
1

Compilers - Chapter 5 part 1:

Register allocation using fewer registers

January 21

• Lecturers:
– Paul Kelly (p.kelly@imperial.ac.uk)

– Naranker Dulay (n.dulay@imperial.ac.uk)

• Materials:
– materials.doc.ic.ac.uk, Panopto
– Textbook
– Course web pages

(http://www.doc.ic.ac.uk/~phjk/Compilers)

– Piazza
(https://piazza.com/class/kf7uelkyxk7aa)

mailto:p.kelly@imperial.ac.uk
mailto:n.dulay@imperial.ac.uk
http://www.doc.ic.ac.uk/~phjk/Compilers
http://piazza.com/imperial.ac.uk/fall2015/221
https://piazza.com/class/kf7uelkyxk7aa

2

Overview
• We have seen a simple code generation algorithm for

arithmetic expressions, uses registers when it can and stack
otherwise

• We now consider an algorithm which minimises the
number of registers needed—and therefore avoids
“spilling” intermediate values into main store whenever
possible

• Effective use of registers is vital since access to registers is
much faster than access to main memory. E.g. because

– Registers need expensive, fast circuitry, OK in small quantities if
used well

– Registers are multi-ported: two or more registers can be read in
the same clock cycle

– Registers are specified by a small field in the instruction

• Developments in compiler technology have encouraged
hardware designers to provide larger register sets.January 21

3

The plan

• A simple language with assignments, loops etc.

• A stack-based instruction set and its code generator

• Code generation for a machine with registers:

– an unbounded number of registers

– a fixed number of registers

– avoiding running out of registers

– register allocation across multiple statements

January 21

5

IDEA: Order does matter
• Example: x+(3+(y*2))

• Using straightforward code

generator yields:

LoadAbs R0 "x",

LoadImm R1 3,

LoadAbs R2 "y",

LoadImm R3 2,

Mul R2 R3, (R2 := y*2)

Add R1 R2, (R1 := 3+(y*2))

Add R0 R1

January 21

• Modify the expression to
((y*2)+3)+x :

LoadAbs R0 "y",

LoadImm R1 2,

Mul R0 R1, (R0 := y*2)

LoadImm R1 3,

Add R0 R1, (R0 := (y*2)+3)

LoadAbs R1 "x",

Add R0 R1

This uses two registers instead of four.

Why?

7

Subexpression ordering principle:

• Given an expression e1 op e2, always choose to

evaluate first the expression which will require

more registers.

• Reason?

–During evaluation of the second subexpression,

one register will be used up holding the results

of evaluating the first expression.

–So there is one more register free during

evaluation of the first subexpression.
January 21

8

How can we put this principle to work?
• Consider binary operator application e1 op e2:

• Suppose: e1 requires L registers

e2 requires R registers

• If e1 is evaluated first, we will need

L registers to evaluate e1

then R registers to evaluate e2

PLUS ONE to hold the result of e1

• If e1 is evaluated first, the maximum number of registers
in use at once is max(L, R+1)

• If e2 is evaluated first, the maximum number of registers
in use at once is max(L+1, R)

January 21

We choose the order which yields the smaller value

9

• Suppose we had a function weight which calculates how many
registers will be needed to evaluate each subexpression. We could
use this to decide which subexpression to evaluate first

weight :: Exp -> Int

weight (Const n) = 1 (assuming have to load constant into register)

weight (Ident x) = 1 (assuming have to load variable into register)

weight (Binop op e1 e2)

= min [cost1 , cost2]

where

cost1 (if we choose to do e1 first)

= max [weight e1, (weight e2)+1]

cost2 (if we choose to do e2 first)

= max [(weight e1)+1, weight e2]

January 21

10

Example:

January 21

Consider example earlier: x+(3+(y*2))

+

x +

3

y 2

*

1 1

2

2

2

1

1

13

Example:

January 21

Consider example earlier: x+(3+(y*2))

+

x +

3

y 2

*

1 1

2

2

2

1

1

LoadAbs R0 "y",

LoadImm R1 2,

Mul R0 R1,

LoadImm R1 3,

Add R0 R1,

LoadAbs R1 "x",

Add R0 R1

Better ordering:

LoadAbs R0 "x",

LoadImm R1 3,

LoadAbs R2 "y",

LoadImm R3 2,

Mul R2 R3,

Add R1 R2,

Add R0 R1

Bad ordering:

14

Example:

January 21

More complicated example: ((a*b)+(((c*d)/(e-f))*(g+h))
Circled subtree

has higher

weight than its

sibling, so

should be

evaluated first.

+

a b

* *

/

g h

+

c d

*

e f

-

1 1

1 1 1 1

1 12 2

2

2

3

3

3
When

subtrees

have

equal

weight,

neither

order is

better – it

doesn’t

matter

15

Modifications to the code generator
• Basically, what we’d like to do is choose the subtree evaluation order

depending on their weights. We can do this with commutative
operators as follows:

transExp (Binop op e1 e2) r

= if weight e1 > weight e2

then

transExp e1 r ++

transExp e2 (r+1) ++

transBinop op r (r+1),

else

transExp e2 r ++

transExp e1 (r+1) ++

transBinop op r (r+1)

January 21

What might go wrong?

16

Modifications to the code generator
• Basically, what we’d like to do is choose the subtree evaluation order

depending on their weights. We can do this with commutative
operators as follows:

transExp (Binop op e1 e2) r

= if weight e1 > weight e2

then

transExp e1 r ++

transExp e2 (r+1) ++

transBinop op r (r+1),

else

transExp e2 r ++

transExp e1 (r+1) ++

transBinop op r (r+1)

January 21

Unfortunately

this is OK only

if the operator is

commutative.

17

• A tempting solution is to leave the result in the right register in the
first place – something like:

transExp (Binop op e1 e2) r

= if weight e1 > weight e2

then

transExp e1 r ++

transExp e2 (r+1) ++

transBinop op r (r+1),

else

transExp e2 (r+1) ++

transExp e1 r ++

transBinop op r (r+1)

January 21

The problem

with this is that

the code

generated by
transExp e1 r

might clobber

the value in

register r+1

18

Register Targeting

• Problem: we want to be able to tell transExp to

leave the result in register r, but that it cannot use

register r+1.

• Idea: give transExp a list of the registers it is

allowed to use…

January 21

19

Register targeting - implementation

transExp :: Exp → [Register] → [Instruction]

• The translator transExp is given a list of the
registers it is allowed to use. It should leave the
result in the first register in the list.

• The base cases:

transExp (Const n) (destreg:restofregs)

= [LoadImm destreg n]

transExp (Ident x) (destreg:restofregs)

= [LoadAbs destreg x]

January 21

20

Register targeting – implementation…

• The interesting case is the binary operator:

transExp (Binop op e1 e2) (dstreg:nxtreg:regs)

= if weight e1 > weight e2 then

transExp e1 (dstreg:nxtreg:regs) ++

transExp e2 (nxtreg:regs) ++

transBinop op dstreg nxtreg

else

transExp e2 (nxtreg:dstreg:regs) ++

transExp e1 (dstreg:regs) ++

transBinop op dstreg nxtreg

January 21

e2 can use all regs

e1 can use all but one

e1 & e2 still delivered

to right registers

e1 can use all regs

e2 can use all but one

e1 & e2 still delivered

to right registers

21

Register targeting – implementation…

• The interesting case is the binary operator:

transExp (Binop op e1 e2) (dstreg:nxtreg:regs)

= if weight e1 > weight e2 then

transExp e1 (dstreg:nxtreg:regs) ++

transExp e2 (nxtreg:regs) ++

transBinop op dstreg nxtreg

else

transExp e2 (nxtreg:dstreg:regs) ++

transExp e1 (dstreg:regs) ++

transBinop op dstreg nxtreg

January 21

The arithmetic
instruction ends
up the same
either way –
because the
operands are in
the same place,
whichever order
we chose

22

Embellishment: immediate operands

• As we saw before, it is important to use immediate
addressing modes wherever possible, i.e.

LoadImm R1 100, (eg. movl $100,%ebx)

Mul R0 R1 (imull %ebx,%eax)

• Can be improved using immediate addressing:

MulImm R0 100 (eg. imull $100,%eax)

• The translator can use pattern-matching to catch
opportunities to do this

• The weight function must be modified so that
it correctly predicts how many registers will be
used

January 21

23

How good is this scheme?

• Simple example: “result = a/(x+1)”:

January 21

movl _x,d0

addql #1,d0

movl _a,d1

divsl d0,d1

movl d1,_result

• This is the code produced

by Sun’s compiler for the

68000 processor, as found

in the Space Shuttle main

engine controller; also

widely used eg in Sony

Clie PDAs

(I chose to illustrate this using the 68000 instruction set because the Intel

IA-32 instruction set has constraints (eg very few registers) which make

examples unhelpfully complicated) For a 68000-based 2017 product, see this hard-real-time CPU:

https://www.analog.com/en/products/fido1100.html

24

A more complicated example:
• result = ((a/1000)+(1100/b))*((d/1001)+(1010/e));

January 21

movl a,d0

divsl #1000,d0

movl #1100,d1

divsl b,d1

addl d1,d0

movl d,d1

divsl #1001,d1

movl #1010,d2

divsl e,d2

addl d2,d1

mulsl d1,d0

movl d0, result

• This is what your code

generator would produce,

if you follow the design

presented in these lectures

26

Effectiveness of Sethi-Ullman numbering

• Identify worst case:

– Perfectly-balanced expression tree

(since an unbalanced tree can

always be evaluated in an order

which reduces register demand)

– k values

– k/2-1 operators

– log2 k registers required

• So the expression size

accommodated using a block of

N registers is proportional to 2N

January 21

4 4

5

3 33 3

2 22 2 2 22 2

1 1
c d

1 1
a b

1 1
g h

1 1
e f

1 1
k l

1 1
i j

1 1
o p

1 1
m n

27

Register Allocation: Summary

• Sethi-Ullman numbering minimises register usage in
arithmetic expression evaluation

• It works by choosing subexpression evaluation order: do
register-hungry subexpressions first because later registers
will be occupied by the results of earlier evaluations

• Sethi-Ullman numbering is optimal in a very restricted
sense: it fails to handle reused variables and it fails to put
user variables in registers

• However it is fast, reliable and reasonably effective (e.g.
was used in C compilers for many years)

• Optimising compilers commonly use more sophisticated
techniques, for example based on graph colouring

January 21

28

Feeding curiosity…
• The Sethi-Ullman-Ershov “weights” algorithm finds a schedule that uses

the minimum number of registers – for expression trees only. When sub-
expressions are shared (so we have a DAG), the problem is NP-complete.
You can get much better performance by re-ordering your code before
you give it to your compiler – but you need a good heuristic. See
“Register optimizations for stencils on GPUs”, Prashant Rawat et al,
PPoPP 2018.

• Registers are not the only way to achieve better efficiency than direct
execution of stack code. For example, instructions in the “Mill”
architecture specifies each operand using the relative offset of the recent
instruction that generated it. Results are placed on a fixed-size conveyor
“belt”. See https://millcomputing.com/docs/belt/. In the WaveScalar
design it’s the other way round: instructions send their results to a
specified destination instruction –see
http://wavescalar.cs.washington.edu/wavescalar.pdf

January 21

https://millcomputing.com/docs/belt/
http://wavescalar.cs.washington.edu/wavescalar.pdf

