
November 2022

Paul H J Kelly

Course materials online at

http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture.html

This section has contributions from Fabio Luporini (PhD & postdoc at Imperial, now CTO of
DevitoCodes) and Luigi Nardi (ex Imperial and Stanford postdoc, now an academic at Lund
University).

Advanced Computer Architecture
Chapter 8:

Vectors, vector instructions, vectorization and
SIMD

Armejach, A., Caminal, H., Cebrian, J.M. et al. Using Arm’s scalable vector extension on stencil codes. J
Supercomput 76, 2039–2062 (2020). https://doi.org/10.1007/s11227-019-02842-5

1

http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture.html

Advanced Computer Architecture Chapter 5.2

The plan
Reducing Turing Tax

Increasing instruction-level parallelism

Roofline model: when does it matter?

Vector instruction sets

Automatic vectorization (and what stops it from working)

How to make vectorization happen

Lane-wise predication

How are vector instructions actually executed?

And then, in the next chapter: GPUs, and Single-
Instruction Multiple Threads (SIMT)

2

Arithmetic Intensity
Processor Type Peak GFLOP/s Peak GB/s Ops/Byte Ops/Word

E5-2690 v3* SP CPU 416 68 ~6 ~24

E5-2690 v3 DP CPU 208 68 ~3 ~24

K40** SP GPU 4,290 288 ~15 ~60

K40 DP GPU 1,430 288 ~5 ~40

If the hardware has high Ops/Word, some code is likely to be bound by operand delivery
(SP: single-precision, 4B/word; DP: double-precision, 8B/word)

Arithmetic intensity: Ops/Byte of DRAM traffic

Hennessy and Patterson’s Computer Architecture (5th ed.)

N is the problem size
O(N) = Big-O notation

3

In
te

l
N

V
ID

IA

* E5-2690 v3 aka Haswell (launched 2014) ** Kepler (2013)

3

Roofline Model: Visual Performance Model

4

• Bound and bottleneck analysis (like Amdahl’s law)

• Relates processor performance to off-chip memory
traffic (bandwidth often the bottleneck)

Memory bound -
poor data locality

CPU freq. bound

Valid
region

Ridge
point

Roofline: An Insightful Visual Performance Model for Floating-Point Programs and Multicore Architectures, Samuel Williams et al, CACM 2008

4

5
Hennessy and Patterson’s Computer Architecture (5th ed.)

• The ridge point offers insight into the computer’s overall
performance potential

• It tells you whether your application should limited by memory
bandwidth, or by arithmetic capability

Roofline Model: Visual Performance Model
5

Example from my research: Firedrake: single-node AVX512 performance

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 –march=native)]

Theo peak

Intel LINPACK

GFLOPs achieved
for residual
assembly for
various element
types, with
polynomial
degree ranging
from 1-6

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al
https://arxiv.org/abs/1903.08243

Firedrake implements a domain-specific language for partial differential equations – different equations,
and different discretisations – have differeing arithmetic intensity:

6

https://arxiv.org/abs/1903.08243

Vector instruction set extensions
• Example: Intel’s AVX512

• Extended registers ZMM0-ZMM31, 512 bits wide

– Can be used to store 8 doubles, 16 floats, 32 shorts, 64
bytes

– So instructions are executed in parallel in 64,32,16 or 8
“lanes”

• Predicate registers k0-k7 (k0 is always true)

– Each register holds a predicate per operand (per “lane”)

– So each k register holds (up to) 64 bits*

• Rich set of instructions operate on 512-bit operands

* k registers are 64 bits in the AVX512BW extension; the default is 16

7

AVX512: vector addition
– Assembler:

• VADDPS zmm1 {k1}{z}, zmm2, zmm3

– In C the compiler provides “vector intrinsics” that
enable you to emit specific vector instructions, eg:

• res = _mm512_maskz_add_ps(k, a, b);

– Only lanes with their corresponding bit set in
predicate register k1 (k above) are activated

– Two predication modes: masking and zero-masking

• With “zero masking” (shown above), inactive lanes produce
zero

• With “masking” (omit “z” or “{z}”), inactive lanes do not
overwrite their prior register contents

8

More formally…

FOR j←0 TO KL-1

i←j * 32

IF k1[j] OR *no writemask*

THEN DEST[i+31:i]←SRC1[i+31:i] + SRC2[i+31:i]

ELSE

IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*

ELSE ; zeroing-masking

DEST[i+31:i] ← 0

FI

FI;

ENDFOR;

http://www.felixcloutier.com/x86/ADDPS.html

9

Can we get the compiler to vectorise?
• sasas

In sufficiently simple
cases, no problem:
Gcc reports:
test.c:6:3: note: loop vectorized

10

Can we get the compiler to vectorise?

If the trip count is not
known to be divisible by 4:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled

Basically the same
vectorised code as
before

Three copies of the
non-vectorised loop
body to mop up the
additional iterations
in case N is not
divisible by 4

11

If the alignment of the
operand pointers is not
known:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop peeled for vectorization to enhance alignment
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled
test.c:1:6: note: loop turned into non-loop; it never loops.
test.c:1:6: note: loop with 4 iterations completely unrolled

Basically the same
vectorised code as before

Three copies of the non-
vectorised loop body to
mop up the additional
iterations in case N is not
divisible by 4

Three copies of the non-
vectorised loop body to
align the start address of
the vectorised code on a
32-byte boundary

12

If the pointers might be
aliases:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop versioned for vectorization because of
possible aliasing
test.c:6:3: note: loop peeled for vectorization to enhance alignment
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled
test.c:1:6: note: loop turned into non-loop; it never loops.
test.c:1:6: note: loop with 3 iterations completely unrolled

Basically the same vectorised
code as before

Three copies of the non-
vectorised loop body to mop
up the additional iterations in
case N is not divisible by 4

Check whether the memory
regions pointed to by c, b and
a might overlap

Three copies of the non-
vectorised loop body to align
the start address of the
vectorised code on a 32-byte
boundary

Non-vector version of the loop
for the case when c might
overlap with a or b

13

What to do if the compiler just won’t vectorise

your loop? Option #1: ivdep pragma

14

void add (float *c, float *a, float *b)

{

#pragma ivdep

for (int i=0; i <= N; i++)

c[i]=a[i]+b[i];

}

IVDEP (Ignore Vector DEPendencies) compiler hint.
Tells compiler “Assume there are no loop-carried dependencies”

This tells the compiler vectorisation is safe: it might still not vectorise

15

void add (float *c, float *a, float *b)

{

#pragma omp simd

for (int i=0; i <= N; i++)

c[i]=a[i]+b[i];

}

#pragma omp declare simd

void add (float *c, float *a, float *b)

{

*c=*a+*b;

}

loopwise:

functionwise:

Indicates that the loop can be transformed into a SIMD loop
(i.e. the loop can be executed concurrently using SIMD instructions)

Source: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

"declare simd" can be applied to a function to enable
SIMD instructions at the function level from a SIMD loop

What to do if the compiler just won’t vectorise
your loop? Option #2: OpenMP 4.0 pragmas

Tells compiler “vectorise this code”. It might still not do it…

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

16

void add (float *c, float *a, float *b)

{

__m128* pSrc1 = (__m128*) a;

__m128* pSrc2 = (__m128*) b;

__m128* pDest = (__m128*) c;

for (int i=0; i <= N/4; i++)

*pDest++ = _mm_add_ps(*pSrc1++, *pSrc2++);

}

Vector instruction lengths are hardcoded in the data types and
intrinsics

This tells the compiler which specific vector instructions to
generate. This time it really will vectorise!

What to do if the compiler just won’t vectorise
your loop? Option #2: SIMD intrinsics:

17

More later – when we look at GPUs

What to do if the compiler just won’t
vectorise your loop? Option #3: SIMTBasically… think of each

lane as a thread

Or: vectorise an outer
loop:

#pragma omp simd

for (int i=0; i<N; ++i) {

if(){…} else {…}

for (int j=….) {…}

while(…) {…}

f(…)

}

In the body of the
vectorised loop, each lane
executes a different
iteration of the loop –
whatever the loop body
code does

Use predication to handle:
• nested if-then-else
• While loops
• For loops
• Function calls

30

Example 2

double A[N], B[N], C[N], D[N]

for i = 0 to N, i++

C[i] = A[2*i] + B[D[i]]

loop: VLOAD av, A[i], stride=2

VGATHER bv, B, D[i:v]

VADD cv, bv, av

VSTORE C[i:v], cv

incr: INCR i

IF i<N/v: loop

Advanced issues: bad access patterns

SIMD version

31

Indirection: b[ind[]]
We have a register containing a vector of pointers
We need a “gather” instruction:
• A vector load
• That loads from a different address in each lane
(how can this be implemented efficiently??)

36

37

Conditional: a[i]!=0.0
We have a register containing a vector of Boolean
predicates
We use a predicated vector instruction
Lanes with inactive predicates are idle

Vector execution alternatives
43

source: http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

Implementation may execute n-wide vector operation with an n-wide ALU
– or maybe in smaller, m-wide blocks

vector pipelining:

Consider a simple static pipeline

Vector instructions are executed serially, element-by-element,
using a pipelined FU – or in n-wide chunks if your FU is n-wide

We have several pipelined Fus

“vector chaining” – each word is forwarded to the next instruction
as soon as it is available

FUs form a long pipelined chain

uop decomposition:

Consider a dynamically-scheduled o-o-o machine

Each n-wide vector instruction is split into m-wide uops at decode
time

The dynamic scheduling execution engine schedules their
execution, possibly across multiple FUs

They are committed together

http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

Vector pipelining – “chaining”
Vector

Memory Pipeline

Vector

Multiply Pipeline

Vector

Adder Pipeline

• Vector FUs are 8-wide - each 32-wide vector instruction is executed in 4 blocks

• Forwarding is implemented block-by-block

• So memory, mul, add and store are chained together into one continuously-

active pipeline

Scalar

44

Uop decomposition - example

AMD Jaguar

• Low-power 2-issue dynamically-
scheduled processor core

• Supports AVX-256 ISA

• Has two 128-bit vector ALUs

• 256-bit AVX instructions are split
into two 128-bit uops, which are
scheduled independently

• Until retirement

• A “zero-bit” in the rename table
marks a register which is known to
be zero

• So no physical register is
allocated and no redundant
computation is done

Figure from http://www.realworldtech.com/jaguar/4/ which includes more detail

45

http://www.realworldtech.com/jaguar/4/

SIMD Architectures: discussion
46

• Reduced Turing Tax: more work, fewer instructions
• Relies on compiler or programmer

• Simple loops are fine, but many issues can make it hard
• “lane-by-lane” predication allows conditionals to be vectorised, but

branch divergence may lead to poor utilisation
• Indirections can be vectorised on some machines (vgather, vscatter)

but remain hard to implement efficiently unless accesses happen to
fall on a small number of distinct cache lines

• Vector ISA allows broad spectrum of microarchitectural
implementation choices

• Intel’s vector ISA has grown enormous as vector length has been
successively increased

• ARM’s “scalable vector extension” (SVE) is an ISA design that hides
the vector length (by using a special loop branch)

Topics we have not had time to cover
ARM’s SVE, RISCV vector extensions:

a vector ISA that achieves binary compatibility across machines
with different vector width and uop decomposition

Matrix registers and matrix instructions

Eg Nvidia’s “tensor cores”

Exotic vector instructions
Collision detect (how to vectorise, for example, histogramming)

Permutations

Complex arithmetic

Pipelined vector architectures:

The classical vector supercomputer

Whole-function vectorisation, ISPC, SIMT
Vectorising nested conditionals

Vectorising non-innermost loops

Vectorising loops containing while loops

SIMT and the relationship/similarities with GPUs
Coming!

47

Vectors, units, lanes
another attempt to clear up confusion

• Let's consider Intel's AVX512 instruction set and its implementation on Skylake processors (all this applies
to other ISAs more or less).

• AV512 has 32 vector registers, each 512 bits long (called "zmm0"-"zmm31"). Each register can hold a
vector - eg a vector of 16 32-bit floats (or 8 64-bit doubles). A vector add instruction does element-wise
vector addition on two vector registers, yielding a third 512-bit result. A vector FMA (“fused multiply-
add”) does r[0:15]+=a[0:15]*b[0:15] in one instruction.

• Some Skylake products have just one arithmetic unit for executing such instructions, but some fancy ones
have two AVX512 vector execution units. The Skylake microarchitecture can issue up to about 4
instructions per cycle, so two out of every four instructions needs to be a vector FMA if you want to get
maximum performance on such a machine.

• The word "lane" is used when you want to think about a sequence of vector instructions, but you want to
focus on just one element at a time - a vertical slice through the instruction sequence.

• The word "lane" refers to the same idea as what is sometimes called "single-instruction, multiple thread"
(SIMT). This is how GPUs are programmed - its the idea behind CUDA and OpenCL. Imagine a loop
consisting of scalar (ie non-vector) instructions. That's the SIMT "view" of your code - you see what is
happening "lanewise". Now expand every instruction in the loop into a vector instruction - so the loop
does what it does on a vector of 16 lanes of data. This is the "SIMT->SIMD translation".

• SIMT to SIMD translation gets tricky if the loop body contains an if-then. For this, AVX512 uses the idea of
"predication". For this purpose it has one-bit-per-lane predicate registers k0-k7. These registers can be
used to control which lanes of a vector instruction are active and which lanes do nothing.

49

Summary Vectorisation Solutions
50

1. Indirectly through high-level libraries/code generators

2. Auto-vectorisation (eg use “-O3 –mavx2 –fopt-info” and hope it
vectorises):

• code complexity, sequential languages and practices get in the
way

• Give your compiler hints and hope it vectorises:

• C99 "restrict" (implied in FORTRAN since 1956)

• #pragma ivdep

3. Code explicitly:

• In assembly language

• SIMD instruction intrinsics

• OpenMP 4.0 #pragma omp simd

• Kernel functions:

OpenMP 4.0: #pragma omp declare simd

OpenCL or CUDA: more later

• Fun question if you like this sort of thing….

– What is “vzeroupper” for?

51

