
Evaluating power-aware optimizations within

GCC compiler

Dmitry Zhurikhin1, Andrey Belevantsev1, Arutyun Avetisyan1,
Kirill Batuzov1, and Semun Lee2

1 Institute for System Programming, Russian Academy of Sciences
{zhur,abel,arut,batuzovk}@ispras.ru

2 Samsung Corp.
semun.lee@samsung.com

Abstract. This paper summarizes the results of evaluating several op-
timizations targeted at reducing power consumption for ARM architec-
ture within the GCC framework. The optimizations tried were off-line
dynamic voltage scaling (DVS) and bit-switching minimization. Also, we
have experienced with tunings of memory-related GCC optimizations.

1 Introduction

Research on power consumption optimizations for embedded systems is GROW-
ing every year. Important approaches that can be named include dynamic fre-
quency and voltage scaling (DVS), various memory access optimizations, power-
aware chip design. However, there is not much work done on this in the GCC
compiler. It is also unclear which approaches are the most promising within the
GCC framework.

To overcome this issue, we have completed a project sponsored by Samsung
Corp. on evaluating the most popular approaches to compiler-directed power
consumption optimizations for ARM architecture and GCC. We have tried three
approaches: off-line profile-based dynamic voltage scaling, bit-switching mini-
mization within instruction scheduler and combiner, and tuning of memory-
related optimizations – prefetching and loop optimizations. We have evaluated
our code on two ARM-based test boards, OMAP2430 [5] and MV320 [4], pro-
vided by Samsung. Our results show that DVS is the only optimization that
provides at least some power savings within GCC for the test boards we were
using. Power-aware loop optimizations are also promising, but for real work with
them the Graphite framework [2] is required, which was not available during the
course of this project.

We selected three sets of tests for use in experiments on power consumption.
They are the Aburto test suite, representing many common scientific applica-
tions, the MediaBench test suite, representing applications working with audio-
video and image processing, and MiBench, representing other application types
common for the embedded systems. The latter two test suites are specifically
aimed at the embedded systems, while the Aburto test suite tends to be system-
independent. We have removed some tests from the MiBench suite that are also



present in MediaBench. We have also prepared new data inputs for remaining
MediaBench tests because the supplied data sets were not representative enough
as it only took fractions of a second to execute most of the tests.

Rest of the paper is organized as follows. Section 2 reports on our implementa-
tion of a DVS approach and experimental results on the MV320 board. Section
3 describes our usage of instruction encodings for bit-switching minimization.
Section 4 explains our experiments with prefetching, loop transformations, and
vectorization. Section 5 concludes.

2 Dynamic Voltage Scaling

The basic idea of DVS is to change the voltage of the power supply unit in
some places (called power management points, PMPs) during program execu-
tion, such that energy consumption decreases but the needed performance is
still maintained. This is possible because energy consumption has quadratic be-
havior depending on voltage, and processor frequency (and hence performance)
depends on voltage only linearly.

There are several types of DVS approaches, namely on-line, off-line and
mixed. They differ in moments at which decisions are made for placement of
PMPs and for the value of voltage change. On-line approaches make all decisions
while executing the program, and off-line approaches make them while compiling
the program. Mixed approaches calculate possible PMPs at compile-time, but
the values of the voltage change are computed at run time.

During the project we implemented an off-line DVS approach prototype based
on [3]. The main idea of this approach is to insert PMPs in memory-dominated
parts of code so that reduced performance of the processor will be hidden by la-
tencies of memory accesses. The prerequisite of the approach is that the processor
and the memory unit have independent power supplies. The placement of PMPs
and the values of voltage change are calculated statically by analyzing the profile
of the program. The approach is notable because it was tested on real hardware
and considers many implementation details, such as energy and execution time
costs of voltage-changing instructions. Many other approaches were only tested
on simulators and provide only theoretical models of DVS optimizations.

Other studied off-line DVS-based approaches consist of some loop optimiza-
tions, such as loop rotating or software pipelining, with DVS mechanism applied
to the optimized loops so that performance gain due to the loop optimization
is counterbalanced by performance penalty of reduced CPU performance [1, 6].
We think that such DVS optimizations have just an effect of combining regular
loop optimizations with voltage change that is done separately.

2.1 DVS algorithm implemented

The algorithm operates on basic and combined regions. A basic region is just a
basic block or an outermost loop as reported by GCC loop analysis. A combined
region is a single entry/single exit piece of code consisting of basic regions,



which is dominated by its entry and postdominated by its exit. This definition,
unlike forming a region from certain control flow patterns as proposed in [3],
allows handling more general constructs while retaining the possibility of easy
calculation of region properties. Still, there are several restrictions on the regions
imposed solely by our implementation. First, a region should not contain any
function calls, as the initial implementation is intraprocedural. Second, there
should not be edges that cross loop boundaries within a region. Third, we do
not consider regions that are too small (i.e., the number of instructions inside
a region is less than a certain threshold). This is because the cost of changing
frequency is usually quite high, and the region should be large enough to pay off
for switching frequency on it. A loop region is always eligible for optimization.

The algorithm consists of five main steps:

– Construct basic and combined regions for a given function.

– For every basic region, profile overall execution time at each available pro-
cessor frequency, T (R, f), and the number of times a region is executed,
N(R).

– Estimate T (R, f) and N(R) for combined regions. N(R) is taken from the
basic region that is at the entry of the combined region R. T (R, f) is com-
puted as sum of T (BR, f) over all basic regions BR that form the combined
region R.

– Find the best region (basic or combined) and its frequency which minimizes
power consumption while performance (running time) is not decreased be-
yond given percent p of original3. The value of p can be set by the user.

– Insert frequency setting instructions at the entry and the exit of the selected
region.

The algorithm (as many other DVS approaches) strongly depends on profil-
ing results. The GCC compiler allows gathering profiling information and using
it inside the compiler. By default, frequencies of basic blocks, frequencies of
edges, and branch probabilities are profiled. Additionally, we modify the profil-
ing mechanism to record execution time and counter for every basic block that
is either large enough to be a basic region or is a member of a large enough com-
bined region. For loops, profile code is inserted only before the loop and after
the loop to minimize profile overhead. Basic block counters are devised from the
existing profile information, and execution times are profiled via inserting appro-
priate system calls before and after profiled basic blocks. If possible, hardware
counters are used for measuring execution times.

Current implementation does not support finding an optimal set of regions
within a function for changing the frequency. Instead, we are looking for a sin-
gle region in each function for CPU frequency change. Also, we chose to have
just two CPU frequency modes for this prototype – standard mode with maxi-
mal CPU frequency and energy-saving mode with reduced CPU frequency. This
choice simplifies the implementation, as we just need to iterate over all regions

3 The formal problem to which we want to find a solution can be found in [3].



and to estimate the total power consumption of the program given that the fre-
quency was reduced for the current region. This also reduces the time needed
for profiling, as it should be performed for each CPU frequency separately.

Finally, the interface for changing frequency is implemented as builtins from
the GCC side and the syscalls from the kernel side. On the MV320 board, the
syscalls are equivalent to setting the appropriate operation points via modifying
the /sys/devices/system/cpu/cpu0/op file.

2.2 Experimental results

We have tested our prototype implementation of the DVS compiler optimization
on the Aburto test suite on the MV320 test board. We have removed from the
test suite several tests that are self-calibrating and thus perform different amount
of work depending on the CPU frequency. The basic optimization level used
was -O2.

Aburto test suite contains 196 functions. Our prototype can find regions
suitable for DVS in 144 functions. To find profitable regions, we have tried several
parameters of power dissipation of standard mode and energy-saving mode, Phi

and Plo. We have succeeded in finding profitable regions (i.e., such that switching
CPU frequency on them seems to be worthwhile given the measured profiling
data) only with Phi = 13 and Plo = 9, i.e. Phi/Plo = 1.4. The number of the
regions found depends on the value of performance degradation threshold, p.
When p varies from 10% to 40%, the number of the profitable regions increases
from 3 to 14 and steadies there no matter how we increase p.

We made experiments to measure the power consumption of the optimized
programs with the power meter and the MV320 board. The DVS optimized tests
ran about 8 minutes and the power meter showed the overall energy consumed
of 750 mWh. Non-DVS programs ran 7 minutes and 30 seconds requiring about
720 mWh. We also measured static power consumption of the test board for 45
seconds and found out that the test board consumes about 59 mWh in 45 seconds
while the CPU is idle. Given this data, it can be found that the processor only
had consumed 120 mWh with the DVS optimization and 130 mWh without it,
meaning CPU power consumption reduction by 7% with overall runtime increase
by 6.6%.

We were also suggested to set a deadline for the test suite and compare the
total power consumption of the board as reported by the power meter while run-
ning optimized and non-optimized versions of the test suite within this deadline.
8 minutes can be used as a deadline for Aburto tests given that 7% slowdown
compared with the non-DVS version is acceptable. We need to add the static
power consumption during the remaining 30 seconds to the power consumption
of non-DVS run. Given that the test board consumes about 59 mWh in 45 sec-
onds when the CPU is idle, a value of 59× 30/45 = 39.3 mWh was additionally
consumed. The resulting power consumption of the non-DVS programs within
the deadline is 759.3 mWh. Compared to the DVS optimized run result of 750
mWh, we observe 1.24% reduction of the total consumed power.



Unfortunately, due to the lack of time in the project and also due to the
limited time we had access to the test boards, we could not produce more de-
tailed data describing the above experiments. We are currently working on the
enhanced interprocedural DVS optimization, and we hope to gather and analyze
more data.

3 Bit-switching minimization

We have initially planned to experiment with power-aware instruction schedul-
ing and/or combiner within GCC. However, this work requires building a power
model of the processor in question, including estimating power cost of single in-
structions. There are several such models known, e.g. [9] and [10]. However, our
experimental setup did not allow us to measure instruction power costs for two
reasons. First, our power meter was able to measure only the consumption of the
whole test board, not the consumption of the processor only. Second, the test
board contained a lot of devices like LCD screen, camera, etc. provided for easier
program development with the board, which meant that CPU power consump-
tion was only a relatively small fraction of the total power consumption of the
board.As a result, the difference between power consumption of tests containing
different processor instructions could not be measured precisely enough.

Given this, we have decided to account for bit-switching created by an opti-
mized program in the compiler. It is known [8] that switching bits on control and
data buses of the processor accounts for significant amount of power consump-
tion. As scheduler is the natural place in the compiler for moving instructions,
we have tried to add a scheduling heuristic that takes into account the amount
of created bit-switching.

First, we have examined the limits of energy saving that can be achieved
via bit-switching. We have prepared tests that have instructions with as much
different bit encodings as possible. For ARM, we have chosen ands r6, r8, r0

and bicne r9, r7, #0x3FC instructions with encodings having only 3 out of 32
equal bits. The main part of the two test programs is a 1,000-instruction loop
that has 500 ands instructions followed by 500 bicne instructions in the first
case and 500 ands-bicne instruction pairs in the second case. In both tests the
loop is executed a large number of times in order to capture effects on power
consumption.

The experiments show increase in 1-2% of total power consumption for the
second test compared to the first test on the OMAP test board and around 5%
on the MV320 test board. As the processor power consumption is only a part of
total power consumption, the percent of saved power of the processor should be
around 10%. This gives the upper bounds of the savings that can be achieved
with optimizations based on bit-switching heuristic.

Second, we have implemented a target hook for the ARM back-end that tries
to predict bit encoding of the assembler instruction(s) into which the given RTL
instruction is going to be translated. The hook predicts the whole instruction
encoding except encodings of some types of instruction operands which contain



address calculations or addresses that are not known at compile time. We have
looked at some of the object code generated by the compiler and compared it
to the predicted instruction encodings. The predicted encodings appeared to be
exactly corresponding to the real one in almost all cases (except when the RTL
instruction could be translated into several variants chosen later after scheduling
and the less probable encoding had been chosen).

Third, we have written a scheduling heuristic that is based on bit-switching
minimization using the implemented target hook. The heuristic uses a parameter
to control its weight. The parameter can vary from 0 to 32, and it can be con-
sidered as the number of same bits on the processor control bus that increases
instruction critical path priority by one. E.g., when the parameter equals to 5,
and scheduler chooses between two instructions with priorities equal to 3 and 4,
and these instructions are predicted to switch 7 and 22 bits on the instruction
bus of the processor respectively, the scheduler increases the priority of the first
instruction by (32− 7)/5 = 5 and of the second by (32− 22)/5 = 2 and chooses
the first instruction to be scheduled next.

We ran our bit-switching heuristic implementation on the Aburto test suite.
Even with the maximal weight of the bit-switching heuristic the overall mini-
mization of switched bits reached 7% at most on Sim benchmark and was about
3% on average4. Our runs of optimized tests showed that there is no any power
consumption minimization compared to non-optimized tests. One of the reasons
for this might be that our tests have many floating point operations implemented
via library calls, which makes impossible to predict their encodings until linking.
Generally, it seems that to change the power consumption on 1%, one needs to
change bit-switching on 10% or more, which cannot be achieved from within the
compiler.

Finally, we have also tried to utilize the bit-switching estimation in a combin-
ing optimization. In GCC, combine unites up to three instructions connected by
use-def chains in a single one. We have attempted to limit the combining oppor-
tunities to those that do not increase bit-switching. However, this didn’t work
for two reasons. First, combine is done before the first scheduling pass, which is
relatively early, and we couldn’t predict the final bit encoding precisely enough.
Second, combine doesn’t change code much, so the influence of this optimization
on bit-switching is even lower than in the scheduling case.

4 Tuning of memory optimizations

Memory subsystem is considered one of the most energy-consuming parts of em-
bedded devices. Hence, minimization of memory accesses and optimization of
cache behavior is an important approach for lowering power consumption. We
decided to make a research on current status of memory optimizations imple-
mented in different versions of GCC and on possibilities of some new approaches
for memory optimizations available for the OMAP2430 test board.

4 This data was calculated statically as bit-switching of successive instructions given
by the objdump -d output, so it does not reflect the dynamic bit-switching.



4.1 Prefetching

Prefetching is available for ARM implementations that support the pld instruc-
tion [7]. The OMAP test board we had for experiments supported this instruc-
tion. GCC also supports prefetching for ARM5TE or later processors. We have
tested the performance of this optimization with different sets of parameters.
The most important parameters that are used by prefetching are the size of L1
cache line, number of available concurrent prefetches, and the latency of the
prefetch operation. The size of L1 cache line is known from our experiments to
be 32 bytes. The number of simultaneous prefetches is hard to estimate from
experiments but it should not be large for embedded devices. Hence we used
values of 1, 2 and 3 for our prefetching experiments. The latency of the prefetch
operation is not known too, but we assumed that it should be close to the la-
tency of memory access, which is about 20 cycles on the OMAP test board. We
then decided to run prefetching experiments with different values ranging from
10 up to 100 cycles for the prefetching latency parameter. We used Aburto and
MediaBench test suites for prefetching experiments.

The resulting data shows that prefetching provides a significant increase in
performance of Nsieve test (14%) and significant decrease in performance of five
tests: Sim (6-10%5), Heapsort (7-12%), Queens (2-5%), EPIC (7%), and JPEG
(8%). The Matrix Multiplication tests showed unstable behavior so it is hard to
say unambiguously how prefetching influences these tests.

4.2 Other memory optimizations in GCC

We have studied the source codes of GCC 4.2 for optimizations that can improve
memory performance. We have found that such optimizations include automatic
vectorization and loop linear transformations. We have prepared and ran tests
for evaluating these optimizations on our test boards.

Automatic vectorization is an optimization that converts several scalar oper-
ations into one vector operation. As ARM supports loading of several registers
from memory simultaneously in one operation, this optimization potentially of-
fers decrease in memory access operations. Unfortunately, the only case when
GCC succeeded in applying vectorization was in converting of accesses to char
arrays into one access of an integer loading four array elements in one operation.
We observed several cases of the same optimization performed on the Aburto
test suite, but in general the increase in performance was negligible. The results
from MediaBench test suite are similar.

Linear loop transformations are very limited in GCC. For GCC 4.2, a simple
loop interchange in a loop nest traversing a two-dimensional array by row instead
of by column was not performed, though this test is successfully transformed by
GCC 4.3. The reason for this behavior is in weakness of the loop analysis of 4.2
and prior versions of GCC. This optimization doesn’t change anything on the
Aburto test suite.

5 We have tried different values of other prefetch parameters, i.e. prefetch latency and
simultaneous prefetches, thus we got different performance numbers.



For GCC 4.3, there are several others potential memory optimizations, such
as array flattening, structure peeling, and auto increment/decrement generation.
We have only performed testing of the structure peeling. This optimization splits
an array of structures into several arrays that contain each field of the structure
when one or several fields of structure is accessed considerably more often than
others. This optimization successfully transformed our test program, but it was
never applied on the Aburto test suite.

Experimental results show that there are no optimizations in GCC that can
dramatically increase memory system performance of the target board compared
to the performance obtained by the -O2 optimization level. Most studied opti-
mizations don’t work well or at all on the ARM platform.

4.3 Other possible memory optimizations

We have selected two other promising optimization types for experiments. These
are using of scratch-pad memories, otherwise called tightly-coupled memories
(TCM), and optimization of allocation on memory banks. However, the first
optimization does not apply on the test boards that we had for experiments. The
OMAP test board offers on-chip SRAM memory which should have lower power
consumption and latency characteristics than conventional RAM. However, our
experiments showed that this is not the case.

The second optimization is based on observation that when some memory
banks are not used by the system, they can be turned to idle modes for energy
economy. The OMAP test board’s PRCM supports idle modes of memory banks
and should set this mode automatically on needed memory banks when there
are no accesses to them during some time. A compiler can try to move data
or rearrange data accesses in such way that only one memory bank is used
most of the time. Unfortunately, this kind of optimization is not applicable for
the OMAP test board because of the size of the memory banks. OS support
is needed instead of a compiler support to put different processes into different
banks.

5 Conclusions

We have completed the research on DVS optimizations, memory related opti-
mizations, and power-aware scheduling for ARM architecture and GCC compiler.
The most promising direction turned out to be DVS optimization. On a set of
small benchmarks, our prototype implementation found several regions suitable
for DVS. As a result, we were able to reduce the power consumption of pro-
cessor alone by 7% and total power consumption by 1.2%, while increasing run
time by 6.6%. The total power consumption reduction number can be bigger for
production devices, where the percentage of processor consumption is greater.

We are working on improving the implementation to make find more regions
for DVS by turning it into interprocedural optimization. Initial experiments show
that the number of regions made available for DVS by a simple interprocedural



prototype is doubled compared to the implementation described in the paper.
Also, the implementation needs to be adopted for multiprocess environment, e.g.
by writing an OS manager to resolve conflicts between different processes asking
for different frequency levels.

We have studied a number of memory optimization techniques, both imple-
mented in GCC and specifically targeted for power-efficient computing. We have
found that current GCC memory optimizations (prefetching, vectorization, loop
transformations) are either not applicable to ARM or trigger only on specially
constructed test cases, but not on the benchmarks. As for specific power op-
timizations, the test board hardware did not allow us to use them. We think
that the new framework for loop transformations, Graphite, which will be avail-
able in GCC 4.4, makes a better basis for further research on power-aware loop
optimizations.

While researching on power-aware instruction scheduling, we didn’t have in-
formation about power costs of single instructions on our test boards. We have
tried using bit-switching heuristic, but the experimental results show that de-
creasing bit-switching for several per cents is not enough to produce substan-
tial reductions in power consumption. We conclude that the information about
power costs of instructions is crucial in making the existing machine-dependent
optimizations power aware.

References

1. Y. Chen, Z. Shao, Q. Zhuge, C. Xue, B. Xiao, E.H.-M. Sha. Minimizing Energy
via Loop Scheduling and DVS for Multi-Core Embedded Systems. In 11th Interna-
tional Conference on Parallel and Distributed Systems – Workshops, pp. 2-6, July
2005.

2. GRAPHITE GCC framework. http://gcc.gnu.org/wiki/Graphite
3. C. Hsu. Compiler-Directed Dynamic Voltage and Frequency Scaling for CPU Power

and Energy Reduction. Doctoral Thesis, Rutgers University, 2003.
4. MV320 ARM Board. http://mvtool.co.kr/products/product.php?query=

list&code=100101&lv=3&lang=
5. OMAP2430 Development Board. http://focus.ti.com/general/docs/wtbu/

wtbugencontent.tsp?contentId=14645&navigationId=12013&templateId=6123
6. H. Saputra, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, J. Hu, C.-H. Hsu, U.

Kremer. Energy conscious compilation based on voltage scaling. In ACM SIGPLAN
Joint Conference on Languages, Compilers, and Tools for Embedded Systems and
Software and Compilers for Embedded Systems, pp. 2-11, June 2002.

7. D. Seal. ARM Architecture Reference Manual. 2nd Edition, Addison-Wesley, 2000.
8. Ching-Long Su, Chi-Ying Tsui, and A.M. Despain. Low power architecture design

and compilation techniques for high-performance processors. Compcon Spring ’94,
Digest of Papers, pp.489-498, 1994.

9. V. Tiwari, S. Malik, A. Wolfe, M.T. Lee. Instruction level power analysis and
optimization of software. Journal of VLSI Signal Processing Systems, vol.13, iss.2-
3, August 1996, pp.223-238.

10. A. Varma, B. Jacob, E. Debes, I. Kozintsev, P. Klein. Accurate and fast system-
level power modeling: An XScale-based case study. ACM Transactions on Embed-
ded Computing Systems, vol.6, iss.4, September 2007.


