPU with
4 Thread
Processing
Units (TPUs)

“6% area
overhead
over single-
thread 4-
issue CPU”

6

SMT
performance

Alpha 21464

Intel Pentium 4
with
hyperthreading:

http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threadi

ng_technology.pdf

7

SMT in the Intel Atom
(Silverthorne)

Intel’s bid to
steal back
some of the
low-power
market for IA-
32 and
Windows

In-order

2-way SMT

2 instructions
per cycle

(from same or
different threads)

h
tt

p
:/

/w
w

w
.t

o
m

s
h

a
rd

w
a

re
.c

o
.u

k
/i
n

te
l-

a
to

m
-c

p
u

,r
e

v
ie

w
-3

0
9
3
1
-5

.h
tm

l,

h
tt

p
s
:/

/a
rs

te
c
h

n
ic

a
.c

o
m

/g
a
d

g
e
ts

/2
0
0
8
/0

2
/s

m
a
ll

-w
o

n
d

e
r-

in
s
id

e
-i

n
te

ls
-s

il
v
e
rt

h
o

rn
e
-u

lt
ra

m
o

b
il
e

-c
p

u
/

http://www.tomshardware.co.uk/intel-atom-cpu,review-30931-5.html
https://arstechnica.com/gadgets/2008/02/small-wonder-inside-intels-silverthorne-ultramobile-cpu/

8

SMT issuesEach thread runs slow?
The point of Simultaneous Multithreading is that resources are
dynamically assigned, so if only one thread can run it can run faster

SMT threads contend for resources
Possibly symbiotically?

One thread is memory-intensive, one arithmetic-intensive?

Possibly destructively

thrashing the cache? Other shared resources…. (TLB?)

Which resources should be partitioned per-thread, and
which should be shared on-demand?

SMT threads need to be scheduled fairly
Can one thread monopolise the whole CPU?

Denial of service risk

Slow thread that suffers lots of cache misses fills RUU and blocks
issue

Side channels:
one thread may be able observe another’s traffic and deduce what it’s
doing

9

SMT – latency-hiding

SMT threads exploit memory-system parallelism
Easy way to get lots of memory accesses in-flight

“Latency hiding” – overlapping data access with compute

What limits the number of threads we can have?

SMT threads need a lot of registers
A lot of logical registers – but they share physical registers?

In a machine without register renaming
What about statically partitioning the register file based on the
number of registers each thread actually needs?

This is what many GPUs do

Leads to tradeoff: lots of lightweight threads to maximise latency
hiding? Or fewer heavyweight threads that benefit from lots of
registers?

Nvidia and AMD call this “occupancy”

10

Mapping threads into the register file
If each thread
needs few
registers, we can
have lots of them
co-existing in the
same physical
register file

Alternatively, we
could have fewer,
fatter threads

More
threads=higher
“occupancy”

Better latency
hiding

Tricky tradeoff!

18

#registers

per thread

19

#registers

per thread

20

#registers

per thread

21

We have explored:
Pipeline parallelism

Dynamic instruction scheduling

Static instruction scheduling

Multiple instructions per cycle

Very long instruction words (VLIW)

Multi-threading

Coarse-grain

Fine-grain

Simultaneous multithreading (SMT)

Statically-partitioned multithreading

Vector instructions and SIMD – coming soon

SIMT and GPUs – coming soon

Multicore – coming soon

Chapter summary

22

Extra slides for interest/fun
Is the “minimum” operator associative?

min(min(X, Y), Z = min(X, min(Y, Z)) ?

min(X, Y) = if X<Y then X else Y

min(min(10, x), 100) = 100

23

Extra slides for interest/fun
Is the “minimum” operator associative?

min(min(X, Y), Z = min(X, min(Y, Z)) ?

min(X, Y) = if X<Y then X else Y

All comparisons on NaNs always fail….

min(min(10, NaN), 100) = 100

24

Extra slides for interest/fun
Is the “minimum” operator associative?

min(min(X, Y), Z = min(X, min(Y, Z)) ?

min(X, Y) = if X<Y then X else Y

All comparisons on NaNs always fail….

min(X , NaN) = NaN

min(NaN, Y) = Y

min(min(X , NaN), Y) = min(NaN, Y) = Y

min(X,min(NaN,Y)) = min(X,Y)

min(min(10, NaN), 100) = 100

