
A Middle End Lisp Translator for GCC
achievements and issues

Basile STARYNKEVITCH

CEA LIST (Software Reliability Lab)? Saclay, France,
basile@starynkevitch.net

Abstract. Some extensions of GCC, like those for static analysis, cannot easily
be coded in C. A Lisp-like dialect has been designed and implemented (as a trans-
lator to C) to fit well into the GCC middle-end. We give key language features,
and improvements.We describe the design of its runtime system fitting into GGC.
Idioms to interoperate with the evolving GCC internal API are explained.

1 Introduction and motivations

Program analysis and symbolic processing are a well known application domain of
functional and lisp-like languages. Hence compiler and static analysis tools1 benefit
from being written in such languages, e.g. in Ocaml. However, industrial compilers
(like GCC2) for usual procedural or object-oriented languages (like C, C++, Ada, For-
tran, Java) are generally huge software (GCC is almost four million lines of source code,
mostly C), and interfacing a real functional language (like Ocaml) to them is not practi-
cal because of an impedance mismatch : all their internal data of GCC’s middle-end are
C structures which are not compatible with Ocaml runtime, so to interface them to e.g.
Ocaml would require boxing3 data-structures and wrapping routines for each access to
(or update of) such data. This is error-prone, inefficient, and requires a lot of efforts.
There are also typing issues: designing a (statically typed) ML dialect compatible with
GCC internals requires the formalisation of a type system suitable for (actual or future)
GCC data representations. This is not easily achievable[3].

Extending a real compiler like GCC for various needs, outside of usual code genera-
tion, e.g. static analysis (as illustrated by ASTRÉE or FRAMA-C [1]), is very appealing,
since it would benefit from most of the efforts put into GCC : various front-ends4, many
middle-end analysis, representations, and transformations already existing in GCC. But

? Postal address: CEA DRT/LIST/DTSI/SOL; bat.528 pt courrier 94; 91191 GIF/YVETTE
CEDEX; France

1 Abstract interpretation tools like FRAMA-C http://frama-c.cea.fr/ [1] or ASTRÉE http:

//www.astree.ens.fr/ [2], both coded in Ocaml.
2 The Gnu Compiler Collection, at http://gcc.gnu.org/ which is used on most Linux and

many others systems.
3 To box a data means to make a pointer to some container of the data.
4 For instance, extending ASTRÉE or FRAMA-C to eat C++, Ada and Fortran source code would

require an unrealistic effort.

coding ambitious analysis passes inside GCC as it is done today (in C) is not very practi-
cal (as learnt in TWO[4]), especially for “static analysis” goals which are not intimately
related to the usual code generation aim of GCC, and which will have fewer developers.

Hence, it should be interesting to provide some high-level, functional5, language to
permit prototyping and development of special middle-end passes, and the peculiarities
of GCC require such a language to be quite tailored to the existing GCC code base. This
approach is complementary to other ongoing GCC plugin efforts.

So this paper describes a Lisp[5] dialect, MELT6[6] which has been designed and
implemented to fits well into the GCC compiler (MELT was originally called “basilys”
hence many function names and files still start with basilys). Some familiarity with
the GCC compiler is expected from the reader. The GCC compiler branch with MELT
enabled is noted GCCmelt.

Adding a Lisp dialect into a big program is not new: consider GNU Emacs. And
Greenspun’s Tenth rule is well known 7. MELT is compiled to C (not interpreted), to
fit very tightly into GCC internals and also for efficiency. MELT is used inside some
specific GCC “optimisation” passes, which are only invoked when GCCmelt is run with
an explicit -fbasilys flag, and which may do “arbitrary” processing on GCC inter-
nals (e.g. some static analysis with user warnings). All of the MELT code should be
explicitly enabled at GCC build time (thru arguments to configure)8 and at GCC
run time.

2 Overview

We assume that the host system (running the GCCmelt compiler, e.g. Linux) supports plu-
gins (with dlopen or lt_dlopenext). The figure shows MELT in action. A MELT
source file ana-base.bysl defines some MELT functions and MELT passes. It is
translated into C code ana-base.c. This C code is compiled9 into a shared object
ana-base.so. When GCCmelt compiles or analyses some (e.g. C, C++, Ada) source
file[s] it dynamically loads this ana-base.so (and others) plug-in[s], and may apply
the functions defined there inside some MELT specific passes. The MELT translator is

5 In this paper, a functional programming language is a language emphasising application of
functions, in particular permitting higher-order and first-class functions [e.g. a λ construct].
We still do use object orientation and data mutability.

6 Middle End Lisp Translator branch of GCC: see http://gcc.gnu.org/wiki/

MiddleEndLispTranslator and svn+ssh://gcc.gnu.org/svn/gcc/branches/

melt-branch to get the code.
7 See http://en.wikipedia.org/wiki/Greenspuns_tenth_rule
8 The MELT branch configure-d without enabling MELT is almost the same as the GCC

trunk : unless enabled, MELT code is not even linked into cc1.
9 Practically, compilation of MELT generated C code into a dynamically loadable plug-in is

done thru a script melt-cc-script which may be invoked by GCCmelt.

Fig. 1. GCCmelt overview

bootstrapped10, it is coded in MELT, and constitutes a real test of the GCCmelt infras-
tructure.

A MELT function giving the execute function of a GCC pass can be something like
the following code, which issues a warning for every occurrences of fprintf(stdout,...)
in the analysed source code:

;; execution of IPA pass
(defun simpana_ipaexec (ipapass)
(do_each_cfun_body
(lambda (declv bodyv) ;;; anonymous function
(debug_msg declv "simpana_ipaexec eachcfunbdy declv")
(debug_msg bodyv "simpana_ipaexec eachcfunbdy bodyv")
(walk_gimpleseqv� bodyv
(lambda (gimpv)
(match gimpv

(?gimple_callv� fprintf_symb
(?treeseq_starting stdout_symb))

(warning (gimplev_location gimpv)
"fprintf could be replaced by printf")))))))

The do_each_cfun_body function called above takes a function as an argu-
ment, here the anonymous function given thru the first lambda and apply it to every
cfun declaration and body. debug_msg is used to nicely print a MELT value for de-
bugging, with a user message. The function walk_gimpleseq_v�recursively walks
thru a gimpleseq and apply a function (the second lambda) to every gimple. The match
expression uses pattern matching to find printf calls with stdout and then issue a
warning.

10 Technically, MELT is not a GCC front-end (it generates C code, not Generic or Gimple inter-
nal representation), and the MELT translator is actually a special invocation of cc1 or gcc
without any input files (the MELT source file is passed as a special argument)! A very first
implementation of MELT was coded in CLisp.

To use GCCmelt, run gcc -fbasilys=simpana -O -c source-file.cc.
The -fbasilys=simpana program argument triggers the simpana MELT com-
mand11. This command runs the following MELT function, which installs into the
basilys_ipa_gccpass12 a MELT gate and execution function. A more flexible
pass manager (like in MilePost[7]) would be welcome.

;;; our simple analysis command
(defun simpana_command (dispatcher arg secarg moduldata)
;; fill the ipa pass by setting fields in the gcc-pass object
(put_fields basilys_ipa_gccpass

:gccpass_gate simpana_ipagate :gccpass_exec simpana_ipaexec)
;; debug printing of the updated pass
(debug_msg basilys_ipa_gccpass "basilys_ipa_gccpass in simpana"))

;; install the above function as a command
(initial_command_install simpana_command "simpana")

Several MELT specific optimisation passes have been added inside GCCmelt. When
GCCmelt processes a C (or C++, or Ada...) source file, these additional passes may ex-
ecute MELT code, if a MELT command function like above has enabled them. The
initial_command_install invocation above illustrates that MELT handle a mix
of MELT [boxed] values (like the simpana_command function, i.e. a MELT clo-
sure13) and [unboxed] non-value stuff like read-only constant strings (implemented as
in C like const char[] strings), gimple14 or long-s. Non-value stuff can also be
GCC internal data (e.g. gimple or tree). Boxed values and unboxed stuffs are called
things here.

3 Major MELT language features by examples

MELT is a Lisp dialect, so every language construct is written in parenthesis: (operator
arguments...). Assuming some familiarity with Scheme, Common Lisp or some
other Lisp dialect, we give here salient MELT peculiarities: handing of values and stuffs
§3.1, the object system §3.2, multiple results §3.3, values and discriminants §3.4, other
features such as matching §3.5, bindings and modules §3.6.

3.1 boxed values and unboxed stuff

MELT handles both boxed values (allocated and handled by MELT’s copying garbage
collector) and unboxed stuff. Unboxed stuff is given a c-type thru keywords like e.g.

11 Many other program arguments are available, e.g. -fbasilys-dynlibdir to explicit the
MELT plug-in directory, -fbasilys-init to give the list of plug-ins to load, etc. . . . Read
the internal GCCmelt documentation for details.

12 A MELT object, of class class_gcc_pass, reifing the MELT-enabled pass after IPA.
13 A closure [5] is a value implementing a function by packing some code [e.g. a routine] with

the closed variables occurring in the function.
14 One of the main GCC middle-end internal representation http://gcc.gnu.org/

onlinedocs/gccint/GIMPLE.html

:gimpleseq or :long or even :void for side-effecting only constructs. For in-
stance, the (f :gimpleseq gseq) formal argument list declares a MELT value
formal f and a gimple_seq C stuff formal gseq. MELT function application and
message sending give the type of arguments (or secondary results). Pattern matching�15

is possible on both values and stuffs.

3.2 MELT object system : e.g. s-expressions and c-types

MELT provides a single-inheritance object system. MELT objects are values, and have
value fields, and an object number or objnum16, which is a short unboxed stuff “field”.
There is a single root class class_root. For instance, source s-exprs (as parsed by
the MELT reader) are objects. Their class is defined as:

(defclass class_located ;; class of located stuff
:super class_proped :predef CLASS_LOCATED
:fields (loca_location)) ;its source location

(defclass class_sexpr ;; class of source expressions
:super class_located :predef CLASS_SEXPR
:fields (sexp_contents)) ;list of contents

The optional :predef keyword gives a symbolic name to some few predefined val-
ues known by the C runtime. The class_proped super-class provides property lists.
MELT symbols and keywords are reified and interned (by the parser) as instances of
class_symbol and class_keyword. Fields and classes are themselves objects
(of class_field and class_class). Once read, MELT s-expressions, in parti-
calar those using basic language constructs, are macro-expanded into abstract syntax
trees (using the macro machinery).

MELT c-types are reified as instances of class_ctype but should also be sup-
ported by the MELT runtime (i.e. files gcc/basilys.[ch]) and GC. For example, GCC
gimple have the following c-type17:

;; the C type for gcc gimples
(definstance ctype_gimple class_ctype
:predef CTYPE_GIMPLE
:named_name (stringconst2val discr_string "CTYPE_GIMPLE")
:ctype_keyword ’:gimple ;; keyword for the type
;; the C name of the type
:ctype_cname (stringconst2val discr_string "gimple")
;; how to pass such stuff as arguments or secondary results
:ctype_parchar (stringconst2val discr_string "BPAR_GIMPLE")
:ctype_parstring
(stringconst2val discr_string "BPARSTR_GIMPLE")

:ctype_argfield (stringconst2val discr_string "bp_gimple")
:ctype_resfield (stringconst2val discr_string "bp_gimpleptr")

15 The � indicate features designed but not entirely implemented in october 2008.
16 The objnum is available for any use, and usually mutable. For classes or discriminants, it is

fixed and plays a particular role.
17 The stringconst2val primitive boxes a string, i.e. makes a string value from of a constant

C string stuff.

;; the GGC marking routine
:ctype_marker
(stringconst2val discr_string "gt_ggc_mx_gimple_statement_d"))

(install_ctype_descr ctype_gimple "GCC gimple pointer")

Adding new c-types is fairly simple (just patch files gcc/basilys.[ch] and gcc/melt/

warmelt-first.bysl appropriately).
The definstance construct is used to define static instances (bound inside a

MELT module). To build an instance dynamically (e.g. in a function), use the instance
construct. For example, the definstance construct is handled by a MELT macro
which builds

(instance class_src_definstance :src_loc loc :sdef_name symb
:sobj_predef predef :sinst_class cla :sinst_clabind clabind
:sinst_objnum objnum :sinst_fields fastup)

Fields of MELT objects are given by keywords like :src_loc; practically, field names
and class names are globally unique.

3.3 Multiple results, e.g. for normalization

The translation of MELT code into C (see below §4) illustrates the need for returning
multiple results in one of its important steps, normalisation. Normalisation of MELT
abstract syntax trees is an example of multi-valued message sending. A message se-
lector is declared with (defselector normal_exp class_selector) and
then used e.g. for normalising a function application (of class_src_apply)

;; normalize an application
(defun normexp_apply (ap env ncx psloc)
(let ((sloc (get_field :src_loc ap)) (sfun (get_field :sapp_fun ap))

(sargs (get_field :sapp_args ap)))
(multicall (nfun nbindfun) (normal_exp sfun env ncx sloc)
(assert_msg "check nbindfun" (is_list_or_null nbindfun))
(multicall (nargs nbindargs)
(normalize_tuple sargs env ncx sloc)

;;; etc....
))))
;; install this as method for normal_exp in class_src_apply
(install_method class_src_apply normal_exp normexp_apply)

In the code above, let introduces sequential18 scoped bindings (and could even bind
unboxed stuff like (:long i 1)), get_field safely fetches a field from inside
object19, normal_exp is in a message send and normalize_tuple is a function
application. Both return multiple values, captured and bound by multicall constructs20.

18 So our let is more like a let* in Scheme or Common Lisp.
19 get_field, returns nil if accessing a non-object, or an object of irrelevant class. The
unsafe_get_field variant is faster but don’t check anything and may crash.

20 MELT’s multicall is inspired by Scheme’s call-with-values or Common Lisp’s
multiple-value-bind constructs.

The first operand of multicall is, like a formal arguments list, binding variables to
the primary and [possibly several] secondary results. So the normal_exp send gives
nfun as its primary result, and nbindfun as its first secondary result; indeed nor-
malisation returns an nrep and a binding list. Method implementations are installed by
install_method in a method dictionary (an object hash map associating selectors
to closures) and can be installed or removed very dynamically.

3.4 various values and their discriminant

MELT provides many other kinds of values, including closures, tuples (i.e. fixed se-
quence of values), boxed stuff (i.e. containers for C gimple, gimple_seq . . . or
long data), pairs (like cons in Lisp - the head is any value, the tail is a pair or nil),
lists (containing the first and last pair, so appending or prepending is fast), various hash
maps (hash-tables associating an object to a non-null value, or a gimple or tree or
string to a non-null value.), etc. . . . Hash maps are used to unintrusively associate infor-
mation; for example, associating MELT values to GCC gimple is done with gimple
maps (hashing gimple to MELT values.), without adding any extra MELT specific C
field into struct gimple_statement_base.

Each MELT value has a discriminant which is an object ([in-]directly an instance
of class_discr). The discriminant of nil is discr_nullrecv, the discriminant
of a MELT instance is its class. The objnum of the discriminant is used by the runtime
(including GGC) to discriminate marking or tracing of pointers. Discriminant-s are also
used by message sending (so a message can even be sent to a MELT list, etc. . .).

3.5 other lispy features : conditional and matching

MELT have many other features similar to other Lisps, such as conditionals (cond, if,
and, or), the quote machinery21 and notation (’x is the same as (quote x)), in-
finite loop forever and a local exit, the return operation, value and stuff assign-
ment thru setq, sequential side-effecting evaluation thru progn, etc. . . . But MELT
does not provide tail-recursion or a letrec construct for local [mutually] recursive
functions22. Also, most MELT primitives or standard functions do not have a Lispy
name: e.g. the head of a pair is pair_head not car. And MELT is neither poly-
morphic nor polytypic : no support of a map operation usable on every data - because
of the essential difference between boxed values23 and unboxed stuff, and no variable
argument list (like <stdarg.h> and ... in C or &rest in Common Lisp).

21 Notice that a string e.g. "hello" in MELT source code is an unboxed :cstring stuff,
and 15 is an unboxed :long stuff; its quotation ’"hello" should�denote a constant boxed
string value, and ’15 should�denote a constant boxed integer value..

22 We are considering implementing a localdef construct, e.g. (localdef (defun odd
(x) ...) (defun even (y) ...) (odd ’5)) but cross-recursion à la letrec seems
rarely useful for our purposes.

23 If restricted to MELT values, one could implement a quite “generic” map as a message selector
and install suitable methods for it; this is possible because even non-object values like tuples
or lists have a discriminant used in message sending.

MELT also has a pattern matching�ability. Patterns use the (question π) nota-
tion, same as ?π24, in the match construct. A toy example is:

(defun testmatch (v x)
(match v

(?(or
?(instance class_named :named_name ?n)
?(tuple_sized 1))

(debug_msg n "testmatch firstcase n"))
(?(tuple_nth 0 ?c)

(debug_msg c "testmatch secondcase c"))
(x (debug_msg x "testmatch got the x"))
(?_ (debug_msg v "testmatch lastcase v"))))

A match construct has a sequence of match-cases. Each match cases has a pattern and
a sequence of expressions. When the matched value (v in code above) match a pattern,
the pattern variables (like ?n or ?c above) appearing in the case are locally bound
to their matching values. Patterns may be abstract views [8] or non-linear (containing
several occurrences of the same pattern variable). The joker ?_ matches anything. A
non-pattern (like x above) is matched by testing for identity.

3.6 reified bindings, environments and modules

Like Scheme, and unlike Common Lisp, MELT has a single name space. MELT envi-
ronments and bindings are reified (thru class_environment class_any_binding
etc. . .). A name is bound to a value (imported from a previous module), a function [in-
side the current module], a primitive, a class, an instance, a selector, a local let or formal
variable, a pattern variable, a loop label, a macro, a pattern macro, a matcher [or pattern
view], a c-iterator, or a field. Any previous binding is hidden. A module (e.g. produced
by translation of a single MELT source file) is importing values and macros and may
export (using export_values export_class export_macro) some bind-
ings. The very first module (file gcc/melt/warmelt-first.bysl) is particular and
translated specially. The bootstrapped MELT translator is implemented in several files
gcc/melt/warmelt-*.bysl or more than 22KLOC of MELT code. The generated25

files gcc/warmelt-*-0.c (nearly 400KLOC) are also in the source repository. Most
of the generated code is in big initialisation routines (since MELT does not generate
any data file; all initial data is built by generated C code). Each module initialisation
(generated C) routine is called only once (when the shared-object is loaded), it takes
the previous environment as an argument, and returns the newly reified current environ-
ment (with all the definitions exported by the module). Generating C code from MELT
goes fast, the bottleneck is the compilation of the generated C code into shared objects.

24 So question and ? notations are equivalent, like ’ and quote are.
25 Run make upgrade-warmelt to regenerate them.

4 Fitting into GCC runtime and translating into C.

We need to play nice with the GCC runtime system, i.e. all the utility code of the GCC
platform. In particular, GCC contains a garbage collector26[9], called GGC27 (for GCC
Garbage Collector) , and we need to fit into it. GGC is a precise mark and sweep garbage
collection mechanism28, only triggered by explicit calls to ggc_collect: ordinary
allocations inside GCC never trigger any GGC garbage collection. And GGC does not
maintain any local roots (e.g. local variables on the machine stack frame when GCC is
running.). Only global (and static) roots are considered when ggc_collect is called.
This is acceptable because such calls happen mostly between GCC optimisation passes,
not inside them.

But any functional language allocates a lot of temporary data, e.g. closures (most
of which will die quickly), so calling the garbage collector only outside of MELT code
would be impractical: MELT needs to collect data when it has allocated enough mem-
ory, explicitly tracing local variables. Also, fast allocation is important, since most
MELT data is expected to die quickly. Therefore, a generational copying garbage col-
lector [9] has been implemented above the native GGC. Such a collector requires ex-
plicit handling of local data (since local pointers are updated by the MELT collector),
including intermediate temporary values. This means that each MELT call frame is an
explicit C struct-ure containing all the local pointers; This is unconvenient in hand-
written C code29 but easy in generated C code.

MELT copying generational garbage collector is backed up by the GGC collector.
When the allocation region (young region, or nursery) is full enough, live MELT values
are copied outside, into the GGC (mark&sweep) heap, and then the nursery is freed.
Allocation of MELT values is fast (in-lined basilysgc_allocate function); of-
ten incrementing the current allocation pointer, and comparing it to the limit of the
nursery. A MELT garbage collection is often minor or more rarely full (the nursery is
copied into GGC heap, and then GGC collection is explicitly done.). If only MELT
values are allocated, this is enough, provided all local MELT values (inside MELT call
frames) are copied into a GTY-ed global vector visible to GGC. This happens when no
GCC stuff is allocated (e.g. in “code analysis” MELT passes). Should some GGC stuff
(like gimple) be allocated in a MELT pass (e.g. some expensive optimisation pass
using MELT static analysis), it should be explicitly known to the GGC collector, which
is called by the MELT collector at arbitrary times. This could be done by copying it
elsewhere (requiring a global vector for each type of stuff, e.g. a vector of gimple-
s, another of tree-s, etc. . .). A simpler solution is to enhance ggc_collect as a
function ggc_collect_extra_marking called with a walking function and its
data. The walking function calls appropriate GGC marking functions on the data. For
26 Garbage collection is essential in every high-level language implementation; if GCC didn’t

had one, we would have to code it from scratch.
27 See http://gcc.gnu.org/onlinedocs/gccint/Type-Information.html and files
gcc/ggc.h and gcc/ggc*.c in the GCC source tree.

28 The marking routines are generated by gengtype using GTY annotations in C header files
inside GCC.

29 This is why macros BASIYS_ENTERFRAME and BASILYS_EXITFRAME are often used in
hand-written code in gcc/basilys.c for MELT basics.

MELT, the walking function scans all MELT call frames (thru MELT generated code)
and mark there all the MELT values and the other stuff. With such a simple enhance-
ment to GGC (about 20 lines changed in gcc/ggc*.[ch])30 copying of MELT local
values into a global vector is no longer needed. The requirements of MELT runtime are
easily handled in the generated C code by MELT translation to C.

MELT translation to C is happening in a number of steps. It starts with macro
expansion, which builds (from s-exprs) an AST [abstract syntax tree] represented by
instances of sub-classes of class_src (e.g. class_src_definstance above
§3.2). Then this AST is normalised, into n-reps (normal representations, sub-classes of
class_nrep) which add many additional normal let bindings for intermediate tem-
porary values, transforming (f (g x) y) into some normal representation like let
γ = (g x) in (f γ y)31 where γ is a fresh cloned symbol. Normalisation is re-
quired by the precise copying MELT collector. The abstract normal tree (of nrep-s) is
still expression-like. It is further transformed into mostly a forest of statement-like rep-
resentations, called objcode-s, instances of subclasses of class_objcode. At last
the forest of objcode-s is pretty-printed as (unreadable) C code.

5 MELT idioms to fit into GGC code in C.

Several MELT idioms, quite specific to MELT and unavailable in other Lisp implemen-
tations, are provided to fit very well into the existing GCC code. These low-level con-
structs describe how to translate some elementary s-expressions (suitably normalised)
into C code.

Every low-level operation is done by primitives which describe how to translate
their use into C code. For instance,

(defprimitive is_gimple (v) :long
"(basilys_magic_discr((basilys_ptr_t)("
v ")) == OBMAG_GIMPLE)")

(defprimitive make_gimple (discr :gimple g) :value
"(basilysgc_new_gimple((basilysobject_ptr_t)("
discr "),(" g ")))")

defines a primitive is_gimple to test if a value is a boxed gimple, and a primitive
make_gimple to build a boxed gimple value out of a discriminant and an unboxed
gimple stuff.

Iterative C constructs like for are described by c-iterators. For instance,

(defciterator each_in_gimpleseq
(:gimpleseq gseq) ;start formals
eachgimplseq ;state symbol
(:gimple g) ;local formals
(;;; before expansion
"gimple_stmt_iterator gsi_" eachgimplseq ";"

30 See http://gcc.gnu.org/ml/gcc/2008-10/msg00231.html and following messages.
31 This is a textual simplification. The actual abstract normal tree (ANT) is made of instances of

sub-classes of class_nrep.

"if (" gseq ") for (gsi_"
eachgimplseq " = gsi_start (" gseq
"); !gsi_end_p (gsi_" eachgimplseq ");"

" gsi_next (&gsi_" eachgimplseq ")) "
g " = gsi_stmt (gsi_" eachgimplseq ");")

(;;; after expansion
""))

defines a c-iterator called each_in_gimpleseq. The description gives how to gen-
erate a C block (usually a for C statement). Using a c-iterator is even simpler:

;; apply a function to each boxed gimple in a gimple seq
(defun do_each_gimpleseq (f :gimpleseq gseq)
(each_in_gimpleseq
(gseq) ;input
(:gimple g) ;local variables list
(let ((gplval (make_gimple discr_gimple g)))
(f gplval))))

As an expression, a c-iterator invocation has the :void c-type, because it don’t give
anything when evaluated. Such an invocation is given a list of input arguments [just
(gseq) here], and a list of locally bound variables [just (:gimple g) here]. The c-
iterator definition also uses a state symbol, which is translated into a uniquely generated
C identifier (this enables arbitrary nesting of c-iterator invocations).

In patterns, atomic constructs are doing a test (does the matched thing indeed match)
and some extractions or fillings (getting the matched things for sub-patterns). The cor-
responding items are c-matchers.

(defcmatcher tuple_nth
(tup :long rk) ;match & ins
(comp) ;out
tupnth ;statesymb
(;test expansion
"(basilys_is_multiple_at_least(((basilys_ptr_t)"
tup "), (int)(" rk ")))")

(;fill expansion
comp " = basilys_multiple_nth((basilys_ptr_t)("
tup "),(int)(" rk "));"))

which describes the code for testing and the code for filling.
Atomic pattern constructs implemented in MELT (not in C) are possible, using fun-

matchers�. These are implementing the matching with a function returning primarily32

a non-null value if the match succeeded, and secondarily the extracted/filled things. So
funmatchers also gives the signature of secondary results of the MELT function imple-
menting them.

Pattern macros or patmacros generalise MELT macros: they describe how to expand
an s-expr in pattern position and in expression position. Actually, or is a patmacro since

32 In MELT the primary result of a function or message, the first [if any] argument of a function,
the receiver of a message send, is always a MELT value and cannot be a stuff.

it is useful both in expressions and in patterns. Macros and patmacros are defined by
export_macro and export_patmacro which export specific bindings.

In practice, the idioms above have been general enough to follow the evolution of
the GCC trunk during 2008, even during major disruptive stage 1 enhancements (like
tree→ tuple, or graphite). Merging them into MELT was done in few days.

6 Conclusions.

The above MELT language features, including all the idioms (or dirty tricks) specific to
MELT and describing translation into C, have been experimentally sufficient to follow
major GCC evolutions, and are built above a fairly stable GCC low-level infrastructure
(notably GGC), which is “abstracted” in the MELT runtime. So adding a new or evolv-
ing API inside GCC is fairly easy. MELT is usable not only for static analysis (using
PPL[10]) but also for other tasks like [11] (code refactoring, stylistic checking, . . .).

Acknowledgements

This work has been partly funded by the French Ministry of Industry (MINEFE) thru the ITEA
project (ref.IP05012) GlobalGCC http://ggcc.info/. Thanks to Guillem Marpons, Roberto
Bagnara, and to the reviewers for helpful comments.

References

1. Monate, B., Signoles, J.: Slicing for security of code. In: TRUST. (2008) 133–142
2. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The AS-

TRÉE Analyser. In Sagiv, M., ed.: Proc. European Symposium on Programming (ESOP’05).
Volume 3444 of LNCS., Edinburgh, Scotland (April 2–10 2005) 21–30

3. Pottier, F. private communication (september 2008)
4. Guilbaud, D., Goubault, E., Pacalet, A., Starynkévitch, B., Védrine, F.: A simple abstract

interpreter for threat detection and test case generation. In: WAPATV’01, with ICSE’01,
Toronto (2001)

5. Queinnec, C.: Lisp in Small Pieces. Cambridge Univ. Pr., New York, NY, USA (1996)
6. Starynkevitch, B.: Multi-stage construction of a global static analyzer. In: GCC Summit,

Ottawa (july 2007) 143–156
7. Fursin, G., et al.: MILEPOST GCC: machine learning based research compiler. In: Proceed-

ings of the GCC Developers’ Summit. (June 2008)
8. Wadler, P.: Views: a way for pattern matching to cohabit with data abstraction. In: POPL

’87: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, New York, NY, USA, ACM (1987) 307–313

9. Jones, R., Lins, R.: Garbage Collection (algorithms for automatic dynamic memory man-
agement). Number ISBN 0-471-94148-4. Wiley (1996)

10. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete set
of numerical abstractions for the analysis and verification of hardware and software systems.
Science of Computer Programming 72(1–2) (2008) 3–21

11. Glek, T., Mandelin, D.: Using GCC instead of grep and sed. In: GCC Summit, Ottawa (june
2008) 21–32

