
1

Compilers

Chapter 1: Introduction

• Lecturers:
– Paul Kelly (p.kelly@imperial.ac.uk)

– Naranker Dulay (n.dulay@imperial.ac.uk)

• Materials:
– materials.doc.ic.ac.uk, Panopto
– Textbook
– Course web pages

http://www.doc.ic.ac.uk/~phjk/Compilers
http://www.doc.ic.ac.uk/~nd/compilers

– EdStem
(https://edstem.org/us/courses/29391/discussion/)

January 23 Acknowledgements: Chris Hankin

mailto:p.kelly@imperial.ac.uk
mailto:n.dulay@imperial.ac.uk
http://www.doc.ic.ac.uk/~phjk/Compilers
http://www.doc.ic.ac.uk/~nd/compilers
http://piazza.com/imperial.ac.uk/fall2015/221
https://edstem.org/us/courses/29391/discussion/

2

What is a compiler?

• A program which processes programs, written in some

programming language.

• A program which writes programs (in some language).

• A compiler translates programs written in one language

into “equivalent” programs in another language.

January 23

• This course is about a particular class of programs called
language processors, of which the best example is a
compiler.

3

What is a compiler?

• A program which processes programs, written in some

programming language.

• A program which writes programs (in some language).

• A compiler translates programs written in one language

into “equivalent” programs in another language

• A tool to enable you to program at a higher level, by

mapping high-level concepts to low-level implementation
January 23

• This course is about a particular class of programs called
language processors, of which the best example is a
compiler.

4

• Translates from one language into another

• Or: Output a low-level program which behaves as specified by
the input, higher-level program.

• That is: Mediate between higher-level human concepts, and the
word-by-word data manipulation which the machine performs.

January 23

CompilerSource program Target program

Error/warning messages

CompilerHaskell, or C++, or Java
Intel x86 assembly code

Or ARM, or ….

Error/warning messages

For example:

5

Basic compiler structure

January 23

Input

Analysis

Synthesis

Output

In some language

Construct an internal

representation of the source

language structure, and hence

its meaning

Use this internal

representation to construct

target language version

In the target language

Eg C, Java, C#

Usually start by building

a tree representation, but

may build graph, eg to

represent control flow

Analyse and transform

the internal

representation, then

traverse it to produce

output

Eg in Intel x86

assembler

6

Compiler structure in more detail
January 23

Tree

Source
Language
Program

(char string)

Analysis Synthesis

Target
Language
Program

(char string)

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code
Generation

Optimisation Code
Generator

(further
decomposition)

Abstract
Syntax

Symbol
Table

(internal
representation)

7

The phases of a compiler

Information from declarations is gathered in the symbol table, and is used to
check how each variable is used, to reserve memory for it, and to generate
code to access it

January 23

Symbol table

Source program

Lexical analysis

Syntax analysis

Semantic analysis

Code generation

Error handling

Error handling

Error handling

Target program

8

Phases of a compiler - example

• Input file “test.c”:

int A;

int B;

test_fun()

{

A = B+123;

}

January 23

• Output file “test.s”:

.comm _A, 4

.comm _B, 4

_test_fun:

pushl %ebp

movl %esp,%ebp

movl _B,%eax

addl $123,%eax

movl %eax,_A

movl %ebp,%esp

popl %ebp

ret

• Command: “gcc -S –O test.c”

(the flag “-S” tells the compiler to
produce assembly code, “-O” turns
optimisation on).

9

Introduction to lexical analysis

• INPUT: sequence of characters

January 23

• OUTPUT: sequence of tokens:

INTtok
IDENTtok()
SEMICOLONtok
INTtok
IDENTtok()
SEMICOLONtok
IDENTtok()
LBRACKETtok
RBRACKETtok
LCURLYtok
IDENTtok()
EQtok
IDENTtok()
PLUStok
CONSTtok 123
SEMICOLONtok
RCURLYtok

Symbol

Table

A

B

main

User identifiers like

A, B and main are

all represented by the

same lexical token

(IDENTtok), which

includes a pointer to a

symbol table record

giving the actual

name.

10

Introduction to Syntax Analysis (also

known as “parsing”)

• Programming languages have grammatical structure
specified by grammatical rules in a notation such as BNF
(Backus-Naur Form)

• Example:

• The function of syntax analysis is to extract the
grammatical structure— to work out how the BNF rules
must have been applied to yield the input program.

• The output of the syntax analyser is a data structure
representing the program structure: the Abstract Syntax
Tree (AST).

January 23

stat → ‘print’ expression |

‘while’ expression ‘do’ stat |

expression ‘=’ expression

11

Returning to our C example:

• Input characters:

“.......A = B+123.......”

• Lexical tokens:

[IDENTtok A, EQtok, IDENTtok B,

PLUStok, CONSTtok 123]

• Abstract syntax tree:

January 23

Assign

Ident A Plus

Ident B Const 123

12

AST for whole C example:

• The AST is implemented as a tree of linked objects

• The compiler writer must design the AST data
structure carefully so that it is easy to build (during
syntax analysis), and easy to use (e.g. during code
generation).

January 23

13

You try: experimenting with real compilers
• Create a file “file.c” containing a simple C function

• Under Linux, type the command:

gcc –O –S file.c

• This tells Gnu C compiler ‘gcc’ to produce optimised
translation of the C program and leave result in “file.s”

• Examine “file.s”

• You might try

gcc –O –S –fomit-frame-pointer file.c

(This simplifies the output slightly)

• On Windows using Microsoft Visual Studio, try

cl /Fa /Ox /c test.c

(The output is written to “test.asm”)

• Better still: http://gcc.godbolt.org/January 23

14January 23

Clang compiler, x86, Optimisation level zero (i.e. “-O0”)

15January 23

Clang compiler, x86, Optimisation level zero (i.e. “-O0”)

16January 23

Clang compiler, x86, Optimisation level zero (i.e. “-O0”)

“i” is stored on stack at frame offset -4

Check if i exceeds 1024

Load B[i] (each int is 4 bytes long)

Add 123!

Store result to A[i]

Increment i

Reserve space for array A (and associate
symbol “A” to the start address

17January 23

Clang compiler, x86, Optimisation level “-O1”

18January 23

Clang compiler, x86, Optimisation level “-O1”

“i” is stored in register rax, except we
store i-4096 so we can compare to zero
and avoid the cmp instruction

19January 23

Clang compiler, x86, Optimisation level “-O2”

20January 23

Clang compiler, x86, Optimisation level “-O2”

We compute with four values
in each register

We load 4 values from B into xmm1
We add 123 to all 4 values

We store the result to A

The loop is unrolled 4 times. The
compiler schedules the
instructions using a model of the
processor pipeline

The loop counter is incremented in
steps of 64 = 4x4x4;
• Four bytes per int
• Four ints per xmm
• Unrolled four times

21January 23

Intel compiler, x86, Optimisation level “-fast”

(0x7b = 123)
The Intel compiler uses
wider vector instructions –
8 ints per ymm register

But only unrolls by a factor
of 2

29

Compilers are just one kind of language processor:
• Really useful software tools are useful because they are programmable

• If it’s programmable it must have some kind of programming language

• Programming languages are often “domain-specific” – designed for a particular
application area

January 23

• Domain-specific languages – examples:
– Tensorflow: deep learning

– P4: network packet forwarding

– Solidity: smart contracts

– GLSL: shaders for 3D graphics

– SQL: database queries

– Verilog: digital circuit design

– Matlab: prototyping numerical computations

– Simulink: modelling dynamical systems

– R: statistical data analytics

– Prolog: logic programming

– LaTeX: typesetting

– The FEniCS Project’s Unified Form
Language: solving PDEs

– ANTLR, Yacc: parser generation

– TableGen: the LLVM compiler’s DSL for
instruction selection

• Language processors- examples:
– FindBugs: finds Java bugs

– PyLint: bug and quality checking for
Python

– Coverity, CodeSonar: find C++ (etc)
bugs

– BitBlaze, Coverity/B: vulnerability
analysis for binaries

– KLEE: symbolic execution engine

– JUnit: annotation-driven unit testing

– Mockito: mock object generation for
test

– IDEs – Intellisense in Visual Studio,
etc

– Binary-to-binary: eg x86 to ARM for
Windows-on-ARM

– Valgrind. PIN, Mambo: dynamic
binary rewriting

31

Course structure
• Introduction to syntax

analysis – and a
complete toy compiler

• Code generation

• Generating better code
by using registers

• Register allocation

• Optimisation and data
flow analysis

• Loop optimisations

• Lexical analysis:
characters to tokens

• LR (bottom-up) parsing:
tokens to AST tree

• LL (top-down) parsing

• Semantic analysis: is the
program “legal”?

• Runtime (memory)
organisation

Paul Naranker

32

Textbook - philosophy

• There are many textbooks on compilers, some
good

• The purpose of lecture course is to give you
enough understanding of the area to be able to use
a serious textbook effectively

• Textbook should be worth more to you after the
course than during it!

• Choose an authoritative book that goes
substantially beyond this course

January 23

33

Somewhat recommended textbooks
• Compilers: Principles, Techniques, and Tools

(second edition, 2006) by Alfred V. Aho, Ravi
Sethi, Jeffrey D. Ullman, Monica Lam.

• The new(ish) edition of the definitive
book by pioneers in the subject. Often
called the Dragon book because of the
picture on the front. Compiler engineers
regularly refer to “standard Dragon book
stuff”.

• Modern Compiler Implementation in Java
(second edition, 2005) by Andrew Appel

• Useful source for specific advice on how
to build your compiler, including simple
and more sophisticated techniques

January 23
https://www.cs.princeton.edu/~appel/modern/java/

https://en.wikipedia.org/wiki/Compilers:_Principle

s,_Techniques,_and_Tools

https://www.cs.princeton.edu/~appel/modern/java/
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools

34

The most recommended textbook
• Engineering a compiler, by Keith Cooper and

Linda Torczon, Morgan Kaufmann/Elsevier (3rd

edition, 2022). About £75.

January 23

– “This book is the best compiler engineering guide ever I read.” (review,

Amazon.com)

– “This book has a good introduction guiding the beginning compiler student

into understanding basic concepts and gradually revealing the more

intimidating stuff, but the authors took great care not to scare the beginners

away and instead offers great indepth explanations into how concepts and

implementation merge. Its an overall good book!” (review, Amazon.com)

– “First, all the algorithms are consistent with the latest research. Second,

the explanations are exceptionally clear, especially compared to other

recent books. Third, there's always enough extra context presented so that

you understand the choices you have to make, and understand how those

choices fit with the structure of your whole compiler”. (review, Jeff Kenton,

comp.compilers 3/12/03)

– “If you are a beginner "do not buy this book”” (review, Amazon.com)

(The 2nd edition

is actually

adequate for

this course)

https://www.elsevie

r.com/books/engine

ering-a-

compiler/cooper/97

8-0-12-815412-0

https://www.elsevier.com/books/engineering-a-compiler/cooper/978-0-12-815412-0

35

How to enjoy, learn from and pass this course:

• Textbook – start early, read the first couple of chapters

• Make notes during lectures

• Tutorial exercises are used to introduce new examinable
material

• Tutorials are designed to reinforce and integrate lecture
material; it’s designed to help you pass the exam

• Go look at the past papers - now

• Use the live Q&A classes to get feedback on your solutions

• You are assumed to have studied the past exam papers

• Substantial lab exercise should bring it all together

• Ask questions! Use EdStem!

• There are hundreds of compilers courses at universities
around the world, often more advanced than this one – with
slides on the web that will help with your questionsJanuary 23

	Slide 1: Compilers Chapter 1: Introduction
	Slide 2: What is a compiler?
	Slide 3: What is a compiler?
	Slide 4
	Slide 5: Basic compiler structure
	Slide 6: Compiler structure in more detail
	Slide 7: The phases of a compiler
	Slide 8: Phases of a compiler - example
	Slide 9: Introduction to lexical analysis
	Slide 10: Introduction to Syntax Analysis (also known as “parsing”)
	Slide 11: Returning to our C example:
	Slide 12: AST for whole C example:
	Slide 13: You try: experimenting with real compilers
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 29: Compilers are just one kind of language processor:
	Slide 31: Course structure
	Slide 32: Textbook - philosophy
	Slide 33: Somewhat recommended textbooks
	Slide 34: The most recommended textbook
	Slide 35: How to enjoy, learn from and pass this course:

