
1

Compilers - Chapter 7:

Loop optimisations

Part 1: Reaching definitions

February 21

• Lecturer:
– Paul Kelly (p.kelly@imperial.ac.uk)

https://xkcd.com/754/

mailto:p.kelly@imperial.ac.uk
https://xkcd.com/754/

3

Loop-invariant code motion
• Definition:

– An instruction is loop-invariant if its
operands can only arrive from outside
the loop

• Objective:

– move (“hoist”) loop-invariant
instructions out of loop

• Issues:

– How can we find out whether operands
only arrive from outside loop

– Where should we move the loop-
invariant instructions to?

– Other pitfalls…

February 21

d1

d2

d3

d4

d5

branch

d5

d1

d2

d3

d4

d5

branch

d5

4

Finding loop-invariant instructions
• A CFG node is a definition if it updates a temporary

• In our CFG, an instruction can update at most one
temporary, t

• Each definition node is labelled with the Node id, d:

d : t := u1  u2

Or simply

d : t := u1 or d : t := constant

(where u1 and u2 are given by the Node’s “uses”
field)

• This definition is loop-invariant if, for each ui 
uses(d),

– All the definitions of ui that reach d are outside the
loop

– Or only one definition of ui reaches d, and that
definition is loop invariant

February 21

d1

d2

d3

d4

d5

branch

d6

In this example, d3 and

d6 are loop-invariant

d1 defines a
temporary that

is used in d6

5

Finding reaching definitions
• A definition of variable t is a statement which may

assign to t

• A definition d reaches a program point p if there

exists a path from d to p such that d is not killed along

that path

• Consider a CFG node

n: t := u1  u2 (defs(n)={t}, uses(n) = {u1,u2})

Define:

– Gen(n) is the set of definitions generated by node n, i.e. {n}

– Kill(n) is the set of all definitions of t, excluding n

– ReachIn(n) is the set of definitions reaching the point

before n

– ReachOut(n) is the set of definitions reaching the point

after n
February 21

7

Reaching definitions

• Reaching definitions link
each use of a variable back
to where its value could
have been generated

• Loops and conditionals
result in multiple reaching
definitions

• ((In the worst case, the number of
reaching definitions could be quite
large))

February 21

3: z=200

2: w=100

4: x=x+1

5: y=w+z

6: if (x<10)

• Gen(4) = {4}

• Gen(5) = {5}

• Gen(6) = {}

• kill(4) = {1}

• kill(5) = {}

1: x=1

8

Reaching definitions – another data flow analysis

• Dataflow equations:

ReachIn(n) = ReachOut(p)

ReachOut(n) = Gen(n) U (ReachIn(n) – Kill(n))

• Many dataflow problems have “gen” and “kill”
• In the case of ReachOut(n):

–gen(n) is usually just its own id, {n}

–But if node n defines no value (eg it’s a jump), it
will never reach anything – so gen(n) = {}

February 21

U
p  pred(n)

p1 p2 p3

n

(“The Gen(n) + whatever survives”)

9

Reaching definitions – another data flow analysis

• Dataflow equations:

ReachIn(n) = ReachOut(p)

ReachOut(n) = Gen(n) U (ReachIn(n) – Kill(n))

• Solve in the usual way:
– Initialise ReachIn(n) and ReachOut(n) to { }

– Iterate, repeatedly updating ReachIn(n) and
ReachOut(n) using definitions above

– Until convergence

– At each step, the sets increase in size

February 21

U
p  pred(n)

p1 p2 p3

n

(“The Gen(n) + whatever survives”)

10

Use reaching definitions to find loop invariant instructions

• Find the set of definitions of variables used by this node

• An instruction is loop invariant if the definitions of all the
values it uses are outside the loop

• Example:

1 x = 1

2 w=100

3 z=200

Here:

4 x = x+1

5 y=w+z

6 if (x<10) goto Here

February 21

1: x=1

3: z=200

2: w=100

4: x=x+1

5: y=w+z

6: if (x<10)

• Reaching definitions
(ReachIn):

• 1: []

• 2: [1]

• 3: [1,2]

• 4: [1,2,3,4,5]

• 5: [2,3,4,5]

• 6: [2,3,4,5]

11

Use reaching definitions to find loop invariant instructions

• Find the definitions which reach this node which are relevant
– that is, which generate the values this node uses:

February 21

1: x=1

3: z=200

2: w=100

4: x=x+1

5: y=w+z

6: if (x<10)

• Reaching
definitions:

• 1: []

• 2: [1]

• 3: [1,2]

• 4: [1,2,3,4,5]

• 5: [2,3,4,5]

• 6: [2,3,4,5]

• “Relevant”
Reaching
definitions:

• 1: []

• 2: []

• 3: []

• 4: [1,4]

• 5: [2,3]

• 6: [4]

All the

definitions of the

values used by

node 5 lie outside

the loop

12

Summary

• We can find loop-invariant instructions

– We will use this shortly to actually optimise the code

• We used another dataflow analysis: “reaching
definitions”

– ReachIn and ReachOut are sets of definitions

– This is a forward analysis

February 21

13February 21

In this course, we confine our attention to reaching definitions of local
variables, not global ones - for the reason illustrated in this example.

Piazza question:
“Reaching definitions for globals?”

Should the definition of a global variable be considered a reaching definition for all the nodes of the CFG of a procedure?

For example:

int a = 3;

int b() {

return a;

}

Is "int a = 3" a reaching definition for "return a;"? This seems a bit problematic as, for example, if we have:

int a = 3;

int b() {

return a;

}

int c() {

a = 2;

return b();

}

In this case, the line "a = 2" would be a reaching definition as well? But this would make it very hard to compute all the
reaching definitions, as this would require interprocedural analysis, which we haven't discussed as it seems it would be
quite slow and problematic.

14February 21

Piazza question: “Interprocedural dominator analysis?”
When finding dominators of a line, do we only consider the lines in the same procedure or do calls to other functions
mean that we should consider those lines as well? In this example:

1: int a() {

2: return 1;

}

3: int b() {

4: int x = a();

5: return x;

}

Does line 2 dominate line 5? It is always executed before line 5, but building a CFG which takes this into consideration
would be somewhat cumbersome, so are we only expected to consider intraprocedural control flow graphs, as in the
lectures? (So in the examples the dominators of line 5 would be lines 3, 4, 5)

In this course we stick to intraprocedural analysis.

You could of course inline a() to make the issue intraprocedural.

What makes the interprocedural case hard is that there might be another call to a() somewhere else.

[[This is called the "infeasible paths" problem: naively, your interprocedural CFG would have edges 3->1 and 2->4. But if
a() is called from somewhere some other function similar to b():

6: : int c() {

7: int x = a();

8: return x;

}

Now we would have additional edges 6->1 and 2->7. But the path 3-1-2-7-8 is infeasible.

]]

15

• Fine print:

– For efficiency, it is better for the CFG to consist of basic blocks instead

of individual instructions – so many compilers compute the gen and

kill sets for basic blocks before solving iteratively

– For loop optimisations, we would do the data-flow analysis on the IR

before instruction selection – on the three-address-code representation.

It’s simpler, and means the optimization is machine-independent – it

doesn’t depend on the target machine’s instruction set.

– See Appel pg388

• Credits: the primary source for these slides (and parts 2 and 3)

was Appel’s book. I also found it very useful to study the

course notes of Liz White (George Mason University), Laurie

Hendren (McGill University) and Chau-Wen Tseng (University

of Maryland)

February 21

16

Feeding curiosity
• You can represent a control-flow graph in Datalog, and then you can

express reaching definitions analysis as a Datalog query:
Reach(d,x,j) :- Reach(d,x,i),

StatementAt(i,s),

!Assign(s,x),

Follows(i,j).

Reach(s,x,j) :- StatementAt(i,s),

Assign(s,x),

Follows(i,j).

• Now the challenge is to take this abstract specification and turn it
into an efficient implementation.

• This is a compilation problem!
• See John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using

datalog with binary decision diagrams for program analysis. In Proceedings of
the Third Asian conference on Programming Languages and Systems (APLAS'05).
https://doi.org/10.1007/11575467_8

February 21

https://doi.org/10.1007/11575467_8

