
1

Compilers - Chapter 5: 

Register allocation for function calls

January 21

• Lecturers: 
– Paul Kelly (p.kelly@imperial.ac.uk)

– Naranker Dulay (n.dulay@imperial.ac.uk)

• Materials:
– materials.doc.ic.ac.uk, Panopto
– Textbook
– Course web pages 

(http://www.doc.ic.ac.uk/~phjk/Compilers)

– Piazza
(https://piazza.com/class/kf7uelkyxk7aa)

mailto:p.kelly@imperial.ac.uk
mailto:n.dulay@imperial.ac.uk
http://www.doc.ic.ac.uk/~phjk/Compilers
http://piazza.com/imperial.ac.uk/fall2015/221
https://piazza.com/class/kf7uelkyxk7aa


2

Function calls
• E.g.

price+lookup(type,qty/share)*tax

where lookup is a user-defined function with integer 
arguments, and integer result

• Changing order of evaluation may change result 
because of side-effects

• Register targeting can be used to make sure arguments 
are computed in the right registers

• At the point of the call, several registers may already 
be in use

– But a function might be called from different call-sites

– Each call site might have different registers in use

January 21



3

Function calls: evaluation order
• Eg:  f(a) + f(b) + f(c)

• Eg:  g(f(a), f(b))

• Which sub-expression should we evaluate first?

– This is a correctness issue

• In C++ the order is undefined – the compiler is free to 
choose an order of evaluation, even if f() has side-
effects (https://en.cppreference.com/w/cpp/language/eval_order )

• In Java the order is left-to-right
• (https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html )

January 21

https://en.cppreference.com/w/cpp/language/eval_order
https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html


4

Function calls: evaluation order

• Eg:  (1+f(x))*((2*y)+(3/u-z))

• Which one should we evaluate first?

– This is a performance issue

January 21



5

Calling a function/method

• A function might be called from different places

• In each case it must return to the right place

• Address of next instruction must be saved and restored
January 21

F:
Body of 
function F
...
ret

Jsr F
Next instruction

Jsr F
Next instruction



6

Side-observation: infeasible control-flow paths

January 21

F:
Body of 
function F
...
ret

Jsr F
Next instruction

Jsr F
Next instruction

a

b

c

d
e

f

g

• a,b,c,d,e,f,g is a feasible path

• a,b,f,g is a path in the graph, but is not feasible

• Control-flow graphs correctly capture control flow inside functions/methods, but not 
between them

• We will return to control-flow graphs shortly



7

Save the registers…

• We must ensure that the function being called 

doesn’t clobber any registers which contain 

intermediate values:

–Caller saves: save registers being used by caller 

in case they are clobbered by callee

–Callee saves: save only the registers which 

callee actually uses

• Neither protocol is always the best 

(examples?)

January 21



8January 21

F:
Body of function F
...
ret

Jsr F
Next instruction

Jsr F
Next instruction

N 
registers 

in use

M 
registers 

in use

Needs P 
registers

N

M
P



9

Caller saves

• Small problem: the caller doesn’t 
know which registers the callee
will need – it has to save any 
register that might be used

January 21

Jsr F
Next instruction

Jsr F
Next instruction

N 
registers 

in use

M 
registers 

in use

Save N ∩ P

Restore N ∩ P

Save M ∩ P

Restore M ∩ P

F:
Body of function F
...
ret

Needs P 
registers

N

M
P



10

Callee saves

January 21

• Small problem: the callee doesn’t 
know which registers the callers
will need – it has to save any 
register that might be in use

Jsr F
Next instruction

Jsr F
Next instruction

N 
registers 

in use

M 
registers 

in use

F:

Body of function F
...
ret

Needs P 
registers

Save (N∪M) ∩ P

Restore (N∪M) ∩ P

N

M
P



11

Intel IA32 register saving convention

January 21 http://www.cs.princeton.edu/courses/archive/spring04/cos217/lectures/IA32-III.pdf

• In general you can 
generate any code 
you like, but if you 
want it to work 
with other 
people’s libraries, 
you have to obey 
the platform’s 
Application Binary 
Interface (ABI)

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

Caller-save 

registers

Callee-save 

registers

Stack pointer

Frame pointer

• Eg for Intel IA32 running Linux
• Actually there are many more rules
• Eg parameter passing, stack frame 

layout
• Eg virtual function tables for C++



12

ARM (32-bit) register saving convention

January 21 http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf

Procedure Call Standard for the ARM Architecture  

 

ARM IHI 0042E Copyright © 2003-2009, 2012 ARM Limited. All rights reserved. Page 14 of 33 

5 THE BASE PROCEDURE CALL STANDARD 

The base standard defines a machine-level, core-registers-only calling standard common to the ARM and Thumb 
instruction sets.  It should be used for systems where there is no floating-point hardware, or where a high degree 

of inter-working with Thumb code is required. 

5.1 Machine Registers 

The ARM architecture defines a core instruction set plus a number of additional instructions implemented by co-
processors.  The core instruction set can access the core registers and co-processors can provide additional 
registers which are available for specific operations.   

5.1.1 Core registers 

There are 16, 32-bit core (integer) registers visible to the ARM and Thumb instruction sets. These are labeled r0-
r15 or R0-R15. Register names may appear in assembly language in either upper case or lower case. In this 
specification upper case is used when the register has a fixed role in the procedure call standard. Table 2, Core 
registers and AAPCS usage summarizes the uses of the core registers in this standard.  In addition to the core 

registers there is one status register (CPSR) that is available for use in conforming code. 

 

Register Synonym Special Role in the procedure call standard 

r15  PC The Program Counter. 

r14  LR The Link Register. 

r13  SP The Stack Pointer. 

r12  IP The Intra-Procedure-call scratch register. 

r11 v8  Variable-register 8. 

r10 v7  Variable-register 7. 

r9  
v6 
SB 
TR 

Platform register.  
The meaning of this register is defined by the platform standard. 

r8 v5  Variable-register 5. 

r7 v4  Variable register 4. 

r6 v3  Variable register 3. 

r5 v2  Variable register 2. 

r4 v1  Variable register 1. 

r3 a4  Argument / scratch register 4. 

r2 a3  Argument / scratch register 3. 

r1 a2  Argument / result / scratch register 2. 

r0 a1  Argument / result / scratch register 1. 

Table 2, Core registers and AAPCS usage 

• “A subroutine 
must 
preserve the 
contents of 
the registers 
r4-r8, r10, 
r11 and SP”

• Similar rules 
apply to 
floating-point 
registers: s0-
15 are caller-
saves, s16-
s31 are 
callee-saves



13

MIPS register saving convention
– R2-R3: function result

– R4-R7: incoming parameters (if there are >4 parameters, 
they are passed on the stack)

– R16-R23: callee-save 

– R8-R15: caller-saves temporaries

– R16-R25 callee-save

– R31: procedure return address

– R30: stack pointer

– R29: Frame pointer (may be used for data in leaf procedures)

– R26, R27 reserved for operating system

– R28: pointer to global area

– (R0 is always zero)

January 21



14

Summary
• Function calls can occur within expressions

• In some languages, the order in which such functions are called is strictly defined

• The same issue arises with the order of evaluation of function arguments

• In some languages it is up to the compiler

• A function may be called from several call sites

• At each call site, some set of registers may be in use

• The function itself may need to use some registers

• The compiler needs to produce one implementation of the function body that can

be used from different call sites

• Each processor type/OS has a Application Binary Interface (ABI) that specifies 

how function arguments and results are passed, and which registers must be 

preserved

• In the caller-saves protocol, the caller saves all the registers it is using

• In the callee-saves protocol, the callee saves all the registers it might use

• Typical ABIs are a hybrid – some registers are caller-saves, some callee-saves

January 21



15

Textbooks

• EaC covers the Sethi-Ullman algorithm briefly – see 
Section 7.3.1 (page 315)

• EaC’s recommended solution is more complex and 
ambitious: they separate the problem into three stages:
– instruction selection (Chapter 11), by tree pattern matching

– instruction scheduling (Chapter 12), accounting for pipeline 
stalls

– register allocation (Chapter 13) by graph colouring (Section 
13.5) 

• Appel covers the Sethi-Ullman algorithm in section 11.5 
(page 260)

• Appel concentrates on graph colouring – see Chapter 11

• Graph colouring relies on live range analysis, which is 
covered in Chapter 10

January 21



16

Code generation in Appel’s textbook

• In Appel’s compiler, the input for the code generation phase 
is a low-level intermediate representation (IR), which is 
defined in Figure 7.2 (page 157)

• The translation from the AST to the IR Tree is where:
– ‘For’ loops are translated into ‘Label’ and jump

– Array access is translated into pointer arithmetic + bounds checking

• The IR tree does not specify how the low-level work should 
be packed into machine instructions, nor which registers 
should be used; two phases follow:

1. Instruction selection (Chapter 9)

2. Register allocation (Chapter 11)

• Instruction selection works with ‘temporaries’ – names for 
locations for storing intermediate values; register allocation 
determines how temporaries are mapped to registers

January 21



17

Code generation in Appel’s textbook…

• The data type for Instructions is defined on page 210 

(section 9.3)

• In an instruction set like Intel’s IA-32, an instruction may 

often perform several elementary operations in the IR Tree

• Instruction selection consists of pattern-matching – finding 

chunks of IR Tree corresponding to an instruction; Appel

implements this in much the same way as we did in 

Haskell – see Programs 9.5 and 9.6 (page 213-4)

• Appel’s ‘translate_exp’ function ‘munchExp’ has the 

effect of emitting the assembler instructions, and returns as 

its result the temporary in which the result will be stored

January 21



18

Code generation in Appel’s textbook…

• We allocate registers before (or at the same time as) 
instruction selection

• Appel selects instructions first, then allocates 
registers – see discussion Section 9.3 (page 209)

• This is not a straightforward decision…

– You may be able to avoid using a register for an 
intermediate value if you can use a sophisticated 
addressing mode

– You may run out of registers, so some temporaries will 
have to be stored in memory – which changes the 
addressing modes you will be able to use

• Our approach leads to a much simpler compiler; see 
discussion on page 269

January 21



19

Feeding curiosity… (way off-topic) 

• The Sethi-Ullman-Ershov “weights” idea can be found elsewhere –
where it goes by the name of Horton-Strahler number 
(https://en.wikipedia.org/wiki/Strahler_number).  In the 1940s-50s, 
Horton and Strahler were studying the trees formed by rivers and 
their tributaries

January 21 http://www.krisweb.com/stream/stream_order_kris.htm

• Rivers and their tributary streams 
form a tree

• Here, for example, the H-S order 4 
“Creek” has two order-3 
tributaries

• Each river segment has a
catchment area, as illustrated in 
the following slides

• Similar phenomena and analyses 
also apply to actual trees, to the 
vortices in fluid flow, and the 
development of cities

https://en.wikipedia.org/wiki/Strahler_number
http://www.krisweb.com/stream/stream_order_kris.htm


20

Horton-Strahler stream order for Beaver Creek, Kentucky

January 21

From the examples 

page illustrating the 

RiverTools software: 

https://rivix.com/gall

ery_main.php

We start with the 

elevation map, 

showing the river 

network

https://rivix.com/gallery_main.php


21January 21

Horton-Strahler stream order for Beaver Creek, Kentucky

From the examples 

page illustrating the 

RiverTools software: 

https://rivix.com/gall

ery_main.php

Then compute the 

Horton-Strahler 

order for each 

segment

https://rivix.com/gallery_main.php


22January 21

Horton-Strahler stream order for Beaver Creek, Kentucky
Now we can 

visualise the 

catchment areas for 

all the order four 

segments

From the examples 

page illustrating the 

RiverTools software: 

https://rivix.com/gall

ery_main.php

https://rivix.com/gallery_main.php


23January 21

Horton-Strahler stream order for Beaver Creek, Kentucky

From the examples 

page illustrating the 

RiverTools software: 

https://rivix.com/gall

ery_main.php

And here order 5

https://rivix.com/gallery_main.php

