
A Compile-Time Infrastructure for GCC Using
Haskell

Peter Collingbourne and Paul H J Kelly

Department of Computing, Imperial College London, London SW7 2AZ, UK
{peter.collingbourne,p.kelly}@imperial.ac.uk

Abstract. This project aims to improve the metaprogramming and ver-
ification capabilities of the GNU Compiler Collection. It consists of a
plugin infrastructure that exposes two compile-time mechanisms. The
first of these is a mechanism by which one may perform arbitrary com-
putations over types within the context of the C++ template metapro-
gramming infrastructure. The second of these exposes selected portions
of the control flow graph and basic block statements of Low GIMPLE,
with additional support infrastructure that allows for data-flow analysis
of the resultant structure. The plugins themselves are written in Haskell,
reflecting the functional nature of both C++ template metaprogram-
ming and standard data-flow analysis. We demonstrate the effectiveness
of our technique using specific case studies in the field of session types.

Key words: C++, Metaprogramming, Program Analysis

1 Introduction

In the field of programming languages, compile-time computation is a tech-
nique for performance optimisation, software verification and program genera-
tion. Compile-time computation may also be used to extend a language, whereby
the compile-time code “lowers” the extended language to a standard representa-
tion. Experienced LISP and Haskell programmers will be aware of relevant tech-
nology within their respective languages: LISP macros and Template Haskell.

The C++ language provides the somewhat limited template metaprogram-
ming technique for compile-time computation. Whereas LISP macros and Tem-
plate Haskell operate over executable code, template metaprogramming operates
over types. Template metaprogramming was largely an unintended consequence
of the language design. It provides a limited form of access to the type structure
of a program, and does not provide access to the actual program code. It is
also sometimes criticised for being rather obtuse and unmaintainable. Much of
this criticism stems from the syntax, which can appear unintuitive to those not
familiar with the C++ standard. Furthermore, there exist certain computations
which are impractical to express using template metaprogramming, for which
an easier alternative is desired. We shall discuss one such example in Section 5.

A number of approaches have been considered for introducing a more pow-
erful form of compile-time computation to C++. Examples of approaches taken

include meta-object protocols, and databases with associated query languages.
This project represents an alternative approach to improving the compile-time
computation capabilities of the C++ language. This shall be accomplished from
two angles, with particular view to high-level expressiveness. In particular, we
attempt to provide programmatic, meta-level access to two aspects of the work-
ings of the GNU Compiler Collection. The first of these is part of the C++
front-end, specifically the part of the template meta-programming infrastruc-
ture in which types are computed. The second is the mid-end of the compiler, in
which statements, in a format known as Low GIMPLE, are processed, and con-
trol flow information is also available to us. As the midend is language-neutral,
we expose the midend for every language supported by GCC. We utilise a plu-
gin architecture for maximum flexibility. We use Haskell as the plugin imple-
mentation language. Each plugin consists of a Haskell function with a specified
type, and the information contained within the GCC internal data structures are
exposed to the plugin as Haskell data structures provided as function parame-
ters. An attempt was made to design many of the Haskell data structures in a
compiler-independent manner, or at least provide a compiler-independent access
mechanism, in order that our extension may be ported to another compiler with
minimal plugin changes necessary.

The two aspects of our extension have been designed together so that they
may cooperate in a user-defined way using the C++ type system. For example, a
type may be produced by the template metaprogramming extension with specific
annotations which indicate that a certain control-flow analysis must be carried
out to verify the usage of those variables with that type.

We claim the following contributions:

– The specification and implementation of a functional extension to the C++
language that extends the template metaprogramming mechanism.

– The specification and implementation of an augmentation of a compiler mi-
dend that allows for functional program analysis.

– An implementation of the session type communication protocol for C++ that
provides advanced verification capabilities and presents a cleaner interface
to the user using the above two extensions.

Our work exists only as a prototype and is emphatically not a language
proposal. This work is an exploratory project to investigate language extensions
that improve certain metaprogramming aspects of C++.

1.1 Motivation

Our extension can be utilised to support verification of generic and domain-
specific constraints imposed on a language. An example of a generic constraint
would be to prevent detectable dereferencing of null pointers. To verify this con-
straint, an analysis can be inserted as a midend pass. An example of a domain-
specific constraint relates to domain-specific languages embedded within a pro-
gram, such as SQL or regular expressions. A type system extension for regular

expressions can perform the dual role of verifying the validity of a regular expres-
sion, and compiling it in order to avoid runtime parsing. A midend pass targeted
at SQL queries can verify the validity of a query’s syntax and determine whether
the input and output parameters to the query are of the correct type.

Our extension may also be used to create simpler template implementations.
Let us now provide a small example in the context of session types, to be in-
troduced later. Briefly, a session type represents a sequence of communication
actions carried by a channel. There exists a specific type transformation over
session types known as the dual transformation. The dual transformation is the
substitution of all input operations within a session with output operations, and
vice versa. We have developed a C++ implementation of session types [1] which
represents a session type as a hierarchy of template instantiations; e.g. the type

seq<in<int >, seq<out<int >, end> >

represents a session consisting of an int input operation followed by an int out-
put operation. Now consider a template function to implement the dual transfor-
mation. Using standard template metaprogramming, we must handle separately
each particular template instance that may appear in the code, and propagate
the function call accordingly. The resultant implementation consists of 53 lines
of code. When implemented using Haskell, we may take advantage of two tech-
niques in order to improve the conciseness of the code. The first is Haskell’s
scrap your boilerplate [2] design pattern. This design pattern allows one to write
functions that traverse a data structure and operate on values of particular types
without the need to implement a traversal manually, in a manner that is inde-
pendent of the data structure being traversed. The second is a mechanism which
translates shorthand type specifications written in a C++-like form into our full
type specification. Our final implementation consists of six lines of code:

dual (CTStrP” in <?t>” [CP t t]) = CTStrP”out<?t>” [CP t t]
dual (CTStrP”out<?t>” [CP t t]) = CTStrP” in <?t>” [CP t t]
dual (CTStrP” c a l l <?t>” [CP t t]) = CTStrP” dua l c a l l <?t>” [CP t t]
dual (CTStrP” dua l c a l l <?t>” [CP t t]) = CTStrP” c a l l <?t>” [CP t t]
dual t = t
dualSess ionType t = return (everywhere (mkT dual) t)

2 Background and Related Work

This work may immediately be contrasted with works such as LISP macros [3]
and Template Haskell [4]. Both mechanisms expose a tree-based representation
of the language to computation within that programming language. The key
distinction between this work and ours is that in both of these systems, meta-
computation occurs over an IR that is the program’s AST. LISP and Haskell
both pose challenges for analysis writers due to the difficulty of extracting control
flow graphs from these. Furthermore, Template Haskell provides no easy way to
extract the type of a given meta-expression. In our system, meta-computation
occurs over a CFG representation of the IR, and type information is available.

Another frame of comparison is the meta-object protocol. Meta-object proto-
cols provide a meta-level object-oriented interface to a programming language.
They also provide the mechanism by which one may extend the syntax of a
language (for example by adding a new domain-specific loop statement). These
meta-level objects represent parts of the language, such as the compiler’s in-
termediate representation and its mechanism for interpreting certain operations
(such as adding two objects together).

Two meta-object protocols for C++ are Ishikawa et al’s [5] MPC++ and
Chiba’s [6] OpenC++. Both MOPs expose the meta-level architecture using a
C++ model, and allow the user to create new constructs simply by extending
the relevant classes of the C++ representation.

Existing C++ MOPs can be distinguished from our work in two ways. Firstly,
no C++ MOP that we are aware of provides access to the template instantiation
mechanism in the same way as put forth in this work. Secondly, as with the above
discussed macro systems, these MOPs provide access to a high-level IR similar
to an AST, and no control flow graph is made available.

We may also consider mechanisms for exposing intermediate representations
as databases with associated query languages. Examples include a Prolog-based
system known as Deepweaver [7] and a Datalog-based system [8]. These systems
make the task of discovering the control-flow simpler than the C++ MOPs
we have discussed. For example, the Datalog-based system provides access to
the control-flow graph, and Deepweaver provides a reaching definition analysis.
However both systems presently lack a generalised data-flow analysis framework.

Works that attempt to provide generic data-flow analysis to C++ via a com-
piler include gdfa: A Generic Data Flow Analyzer for GCC [9]. This is a generic
data-flow analysis extension to GCC, implemented in C. Currently, the type of
data flow information is defined by the framework to be a bit vector. The authors
plan a more flexible approach which permits any type of data flow information.
Another such work is the generic data-flow analysis component of ROSE [10], a
source-to-source program transformation and analysis framework, in which an
arbitrary data type can be used for data flow information.

The plugin-based MELT [11] project exposes the GCC midend to a higher-
level language. The language is domain-specific and is a LISP variant. The au-
thors have opted for a compiler-specific approach (for example, plugins have di-
rect access to GCC trees). Compilation is achieved via translation to C; MELT
imports GCC functions and macros via the definition of translation rules. The
goal is an abstract interpretation framework for GCC, which as of the time of
writing appears to be unimplemented, however the potential exists for a generic,
compiler-independent analysis framework to be implemented.

3 Template Metaprogramming Extension

3.1 Design

In order to use the template metaprogramming extension, the user provides a
transformation function written in Haskell, whose role it is to transform a C++

type in some specified way, and annotates a typedef statement with a custom
attribute containing enough information to allow the compiler to locate the im-
plementation of the transformation function. Under our type system extension,
if the typedef is annotated with such an attribute, the source type (the type
appearing on the left-hand side of the typedef statement) will be passed to
the transformation function. The result of the transformation function will then
receive the alias of the target name (the name appearing on the right-hand side
of the statement) in the symbol table.

Transformation functions are provided with a single argument: a Haskell rep-
resentation of a C++ type (a value of type CxxType). CxxType is an algebraic
data type; briefly, a data type built from a number of constructors. Each con-
structor has parameter types associated with it, and may be used to build a
value of that type by supplying values of the parameter types as arguments to
the constructor. CxxType is constructed from a number of ADTs that reflect
the structure of the C++ type system. For example, the type that represents a
template argument, CxxArgument, has three constructors as shown below.

data CxxArgument = CAType CxxType
| CAValue CxxValue
| CATemplate CxxTemplate

This reflects the fact that a template argument in C++ may be a type, value
or template. The remainder of the type specification is given in the extended
version of this paper [12].

The transformation function returns a value of type CxxCompilerM CxxType,
where CxxCompilerM is a wrapper around the IO monad. Wrapping the IO monad
was done for the sake of safety by preventing the transformation function from
accessing the underlying monad and performing unsafe I/O actions; as well as
portability since the monad may be substituted by another should this be re-
quired for a particular compiler implementation.

We provide a number of functions that allow type information contained
within the compiler to be accessed. These functions are designed to mirror the
capabilities of standard C++ metaprogramming. The type signatures of the two
most important functions are shown below.

getMember : : CxxNamedType−>String−>CxxCompilerM (Maybe CxxType)
bu i l dS t ruc t : : Maybe String

−> (CxxNamedType−>CxxCompilerM [(String , CxxType)])
−> CxxCompilerM CxxNamedType

getMember looks up and returns the field with the given name within the
given type, and is equivalent to use of the :: operator in standard template
metaprogramming. buildStruct defines a composite type with the given typedef
fields and optional name and returns the name of the constructed type, and is
equivalent to defining a parameterised inner class. It is designed to allow for the
definition of composite types that refer to themselves, i.e. recursive types, as well
as corecursive (mutually dependent) types. As we shall see in Section 5.2, this
capability has applications in the context of session types.

To improve conciseness, one may use a shorthand representation of a C++
type as an alternative to the long-winded full representation. This representation
consists of a C++ type expressed in the standard way, but with “holes” into
which one may substitute values of a variety of types, in a similar fashion to the
C printf and scanf functions. For example, the shorthand representation of an
instance of a template in with a single argument t is CTStrP ”in<?t>”[CP t t],
whereas the full representation contains 91 characters.

3.2 Implementation

An implementation of the language extension is responsible for recognising our
custom attribute and invoking the desired transformation function contained
within the Haskell plugin with the appropriate parameters. In order to achieve
this, it must be capable of converting the compiler’s internal representation of
the type to our Haskell representation, and vice versa. It must also provide an
implementation of the compiler interface functions discussed in Section 3.1.

Our implementation uses the development version of GCC as a baseline, and
tracks developments to the mainline branch. Our extension is currently based on
revision 142782 of the GCC Subversion repository. The Haskell compiler used is
GHC 6.8.2. In order to prepare a transformation function for use by our language
extension, it must first be placed in a Haskell source file and compiled using GHC.
The custom attribute contained in the relevant typedef thus supplies the path
to the Haskell object file containing the compiled function, and the (symbol)
name of the function within the object file.

The implementation is written in Haskell (by necessity, as Haskell does not
provide a mechanism for C programs to build Haskell data structures), and
consequently it must have access to a number of GCC functions and macros.
Access is provided via Haskell’s FFI (foreign function interface) mechanism,
using which Haskell may import arbitrary C functions. Macros are wrapped in
a function by necessity; we also wrap functions for the sake of safety, as the
compiler will flag an error if the signatures of any of the functions changes,
whereas this will not happen if they are imported directly.

We modified the attribute-handling code for the C++ front end to recognise
our attribute and annotate the relevant TYPE DECL tree node with this informa-
tion. A hook was inserted into the routine responsible for performing template
substitutions over declarations to recognise this annotation and call the Haskell
code responsible for loading and invoking the transformation function.

We must ensure that our extension can coexist with GCC’s garbage collector
(GGC). We believe, but have not formally verified, that our extension preserves
soundness and completeness with respect to garbage collection. Space restrictions
preclude us from elaborating; the extended paper [12] contains details.

4 Midend Passes in Haskell

In a similar fashion to the metaprogramming extension, a Haskell midend pass
is implemented as a transformation function. GCC midend passes are invoked

once for each function defined within the current translation unit. Thus the input
parameter to the transformation function is a representation of the function un-
dergoing analysis. A function’s representation consists of its control flow graph,
the node IDs corresponding to the entry and exit nodes and a mapping between
variables referenced in the CFG and their types. The CFG is represented us-
ing Haskell’s inductive graph [13] representation. Each node contains a list of
statements that make up that basic block.

The function returns a function representation of the same type as the in-
put parameter. In the future, this return value will be converted back to the
compiler internal representation thus permitting program transformation. The
CxxCompilerM monad is also used here so that the analysis function may obtain
type information, although it is prevented from creating new types.

We depart by necessity from our convention of compiler independence, as the
precise representation of a statement will differ between compilers. Consequently,
the basic block, statement and edge data types are implementation-defined. We
have implemented use and def functions, generic accessor functions which re-
spectively provide a list of variables used and defined within a statement, and
plan to implement further accessor functions.

We have developed a generic implementation of the standard data-flow anal-
ysis. The design of the framework allows for intuitive, “textbook” analysis de-
scriptions. For example, below is an implementation of the live variable analysis:

l i v eVa r i ab l eAna l y s i s = DataFlowAnalysis
−− d i r e c t i o n x f e r boundary meet i n i t

BackwardAnalysis x f e r Set . empty Set . unions Set . empty
where

x f e r stmt lv = Set . f romList (use stmt) ‘ Set . union ‘
(l v ‘ Set . d i f f e r e n c e ‘ Set . f romList (de f stmt))

The GCC implementation of this extension exposes selected portions of the
Low GIMPLE intermediate representation as an algebraic data type. The Haskell
transformation pass has been placed after the SSA transformation pass in order
that φ nodes are available. This has the effect of simplifying certain analyses.

As with the metaprogramming extension, this extension is implemented in
Haskell, and uses FFI to import any necessary functions and macros.

In order to use a midend pass plugin, an argument -fhaskell=object,symbol
is provided to the GCC executable, where object is the name of the object file
and symbol is the (symbol) name of the transformation function.

Because the type extraction functions are language-specific, we utilise GCC’s
langhooks mechanism to pass them from the frontend to our midend pass.

5 Case Study: Session Types

The examples revealed in this section show how we may use our extensions to im-
plement library features which may be impossible to implement using standard
C++. In particular, our examples shall concern session types [14], a means of

characterising dyadic interaction between processes over a communication chan-
nel. Process interactions are expressed as a sequence of communication actions,
and any communication taking place over the session with which the type is
associated must conform to the sequence of actions. By imposing a compile-time
type constraint on a communication channel, we eliminate the possibility of com-
munication type errors occurring at runtime, thereby improving code quality.

Session types are usually expressed as terms with a specified syntax, an in-
stance of which we shall briefly describe. A session type may be an action. An
action specifies a communication direction (in or out) and type (usually a prim-
itive type). An action represents the reception or transmission of a value of the
specified type. A session type may also be the sequential composition of two or
more session types. The session type that is the composition of one or more
session s1, s2...sn represents the actions in s1, followed sequentially by those in
s2 and so on up to sn. A session type may also be a choice between a number
of sessions s1, s2...sn. A session type may also be the terminating session type.
A session with the terminating session type may only close the channel.

Session types may also be recursive, in that they may refer back to themselves
in order to create infinite sequences of actions. The two standard [15] syntax
elements used in recursion are µt.s where s is a session, which defines a new
recursive type t which refers to s, and t, where t has been defined in an enclosing
µ type, which is equivalent to the entire corresponding µ.

As mentioned in Section 1.1 of this paper, we have an implementation of ses-
sion types in C++ in which we represent a session type as a hierarchy of template
instantiations. Actions in our implementation take the form in<T> or out<T>,
where T is the primitive data type to be sent or received across the channel. As
for sessions, sequential composition composes an action A with a continuation
session S, and thus is represented as seq<A,S>. For the choice construct we
compose sessions via a representation of the form choice<S1,S2,...,Sn>.

We also have a representation of recursive types in our implementation. As
a type may not directly be defined in terms of itself, we have specified a three-
stage protocol that may be used to define a recursive type. Firstly, an incomplete
composite type s is defined. Secondly, the recursive session type r is defined using
a typedef. Wherever a recursive reference is required, the special instantiation
call<s> is used. Thirdly, s is fully defined, with an internal typedef t that is
defined to be r. An example of such a definition is shown below.

struct s ; typedef seq<in<int >,cal l<s> > r ;
struct s { typedef r t ; } ;

5.1 Subtyping

Our first example relates to the subtyping relationship between two session types.
As with object-oriented programming, subtyping defines substitutability. Sub-
typing may also be used to determine compatibility between two peers with their
own session types. The formal definition of the concept is shown below, where

idom and odom are respectively the input and output domains of a session,
i.e. the set of types which may be immediately received or sent by the session.

Definition 1. Type simulation [16, 1]. A type simulation is a relation R that
satisfies the following property.

(S1, S2) ∈ R ⇒ idom(S1) ⊆ idom(S2)
∧ odom(S1) ⊇ odom(S2)
∧ ∀t ∈ idom(S1)∃S′

1, S
′
2 : (S1

in t−→ S′
1 ∧ S2

in t−→ S′
2 ∧ (S′

1, S
′
2) ∈ R)

∧ ∀t ∈ odom(S2)∃S′
1, S

′
2 : (S1

out t−→ S′
1 ∧ S2

out t−→ S′
2 ∧ (S′

1, S
′
2) ∈ R)

Definition 2. Subtyping. S1 ≤ S2 iff there exists a type simulation R such that
(S1, S2) ∈ R.

We have developed a plugin which implements a template that computes a
subtyping judgement about two session types. Firstly, the session types provided
as parameters are converted to a Haskell map-based representation. Recursive
references of the form call<s> are converted to monadic values which represent
the retrieval of the appropriate session type from the compiler using getMember.
Secondly, we make a subtyping judgement by attempting to build a type simu-
lation as defined in Definition 1. The result is then returned to C++ as a type:
closure true if a type simulation was built, or closure false if not.

At present, the subtyping judgement is used to define session substitutability.
The custom type conversion constructor for the session class invokes a static
assertion to verify that the type returned by our template was closure true.

5.2 Session Type Parsing

Our second example concerns the parsing of textual representations of session
types into the template instantiation hierarchy we have defined. For instance, the
type parse<”?int.end”>::t shall be an alias for seq<in<int>, end> >. Note
the string parameter to parse; this represents a small extension to GCC’s C++
front-end to allow it to accept string constants as template parameters. A gen-
erated LALR(1) parser is used to parse the string into a CxxType.

Our transformation function is also capable of defining recursive session
types, using the three-stage protocol defined above. Where a session type of
the form µt.s (written %t.s) is encountered, a new composite type is created
using buildStruct and the type s is processed within the function passed to
buildStruct, which has access to the name of the type. We can thus create a
mapping between recursive references and their types, which is used to insert
the appropriate instance of call wherever a recursive reference is encountered.

5.3 Linearity Constraint

C++ is a statically typed language. However, session type theory [14] states that
after a session has performed an action, its type mutates to its continuation type

relative to that action. Since C++ does not permit a variable’s type to mutate,
in our implementation we introduce a new session variable after each action.

After we have used a session variable (i.e. by sending or receiving over it),
it becomes invalid. This means that any further use of the variable is an error
and would violate our typing system. A variable with such a constraint imposed
upon it is known as [17] a linear variable, and any program that satisfies this
property is said to satisfy the linearity constraint.

We have implemented a midend verification pass that verifies the linearity
constraint. It uses a backward data flow analysis that counts the number of
times a variable is used before it is redefined (to ensure the monotonicity of the
analysis a maximum of 2 is imposed on the usage count). Should any variable’s
usage count be more than 1 at any point, we use the variable type mapping to
look up the type of that variable and determine whether the type was declared
as linear, by checking for the presence of a particular typedef within the type
(as a consequence, only composite types may be declared as linear at present).

5.4 Example

The below code shows the three plugins described above in operation.

1 typedef parse<”%s . ? i n t . ! i n t . ? i n t . ! i n t . s ” > : : t s t1 ;
2 typedef parse<”%s . ? i n t . ! i n t . s ” > : : t s t2 ;
3 typedef parse<” ! i n t .%s . ? i n t . ! i n t . s ” > : : t s t2p ;
4 void ch1 (session<st1> s) {
5 session<st2> s1 = s ;
6 session<st2p> s2 ; int x ;
7 s2 = s1 . read (x) ;
8 s2 = s1 . read (x) ;
9 }

Lines 1–3 use the session type parsing mechanism to produce a session type
in the required format. For example, the declaration of the type st2 is equivalent
to the following, modulo the name of the struct:

struct ha sk e l l 1 2 3 ;
typedef seq<in<int >,seq<out<int >,cal l<haske l l 123 > > > s t2 ;
struct ha sk e l l 1 2 3 { typedef s t2 t ; } ;

Line 5 is a demonstration of a successful subtyping judgement; a cycle of two
int inputs and outputs was deemed to be a subtype of a cycle of one.

Because the channel is read twice on lines 7 and 8, the code is invalid. The
linearity checker will detect a violation: the linear variable s1 is read twice
without a redefinition. In the data flow analysis, this is represented as a usage
count of 2 for this variable between the output of line 5 and the input of line 7.

6 Evaluation

Design A key design choice of this project was whether to implement our
metaprogramming extension within a compiler frontend, or as an external

preprocessor. From a technical point of view, a preprocessor would be the
preferred option as this would permit compiler independence. It was clear
that any such preprocessor must be capable of acting as a C++ frontend it-
self and consequently as a source-to-source translator, due to the interactions
that are possible between C++ and a plugin. The authors are unaware of
any sufficiently sophisticated translator in existence which would not restrict
us in the future. For example, clang [18] does not yet support templates, and
the ROSE [10] framework uses the EDG C++ frontend, whose license does
not permit redistribution of changes. We thus implemented the extension
using a specific frontend until suitable tools become available.
An additional design decision was that of the implementation language for
plugins. Our initial choice of language was motivated by the functional and
in particular the deterministic nature of template metaprogramming, which
preserves the one-definition rule between multiple translation units. Haskell
enabled us to retain template metaprogramming’s pattern matching fea-
tures, and expand on this via advanced techniques such as “scrap your boil-
erplate”. The pure nature of Haskell has also enabled us to preserve safety
via restricted monads, thus preserving the one-definition rule, and assuring
the correct operation of GCC’s garbage collector.
The implementation of a custom programming language for plugins (the
strategy used by MELT [11]) was considered as this may improve integration
between the compiler and the plugin language, and efficiency. However, this
would severely increase development time with disproportionate benefits.

Performance We evaluated the compile-time performance of our framework us-
ing a side-by-side comparison of the Haskell implementation of dual against
a C++ implementation on a 2.13GHz Intel Core 2 running Ubuntu 7.04. We
measured the total compiler execution time for each implementation per-
forming a fixed set of 1000 randomly generated dual computations using the
“time” command. To measure the performance of the C++ implementation,
we used a pristine version of the compiler. The fastest execution time over
6 runs for the C++ implementation was 4.605 seconds, and for the Haskell
implementation 11.934 seconds. The results show that our extension’s per-
formance is acceptable (approximately 2.6 times slower than pure C++).

7 Conclusion and Future Work

We have presented a mechanism for compile-time computation using the Haskell
programming language. Our work has extended the C++ type system using the
Haskell programming language with a workable type representation and usage
methodology. We also presented work on a program analysis framework for GCC.
We have also presented a number of examples in the context of session types,
and shown that our framework allows for a relatively simple implementation.

Our planned future work includes an implementation of typestates [19] for
C++, and possibly all other languages supported by GCC, and an implementa-
tion of a bug checker tool for C++ and possibly all other languages supported
by GCC, similar to Java’s FindBugs [20] and PMD [21].

References

1. Collingbourne, P., Kelly, P.H.J.: Inference of session types from control flow. In:
Formal Foundations of Embedded Software and Component-Based Software Ar-
chitectures (FESCA 2008). (2008)

2. Lämmel, R., Peyton Jones, S.: Scrap your boilerplate: a practical design pattern
for generic programming. ACM SIGPLAN Notices 38(3) (March 2003) 26–37
Proceedings of the ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003).

3. Steele, G.: Common Lisp: The Language. Digital Press, Newton, MA, USA (1990)
4. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. SIGPLAN Not.

37(12) (2002) 60–75
5. Ishikawa, Y., Hori, A., Sato, M., Matsuda, M., Nolte, J., Tezuka, H., Konaka, H.,

Maeda, M., Kubota, K.: Design and implementation of metalevel architecture in
C++ – MPC++ approach. In: Reflection ’96. (1996) 153–166

6. Chiba, S.: OpenC++ 2.5 reference manual (1997)
7. Falconer, H., Kelly, P.H.J., Ingram, D.M., Mellor, M.R., Field, T., Beckmann,

O.: A declarative framework for analysis and optimization. In Krishnamurthi,
S., Odersky, M., eds.: CC. Volume 4420 of Lecture Notes in Computer Science.,
Springer (2007) 218–232

8. Quinlan, D.J., Vuduc, R.W., Misherghi, G.: Techniques for specifying bug patterns.
In: PADTAD ’07, New York, NY, USA, ACM (2007) 27–35

9. Khedker, U.: gdfa: A generic data flow analyzer for GCC. Retrieved from
http://www.cse.iitb.ac.in/grc/software/gdfa-v1.pdf (2008)

10. Schordan, M., Quinlan, D.J.: A source-to-source architecture for user-defined op-
timizations. In Böszörményi, L., Schojer, P., eds.: JMLC. Volume 2789 of Lecture
Notes in Computer Science., Springer (2003) 214–223

11. Starynkevitch, B.: Multi-stage construction of a global static analyzer. In: Pro-
ceedings of the 2007 GCC Developers’ Summit, Ottawa, Canada (2007) 143–151

12. Collingbourne, P., Kelly, P.H.J.: A compile-time infrastruc-
ture for GCC using Haskell (extended version). Available from
http://www.doc.ic.ac.uk/~pcc03/grow09haskell-ext.pdf

13. Erwig, M.: Inductive graphs and functional graph algorithms. J. Funct. Program.
11(5) (2001) 467–492

14. Honda, K.: Types for dyadic interaction. In: CONCUR’93. Volume 715 of LNCS.,
Springer-Verlag (1993) 509–523

15. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge, MA,
USA (2002)

16. Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2)
(2005) 191–225

17. Wadler, P.: Linear types can change the world! In Broy, M., Jones, C., eds.: IFIP
TC 2 Working Conference on Programming Concepts and Methods, Sea of Galilee,
Israel, North Holland (1990) 347–359

18. Lattner, C., et al.: clang: a C language family frontend for LLVM. Retrieved from
http://clang.llvm.org/

19. Deline, R., Fähndrich, M.: Typestates for objects. In: ECOOP ’04, Springer (2004)
465–490

20. Hovemeyer, D., Pugh, W.: Finding bugs is easy. In: OOPSLA ’04, New York, NY,
USA, ACM (2004) 132–136

21. Dixon-Peugh, D., Copeland, T., Le Vourch, X.: PMD. Retrieved from
http://pmd.sourceforge.net/

