
1

Compilers - Chapter 6:

Optimisation and data-flow analysis

Part 2: Data flow analysis via live variables

January 21

• Lecturer:
– Paul Kelly (p.kelly@imperial.ac.uk)

Textbooks:

• Cooper and Torczon (EaC):
– Chapter 9

• Aho, Lam, Sethi, Ullman (Dragon book 2nd ed):
– Chapter 9, 9.2

• Appel (Modern Compiler Construction in Java 2nd ed):
– Chapter 10

mailto:p.kelly@imperial.ac.uk

2

Dataflow analysis (DFA)

• Optimisation consists of analysis and transformation

• Analysis: deduce program properties from IR

– Analyse effect of each instruction

– Compose these effects to derive information about the entire
procedure

• Consider: Add (Reg T0) (Reg T1)

– Uses temporaries T0 and T1

– Kills old definition of T1

– Generates new definition of T1

• We will see how to do “dataflow analysis” in order to
use this local information to derive global properties

January 21

3

Example dataflow analysis: live ranges

• Recall graph colouring:

1. Generate code using temporaries T0… instead of registers

2. For each temporary Ti, find Ti’s “live range” – the set of
instructions for which Ti must reside in a register

3. If LiveRange(Ti) intersects LiveRange(Tj) they have to be
allocated to different registers – they interfere

4. Assemble the register interference graph (RIG)

5. Colour the RIG by assigning real registers to temporaries
avoiding interference

6. If successful, replace temporaries with registers and
generate code

7. If graph cannot be coloured, find a temporary to spill to
memory, then retry

January 21

4

Preliminary: build the control flow graph

• data CFG = ControlFlowGraph [CFGNode]

• data CFGNode = Node Id Instruction [Register] [Register] [Id]

uses defs succs

• type Id = Int

• data Register = D Int | T Int (temporaries before, real after)

• buildCFG :: [Instruction] -> CFG

• Each node of the control flow graph contains an instruction,
together with:

– nodeDefs cfgnode = list of temporaries which this instruction updates

– nodeUses cfgnode = list of temporaries which this instruction reads

– nodeSuccs cfgnode = list of nodes which might be executed next

January 21

5

Source code

January 21

while (b<10)

{

if (b<a)

a = a*7;

b = a+1;

else

a = b-1;

}

Bra L2

L1:

cmp b a

bge L3

mul #7 a

mov a b

add #1 b

bra L4

L3:

mov b a

sub #1 a

L4:

L2:

Cmp b #10

Blt L1

Finding live

ranges…

example

Intermediate code

Bra L2

cmp b a

bge L3

mov a b

add #1 b

bra L4

mov b a

sub #1 a

Cmp b #10

Blt L1

a,b

a

b

b

a

b

b

b

a

a

10

3

4,8

6

7

10

9

10

11

12,2

1

2

3

5

6

7

8

9

10

11

Control flow graph

mul #7 a a a 54

uses defs succs

6

Live variable analysis - definition

• Point: any location between adjacent nodes

• Path: a sequence of points p1..pi pi+1..pn such that

pi+1 is the immediate successor of pi in the CFG

• “x is live at p”: for some variable x and point p,

the value of x could be used along some path

starting at p.

January 21

7

Live variable analysis - definition

• Point: any location between adjacent nodes

• Path: a sequence of points p1..pi pi+1..pn such that

pi+1 is the immediate successor of pi in the CFG

• “x is live at p”: for some variable x and point p,

the value of x could be used along some path

starting at p.

January 21

We could work this out with a depth-first search – for every variable,

and for every point. We are looking for a more efficient algorithm,

that computes the set of all live variables at every point.

8January 21

Bra L2

cmp b a

bge L3

mov a b

add #1 b

bra L4

mov b a

sub #1 a

Cmp b #10

Blt L1

a,b

a

b
b

a

b

b

b
a

a

10

3

4,8

6

7

10

9

10

11

12,2

1

2

3

5

6

7

8

9

10

11

mul #7 a a a 54

“x is live at p”: for some

variable x and point p, the value

of x could be used along some

path starting at p.

9January 21

Bra L2

cmp b a

bge L3

mov a b

add #1 b

bra L4

mov b a

sub #1 a

Cmp b #10

Blt L1

a,b

a

b
b

a

b

b

b
a

a

10

3

4,8

6

7

10

9

10

11

12,2

1

2

3

5

6

7

8

9

10

11

mul #7 a a a 54

“x is live at p”: for some

variable x and point p, the value

of x could be used along some

path starting at p.

Consider variable b after node 1

Is b live-out from node 1?

b is live-out from node 1 because it is used at node 10

10January 21

Bra L2

cmp b a

bge L3

mov a b

add #1 b

bra L4

mov b a

sub #1 a

Cmp b #10

Blt L1

a,b

a

b
b

a

b

b

b
a

a

10

3

4,8

6

7

10

9

10

11

12,2

1

2

3

5

6

7

8

9

10

11

mul #7 a a a 54

“x is live at p”: for some

variable x and point p, the value

of x could be used along some

path starting at p.

Consider variable b after node 2

Is b live-out from node 2?

11January 21

Bra L2

cmp b a

bge L3

mov a b

add #1 b

bra L4

mov b a

sub #1 a

Cmp b #10

Blt L1

a,b

a

b
b

a

b

b

b
a

a

10

3

4,8

6

7

10

9

10

11

12,2

1

2

3

5

6

7

8

9

10

11

mul #7 a a a 54

“x is live at p”: for some

variable x and point p, the value

of x could be used along some

path starting at p.

Consider variable b after node 2

Is b live-out from node 2?

b is live-out from node 2 because it might be used at node 8 (it might not be used but it might)

12January 21

Bra L2

cmp b a

bge L3

mov a b

add #1 b

bra L4

mov b a

sub #1 a

Cmp b #10

Blt L1

a,b

a

b
b

a

b

b

b
a

a

10

3

4,8

6

7

10

9

10

11

12,2

1

2

3

5

6

7

8

9

10

11

mul #7 a a a 54

“x is live at p”: for some

variable x and point p, the value

of x could be used along some

path starting at p.

Consider variable b after node 4

Is b live-out from node 4?

13January 21

Bra L2

cmp b a

bge L3

mov a b

add #1 b

bra L4

mov b a

sub #1 a

Cmp b #10

Blt L1

a,b

a

b
b

a

b

b

b
a

a

10

3

4,8

6

7

10

9

10

11

12,2

1

2

3

5

6

7

8

9

10

11

mul #7 a a a 54

“x is live at p”: for some

variable x and point p, the value

of x could be used along some

path starting at p.

Consider variable b after node 4

Is b live-out from node 4?

b is not live-out from node 4: node 5 overwrites b’s value – the value from node 4 can’t reach further

14

Dataflow equations for live variable analysis

Define:

• LiveIn(n): the set of temporaries live immediately before
node n

• LiveOut(n): the set of temporaries live immediately after
node n

• A variable is live immediately after node n if it is live
before any of n’s successors

• A variable is live immediately before node n if:
– It is live after node n (ie some later instruction reads it)

– Unless it is overwritten by node n

OR

– It is used by node n (ie the instruction reads it)

January 21

16

• LiveIn(n): set of temporaries live immediately before node n

• LiveOut(n): set of temporaries live immediately after node n

• A variable is live immediately after node n if it is live before
any of n’s successors:

–LiveOut(n) = U LiveIn(s)

• A variable is live immediately before node n if:
– It is live after node n (ie some later instruction reads it)

– Unless it is overwritten by node n

OR

– It is used by node n (ie the instruction reads it)

–LiveIn(n) = uses(n) U (LiveOut(n) – defs(n))

January 21

Dataflow equations for live variable analysis

s succ(n)

17

• LiveIn(n): set of temporaries live immediately before node n

• LiveOut(n): set of temporaries live immediately after node n

• A variable is live immediately after node n if it is live before
any of n’s successors:

–LiveOut(n) = U LiveIn(s)

• A variable is live immediately before node n if:
– It is live after node n (ie some later instruction reads it)

– Unless it is overwritten by node n

OR

– It is used by node n (ie the instruction reads it)

–LiveIn(n) = uses(n) U (LiveOut(n) – defs(n))

January 21

Dataflow equations for live variable analysis

s succ(n)

The union of the LiveIns of all
this node’s successors

19

• What’s the difference between LiveIn and

LiveOut?

January 21

add #1 b b b 76

LiveIn(n): the set of variables that could be used along some path starting here

LiveOut(n): the set of variables that could be used along some path starting here

n:

20

• 22 simultaneous

equations
January 21

Bra L2

cmp b a

bge L3

mov a b

add #1 b

bra L4

mov b a

sub #1 a

Cmp b #10

Blt L1

a,b

a

b

b

a

b

b

b

a

a

10

3

4,8

6

7

10

9

10

11

12,2

1

2

3

5

6

7

8

9

10

11

mul #7 a a a 54

Id Uses Defs Ids of succs

LiveIn(6)= uses(6) U (LiveOut(6) – defs(6))

LiveOut(6)=Us succ(6) LiveIn(s)

LiveIn(7)= uses(7) U (LiveOut(7) – defs(7))

LiveOut(7)=Us succ(7) LiveIn(s)

LiveIn(8)= uses(8) U (LiveOut(8) – defs(8))

LiveOut(8)=Us succ(8) LiveIn(s)

LiveIn(9)= uses(9) U (LiveOut(9) – defs(9))

LiveOut(9)=Us succ(9) LiveIn(s)

LiveIn(10)= uses(10) U (LiveOut(10) – defs(10))

LiveOut(10)=Us succ(10) LiveIn(s)

LiveIn(11)= uses(11) U (LiveOut(11) – defs(11))

LiveOut(11)=Us succ(11) LiveIn(s)

LiveIn(1)= uses(1) U (LiveOut(1) – defs(1))

LiveOut(1)=Us succ(1) LiveIn(s)

LiveIn(2)= uses(2) U (LiveOut(2) – defs(2))

LiveOut(2)=Us succ(2) LiveIn(s)

LiveIn(3)= uses(3) U (LiveOut(3) – defs(3))

LiveOut(3)=Us succ(3) LiveIn(s)

LiveIn(4)= uses(4) U (LiveOut(4) – defs(4))

LiveOut(4)=Us succ(4) LiveIn(s)

LiveIn(5)= uses(5) U (LiveOut(5) – defs(5))

LiveOut(5)=Us succ(5) LiveIn(s)

21

• 22 simultaneous

equations
January 21

Bra L2

cmp b a

bge L3

mov a b

add #1 b

bra L4

mov b a

sub #1 a

Cmp b #10

Blt L1

a,b

a

b

b

a

b

b

b

a

a

10

3

4,8

6

7

10

9

10

11

12,2

1

2

3

5

6

7

8

9

10

11

mul #7 a a a 54

Id Uses Defs

LiveIn(6)= uses(6) U (LiveOut(6) – defs(6))

LiveOut(6)=LiveIn(7)

LiveIn(7)= uses(7) U (LiveOut(7) – defs(7))

LiveOut(7)=LiveIn(10)

LiveIn(8)= uses(8) U (LiveOut(8) – defs(8))

LiveOut(8)=LiveIn(9)

LiveIn(9)= uses(9) U (LiveOut(9) – defs(9))

LiveOut(9)=LiveIn(10)

LiveIn(10)= uses(10) U (LiveOut(10) – defs(10))

LiveOut(10)=LiveIn(11)

LiveIn(11)= uses(11) U (LiveOut(11) – defs(11))

LiveOut(11)=LiveIn(12) U LiveIn(2)

Ids of succs

Clearer if we substitute in

the successors:

succs(11) = {12,2}

LiveIn(1)= uses(1) U (LiveOut(1) – defs(1))

LiveOut(1)=LiveIn(10)

LiveIn(2)= uses(2) U (LiveOut(2) – defs(2))

LiveOut(2)=LiveIn(3)

LiveIn(3)= uses(3) U (LiveOut(3) – defs(3))

LiveOut(3)=LiveIn(4) U LiveIn(8)

LiveIn(4)= uses(4) U (LiveOut(4) – defs(4))

LiveOut(4)=LiveIn(5)

LiveIn(5)= uses(5) U (LiveOut(5) – defs(5))

LiveOut(5)=LiveIn(6)

22

Solving the dataflow equations

• We have a system of simultaneous equations for

LiveIn(n) and LiveOut(n) for each node n

• How can we solve them?

January 21

23

Solving the dataflow equations

• Idea: Iterate!

January 21

for each n in CFG {

LiveIn(n) := {}; LiveOut(n) := {};

}

repeat {

for each n in CFG {

LiveIn(n) = uses(n) U (LiveOut(n) – defs(n));

LiveOut(n) = Us succ(n) LiveIn(s);

}

} until LiveIn and LiveOut stop changing

24

Iteration… walkthrough

• see Appel pg 226 for another example
January 21

1

2

3

4

5

6

7

8

9

10

11

Node

a,b

a

a

b

b

a

b

a

b

b

a

a

uses defs in out

Step 0

10

3

4,8

5

6

7

10

9

10

11
12,2

succs

for each n in CFG {

LiveIn(n) := {}; LiveOut(n) := {};

}

repeat {

for each n in CFG {

LiveIn(n) = uses(n) U (LiveOut(n) – defs(n));

LiveOut(n) = Us succ(n) LiveIn(s);

}

} until LiveIn and LiveOut stop changing

Q: should I process the nodes in order?

{ }{ }

{ }{ }

{ } { }

{ }{ }

{ } { }

{ } { }

{ }{ }

{ }{ }

{ }{ }

{ }{ }

{ }{ }

25

Iteration… walkthrough

• see Appel pg 226 for another example
January 21

1

2

3

4

5

6

7

8

9

10

11

Node

a,b

a

a

b

b

a

b

a

b

b

a

a

uses defs in out

Step 1

10

3

4,8

5

6

7

10

9

10

11
12,2

succs

for each n in CFG {

LiveIn(n) := {}; LiveOut(n) := {};

}

repeat {

for each n in CFG {

LiveIn(n) = uses(n) U (LiveOut(n) – defs(n));

LiveOut(n) = Us succ(n) LiveIn(s);

}

} until LiveIn and LiveOut stop changing

Q: should I process the nodes in order?

{b}{a}

{b}{a}

{b} {a}

{ }{ }

{b} { }

{b} { }

{a,b} { }

{b}{ }

{b}{ }

{a}{a}

{a,b}{ }

26January 21

1

2

3

4

5

6

7

8

9

10

11

Node

a,b

a

a

b

b

a

b

a

b

b

a

a

usesdefs in out

Step 1

10

3

4,8

5

6

7

10

9

10

11

12,2

succs

LiveIn(n) = uses(n) U (LiveOut(n) – defs(n));
LiveOut(n) = Us succ(n) LiveIn(s);

{b}{a}

{b}{a}

{b} {a}

{ }{ }

{b} { }

{b} { }

{ }{a,b}

{b}{ }

{a,b}{ }

{b}{ }

{a}{a}

in out

Step 2

{b}{a}

{b}{a,b}

{b} {a,b}

{a,b}{ }

{b} { }

{b} {b}

{a,b}{a,b}

{b}{b}

{a,b}{a,b}

{b}{b}

{b}{a}

{a}{a}

in out

Step 3

{b}

{b}{a,b}

{b} {a,b}

{a.b}{a,b}

{b} {a,b}

{b} {b}

{a,b}{a,b}

{b}{b}

{a,b}{a,b}

{b}{b}

{a}{a}

{a}

in out

Step 4

{b}

{a,b}{a,b}

{b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{b} {b}

{a,b}{a,b}

{a,b}{b}

{a,b}{a,b}

{a,b}{a,b}

{a}{a}

{a}

in out

Step 5

{b}

{a,b}{a,b}

{b} {a,b}

{a,b}{a,b}

{a,b}{a,b}

{b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a}{a}

{a}

in out

Step 5

{a,b}

{a,b}{a,b}

{b} {b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a}{a}

{a}

27January 21

1

2

3

4

5

6

7

8

9

10

11

Node

a,b

a

a

b

b

a

b

a

b

b

a

a

usesdefs in out

Step 1

10

3

4,8

5

6

7

10

9

10

11

12,2

succs

LiveIn(n) = uses(n) U (LiveOut(n) – defs(n));
LiveOut(n) = Us succ(n) LiveIn(s);

{b}{a}

{b}{a}

{b} {a}

{ }{ }

{b} { }

{b} { }

{ }{a,b}

{b}{ }

{a,b}{ }

{b}{ }

{a}{a}

in out

Step 2

{b}{a}

{b}{a,b}

{b} {a,b}

{a,b}{ }

{b} { }

{b} {b}

{a,b}{a,b}

{b}{b}

{a,b}{a,b}

{b}{b}

{b}{a}

{a}{a}

in out

Step 3

{b}

{b}{a,b}

{b} {a,b}

{a.b}{a,b}

{b} {a,b}

{b} {b}

{a,b}{a,b}

{b}{b}

{a,b}{a,b}

{b}{b}

{a}{a}

{a}

in out

Step 4

{b}

{a,b}{a,b}

{b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{b} {b}

{a,b}{a,b}

{a,b}{b}

{a,b}{a,b}

{a,b}{a,b}

{a}{a}

{a}

in out

Step 5

{b}

{a,b}{a,b}

{b} {a,b}

{a,b}{a,b}

{a,b}{a,b}

{b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a}{a}

{a}

in out

Step 5

{a,b}

{a,b}{a,b}

{b} {b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a,b}{a,b}

{a}{a}

{a}

29

Real example: factorial loop

program

declare x :

Integer

declare a :

Integer

begin

a := 1

for x = 1 to 10

a := a * x

end

end

January 21

(Program [Decl "a" Integer]

[(Assign (Var "a") (Const 1)),

(For "x" (Const 1) (Const 10)

[(Assign (Var "a")

(Binop Times (Ref (Var "a")) (Ref (Var "x"))))]

)])

Concrete syntax Abstract syntax

30

Real example:

factorial loop

program

declare x :

Integer

declare a :

Integer

begin

a := 1

for x = 1 to 10

a := a * x

end

end

January 21

.data

; Integer variable a has been allocated to T0

.text

move.l #1, T0

move.l #10, T1

move.l #1, T2

bra L2

L1:

move.l T2, T3

move.l T0, T4

mul.l T3, T4

move.l T4, T0

add.l #1, T2

L2:

cmp.l T1, T2

bgt L3

bra L1

L3:

move.l T2, x (updates variable x on exit from loop – a bug! (?))

Concrete syntax

Code

31

program

declare x :

Integer

declare a :

Integer

begin

a := 1

for x = 1 to 10

a := a * x

end

end

January 21

Node 0 (Mov (ImmNum 1) (Reg T0)) [T0] [] [1] []

Node 1 (Mov (ImmNum 10) (Reg T1)) [T1] [] [2] [0]

Node 2 (Mov (ImmNum 1) (Reg T2)) [T2] [] [3] [1]

Node 3 (Bra "L2") [] [] [9] [2]

Node 4 (Mov (Reg T2) (Reg T3)) [T3] [T2] [5] [11]

Node 5 (Mov (Reg T0) (Reg T4)) [T4] [T0] [6] [4]

Node 6 (Mul (Reg T3) (Reg T4)) [T4] [T3,T4] [7] [5]

Node 7 (Mov (Reg T4) (Reg T0)) [T0] [T4] [8] [6]

Node 8 (Add (ImmNum 1) (Reg T2)) [T2] [T2] [9] [7]

Node 9 (Cmp (Reg T1) (Reg T2)) [] [T1,T2] [10] [3,8]

Node 10 (Bgt "L3") [] [] [11,12] [9]

Node 11 (Bra "L1") [] [] [4] [10]

Node 12 (Mov (Reg T2) (Abs "x")) [] [T2] [13] [10]

Node 13 Halt [] [] [] [12]

Concrete syntax

Code

(Node id instrn defs uses succs preds)

Real example:

factorial loop

32

LiveIns ([(0,[]),

(1,[]),

(2,[]),

(3,[]),

(4,[T2]),

(5,[T0]),

(6,[T3,T4]),

(7,[T4]),

(8,[T2]),

(9,[T1,T2]),

(10,[]),

(11,[]),

(12,[T2]),

(13,[])],

[(0,[]),

(1,[]),

(2,[]),

(3,[T1,T2]),

(4,[T0]),

(5,[T3,T4]),

(6,[T4]),

(7,[T2]),

(8,[T1,T2]),

(9,[]),

(10,[T2]),

(11,[]),

(12,[]),

(13,[])])

January 21

([(0,[]),

(1,[]),

(2,[]),

(3,[T1,T2]),

(4,[T2,T0]),

(5,[T0,T3]),

(6,[T3,T4]),

(7,[T4,T2]),

(8,[T2,T1]),

(9,[T1,T2]),

(10,[T2]),

(11,[]),

(12,[T2]),

(13,[])],

[(0,[]),

(1,[]),

(2,[T1,T2]),

(3,[T1,T2]),

(4,[T0,T3]),

(5,[T3,T4]),

(6,[T4,T2]),

(7,[T2,T1]),

(8,[T1,T2]),

(9,[T2]),

(10,[T2]),

(11,[T2]),

(12,[]),

(13,[])])

([(0,[]),

(1,[]),

(2,[T1]),

(3,[T1,T2]),

(4,[T2,T0]),

(5,[T0,T3]),

(6,[T3,T4,T2]),

(7,[T4,T2,T1]),

(8,[T2,T1]),

(9,[T1,T2]),

(10,[T2]),

(11,[T2]),

(12,[T2]),

(13,[])],

[(0,[]),

(1,[T1]),

(2,[T1,T2]),

(3,[T1,T2]),

(4,[T0,T3]),

(5,[T3,T4,T2]),

(6,[T4,T2,T1]),

(7,[T2,T1]),

(8,[T1,T2]),

(9,[T2]),

(10,[T2]),

(11,[T2,T0]),

(12,[]),

(13,[])])

([(0,[]),

(1,[]),

(2,[T1]),

(3,[T1,T2]),

(4,[T2,T0]),

(5,[T0,T3,T2]),

(6,[T3,T4,T2,T1]),

(7,[T4,T2,T1]),

(8,[T2,T1]),

(9,[T1,T2]),

(10,[T2]),

(11,[T2,T0]),

(12,[T2]),

(13,[])],

[(0,[]),

(1,[T1]),

(2,[T1,T2]),

(3,[T1,T2]),

(4,[T0,T3,T2]),

(5,[T3,T4,T2,T1]),

(6,[T4,T2,T1]),

(7,[T2,T1]),

(8,[T1,T2]),

(9,[T2]),

(10,[T2,T0]),

(11,[T2,T0]),

(12,[]),

(13,[])])

LiveOuts

([(0,[]),

(1,[]),

(2,[]),

(3,[]),

(4,[]),

(5,[]),

(6,[]),

(7,[]),

(8,[]),

(9,[]),

(10,[]),

(11,[]),

(12,[]),

(13,[])],

[(0,[]),

(1,[]),

(2,[]),

(3,[]),

(4,[]),

(5,[]),

(6,[]),

(7,[]),

(8,[]),

(9,[]),

(10,[]),

(11,[]),

(12,[]),

(13,[])])

Step 1 Step 2 Step 3 Step 4Step 0

Live

range

analysis

for

factorial

example

33January 21

([(0,[]),

(1,[]),

(2,[T1]),

(3,[T1,T2]),

(4,[T2,T0,T1]),

(5,[T0,T3,T2,T1]),

(6,[T3,T4,T2,T1]),

(7,[T4,T2,T1]),

(8,[T2,T1]),

(9,[T1,T2,T0]),

(10,[T2,T0]),

(11,[T2,T0]),

(12,[T2]),

(13,[])],

[(0,[]),

(1,[T1]),

(2,[T1,T2]),

(3,[T1,T2,T0]),

(4,[T0,T3,T2,T1]),

(5,[T3,T4,T2,T1]),

(6,[T4,T2,T1]),

(7,[T2,T1]),

(8,[T1,T2,T0]),

(9,[T2,T0]),

(10,[T2,T0]),

(11,[T2,T0]),

(12,[]),

(13,[])])

([(0,[]),

(1,[]),

(2,[T1]),

(3,[T1,T2,T0]),

(4,[T2,T0,T1]),

(5,[T0,T3,T2,T1]),

(6,[T3,T4,T2,T1]),

(7,[T4,T2,T1]),

(8,[T2,T1,T0]),

(9,[T1,T2,T0]),

(10,[T2,T0]),

(11,[T2,T0]),

(12,[T2]),

(13,[])],

[(0,[]),

(1,[T1]),

(2,[T1,T2,T0]),

(3,[T1,T2,T0]),

(4,[T0,T3,T2,T1]),

(5,[T3,T4,T2,T1]),

(6,[T4,T2,T1]),

(7,[T2,T1,T0]),

(8,[T1,T2,T0]),

(9,[T2,T0]),

(10,[T2,T0]),

(11,[T2,T0,T1]),

(12,[]),

(13,[])])

([(0,[]),

(1,[]),

(2,[T1,T0]),

(3,[T1,T2,T0]),

(4,[T2,T0,T1]),

(5,[T0,T3,T2,T1]),

(6,[T3,T4,T2,T1]),

(7,[T4,T2,T1]),

(8,[T2,T1,T0]),

(9,[T1,T2,T0]),

(10,[T2,T0]),

(11,[T2,T0,T1]),

(12,[T2]),

(13,[])],

[(0,[]),

(1,[T1,T0]),

(2,[T1,T2,T0]),

(3,[T1,T2,T0]),

(4,[T0,T3,T2,T1]),

(5,[T3,T4,T2,T1]),

(6,[T4,T2,T1]),

(7,[T2,T1,T0]),

(8,[T1,T2,T0]),

(9,[T2,T0]),

(10,[T2,T0,T1]),

(11,[T2,T0,T1]),

(12,[]),

(13,[])])

([(0,[]),

(1,[T0]),

(2,[T1,T0]),

(3,[T1,T2,T0]),

(4,[T2,T0,T1]),

(5,[T0,T3,T2,T1]),

(6,[T3,T4,T2,T1]),

(7,[T4,T2,T1]),

(8,[T2,T1,T0]),

(9,[T1,T2,T0]),

(10,[T2,T0,T1]),

(11,[T2,T0,T1]),

(12,[T2]),

(13,[])],

[(0,[T0]),

(1,[T1,T0]),

(2,[T1,T2,T0]),

(3,[T1,T2,T0]),

(4,[T0,T3,T2,T1]),

(5,[T3,T4,T2,T1]),

(6,[T4,T2,T1]),

(7,[T2,T1,T0]),

(8,[T1,T2,T0]),

(9,[T2,T0,T1]),

(10,[T2,T0,T1]),

(11,[T2,T0,T1]),

(12,[]),

(13,[])])

([(0,[]),

(1,[]),

(2,[T1]),

(3,[T1,T2]),

(4,[T2,T0]),

(5,[T0,T3,T2,T1]),

(6,[T3,T4,T2,T1]),

(7,[T4,T2,T1]),

(8,[T2,T1]),

(9,[T1,T2]),

(10,[T2,T0]),

(11,[T2,T0]),

(12,[T2]),

(13,[])],

[(0,[]),

(1,[T1]),

(2,[T1,T2]),

(3,[T1,T2]),

(4,[T0,T3,T2,T1]),

(5,[T3,T4,T2,T1]),

(6,[T4,T2,T1]),

(7,[T2,T1]),

(8,[T1,T2]),

(9,[T2,T0]),

(10,[T2,T0]),

(11,[T2,T0]),

(12,[]),

(13,[])])

Step 6 Step 7 Step 8 Step 9Step 5LiveIns

LiveOuts

Live

range

analysis

for

factorial

example

34

Derive interference graph from live ranges

• Interference graph
interferes=

[(T0,[T0,T1,T2,T3]),
(T1,[T1,T0,T2,T3,T4]),
(T2,[T1,T2,T0,T3,T4]),
(T3,[T0,T3,T2,T1,T4]),
(T4,[T3,T4,T2,T1])]

January 21

Recall definition:

• “x is live at p”: for

some variable x and

point p, the value of x

could be used along

some path starting at p.

• Eg: liveOut(7)=
[T2,T1,T0]

“The values of T2, T1 and

T0 could be used along

some path starting from

7”

• LiveOut:

[(0,[T0]),

(1,[T1,T0]),

(2,[T1,T2,T0]),

(3,[T1,T2,T0]),

(4,[T0,T3,T2,T1]),

(5,[T3,T4,T2,T1]),

(6,[T4,T2,T1]),

(7,[T2,T1,T0]),

(8,[T1,T2,T0]),

(9,[T2,T0,T1]),

(10,[T2,T0,T1]),

(11,[T2,T0,T1]),

(12,[]),

(13,[])])

Interference
Find overlapping live ranges

• For each temporary t

• For each node id

• If t is in liveOut(id)

• Then interferes(t)
includes liveOut(id)

35

• Interference graph:

[(T0,[T0,T1,T2,T3]),

(T1,[T1,T0,T2,T3,T4]),

(T2,[T1,T2,T0,T3,T4]),

(T3,[T0,T3,T2,T1,T4]),

(T4,[T3,T4,T2,T1])]

January 21

T0

T1

T2

T3

T4

Derive interference graph from live ranges

36

Use interference graph to assign temporaries

• Interference graph:

[(T0,[T0,T1,T2,T3]),

(T1,[T1,T0,T2,T3,T4]),

(T2,[T1,T2,T0,T3,T4]),

(T3,[T0,T3,T2,T1,T4]),

(T4,[T3,T4,T2,T1])]

January 21

T0

T1

T2

T3

T4

• Find colouring:

[(T0,D0),(T1,D1),(T2,D2),(T3,D3),(T4,D0)]

37

Applying the colouring:

January 21

.data

; Integer variable a has been allocated to T0

.text

move.l #1, T0

move.l #10, T1

move.l #1, T2

bra L2

L1:

move.l T2, T3

move.l T0, T4 (T0 & T4 assigned to D0)

mul.l T3, T4

move.l T4, T0

add.l #1, T2

L2:

cmp.l T1, T2

bgt L3

bra L1

L3:

move.l T2, x

.data

; Integer variable a has been allocated to D0

.text

move.l #1, D0

move.l #10, D1

move.l #1, D2

bra L2

L1:

move.l D2, D3

mul.l D3, D0

add.l #1, D2 ((move.l D0 D0 deleted))

L2:

cmp.l D1, D2

bgt L3

bra L1

L3:

move.l D2, x

Before colouring After colouring

38

Live variable analysis… summary

• We found we could find live ranges by constructing a

system of dataflow equations and solving it by iteration

• The algorithm always terminates…

• The amount of work per iteration depends on program

complexity - #instructions, #temporaries

• The number of iterations needed depends on the order in

which the CFG is traversed…

– See EaC pg445, Appel pg226, pg399

– Live variable analysis is a backwards analysis – LiveIn(n)

depends on its successors

– Number of iterations depends on program’s structural complexity

– its “loop interconnectiveness”

January 21

39

APPENDIX: Liveness analysis, colouring in Haskell…
• Encode DFA equations:

January 21

newLiveIn liveIns liveOuts node

= nodeUses node `union` ((liveOutsOf node) \\ nodeDefs node)

where

liveOutsOf node = retrieve (nodeId node) liveOuts

newLiveOut liveIns liveOuts node

= bigU [retrieve s liveIns | s <- nodeSuccs node]

where bigU sets = nub (concat sets)

updateLiveness [] (liveIns, liveOuts) = (liveIns, liveOuts)

updateLiveness (node:nodes) (liveIns, liveOuts)

= updateLiveness nodes (newLiveIns, newLiveOuts)

where

newLiveIns = subst (nodeId node) liveIns (newLiveIn liveIns liveOuts node)

newLiveOuts = subst (nodeId node) liveOuts (newLiveOut newLiveIns liveOuts node)

• Do one step: update LiveIn and LiveOut sets for each node:

Detailed code is shown in the hope that it will make the concepts clearer;

please don’t memorize it! Spend the time reading the textbook instead.

40

Solving DFAs in Haskell… (for completeness!)

• Iterate…

January 21

iterateUpdates nodes (liveIns, liveOuts)

= let

(newLiveIns, newLiveOuts) = updateLiveness nodes (liveIns, liveOuts)

in

if newLiveIns == liveIns && newLiveOuts == liveOuts

then

(newLiveIns, newLiveOuts)

else

iterateUpdates nodes (newLiveIns, newLiveOuts)

findLiveRanges :: CFG -> ([(Id,[Register])], [(Id,[Register])])

findLiveRanges (ControlFlowGraph cfgnodes)

= iterateUpdates cfgnodes (initialLiveIns, initialLiveOuts)

where

initialLiveIns = initialLiveOuts

initialLiveOuts = [(id,[]) | id <- map nodeId cfgnodes] (an empty list for each node)

(live ranges liveIn & liveOut, each a

mapping from node to list of

temps)

41

• Now build the register interference graph (RIG):

January 21

buildInterferenceGraph cfg

= [(t, nub (buildInterferenceList liveOuts t)) | t <- temporaries]

where

(liveIns, liveOuts) = findLiveRanges cfg

temporaries = findTemporaries cfg

buildInterferenceList [] t = []

buildInterferenceList ((id,livelist) : liveIns) t

| t `elem` livelist = livelist ++ buildInterferenceList liveIns t

| otherwise = buildInterferenceList liveIns t

doesntInterfere :: (Register,Register) -> InterferenceGraph -> Bool

doesntInterfere (t,r) ifg

= actualinterferences == []

where

actualinterferences = [ai | ai <- potentialinterferences, ai == r]

potentialinterferences = retrieve t ifg \\ [t]

• If we assign Ti to Dj, will we have a conflict?

(nub eliminates duplicates)

(findTemporaries lists temps used in code)

(remove t itself, which also appears in list)

(retrieve finds the list corresponding to t)

42

• Colour the graph – find a conflict-free assignment

January 21

type Colouring = [(Register, Register)] (temporary, real register)

findColouring cfg ifg

= let temporaries = findTemporaries cfg

in findColouring' temporaries ifg

findColouring' :: [Register] -> InterferenceGraph -> Colouring

findColouring' [] ifg = []

findColouring' (t:ts) ifg

= let

possibleMappings = [(t,r) | r <- theRealRegisters]

validMappings = [(t,r) | (t,r) <- possibleMappings, doesntInterfere (t,r) ifg]

in

head [(t,r) : (findColouring' ts (updateIFG ifg (t,r))) | (t,r) <- validMappings]

Solving DFAs in Haskell… (for completeness!)

• If no colouring can be found, this function fails (the list above is empty). If this

happens, we will have to “spill” one of the variables to memory and try again.

• This is a quick and dirty but dumb inefficient algorithm; see Appel pg239

(theRealRegisters is [D0,D1..D31])

(updateIFG replaces temps with regs)

43

• Put it all together…

January 21

applyColouring :: [Instruction] -> [Instruction]

applyColouring code

= let

cfg = buildCFG code

colouring = findColouring cfg (buildInterferenceGraph cfg)

in

map (replaceTemporaries colouring) code

Solving DFAs in Haskell… (for completeness!)

(where “replaceTemporaries colouring instruction” updates the

instruction to use the specified real registers instead of

temporaries)

44

Feeding curiosity…
• For general programs with unrestricted gotos, the control-flow graph can

be any graph, and so can the interference graph. Hence for some fixed ε >
0, we cannot in polynomial time colour within a factor O(𝑛ε) from
optimality unless NP=P. It can be approximated with a factor O(n(log log
n)/(𝑙𝑜𝑔 𝑛)3) [Halldorsson 1993]

• But see “All Structured Programs have Small Tree-Width and Good
Register Allocation”, Mikkel Thorup, Journal of Information and
Computation, 1998.

• Dataflow analysis can be understood as execution of the program in a
special way – replacing the operations with abstract operations on a
finite, approximate, abstract machine state. If we design the abstract
state representation right, iteration and recursion always converge after a
finite number of iterations. See “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints”, Patrick Cousot & Radhia Cousot, POPL 1977.

January 21
Compilers Chapter 2 © Paul Kelly, Imperial

College

