
1

Compilers - Chapter 2:

An introduction to syntax analysis

(and a complete toy compiler)

• Lecturers:

– Paul Kelly

– Naranker Dulay

• Materials:

– Textbook

– Course web pages (http://www.doc.ic.ac.uk/~phjk/Compilers)

– EdStem

(https://edstem.org/us/courses/29391/discussion/)

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

http://www.doc.ic.ac.uk/~phjk/Compilers
http://piazza.com/imperial.ac.uk/fall2015/221
https://edstem.org/us/courses/29391/discussion/

2

Plan: • Complete compiler a few slides

• Using Haskell to keep code short

• Tutorial exercise shows how this translates

to Java

• Contents:

• Compare: Engineering a Compiler Chapter 1, Dragon book, Chapter 2.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

–Introduction to grammars

–Parsing (also known as syntax analysis)

–The abstract syntax tree

–A simple instruction set (stack machine)

–A code generator

–A lexical analyser

• Try it: working Haskell code can be found at:
http://www.doc.ic.ac.uk/~phjk/CompilersCourse/SampleCode/Ex2-

CodeGenInHaskell/SimpleCompilerV2.hs.

http://www.doc.ic.ac.uk/~phjk/CompilersCourse/SampleCode/Ex2-CodeGenInHaskell/SimpleCompilerV2.hs

3

A complete example compiler

• Translation of a simple arithmetic expression

language to stack machine code:

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

Source language program (arithmetic expressions)

Lexical analyser (“scanner”)

Syntax analyser (“parser”)

Translator (“instruction selection”)

Target language program

(lexical tokens)

(abstract syntax tree)

(powerful magic)

(stack machine instructions)

4

Haskell

• For clarity and conciseness, Haskell will be used

to specify the data types and functions which make

up the compiler:

compile :: [char] -> [instruction]

compile program

= translate(parse(scan program))

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

“lexical analysis” –

Keywords, punctuation,

identifiers

“syntactic analysis” –

Find the tree of nested eg

if, for, while, statements

Walk the tree and

generate

instructions

5

Syntax analysis (= parsing)

• The specification of a programming language consists of two parts:

– SYNTAX —grammatical structure

– SEMANTICS —meaning

• SYNTAX consists of rules for constructing “acceptable”
utterances. To determine that a program is syntactically correct,

you must determine how the grammatical rules were used to

construct it.

– Powerful tools (“parser generators”) are available for generating analysis

phases of your compiler, starting from a formal specification of the

language’s syntax. You should learn to use them.

• SEMANTICS is much harder to specify.

– Much research has gone into “compiler generators”, “compiler compilers” –

that generate a compiler’s synthesis phases from a semantic specification of

the source/target language. There are promising tools but most people write

the code manually.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

6

Specifying syntactic rules

• Syntax is usually specified using a context-free grammar, often
called Backus-Naur Form (BNF), or even Backus Normal Form.

• A sample BNF production:

stat → ‘if’ ‘(’ exp ‘)’ stat ‘else’ stat

• Each production shows one valid way by which a non-terminal
(LHS) can be expanded (RHS) into a string of terminals and
non-terminals

• Terminals: ‘if’, ‘(’, ‘)’, ‘else’

• Non-terminals: stat, exp

• Only terminals appear in the final result (terminals are, in fact,
just lexical tokens).

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

7

Using syntactic rules
• A sample BNF production:

stat → ‘if’ ‘(’ exp ‘)’ stat ‘else’ stat

• Suppose we were confronted with:

• (where stuff
1

, stuff
2

and stuff
3

are strings of
terminals which we have not yet recognised)

• This looks like it was constructed using the production
above. To prove that it is grammatically correct, we must

show that stuff
1

can be derived from exp, and that

stuff
2

and stuff
3

can each be derived (perhaps in

different ways), from the non-terminal stat
January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

if (stuff
1

) stuff
2

else stuff
3

8

More formally:
• A context-free grammar (CFG) consists of four

components:

– S: a non-terminal start symbol

– P: a set of productions

– t: a set of tokens (‘terminals’)

– nt: a set of non-terminals

• Example: productions, P =

Productions with the same LHS can have their RHS’s
combined using ‘|’. In this example:

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

bin → bin ‘+’ dig

bin → bin ‘–’ dig

bin → dig

dig → ‘0’

dig → ‘1’

bin → bin ‘+’ dig | bin ‘-’ dig | dig

dig → ‘0’ | ‘1’

9

• Terminals:

• t = {‘+’, ‘-’, ‘0’, ‘1’}

• Non-terminals:

•nt = {bin, dig}

• We choose bin as the start symbol S

– Strings of terminals can be derived using the grammar

by beginning with the start symbol, and repeatedly

replacing each non-terminal with the RHS from some

corresponding production.

– A string so derived which consists only of terminals is

called a sentence.

– The language of a grammar is the set of all sentences

which can be derived from its start symbol.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

10

Context-free grammar - example

• Question: what is the language L(G) of our

example grammar G = (S,P,t,nt) ?

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

bin → bin ‘+’ dig

bin → bin ‘–’ dig

bin → dig

dig → ‘0’

dig → ‘1’

P =

S = bin

t = {‘+’, ‘-’, ‘0’, ‘1’}

nt = {bin, dig}

11

The Parse Tree

• The parse tree shows pictorially how the string is

derived from the start symbol.

• For example:

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

• The parse tree is a graphical proof showing the steps

in the derivation of the string.

• Parsing is the process of finding this proof.

bin

bin

bin

dig

‘1’

‘+’

‘1’

dig

‘-’ dig

‘0’

Each “branch”

corresponds precisely

to a production in the

grammar

12

Parse trees as proofs

• L(G) contains “1”

– Proof:

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

bin

bin

bin

dig

‘1’

‘+’

‘1’

dig

‘-

’
dig

‘0’

bin

dig

‘1’

• L(G) contains “1+1”

– Proof: bin

bin

dig

‘1’

‘+’

‘1’

dig

• L(G) contains “1+1-0”

– Proof:

bin

bin

dig

‘1

’

‘+

’

‘1

’

dig

‘-’ dig

‘0

’

bin

bin ‘+

’

‘1

’

dig

‘-’ dig

‘0

’

bin

• L(G) contains “1+1-0+1-0”

– Proof:

13

Ambiguity

• A grammar is ambiguous if the language it generates

contains strings which can be generated in two

different ways – that is, there exists a string with two

different parse trees

• Example:

exp → exp ‘+’ exp |

exp ‘–’ exp | const | ident

• Consider the string “9 + a – 2”.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

14

Ambiguity…

• The string “9 + a – 2” has two different parse

trees according to our example grammar….

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

15

Ambiguity…

• The string “9 + a – 2” has two different parse

trees according to our example grammar:

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

const

exp

exp ‘+’ exp

exp

‘9’

‘-’ exp

const

‘2’

ident

‘a’

16

Ambiguity…

• The string “9 + a – 2” has two different parse

trees according to our example grammar:

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

const

exp

exp ‘+’ exp

exp

‘9’

‘-’ exp

const

‘2’

ident

‘a’

const

exp

exp ‘-’ exp

exp

‘2’

‘+’ exp

‘a’

const

‘9’

ident

17

Associativity

• Associativity concerns how sequences like “9+a-2” are
parsed

• For example, what is the right interpretation of

“2 – 3 – 4” ?

• left-associativity: (2 – 3) – 4

• right-associativity: 2 – (3 – 4)

• The choice is a matter for the language designer, who must
take into account intuitions and convenience.

Right associativity applies to arithmetic only in unusual
languages (e.g. APL). However it is just right, for
example, for lists in Haskell:

1 : 2 : 3 : [].

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

18

Precedence
• What is the right interpretation of 9 + 5 * 2 ?

• Normally we assume that “ * ” has higher precedence

than “ + ”:

• In fact there can be even higher levels of precedence:

• 12 + 5 * 2 ^ 15 + 9 = 12 + (5 * (2 ^ 15)) + 9
January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

9 + 5 * 2

5 * 2 + 9

9 – 5 / 2

5 / 2 + 9

12 + 5 * 2 + 9

9 + (5 * 2)

(5 * 2) + 9

9 – (5 / 2)

(5 / 2) + 9

(12 + (5 * 2)) + 9

19

For our example language

• All our operators are left-associative

• “*” and “/” have higher precedence than “+” and
“-”.

A useful way to think about precedence is to consider
each precedence level separately: at the lowest level
we have

term op1 term op2 ... opn term

(where op is a level 1 operator, “+” or “-”).

Each term may be a constant (or an identifier), or may
be a similar sequence composed from higher-
precedence operators.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

20

An unambiguous grammar for arithmetic expressions

• This grammar avoids ambiguity by expressing associativity
and precedence explicitly. It does it by splitting exp into
two layers, exp and term:

exp → exp + term |

exp - term |

term

term → term * factor |

term / factor |

factor

factor → const | ident

• Now consider an example: “9+5*2”. Is it possible to find
two parse trees?

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

(Term level – a list of terms

separated by low-precedence

operators)

(Factor level – a list of factors,

separated by high-precedence

operators)

21

Parse tree with unambiguous grammar

• With the new grammar the parse tree for “9 + 5 * 2”
is:

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

exp

exp

term

factor

const

‘9’

‘+’ term

term ‘*’ factor

factor

‘5’

‘2’const

const

22

Parse tree versus Abstract Syntax Tree
• The parse tree is rather complicated because of the need

to capture precedence etc:

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

exp

exp

term

factor

const

‘9’

‘+’ term

term ‘*’ factor

factor

‘5’

‘2’const

const

const

exp

exp ‘+’ exp

exp

‘9’

‘*’ exp

const

‘2’

const

‘5’

• In contrast, the abstract syntax tree doesn’t
need this stuff – the tree we build to
represent the program can be simpler

Parse tree AST

23

Parsers

• The purpose of a parser (=syntax analyser) is to

check that the input is grammatically correct, and to

build an abstract syntax tree (AST) representing its

structure.

• There are two general classes of parsing algorithms:

▪ top-down or predictive (we will study the

recursive descent algorithm)

▪ bottom-up (also known as shift-reduce

algorithms)

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

24

Top-down parsing

• Example:

•stat → ‘begin’ statlist

•stat → ‘S’

•statlist → ‘end’

•statlist → stat ‘;’ statlist

• Example input: “begin S; S; end”

• Slogan: “Starting from the start symbol, search for
a rule which rewrites the nonterminals to yield
terminals consistent with the input”

• The challenge in designing a top-down parser is to
look at each terminal in turn, just once, and use it to
decide, once and for all, which rule to use.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

25

Top-down parsing – “the search for a derivation”

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

26January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

27

Top-down parsing:

• Assume input is derived from start symbol (stat in our
example)

• Examine each alternative production for stat

• Compare first unmatched input token with first symbol on RHS
of each alternative production for stat

– If a matching production is found (e.g. ‘begin’) use it to
rewrite stat

– Repeat, using next input token to determine the production to
be used for the next non-terminal

– If no match, try a production which begins with a non-
terminal (e.g. “stat ‘;’ statlist”)

At each step, one of the productions was chosen, and used from
left-to-right, to replace a non-terminal in the parse tree by a
RHS.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

28

Q: what if we choose the wrong production?

• How might we choose the wrong production?

• Example:

stat → ‘loop’ statlist ‘until’ exp

stat → ‘loop’ statlist ‘forever’

• Can you see how to modify the grammar to avoid
this problem?

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

29

Q: what if we choose the wrong production?

• How might we choose the wrong production?

• Example:

stat → ‘loop’ statlist ‘until’ exp

stat → ‘loop’ statlist ‘forever’

Instead:

stat → ‘loop’ statlist stat2

stat2 → ‘until’ exp

stat2 → ‘forever’

• Not all such problems are as easy to cure as this one
January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

30

Bottom-up parsing

• (“shift-reduce”, as used in most parser generators)

In top-down parsing the grammar is used left-to-right:
in trying to match against a non-terminal, each of
the possible RHSs are tried in order to extend the
parse tree correctly.

In bottom-up parsing, the input is compared against
all the RHSs, to find where a string can be replaced
by a non-terminal by using a production from right-
to-left. Parsing succeeds when the whole input has
been replaced by the start symbol.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

31

Bottom-up parsing

Example…

Recall the grammar:

stat → ‘begin’ statlist | ‘S’

(Rule A)

statlist → ‘end’ | stat ‘;’

statlist (Rule B)

Walkthrough of bottom-up parse:

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

32

Bottom-up parsers

• Bottom-up parsers are somewhat complicated to

construct by hand.

• However, they can be constructed automatically by

parser generators

• This is often the most practical way to build a

parser, and doing this forms part of lab work

associated with this course

• Meanwhile we will look at top-down (in particular,

recursive descent) parsing:

– Recursive descent parsers are easy to construct by hand

– But you sometimes have to modify your grammar first
January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

33

Use textbooks:
Introductory:

• EaC Chapter 1

• Dragon book Ch.s 1 and 2.

• Appel Ch. 1

General grammar issues, top-down parsing

• EaC Chapter 3 sections 3.1-3.3

• Dragon Book pp.42, pp.60 and Ch. 4

• Appel Ch. 3.

Bottom-up parsing

• EaC Chapter 3 section 3.4

• Dragon Book Ch. 4, pp.233

• Appel Ch. 3 pp.57

Parser-generators

• EaC Section 3.5

• Dragon Book Ch. 4 pp.287

• Appel Ch. 3 pp.68

• Web documentation, eg search “ANTLR”
January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

• We will cover grammars and
parsing in more detail later in
the course

• Use your textbook to get an overall
picture of what a compiler is and how a
compiler is put together

34

A complete (simple!) compiler…

• In the next few slides we’ll see a complete – but

very very simple – compiler

• The input: a string of characters representing an

arithmetic expression

• The output: a sequence of instructions for a simple

stack-based computer

• When these instructions are executed, the

expression is evaluated

• By doing this in Haskell, the entire compiler will fit

on a handful of slides
January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

35

Recursive descent parsing in Haskell

• The easiest way to construct a top-down parser is to
use “recursive descent”.

• The idea is straightforward, and is best learned by
doing it yourself – see tutorial exercise.

• Using Haskell makes it possible to write an entire
parser on two slides, as will be demonstrated:

• Example grammar:

exp → factor ‘+’ exp | factor

factor → number | identifier

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

36

Recursive descent parsing in Haskell…

• Example “a+b+1”

• Input to parser is Haskell list of lexical tokens:

[IDENT ”a”, PLUS, IDENT ”b”, PLUS, NUM 1]

• Parse tree:

• Parser returns abstract syntax tree as Haskell data structure:

Plus (Ident ”a”) (Plus (Ident ”b”) (Num 1))

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

37

Abstract Syntax Tree (AST)

• The output of our parser is a simplified tree

• The parse tree:

• The AST:
Plus (Ident ”a”) (Plus (Ident ”b”) (Num 1))

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

Plus

Ident “a”

Ident “b”

Plus

Num 1

38

Haskell data types

We need data type specifications for lexical tokens and the AST:

NOTE:

1. Haskell data declarations look a bit like BNF but the similarity is
misleading.

2. The Token and Ast data types look similar, but observe that Ast

is a tree while Token is not.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

data Token

= IDENT [Char] | NUM Int | PLUS

data Ast

= Ident [Char] | Num Int | Plus Ast Ast

39

Lexical analysis and parsing in Haskell

• Let’s assume we have already written the lexical
analyser/scanner (see later in the slides). It will
have the type:

scan :: [Char] → [Token]

• The parser itself then takes a list of lexical tokens
as input, and produces a AST as output:

parser :: [Token] → Ast

• If the parser finds a syntax error, it should produce
a helpful error message explaining what was
expected.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

40

• The job of a parse-function is to look at the next token
in the input, choose a production which matches, and
return when it has found a sequence of tokens which
can be derived from the given non-terminal:

parseExp :: [token] → (ast, [token])

parseFactor :: [token] → (ast, [token])

• A parse-function returns two things:

– The AST of the exp it has found

– The remaining tokens after the expression has been
consumed.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

• Principle: a parse-function for each non-terminal

• There are two non-terminals in
the grammar, exp and factor

42

A simple parse function – base case

parseFactor ((NUM n):restoftokens)

= (Num n, restoftokens)

parseFactor ((IDENT x):restoftokens)

= (Ident x, restoftokens)

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

• The parse function for the non-

terminal ‘factor’ is easy to write

– just look at the next token and

see whether it’s a number or a

variable name:

45

A simple parse function

• It’s sometimes useful to use “case” instead of
pattern matching on the function arguments:

parseFactor (firstToken:restoftokens)

= case firstToken of

NUM n → (Num n, restoftokens)

IDENT x → (Ident x, restoftokens)

other →

error “Number or identifier expected”

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

46

• The parse function for the non-terminal ‘exp’ is based
directly on the definition – find a ‘factor’; see if there’s a
‘+’, if so find another ‘exp’:

parseExp tokens

= let

(factortree, rest) = parseFactor tokens

in

case rest of

.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

47

• The parse function for the non-terminal ‘exp’ is based
directly on the definition – find a ‘factor’; see if there’s a
‘+’, if so find another ‘exp’:

parseExp tokens

= let

(factortree, rest) = parseFactor tokens

in

case rest of

(PLUS : rest2) →

let

(subexptree, rest3) =

in

(Plus factortree subexptree, rest3)

othertokens → (factortree, othertokens)
January 23

48

• The parse function for the non-terminal ‘exp’ is based
directly on the definition – find a ‘factor’; see if there’s a
‘+’, if so find another ‘exp’:

parseExp tokens

= let

(factortree, rest) = parseFactor tokens

in

case rest of

(PLUS : rest2) →

let

(subexptree, rest3) = parseExp rest2

in

(Plus factortree subexptree, rest3)

othertokens → (factortree, othertokens)
January 23

50

The parser

parse tokens

= let

(tree, rest) = parseExp tokens

in

if null rest then

tree

else

error "excess rubbish“

• First call parseExp

• ParseExp returns the Ast for the expression it finds,
together with the remaining Tokens

• Then check there are no remaining tokens
January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

51

The code generator

• Suppose we have a stack-based computer whose instruction set
is represented by the following Haskell data type:

data Instruction

= PushConst Int | PushVar [Char] | Add

• Here is the complete code generator for our language:

translate :: Ast → [Instruction]

translate (Num n) = [PushConst n]

translate (Ident x) = [PushVar x]

translate (Plus e1 e2)

= translate e1 ++ translate e2 ++ [Add]

• It should be clear how this would have to be modified to handle
other arithmetic operators like -, * and / .

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

52

Example
• Input: “10+5-a”

• scan “10+5-a”

→ [NUM 10, PLUS, NUM 5, MINUS, IDENT “a”]

• parse (scan “10+5-a”)

→ Plus (Num 10) (Minus (Num 5) (Ident “a”))

• translate (parse (scan “10+5-a”))

→[PushConst 10,

PushConst 5,

PushVar “a”,

Minus,

Add]

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

(note that the grammar is right-recursive)

55

Example: code generation in Haskell

= translate (Plus (Num 10) (Minus (Num 5) (Ident “a”)))

= translate (Num 10) ++ translate (Minus (Num 5) (Ident “a”)) ++ Add

= translate (Num 10) ++ translate (Num 5) ++ translate (Ident “a”) ++ Minus ++ Add

= [PushConst 10, PushConst 5, PushVar “a”, Minus, Add]

January 23

• Haskell works by

rewriting

• At each step we select

a term to rewrite and

an equation to rewrite

it with

• As we progress, the resulting list of instructions is concatenated

56

Lexical analysis
• Our basic compiler for arithmetic expressions is now complete except for

one small detail: the lexical analyser, often called the scanner. Lexical

analysis is covered in great detail in the standard textbooks. But it’s

fairly easy to write one by hand:

scan :: [Char] -> [Token]

• where

data Token = PLUS | MINUS | TIMES | DIVIDE |

NUM Int | IDENT [Char]

• The punctuation cases are easy:

scan [] = [] (end of input)

scan (’ ’:rest) = scan rest (skip spaces)

scan (’+’:rest) = PLUS : (scan rest)

scan (’-’:rest) = SUB : (scan rest)

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

57

• The cases of numbers and identifiers are a little more

complicated. If a digit (a character between 0 and 9) is

found, we are at the beginning of a possibly-large number.

We should collect the digits, convert them into a number,

and return it with the NUM token:

scan (ch:rest)

| isDigit ch = let (n, rest2) = convert (ch:rest)

in

(NUM n):(scan rest2)

• where convert is a function which collects the digits of a

number, converts it to binary, and returns the remaining

characters.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

58

• Identifiers can be dealt with in the same way:

scan (ch:rest)

| isAlpha ch = let (n, rest2) = getname (ch:rest)

in

(IDENT n):(scan rest2)

• where getname is a function which collects alphanumeric
characters to form a variable name, and returns the
remaining input.

• Question: How would scan have to be modified to handle
multi-character punctuation (e.g. the assignment symbol
“:=”)?

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

59

• For completeness, here is an implementation of convert

and getname:

getname :: [Char] -> ([Char], [Char]) (name, rest)

getname str

= let

getname' [] chs = (chs, [])

getname' (ch : str) chs

| isAlpha ch = getname' str (chs++[ch])

| otherwise = (chs, ch : str)

in

getname' str []

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

60

convert :: [Char] -> (Int, [Char])

convert str

= let

conv' [] n = (n, [])

conv' (ch : str) n

| isDigit ch = conv' str ((n*10) + digitToInt

ch)

| otherwise = (n, ch : str)

in

conv' str 0

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

62January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

data Ast

= Ident [Char] | Num Int |

Plus Ast Ast | Minus Ast Ast

data Instruction

= PushConst Int | PushVar [Char] | Add | Sub |

scan :: [Char] -> [Token]

parser :: [Token] -> Ast

parseExp :: [Token] -> (Ast, [Token])

parseFactor :: [Token] -> (Ast, [Token])

parser tokens

= let (tree, rest) = parseExp tokens

in if null rest then

tree

else error "excess rubbish"

parseFactor ((NUM n):restoftokens)

= (Num n, restoftokens)

parseFactor ((IDENT x):restoftokens)

= (Ident x, restoftokens)

parseExp tokens

= let (factortree, rest) = parseFactor tokens

in case rest of

(PLUS : rest2) ->

let (subexptree, rest3) = parseExp rest2

in

(Plus factortree subexptree, rest3)

(MINUS : rest2) ->

let (subexptree, rest3) = parseExp rest2

in

(Minus factortree subexptree, rest3)

othertokens -> (factortree, othertokens)

data Token

= IDENT [Char] | NUM Int | PLUS | MINUS

scan [] = [] -- (end of input)

scan (' ':rest) = scan rest -- (skip spaces)

scan ('+':rest) = PLUS : (scan rest)

scan ('-':rest) = MINUS : (scan rest)

scan (ch:rest)

| isDigit ch = let (n, rest2) = convert (ch:rest)

in

(NUM n):(scan rest2)

scan (ch:rest)

| isAlpha ch = let (n, rest2) = getname (ch:rest)

in

(IDENT n):(scan rest2)

getname :: [Char] -> ([Char], [Char]) -- (name, rest)

getname str

= let getname' [] chs = (chs, [])

getname' (ch : str) chs

| isAlpha ch = getname' str (chs++[ch])

| otherwise = (chs, ch : str)

in

getname' str []

convert :: [Char] -> (Int, [Char])

convert str

= let conv' [] n = (n, [])

conv' (ch : str) n

| isDigit ch = conv' str ((n*10) + digitToInt ch)

| otherwise = (n, ch : str)

in

conv' str 0

translate :: Ast -> [Instruction]

translate (Num n) = [PushConst n]

translate (Ident x) = [PushVar x]

translate (Plus e1 e2) = translate e1 ++

translate e2 ++

[Add]

translate (Minus e1 e2) = translate e1 ++

translate e2 ++

[Sub]

Parsing Code generation Lexical analysis

compiler :: [Char] -> [Instruction]

compiler input

= translate (parser (scan input))

Compiler

We have now assembled all the

components of a complete

compiler for a very simple

language

You can find a working Haskell

implementation on the course web

site
http://www.doc.ic.ac.uk/~phjk/C

ompilersCourse

The complete compiler

http://www.doc.ic.ac.uk/~phjk/CompilersCourse

63

Conclusion

• This concludes the introductory component of the

course. We have seen how a complete compiler is

constructed, although the source language was

very simple and the translation was very naive. We

will return to each aspect later.

January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

64

• Suppose the grammar were left-recursive instead of right
recursive: exp → exp‘+’ factor | factor

• What goes wrong?

parseExp tokens

= let

(subexptree, rest) = parseExp tokens

in

case rest of

(PLUS : rest2) →

let

(factortree, rest3) = parseFactor rest2

in

(Plus subexptree factortree , rest3)

othertokens → (factortree, othertokens)January 23 Compilers Chapter 2 © Paul Kelly, Imperial College

E
x
tr

a
sl

id
e

fo
r

an
ti

ci
p
at

ed
 q

u
es

ti
o
n

65

Feeding curiosity…

• “Fast Context-Free Grammar Parsing Requires Fast Boolean Matrix
Multiplication”, Lillian Lee, JACM 2002. So general, arbitrary CFGs
can be parsed with the same complexity as Boolean matrix-matrix
multiply – eg using Strassen’s algorithm.

• Why might you need to parse general CFGs? Imagine a language
where you can import new syntax! See “Reliable and Automatic
Composition of Language Extensions to C: The ableC Extensible
Language Framework”, Ted Kaminski, Lucas Kramer, Travis Carlson,
and Eric Van Wyk, OOPSLA 2017.

• In fact you could embed one language directly into another. Eg
mixed Python+PHP. And then automatically generate a compiler
from the interpreters of the two languages. See “Fine-grained
Language Composition: A Case Study”, Edd Barrett, Carl Friedrich
Bolz, Lukas Diekmann, and Laurence Tratt, ECOOP 2016.

January 23

66

Feeding curiosity…

• Q: Why are all operators in APL right-associative?

• A: because APL has dozens of single-character operators, and no-
one would be able to remember a more complicated rule

• APL programmers had to buy special keyboards:

• Game of life in APL:

• From https://tryapl.org/January 23

https://tryapl.org/

	Slide 1: Compilers - Chapter 2: An introduction to syntax analysis (and a complete toy compiler)
	Slide 2: Plan:
	Slide 3: A complete example compiler
	Slide 4: Haskell
	Slide 5: Syntax analysis (= parsing)
	Slide 6: Specifying syntactic rules
	Slide 7: Using syntactic rules
	Slide 8: More formally:
	Slide 9
	Slide 10: Context-free grammar - example
	Slide 11: The Parse Tree
	Slide 12: Parse trees as proofs
	Slide 13: Ambiguity
	Slide 14: Ambiguity…
	Slide 15: Ambiguity…
	Slide 16: Ambiguity…
	Slide 17: Associativity
	Slide 18: Precedence
	Slide 19: For our example language
	Slide 20: An unambiguous grammar for arithmetic expressions
	Slide 21: Parse tree with unambiguous grammar
	Slide 22: Parse tree versus Abstract Syntax Tree
	Slide 23: Parsers
	Slide 24: Top-down parsing
	Slide 25: Top-down parsing – “the search for a derivation”
	Slide 26
	Slide 27: Top-down parsing:
	Slide 28: Q: what if we choose the wrong production?
	Slide 29: Q: what if we choose the wrong production?
	Slide 30: Bottom-up parsing
	Slide 31: Bottom-up parsing Example…
	Slide 32: Bottom-up parsers
	Slide 33: Use textbooks:
	Slide 34: A complete (simple!) compiler…
	Slide 35: Recursive descent parsing in Haskell
	Slide 36: Recursive descent parsing in Haskell…
	Slide 37: Abstract Syntax Tree (AST)
	Slide 38: Haskell data types
	Slide 39: Lexical analysis and parsing in Haskell
	Slide 40
	Slide 42: A simple parse function – base case
	Slide 45: A simple parse function
	Slide 46
	Slide 47
	Slide 48
	Slide 50: The parser
	Slide 51: The code generator
	Slide 52: Example
	Slide 55: Example: code generation in Haskell
	Slide 56: Lexical analysis
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 62: Parsing
	Slide 63: Conclusion
	Slide 64
	Slide 65: Feeding curiosity…
	Slide 66: Feeding curiosity…

