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Abstract

This thesis is devoted to reducing the interactive latency of image processing computations in
visual effects. Film and television graphic artists depend upon low-latency feedback to receive
a visual response to changes in effect parameters. We tackle latency with a domain-specific op-
timising compiler which leverages high-level program metadata to guide key computational and
memory hierarchy optimisations. This metadata encodes static and dynamic information about
data dependence and patterns of memory access in the algorithms constituting a visual effect –
features that are typically difficult to extract through program analysis – and presents it to the
compiler in an explicit form. By using domain-specific information as a substitute for program
analysis, our compiler is able to target a set of complex source-level optimisations that a ven-
dor compiler does not attempt, before passing the optimised source to the vendor compiler for
lower-level optimisation.

Three key metadata-supported optimisations are presented. The first is an adaptation of
space and schedule optimisation – based upon well-known compositions of the loop fusion and
array contraction transformations – to the dynamic working sets and schedules of a runtime-
parameterised visual effect. This adaptation sidesteps the costly solution of runtime code gen-
eration by specialising static parameters in an offline process and exploiting dynamic metadata to
adapt the schedule and contracted working sets at runtime to user-tunable parameters. The second
optimisation comprises a set of transformations to generate SIMD ISA-augmented source code.
Our approach differs from autovectorisation by using static metadata to identify parallelism, in
place of data dependence analysis, and runtime metadata to tune the data layout to user-tunable
parameters for optimal aligned memory access. The third optimisation comprises a related set
of transformations to generate code for SIMT architectures, such as GPUs. Static dependence
metadata is exploited to guide large-scale parallelisation for tens of thousands of in-flight threads.
Optimal use of the alignment-sensitive, explicitly managed memory hierarchy is achieved by iden-
tifying inter-thread and intra-core data sharing opportunities in memory access metadata.

A detailed performance analysis of these optimisations is presented for two industrially de-
veloped visual effects. In our evaluation we demonstrate up to 8.1x speed-ups on Intel and AMD
multicore CPUs and up to 6.6x speed-ups on NVIDIA GPUs over our best hand-written imple-
mentations of these two effects. Programmability is enhanced by automating the generation of
SIMD and SIMT implementations from a single programmer-managed scalar representation.
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Chapter 1

Introduction

1.1 Motivation

Visual effects (VFX) is a stage in film and television post-production in which artificial enhance-
ments are made to pieces of captured film, most commonly in a digitised form. These can be as
simple as changing the lighting or focus of a single frame or as complicated as removing film
set rigging, smoothly slowing down motion or adding convincing CG characters to a sequence
of frames. The scale of data processing is staggering: Industrial Light and Magic (ILM), one
of the VFX companies responsible for the 2008 CG-heavy movie “The Spiderwick Chronicles”,
maintains a renderfarm [Row08] of 3000 multicore processors, dynamically expandable to 5000
processors with the use of its artists’ workstations outside of office hours, with more than 100
terabytes of storage. This method of batch processing is well-suited to producing the successive
iterations of a final render of hundreds of thousands of film frames over a period of many months.

Digital artists, however, must work with far less powerful workstation hardware – such as
the Apple Mac Pro favoured by ILM – and have a greater need for interactive processing to tune
their choices of effects and the numerous parameters to each one. This is traditionally tackled by
generating preview renders at much lower resolutions than the final render, or by working on small
regions of frames at a time. In recent years many of the improvements in workstation hardware
have been heavily underutilised by VFX software. VFX developers have been slow to make use
of emerging computational technologies, such as Graphics Processing Units (GPUs) and high-
throughput vector CPU ISAs such as Streaming SIMD Extensions (SSE). Our collaboration with
a commercial VFX developer and research partner, The Foundry1, has identified difficulties in
exploiting hardware performance and the high development and maintenance costs of supporting
multiple devices to be the primary barriers to uptake.

To this end, there is a need to find solutions which isolate hardware programming expertise
from the VFX algorithm developers and automate device exploitation for a wide range of algo-
rithms. This is a domain-specific problem of automating the mapping of data processing tasks
to different parallel programming models. Implementation errors, which would otherwise inflate

1 The Foundry are commercial developers of VFX software. Website: www.thefoundry.co.uk.

1

www.thefoundry.co.uk


1.2. OBJECTIVES 2

maintenance costs, could be tackled in a small piece of expert software and corrected by automat-
ically regenerating each algorithm implementation at little to no cost. Automatic code generation
for parallel computational paths is a familiar problem in software engineering with a diverse set
of proposed solutions, e.g. [BBK+08, BGGT01, BHRS08, CDK+01, Col91, DRLC08, EOO+06,
KPR+07, LA00, McC06, NH06, PMJ+05, Rei07]. Our industrial partners feel that existing re-
search is too ineffective (e.g. C autovectorisation) or too disruptive to development workflow,
e.g. by requiring new languages, annotations and toolchains, or by maintaining insufficient sep-
aration of expert knowledge from the algorithm representation. We see an opportunity to test
and improve upon the space and schedule optimisations which our research group has previously
pursued [RMKB08] to deliver high performance software. These optimisations are delivered in
an active library package, via runtime code generation, which is completely transparent to the
application and needs no modifications of the client code.

Working in partnership with a commercial developer of VFX software provides us with access
to an industrial VFX code base on which to test our optimisation suite. Beginning from dusty-
deck software plug-ins for digital compositing applications, we will demonstrate recovery of the
elegant underlying algorithms from code which has become obfuscated by orthogonal issues, such
as iteration and multicore parallelisation. The revised representation, a minimal expression of the
algorithm and its important properties, is integrated back into plug-in software and evaluated
with a suite of our metadata-supported optimisations on two commercial effects. We believe this
collaboration helps to focus the study and enhances the practical value of our results.

1.2 Objectives

The objectives of this thesis are as follows:

• To devise a single-source modular representation of a visual effect which closely resembles
the algorithm structure and integrates seamlessly with the development workflow.

• To develop a methodology for automatically deriving SIMD and SIMT parallel implemen-
tations from the scalar single-source representation.

• To identify performance-critical optimisations for these implementations and to devise a
strategy for automatic optimisation of known and previously untested visual effects.

• To evaluate the efficacy of these ideas on industrial VFX software.

1.3 Contributions

The main contributions of this work are as follows:

• An adaptation of space and schedule optimisation to the dynamic working sets and sched-
ules of a runtime-parameterisable visual effect. This adaptation sidesteps the costly solution



1.4. PUBLICATIONS 3

of runtime code generation by specialising static parameters in an offline process and ex-
ploiting dynamic metadata to adapt the schedule and contracted working sets at runtime to
user-tunable parameters. Chapter 4 documents this work.

• A set of analysis-free transformations on a scalar data-parallel kernel to produce optimised
non-scatter/gather SIMD vector-parallel implementations. Static dependence metadata is
substituted for dependence analysis to identify parallelism within the kernel. Dynamic
memory access metadata enables data layout transformations for aligned vector load/stores.
Chapter 5 describes this process in detail.

• A set of analysis-free transformations on a scalar data-parallel kernel to produce optimised
SIMT massively parallel implementations. Static dependence metadata is used to guide
parallelism-enhancing transformations for tens of thousands of in-flight threads. Use of
the alignment-sensitive, explicitly managed memory hierarchy is optimised by identifying
inter-thread and intra-core data sharing opportunities in dynamic memory access metadata.
Chapter 6 covers these innovations.

• An experimental evaluation of the first three contributions on two industrially developed
VFX algorithms, demonstrating up to 8.1x speed-ups on Intel and AMD multicore CPUs
and up to 6.6x on NVIDIA GPUs over our best hand-written implementations. Sections 3.7,
4.4, 5.2 and 6.4 (penultimate sections of each chapter) present a progressive evaluation of
each optimisation.

1.4 Publications

In chronological order of publication, the papers which have contributed to the research in this
thesis are as follows:

• IET Conference on Visual Media Production (2005). In [Cor05] we presented early work
on a GPU-accelerated implementation of the wavelet-based degraining effect using the
OpenGL shading language, predating the launch of compute-oriented GPU languages. It
laid the groundwork for keeping the intermediate data of a chain of GPU kernels inside
video memory, avoiding the slow data path to system memory and back. This paper does
not directly form part of the material in this thesis.

• Workshop on Performance Optimisation for High-Level Languages and Libraries (2006). In
[CBK06] we presented early work on a prototype parallelising source-to-source code gen-
erator which converted C++ loop nests into GPU kernels in the OpenGL shading language.
We explored the viability of automatic parallelisation of the loop nests in VFX algorithms
and identified the key challenges. Those challenges later guided our research towards as-
sisted parallelisation with high-level metadata. This paper does not directly form part of the
material in this thesis.
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• Workshop on Languages and Compilers for Parallel Computing (2007). In [CKPN07] we
presented a metadata-supported approach to space and schedule optimisation in DAGs of
parallel VFX algorithms. We demonstrated an early version of our metadata-augmented
parallel programming framework for scalar CPU and hand-vectorised SSE code generation,
with a packed-component image layout which differed from our final choice of planar lay-
out. Significant speed-ups of 3.4–5.3x were made on the wavelet-based degraining visual
effect through space/schedule optimisation. The space and schedule optimisations discussed
in Chapter 4 are based upon this paper.

• ACM Conference on Computing Frontiers (2009). In [CHK+09] we presented a metadata-
supported approach to single-source code generation and optimisation for SIMT architec-
tures, with an emphasis upon NVIDIA’s CUDA GPU programming model. The single
source representation formed the basis for the current version of our metadata-augmented
parallel programming framework and is shared by scalar, SIMD and SIMT code generators.
We demonstrated how metadata could support a variety of parallelism- and bandwidth-
enhancing optimisations which are critical for high-performance GPU implementations of
wavelet-based degraining and diffusion filtering effects. The SIMT code generation and
optimisation methods discussed in Chapter 6 are based upon this paper.

1.5 Thesis Organisation

The remaining chapters in this thesis are organised as follows:
Chapter 2 introduces the domain of computational VFX and defines the fundamental concepts

and terminology. A survey of the key literature in software optimisation and parallelisation for
high-throughput ISAs is presented in order to establish a foundation for the research in this thesis.
The chapter concludes with a summary of the research pathways that we chose to build upon, with
reconciliation with the objectives outlined in Section 1.2.

Chapter 3 formalises the single-source representation of a visual effect and the expression of
its associated metadata used in Chapters 4, 5 and 6. A set of constraints upon general VFX theory
is defined and justified in order to focus our study on an important subset of problems. Next, we
demonstrate a use of the framework with implementations of two commercial visual effects. Fi-
nally, we describe a source-to-source code generator that implements the optimisations discussed
in Chapters 4, 5 and 6 and illustrate the complete toolchain from single-source representation
to optimised device code for a visual effect. Simple inlining and static specialisation optimisa-
tions are automated to improve generated code performance. Significant performance gains are
obtained and evaluated at this early stage.

Chapter 4 builds upon the theory of polyhedral loop representations to model and illustrate the
iterative patterns and data dependence structures commonly found in VFX algorithms. We dis-
cuss the performance implications of different scheduling choices and the dependence-preserving
transformations which facilitate transitions between them. Next, we demonstrate how the tem-
poral locality of transient data can be made optimal through polyhedral manipulation, and how
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dependence can be preserved without program analysis through the use of metadata. Dynamic
metadata is used to adapt the schedule to runtime configurable parameters. This is followed by
a discussion of an important bandwidth-enhancing optimisation to confine transient data to regis-
ters or to the lowest cache levels, which leverages memory access metadata to simplify analysis.
Finally, we show how an optimised polyhedron is translated into code for a CPU and contrast the
effectiveness of our approach with a vendor compiler of similar schedule optimisation capability.

Chapter 5 begins with an analysis of the parallelism requirements and programming con-
straints of the SIMD model in a multicore architecture. We evaluate different parallelisations of
the program polyhedra in terms of their computational redundancy, generated code complexity
and conformance to SIMD constraints. Next, parallelisation is broken down into a series of code
transformations starting from the single-source representation, including vectorisation, divergent
conditional predication and data realignment. Each transformation is analysis-free – except for a
simple scope analysis in conditional predication – and uses metadata to guide its application and
to ensure correctness. We then compare our results with the SSE autovectorisation capabilities
of modern vendor compilers and identify the obstacles which our methods are able to overcome.
The interaction with space and schedule optimisation is discussed and concluded with a novel ex-
tension of the array contraction optimisation to SIMD processors. Finally, we evaluate the speed-
ups and performance characteristics of generated SSE code in two commercial visual effects and
demonstrate a performance-critical link to the space optimisation described in Chapter 4.

Chapter 6 introduces the SIMT model with an analysis of its unique parallelism and band-
width requirements in modern GPU implementations. We reconcile the first of these two needs
through parallelisation of the program polyhedra and, where this alone is insufficient, implemen-
tation selection. Next, we demonstrate CUDA code generation from simple polyhedra and provide
an in-depth discussion of the challenges in code generation from arbitrary polyhedra, particularly
those arising from the schedule optimisations discussed in Chapter 4. We address the memory
bandwidth requirements of SIMT architectures with a series of analysis-free code transforma-
tions, using metadata to identify the memory access patterns of each kernel and to ensure that data
dependence is preserved. This is followed by a detailed examination of the dynamic scheduling
parameters controlling the execution of a CUDA kernel. The chapter concludes with an experi-
mental evaluation of the generated code performance with two commercial visual effects, in terms
of their relative speed-up and a comparison with the SSE CPU implementation.

Chapter 7 concludes the thesis with a summary of the main results and a discussion of the
application of our work in other domains and to general compiler theory. We present arguments
for different levels of integration of our research into vendor compilers and propose new directions
for the analysis-free code transformations prototyped in this work. The chapter concludes with a
reflection upon post-research developments in the industrial implementation of our framework.



Chapter 2

Visual Effects Optimisation

2.1 Introduction

This chapter begins with an overview of the field of computational visual effects (VFX). It intro-
duces the key concepts, defines standard terminology and illustrates a visual effect construction.
Next, we review the key background literature and related work in optimising the computations
constituting a visual effect. This survey covers both software optimisation techniques and sys-
tems for mapping computations onto high-throughput parallel instruction set architectures (ISAs).
The chapter concludes with a study of related approaches to the problem and a summary of the
research pathways we chose to build upon, with justification for each of the thesis objectives set
out in Section 1.2 of the preceding chapter.

2.2 Visual Effects

Our formalisation of the VFX domain borrows heavily from the work of Brinkmann [Bri08] on
digital compositing. Digital compositing is not a strict superset of VFX but the two disciplines
share much in common. We begin by quoting Definition 2.1 to broadly define the domain which
we are about to describe.

Definition 2.1 (Digital Compositing) The digitally manipulated combination of at least two
source images to produce an integrated result. [Bri08]

Much of the VFX domain involves the composition of multiple images, although some effects
operate upon a single image; hence VFX is not a strict subset of digital compositing. Before
delving more deeply into the algorithms and structures constituting a visual effect, we take the
time to define the term image more precisely.

2.2.1 Digital Image

The following three definitions collectively define the concept of an image in digital compositing,
which we will refer to as a digital image in this section.

6
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Definition 2.2 (Component) A data element carrying information about a discrete location in a
digital image, often a primary colour intensity or a mask coefficient.

Definition 2.3 (Pixel) A group of components constituting information associated with a discrete
location in a digital image.

Definition 2.4 (Digital Image) An ordered collection of pixels with a spatial correspondence of
information to a static two-dimensional visual depiction.

In addition to this hierarchical structure of visual information, a fourth term is often used to
refer to an orthogonal subset of the information contained within a digital image.

Definition 2.5 (Channel) A channel is an ordered collection of components with a spatial corre-
spondence of a single type of information to a static two-dimensional visual depiction.

This fourth term may at first appear redundant but its necessity will become clear as we con-
sider the physical construction of the digital image. There exist two complementary data stor-
age layouts for digital image data: planar layout and packed layout. Both are stored as dense
two-dimensional arrays with spatial correspondence to the two-dimensional visual depiction. Fig-
ure 2.1 illustrates the pixel-level storage differences. The planar layout is stored as a set of con-
tiguous channels, while the packed layout is formed by a single contiguous interleaving of com-
ponents. One tends to gravitate towards the packed layout because it feels more natural; indeed,
most graphical display devices, including graphics processing units (GPUs), require this storage
layout for image data to be sent to a display.

However, the packed layout has two key disadvantages:

• Cache pollution. When an image processing algorithm can be broken down into multiple
passes, each over a single channel at a time – to reduce the working set size – the unused
components of each pass persist between the useful data elements within cache lines. This
inflates the effective working set size, thus reducing the useful cache space.

• Non-uniform data processing. Divisions of the data set into small pieces (e.g. for single-
instruction, multiple-data (SIMD) parallelism) may lead to different phases of component
sequences in each iteration, e.g. RGBR GBRG BRGB for a three-channel image. Avoiding
this change in phase requires a loop unrolling [BGS94] transformation. No transformation
is required in the planar case.

2.2.2 Digital Composition

Before looking at the construction of the visual effect in detail, some knowledge of the context in
which they are used may be helpful. Visual effects are used within a digital composition.

Definition 2.6 (Digital Composition) A directed acyclic graph (DAG) in which nodes represent
visual effects and directed edges indicate the flow of image data between them. Leaf nodes are of
type Source or Sink, carrying image data into and out of the composition respectively.
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(a) Packed Layout (b) Planar Layout

Figure 2.1: Two competing data storage layouts for digital images. The packed layout is better
suited for display on digital hardware whilst the planar layout is more cache-efficient in chromat-
ically oblivious image processing algorithms. (Image source: FreeDigitalPhotos.net)

The digital composition is a weaving of visual effects with elements of film footage. It is
the link between the work of digital artists, VFX developers and the resulting feature film, tele-
vision programme or advertisement. A digital composition is orchestrated within a compositing
application, such as the contemporary Nuke compositor shown in Figure 2.2.

If we constrain our study to just two dimensions, the process of digital composition can be
thought to operate within an infinite plane. Each set of image data has bounds enclosing a subre-
gion of this plane. Where overlap of these bounds occurs, composition can reasonably be expected
to resolve this conflict in a composited frame; perhaps by allowing parts of one image through the
transparent regions of another, or by blending the two together. Each visual effect has two well-
defined parameters in a digital composition which control this overlap.

Definition 2.7 (Region of Interest) The Region of Interest (ROI) of a visual effect is a subregion
of the infinite compositing plane inside which the effect consumes data from overlapping subre-
gions of bounded input images.

Definition 2.8 (Domain of Definition) The Domain of Definition (DOD) of a visual effect is a
subregion of the infinite compositing plane inside which the effect produces data into overlapping
subregions of bounded output images.

We will now define the visual effect. This construct is the focus of optimisation in this thesis.

Definition 2.9 (Visual Effect) A connected DAG (e.g. Figure 2.3) in which nodes represent visual
primitives and directed edges indicate the flow of image data between them. Leaf nodes are of type
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Figure 2.2: Part of a Nuke compositing workflow to orchestrate a three-dimensional scene for
360◦ dome projection technology. A small segment of the digital composition DAG is visible in
the upper-left hand corner. The lower-right corner shows a hint of the zoomed-out DAG.
( c� Heribert Raab, Softmachine. Courtesy of Heribert Raab.)

Source or Sink, carrying image data into and out of the effect respectively. An effect can define an
arbitrary number of parameters to tune its behaviour in a given composition.

Definition 2.10 (Visual Primitive) An algorithm which consumes data from one set of images
and produces data into another set. A primitive can define an arbitrary number of parameters to
tune its behaviour in a given visual effect.

The reader may notice the similarity of Definition 2.9 to that of a digital composition. In-
deed, the difference is primarily one of granularity. A visual effect is a self-supporting composite
algorithm with applications in many different digital compositions. It presents fine-grained tun-
able parameters to the digital artist without overwhelming them with its construction from smaller
visual primitives. The primitives themselves are often reusable inside different visual effects.

Figure 2.3 illustrates a commercial visual effect for the automatic removal of photographic
grain, based upon a wavelet decomposition algorithm [SCW05]. Each node in this graph, ex-
cluding the Source and Sink nodes, corresponds to a reusable visual primitive, There are just four
unique primitives in the whole graph. Effects such as this one correspond to a single node – or to
multiple nodes if used more than once – in the digital composition graph shown in Figure 2.2.
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Figure 2.3: Graphical illustration of the construction of a commercial wavelet-based photographic
grain removal [SCW05] visual effect. Nodes represent visual primitives and directed edges indi-
cate the flow of image data between them. Leaf nodes pass image data to/from the effect.

Many visual primitives share common features of data dependence and patterns of access to image
data. We make use of two such classifications throughout this thesis and these are outlined below:

• Data Dependence. The most basic algorithms contain no loop-carried dependencies and
are, thus, fully parallel. An interesting class of algorithms, called moving averages, have
a loop-carried dependence in a single level of their loop nests. Many more complex data
dependence structures can be found in primitive algorithms.

• Patterns of Memory Access. In many algorithms there is a spatial correspondence between
the pixels of output images and the pixels of the input images used to compute them. Basic
algorithms may take a single correspondingly located pixel from an input image and use
it to produce an output pixel. More sophisticated algorithms, called spatial filters, use a
correspondingly centred 1D or 2D region of pixels to compute a single output pixel. More
complex patterns can be identified before descending into true random access.

Definition 2.11 (Moving Average) A moving average is a visual primitive in which each output
pixel is dependent upon state initialised at the start of, and updated along, the horizontal or
vertical axis. This creates a loop-carried dependence in one level of the algorithm’s loop nest.

Definition 2.12 (Spatial Filter) A spatial filter is a visual primitive in which each output pixel
is dependent upon a correspondingly centred M ×N region of pixels in one or more of the input
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images. This region may be one-dimensional, in a horizontal or vertical configuration, or two-
dimensional.

This brief definition of the VFX domain is sufficient to prepare the reader for the discussion
of our computational VFX framework described in Chapter 3. Further examples and illustrations
of VFX constructs may be found in that chapter.

2.3 Software Optimisation

In this section we survey the key literature in software optimisation techniques which are of rele-
vance to the research in this thesis. Notably absent is a discussion of the low-level optimisations
employed by established compiler technology and we refer the reader instead to [BGS94] for
a survey of these techniques. A discussion of parallelisation, an important software optimisation
technique for modern multicore processors, and its interaction with other optimisations is deferred
until Section 2.4 where the key advances in research are described in detail. The subsections which
follow review the optimisations that are of most significance to our contributions to the field of
software optimisation.

2.3.1 Memory Hierarchy Management

The divide between computational and memory performance has grown large [WM95], and con-
tinues to widen, as developments in memory technology have failed to keep up with increases
in computational throughput. The extrema of this phenomenon is known as the “memory wall”.
Worse still, the increases in memory bandwidth which have been delivered come at the expense
of significant rises in latency [SPN96]. Multicore hardware in particular has driven unsustainable
increases in memory throughput requirements [Moo08]. The consequence of this technological
performance chasm is that algorithms with poor computation:memory access ratios are frequently
bounded by memory performance on modern compute architectures. Tackling the inadequacies
of the memory system is a key focus of many of the optimisations discussed in this thesis.

Contemporary memory systems are divided into multiple levels of disks, caches and registers.
There is a trend of increasing capacity and latency and decreasing bandwidth as each level of the
memory hierarchy is placed further away from the computational resources [Prz90]. An important
consequence of this design is that an algorithm with a small working set may take advantage
of cache levels with high bandwidth and low latency, whilst minimising spills to larger, slower
levels of the memory hierarchy. Memory reduction [SXWL01] is a compiler-based technique that
exploits spatial locality and a fixed temporal data reuse distance to reduce the working set size so
that it fits into a lower cache level. This optimisation relies on a combination of loop shifting, loop
fusion and array contraction [BGS94] transformations. The necessity for memory reduction arises
from the natural structuring of composite array-based computations as series of independent loop
nests with primitive kernel bodies. This is an elegant expression in imperative languages but leads
to large reuse distances between the elements of arrays processed by successive kernels.



2.3. SOFTWARE OPTIMISATION 12

Data storage layout transformations may enable more efficient use of caches. Recursive,
blocked storage layouts, such as the Z-Morton [Sag94], mitigate the performance impact of
column-major array accesses experienced in a row-major storage layout. Cache misses and un-
useful prefetches are reduced for algorithms which exhibit multidimensional spatial locality by
using a logical-to-physical address mapping which unidimensionally localises elements in multi-
dimensional localities. Recursive layouts are particularly useful because they can embed multiple
localities of different sizes to fit into different levels of the memory hierarchy [PHP03]. This
comes at a small cost for algorithms with only unidimensional spatial locality, which may experi-
ence better cache utilisation with a row- or column-major storage layout. A consequence of non-
row-/column-major layout is that address computation becomes more expensive: particularly for
non-power-of-two sized arrays, which may need padding to power-of-two sizes. These additional
costs to performance may only be offset by improved cache utilisation for large arrays [BJK03].

A novel approach to memory hierarchy management is leveraged by Sequoia [FHK+06], a
C++-based parallel programming language and associated compiler. Sequoia exploits an analyti-
cal model of the memory hierarchy to generate specialised code with localised computation within
each level of the memory hierarchy, with explicit data communication constructs between levels.
The algorithm is expressed as a hierarchical set of divide-and-conquer tasks, with parallel lan-
guage augmentations to mark pieces of kernels which may be mapped onto parallel processors.
For this reason, the memory hierarchy models may extend beyond main memory to cluster-level
communication. This approach to memory hierarchy optimisation is a hybrid of cache-aware and
cache-oblivious [FLPR99] algorithms: the algorithm expression is cache-oblivious divide-and-
conquer but the memory model specifications are cache-aware. The programmer must supply
both to orchestrate a program implementation for each device.

A brute force approach to memory hierarchy management is employed by self-tuning software
such as the ATLAS [WD98] linear algebra library and the FFTW [FJ98] Fast Fourier Transform
(FFT) library. Parameters to various compile-time code transformations, including loop tiling for
the memory hierarchy, are derived through a heuristic-guided search process with dynamic feed-
back of performance characteristics on a per-system basis. Such libraries typically require a long
pre-execution process to perform a sufficiently large search of the optimisation space before ob-
taining suitable parameters for normal execution. This approach works well for libraries of widely
used algorithms, such as BLAS [LHKK79] routines and FFTs in different point configurations,
which can be tuned once per system and then shared by many applications.

Architecture-cognizant algorithms [GC99] hybridise the divide-and-conquer approach with
runtime tuning to achieve efficient use of the memory hierarchy. The algorithm implementation
provides variants of the divide and combine components, to move data down and up the hierarchy
respectively. The authors suggest two examples of variants: to copy the divided problem during
division or not, trading the expense of a copy for better cache associativity in the subproblem,
and to combine or postpone recombination of subproblems to alleviate the overhead of small
recombinations. An exhaustive search for the optimum selection of variants grows exponentially
with the number of levels of problem division. A dynamic programming solution is proposed to
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find a good variant selection in lower complexity time.
An important improvement to the memory hierarchy model [GG02] was suggested to account

for the indirect, but performance critical effects of the Translation Lookaside Buffer (TLB). In
matrix multiplication, the authors observe that one operand is normally kept in L1 while the others
are streamed through L2. Hence filling the L2 cache may incur TLB misses – and likely will,
since one operand (accessed row-major in column-major layout, or vice versa) may span many
pages – which stalls the computation’s overall progress. Hence, the memory hierarchy model
is augmented with an additional level between the L1 and L2 cache to encourage tiling for the
TLB. The method of tiling, as for other levels of the hierarchy, can involve copying the tile or
simply visiting the tile’s elements in order. This decision is dependent upon the matrix size in the
ATLAS library. Only once the matrix grows large enough for TLB misses inside the tile to have a
significant impact does the library introduce a copy of that tile into a contiguous memory region.

The use of analytical memory models and empirical search for tuning factors is a topic of
recent debate. Conventional wisdom suggests that empirical search is more effective than model-
driven optimisation because accurate models are very expense to construct and use. However,
in the case of BLAS one team presents evidence [YLR+05] to the contrary. The global opti-
misation engine in ATLAS is replaced with a model that is sensitive to the computational and
memory hierarchy requirements of BLAS. Their results demonstrate an order of magnitude re-
duction in configuration time across many architectures and, with a few exceptions discussed in
detail, closely matches the performance of global search-tuned parameters. A compromise of the
two approaches is explored through a hybrid of model and search in [EGD+05]. This approach
leverages a high degree of confidence in some parts of the model and augments the remainder with
empirical search. An evaluation of this idea on the aforementioned model-driven ATLAS imple-
mentation documents an increase in configuration time of 3–4x but with configured performance
that is comparable to, or better than, both model-driven and empirical search schemes.

2.3.2 Component-Based Programming

A software component is a ”binary unit of independent production, acquisition and deployment
which interacts with other components to form a functioning system” [Szy02]. It is an advance-
ment of the object concept from object-oriented programming in that it has no externally observ-
able state and conforms to a standard interface (within a class of components) for interoperating
with other components. The benefits of a reusable component design are self-evident and con-
tribute to our focus on this paradigm. It is, in fact, a natural structuring of many visual effects
algorithms as discussed in Section 2.2.2. Our interest mainly concerns the role of this abstraction
in assisting in the optimisation of each component, its communication with other components and
the composition of multiple components into a single entity.

Algorithmic skeletons [Col91] form a programming methodology for imperative languages
which borrows from the higher order function concept of functional languages to implement soft-
ware components. Each skeleton defines a template for a pattern of computation and/or com-
munication which can be specialised with details to implement an algorithm which exhibits the
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corresponding pattern. A template may typically separate iteration control from the body of an
iterated kernel, for example. The specialisation may leverage all of the features of the imperative
language to define the kernel and is thus limited in the least restrictive way. The author discusses
one possible goal of leveraging an algorithmic skeleton design: to automate the parallel decompo-
sition of a computation for a multiprocessor system. By manipulating the iteration space at a high
level of abstraction, parallelisation becomes a simple and well-defined problem for each skeleton.
It should be emphasised that additional parallelism may exist within the kernel itself: however,
exploiting this parallelism is not a goal of the algorithmic skeleton design. To do so, with no clear
methodology for describing or manipulating parallelism within the kernel, is to build a universal
parallelisation tool for the language which is inherently difficult for all but the simplest languages.

Poor data locality is a common problem in component-based designs [AKO04]. Strong en-
capsulation of components isolates successive accesses to the same data in different components,
leading to large data reuse distances and, as a result, poor temporal locality. Encapsulation must
be broken following component composition in order to optimise compositions for data locality
as a whole. The authors discuss a language called Aldor that is well-suited to component expres-
sions. Its compiler generates an intermediate representation which is subsequently optimised and
translated to C for lower-level optimisation. Domain-specific improvements to the compiler for
a BLAS library enable fusion of vector:vector, stencil:vector and stencil:stencil operations in the
decomposed components within the intermediate representation (IR). By delaying these intrusive
cross-component optimisations to a compilation phase, the modularity of the original program,
and the benefits that brings, is maintained. These optimisations allow the performance of a mod-
ular client application to surpass highly tuned ATLAS performance by up to 1.4x.

Another opportunity a component-based design presents lies in optimising the placement of
data sets in a distributed memory architecture [BJK02]. The authors describe a domain of data-
parallel components which are composed into program graphs. The data placement problem is to
distribute computed subarrays (directly or through redistribution between components) in a way
which minimises the overall execution time of the graph. Components have well-defined inputs,
outputs and computational boundaries and this lends itself well to a formal definition of the prob-
lem. The result of most interest to our domain is that optimal solutions to this problem for DAGs
are NP-complete in the general case and only heuristic solutions can attain lower complexity.

A domain-specific instance of cross-component optimisation has been studied in the MayaVi
visualisation tool [BFG+04]. The MayaVi software is constructed from visualisation and data fil-
ter components. There is an opportunity to reduce rendering latency by partitioning large data sets
and visualising them per-partition but this is incompatible with the implementation of many of the
software’s components. The authors argue that rewriting the software to support the partitioning
optimisation would be a substantial amount of work and would interfere with the modular design.
Instead, calls to each component are redirected through a new Python interface and delayed to
construct an execution plan. When a computation is forced (by a component being interrogated
for rendered results) the partitioning optimisation is applied to the execution plan and the revised,
partitioned plan is run instead. The results are functionally equivalent to the original plan and
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deliver substantial speed-ups for small volumes of interest. In larger volumes, where the partition-
ing optimisation is less useful, overheads from node duplication at partition boundaries dominate
and reduce the overall throughput. This method required no modification to the original MayaVi
components and resembles, in many ways, an aspect-oriented programming [KLM+98] approach
without the need for language or compiler support.

2.3.3 Generative Programming

Generative programming is a metaprogramming technique [CDG+06] with considerable value
in domain-specific optimisation. One option is to implement algorithms in a metaprogramming
language with templated parameters specifying factors to be optimised, such as loop unrolling
amounts. A compiler is then free to instantiate these parameters with different values, found e.g.
through empirical search during iterative compilation [KKO02], to produce a fully specialised
code implementation. The choices of algorithm parameterisation form a domain-specific decision.
A benefit of this approach over string-based code manipulation is that parameters of arbitrary
complexity may be substituted with the type-safe guarantees that the meta-language provides. The
authors present a case for a pathway from this meta-language to a more pragmatic, performance-
oriented language such as C.

The active library paradigm [CEG+00] is a classification of software libraries which play a
metaprogramming role in the client application, most commonly in optimisation. An active library
typically remains transparent to the client application by exposing a well-defined, often domain-
specific, interface behind which complex optimisations can be orchestrated while fulfilling the
interface requirements. Runtime code generation [VG98] is a key enabling technique in active
libraries which leverages the availability of runtime context, captured through the client / applica-
tion interface, to generate and compile specialised code fragments for specific tasks on-demand.
Delayed evaluation is a common technique used to increase the availability of runtime context in
an active library. By postponing evaluation of a progressively constructed computation until the
client application requests the computed data, an internal view of the computation up to that point
enables optimisations such as data placement/layout manipulation and cross-component fusion.

The TaskGraph library [BHKM03] is an example of an active library augmented with runtime
code generation for domain-specific optimisation in a component-based application. Algorithms
are written in a C++ metaprogramming language which, when executed, constructs an abstract
syntax tree (AST) representation of the algorithm via the SUIF [HAA+96] IR. The authors present
two optimisations for an image filtering operation in this framework: runtime specialisation of a
loop’s trip count to a dynamic parameter and loop unrolling for the architecture on which the
application is run. Performance is poorer or no better than an unoptimised implementation of con-
volution for data sets smaller than 1024x1024, due to the significant cost of compilation. However,
for larger data sets the authors observe a speed-up which tends towards 3-4x as the cost of com-
pilation becomes insignificant in proportion to the execution time. Related approaches employ a
code cache to store optimised fragments but the authors opted instead for the flexibility offered by
full specialisation and arbitrary optimisation with regard to dynamic parameters.
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2.3.4 Metadata-Guided Optimisation

Program metadata is a means of communicating information about a program by encoding and
embedding the information in the program implementation. Our focus is on metadata which com-
municates information about algorithm structure alongside its code implementation, as a means
of enhancing optimisation of the program. For example, metadata has been used to encode data
dependence information in a component-based programming infrastructure [KBFB01] to support
analysis-free optimisations, such as loop fusion, loop tiling and data placement. This approach is
domain-agnostic and supports a large class of applications by encapsulating low-level dependence
constructs, such as iteration spaces, domains, and uses/definition of data collections. The strength
of this approach lies in its generality, but this is also its weakness: the expression of metadata for
a simple 2D Jacobi operation is quite verbose. A code sketch for the metadata suggests several
ways to make a more concise expression: by condensing entire arrays of uniform data dependen-
cies as shapes and by using an overloaded C++ class to capture data dependencies between uses
and definitions.

Object-oriented abstractions may incur performance penalties if they obscure the underlying
program constructs, such as arrays, during compiler optimisation. One means of resolving this
is to introduce explicit programmer/compiler metadata communication constructs [YQ04], which
describe the semantics of high-level collection classes to the compiler so that they can be treated
as, e.g. arrays for low-level optimisation. Key semantics, such as array indexing and member
aliasing, are encoded and embedded in metadata attached to the abstraction interface. Vendor
compilers do not provide a path for retrieval and use of this information, so the authors leveraged
the ROSE [SQ03] source-to-source compiler infrastructure to collect and use the metadata in a
custom optimisation phase.

A different use of metadata can be found in the ICENI grid architecture [FMM+02], which
leverages the component-based programming design to express graphs of pluggable application
components which can be mapped to grid compute resources. A component may consist of mul-
tiple implementations from which one must be selected for execution on a particular resource.
Metadata is attached to each implementation to describe its performance properties and affinities
for different compute resources. In this role, metadata is used to optimise grid application execu-
tion by guiding component implementation selection for mapped compute resources. The authors
go further in suggesting that this metadata may even be derived empirically through black box
performance analysis.

2.3.5 Polyhedral Schedule Transformation

The polyhedral model is a formalism for reasoning about parallel computations, using systems
of affine recurrence equations defined over polyhedral shaped domains [QRW00]. A more con-
crete definition of the polyhedral model is a matrix representation of the n-dimensional iteration
spaces of loop nests in a program and the data dependencies between the statements contained
within. Its primary role in software optimisation lies in the systematic parallelisation of com-
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for(y = 0; y <= 4; ++ y)
for(x = y; x <= (y + 4); ++ x)

S1;

for(y = 2; y <= 8; ++ y)
for(x = 1; x <= 8; ++ x)

S2;

Listing 2.1: Two example loop nests with corresponding polyhedral domains shown in Figure 2.4.

Figure 2.4: A polytope representation of the domains of the two statements from Listing 2.1 and
a set of corresponding linear constraints on their bounds. The shaded region is common to both
polyhedra and suggests potential value in a loop fusion [BGS94] schedule optimisation.

plex codes [Len93] but has useful application in other loop transformations [BCG+03] as well.
Improvements to the original polyhedral model have been leveraged to assist in the composi-
tion of loop transformations [CGT04] and the search for appropriate transformation composi-
tions [CSG+05] in iterative compilation.

Consider the two loop nests shown in Listing 2.1. The iteration domains of statements S1
and S2 can be expressed as a system of linear equations defining two (overlapping) convex hulls
in a two-dimensional space. The corresponding polytopes encompassing these two iteration do-
mains are illustrated in Figure 2.4. Statement S1 executes at each of the integer points contained
within the lower parallelogram, which corresponds to a skewed loop. S2 executes at the integer
points within the upper rectangular polytope. There is some overlap between the domains of both
statements and they could, if dependence would not be violated, execute together in a single loop
fragment at these points. This would correspond to a loop fusion [BGS94] schedule optimisation.

A more compact and computable representation stores the systems of linear equations as ma-
trices. Such a representation for the two polyhedra from Figure 2.4 is given in Table 2.1. There
is a straightforward translation of these matrices into loop bounds to reconstruct the domains of
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= /≥ y x 1
1 1 0 0
1 -1 0 4
1 -1 1 0
1 1 -1 4

constraint
y ≥ 0
y ≤ 4
x ≥ y

x ≤ y+4

= /≥ y x 1
1 1 0 -2
1 -1 0 8
1 0 1 -1
1 0 -1 8

constraint
y ≥ 2
y ≤ 8
x ≥ 1
x ≤ 8

Table 2.1: A condensed matrix representation of the systems of linear equations defining two
convex hulls in a two-dimensional iteration space, as shown in Figure 2.4.

for(y = 0; y <= 1; y++)
for(x = y; x <= y+4; x++)
S1;

for(y = 2; y <= 3; y++) {
for(x = 1; x <= y-1; x++)
S2;

for(x = y; x <= y+4; x++) {
S1;
S2;

}
for(x = y+5; x <= 8; x++)
S2;

}
y = 4;
for(x = 1; x <= 3; x++)

S2;
for(x = 4; x <= 8; x++)

S1;
S2;

for(y = 5; y <= 8; y++)
for(x = 1; x <= 8; x++)
S2;

Listing 2.2: Code generated by the CLooG [Bas04] polyhedral library from the polyhedra shown
in Figure 2.4. Loop fusion leads to code inflation of the original source from Listing 2.1.

each statement, illustrated by the constraint columns. However, consider the two matrices in ag-
gregate. It is possible to construct two independent loop nests from the matrix set or, dependence
permitting, a single loop nest with fragmented loop bodies shared by statements S1 and S2. The
latter may improve temporal locality if statement S1 produces output for statement S2 to consume.
Constructing this aggregated, fused loop nest is a much harder problem. In general, the process
requires a scanning method to identify the integral points that fall within the polyhedra and to
construct a corresponding set of loop fragments which visits them.

CLooG [Bas04] is one such polyhedral scanning tool. It accepts the dense matrix format
shown in Table 2.1 as input and, given assurances that no dependence exists between statements
S1 and S2, generates the fused code shown in Listing 2.2. The inflation in code size evident in this
output is a minor example of a serious problem in the generation of optimised loop schedules. In
practice, symmetry and other properties of everyday loop structures can be exploited to avoid code
explosion [VBC06]. For example, the current release version of the GNU Compiler Collection
exploits the polyhedral model for loop nest optimisation [PCB+06].
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Fusing loops that contain independent statements is easy but of limited practical application.
Loop control overhead may be reduced but there will be no improvement in temporal locality.
It is far more interesting to fuse loops containing dependent statements. To achieve this, the
polyhedral model allows for expression of data dependence, which will be respected during code
generation. CLooG uses a manually-programmed scheduling matrix for this purpose, which is a
condensed representation of data dependence and loop transformation as scheduling constraints.
Another polyhedral code generation framework, PLUTO [BHRS08], expresses data dependence
as an explicit set of polyhedra derived from dataflow analysis.

Compositions of traditional loop optimisations may be more easily managed [GVB+06] in
the polyhedral loop domain. The authors argue for separation of traditionally related program
transformations: those affecting the iteration space, the statement schedule, array accesses and the
data layout. Each set of transformations is represented as a composition of operations on a matrix.
Code is only generated once a full composition has been selected; this avoids the increase in
code complexity between traditional transformation phases. The phase ordering problem is made
simpler by improvements in the commutativity of transformations in the isolated matrix form.
It is also easy to identify compositions of different transformations which give the same result,
by comparing the composed matrices, to reduce unnecessary retesting in iterative compilation.
Finally, the matrix form can be used directly in empirical search to locate good compositions
of transformations. Legal transformation sequences can be identified in the matrix form and the
search process may even be augmented to optimise for legitimate matrix configurations directly.

2.4 Software Parallelisation

In the preceding section we focused on optimisations which improve the performance of serial
code. Having established a foundation for generating efficient code, we now explore the problem
of exploiting task and data parallelism to leverage multiprocessor, multicore and vector compute
architectures. We focus on three technologies available to us in workstation hardware: symmetric
multiprocessing (across and within multicore CPUs), SIMD (used by Streaming SIMD Exten-
sions (SSE) and other vector ISAs) and SIMT (an emerging latency-tolerant design in GPUs). A
discussion of cluster-level parallelism is beyond the scope of this work.

2.4.1 Symmetric Multiprocessing (SMP)

Multiprocessor and multicore devices are programmed via software threads. Most CPUs execute a
single hardware thread (or two in hyperthreaded designs) per core and rely on a software scheduler
to timeslice software threads to each hardware thread. Likewise, systems with multiple CPUs
require a scheduler to balance threads across the whole system. Some esoteric designs (e.g. Sun’s
“Niagara” UltraSPARC T1) exploit a simultaneous multithreading (SMT) [TEL98] architecture
to provide multiple hardware threads per core to the OS. In all cases, the OS scheduler manages
these compute resources and the programmer need only supply enough software threads to keep
the hardware threads occupied. Additional complications arise in SMP and multicore systems,
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where some resources – such as I/O buses and cache – may be shared between multiple hardware
threads. The programmer must consider cache partitioning [CRM07] and thread affinity [KFA08,
TaMS+08] in these cases in order to use the hardware efficiently.

OpenMP [CDK+01] is an industry standard application programming interface (API) for ex-
ploiting SMP and cluster-level parallelism. Rather than managing threads directly, the application
programmer annotates their C program with pragma constructs to indicate loops which should
be compiler-parallelised for SMP. This sidesteps the autoparallelisation problem by placing the
burden of loop selection and data parallelism guarantees upon the programmer. In exchange,
OpenMP provides a low-maintenance, scalable path to parallelising an existing application for a
wide range of parallel compute devices supported by the OpenMP runtime library. Additional
annotation constructs enable implicit management of message passing on parallel clusters.

STAPL [AJR+03] is a library of Standard Template Library (STL)-like templated containers
and algorithms which support automatic parallelisation of regular vector-based computations and
irregular computations on more complex data structures. The parallelisation process is automated
and hidden from the user through a sequential, iterator-based programming model. Each algorithm
implementation comprises a set of specialisations for architectural (e.g. memory hierarchy) and
algorithmic optimisations, giving rise to dynamically adaptive performance to hardware and prob-
lem through model-driven selection. Empirical performance analysis takes place after installation
to construct adaptation models for each algorithm. A number of scheduling policies are provided,
including fixed-range static parallelisation and dynamic-range work queue parallelisation.

The STAPL library influenced the design of an Intel project, called Threading Building Blocks
(TBB) [Rei07], for mapping common data-parallel patterns [HS86], such as parallel for, parallel
reduce and parallel scan, onto SMP architectures. The client application selects a pattern from
a set of C++ template classes and implements a kernel function (or set of functions) to define
the parallel operation. In this manner, TBB exhibits elements of a skeleton [Col91] design. The
library maintains a thread pool to avoid the costs of creating and destroying threads in finer-
grained computations. Threads are woken when a parallel computation is available and placed into
a sleeping state for the remainder of the execution. In addition to data parallel constructs, TBB
provides a mechanism for building task graphs to exploit task-level parallelism. SMP architectures
are well-suited to task parallelism; SIMD and SIMT designs may only exploit data parallelism.

The ideal path to programming SMP architectures is parallelisation of the program at the
compiler-level, with no programmer assistance. This remains a hot research topic with inherent
difficulties. In the SUIF research compiler [HAA+96], autoparallelisation relied on a set of classic
compiler transformations and analyses. This process is closely tied with data locality optimisa-
tion because different valid parallelisations may lead to schedules with varying degrees of data
locality. Contemporary research suggests that existing static analysis techniques are unable to
detect parallelism in important cases [TWFO09] and propose a profile-driven solution to detect
the absence of data dependence at runtime. In the polyhedral model, the parallelisation problem
becomes a scheduling choice [BHRS08] and a viable parallelising prototype compiler exploiting
this property has recently been constructed.
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2.4.2 Single Instruction, Multiple Data (SIMD)

The SIMD data-parallel model is popular among vector ISAs, such as SSE [TH99] and VMX
[IBM05]. A defining characteristic of these ISAs is that vector loads/stores can only be addressed
by the first scalar; thus scatter/gather operations are not supported and parallelisation techniques
must consider the contiguity of data being processed in a vector-parallel manner. Another feature
of these ISAs is that they typically exhibit higher memory access performance when vectors are
loaded or stored on aligned address boundaries [SJV06]. In many computations, including those
considered within this thesis, this is a non-trivial property to attain. The authors discuss several
techniques to avoid misaligned data access.

Programming vector units is often a case of using ISA-level compiler intrinsics to express par-
allel data operations by hand. Hand-vectorised code is prevalent in a number of key scientific and
multimedia algorithms [HOM08]. CPU vendor-optimised algorithm libraries are another path to
leveraging SIMD ISAs, e.g. Intel’s IPP [Ste04] and MKL and AMD’s complementary Framewave
and ACML libraries. Algorithms may alternatively be expressed in a parallel-aware language to
receive compiler assistance in the vectorisation process. Intel’s Ct metaprogramming language
[GSW+07] captures parallelism through C++ collection classes with overloaded operators and
exploits SIMD instructions through a runtime delayed evaluation, code generation library. The
Open Compute Language (OpenCL) [Mun09] expresses data parallelism through fully parallel
kernels and fixed-vector constructs and operators within. The former is sufficient to derive SIMD
implementations but, at the time of writing, only explicit vector-parallel constructs are vectorised
by contemporary CPU backends.

Autovectorisation of serial code is a better developed compiler technique than autoparalleli-
sation, because the data parallelism required may be much finer grained without incurring thread
management overheads. GCC exploits the static single assignment (SSA) form [Nai04] to build
a data dependence graph from which vector parallelism can be identified. The Intel compiler
[BGGT02] leverages a set of progressively more complex data dependence analyses to identify
parallelism and uses classic transformations to expose vector-level parallelism. Notably, the com-
piler attempts to realign data with unknown static alignment through dynamic loop peeling. IBM’s
Cell compiler [EOO+06] uses a mix of unroll-and-jam [BGS94] and loop transformation meth-
ods to exploit SIMD parallelism. A technique called superword level parallelism [LA00] is a
promising generalisation of classic autovectorisation for short-vector architectures, with improve-
ments in parallelism identification on the SPEC benchmark suite. The deep jam transformation
[CCJ05] can be used to expose vector parallelism in coarse-grain parallel code where irregular
loop structures block classic vectorising transformations.

2.4.3 Single Instruction, Multiple Threads (SIMT)

The SIMT architecture [NBGS08] was borne out of a need for a parallel processing design which
could scale trivially from a few cores to an arbitrarily large number. Several grains of parallelism
are defined to accommodate different hardware structures: small numbers of threads execute in
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lockstep on the scalar cores of a multiprocessor; warps are grouped into blocks according to
their ability to share information and communicate efficiently; blocks are grouped into a grid
which defines the domain of a computation. This highly scalable design was needed to form an
effective solution to the increasingly high latencies of modern memory systems, which run into
several hundreds of cycles. By maintaining a large set of concurrently executing threads with a
much larger backlog of ”stalled” threads, which can be switched in and out of the multiprocessors
efficiently, the design can hide memory access latency by swapping in threads whose requested
data has arrived. This design can even be cache free, although current implementations define a
small, manually managed cache per multiprocessor to facilitate intra-block communication and
data sharing.

Until recently, NVIDIA’s Compute Unified Device Architecture (CUDA) [NVI08] language
and compiler formed the dominant path for building SIMT applications. Algorithms are written as
data-parallel kernels with limited synchronisation constructs. Data placement is managed by the
application programmer through an explicit communication API. The OpenCL language [Mun09],
a cross-vendor solution to SIMT programming, resembles CUDA in many aspects; its design was
influenced by NVIDIA and other hardware vendors. A key advance is the integration of a compiler
into the runtime OpenCL library, enabling runtime code generation and the benefits that may
bring. The availability of CPU backends for OpenCL presents an opportunity for uniform cross-
device parallel algorithm development. Preoptimised vendor SIMT libraries are in an early stage
of development. Notable examples include the CUBLAS [BCI+08] linear algebra library and the
CUFFT Fourier transform library. The CUDPP library [HOS+07] simplifies the construction of
kernels with common data-parallel patterns by providing templates and operators to synthesise
optimised kernels through library calls.

To simplify data placement and the implementation of common parallel patterns, such as re-
duction, higher level languages which compile to CUDA (or a lower-level assembly language)
have been developed. The RapidMind platform [McC06] extends the C++ language to include
data-parallel containers and operators. A metaprogramming, delayed evaluation, code genera-
tion approach intercepts operations on these containers and generates appropriate CUDA code
to implement the computation. Data marshalling from/to host memory is handled transparently.
CUDA-lite [ULBH08] is a CUDA to CUDA compiler which automates SIMT memory optimisa-
tions, such as coalescing and shared memory staging. The programmer retains the flexibility of
the CUDA language but only uses naive global memory access in their algorithm implementation:
the CUDA-lite suite optimises this form.

There is little established work in autoparallelisation for SIMT architectures. In theory, any
existing parallelisation approach which exposes sufficient parallelism could be used to generate
code for a SIMT device. However, the methodology for generating memory-optimal kernels is
more akin to long-vector SIMD code generation. The contemporary PLuTo polyhedral compiler
has been adapted [BBK+08] to generate CUDA code with the performance characteristics of a
GPU in mind; this is discussed in more detail in Section 2.5. PGI has recently developed a
parallelising Fortran to CUDA compiler [PGI09] based upon their existing parallelising compilers.



2.5. RELATED WORK 23

2.5 Related Work

Russell et al. [RMKB08] describe a scheme called DESOLA for transparent cross-component
optimisation of client applications of a linear algebra library, through loop fusion [BGS94], array
contraction [SXWL01] and parameter specialisation [CN96] optimisations. The authors imple-
ment a runtime code generation and caching method based on the active library [CEG+00, VG98]
paradigm, in which the performance of a client application is improved through runtime context-
sensitive optimisations within the library. A key innovation here, and one which inspired our
work, is the use of delayed evaluation to construct a DAG of primitive operations at runtime from
which cross-component optimisations can be planned. By intercepting library calls which return
concrete results from a computation – forced evaluation points – optimised code can be executed
instead of the delayed chain of primitives. Our visual effects library methodology in Chapter 3 and
the space/schedule optimisation work in Chapter 4 shares much in common with this approach but
differs in two regards. Firstly, we move the code generation stage to a pre-deployment step where
the costly process of generating and compiling optimised code can be done offline. The implica-
tion of this is that we are unable to specialise parameters that may change post-deployment, while
DESOLA is able to do this. However, since such specialisation would involve code generation
and compilation the costs could not be amortised by caching unless they changed infrequently. We
do specialise parameters that are identifiably static as discussed in Section 3.6.1. Secondly, our
schedule optimisations are more advanced in using loop shifting [BGS94] to mutate dependence
structures in a way which allows majority loop fusion with few unfusible fragments. Similarly,
we contract transient arrays to smaller arrays – rather than simply to scalars – when that is the
optimum achievable contraction. The method of optimisation also differs in an interesting way;
DESOLA uses the TaskGraph [BHKM03] library which incorporates code transformation features
from the SUIF [WFW+94] compiler infrastructure. Our approach relies on the ROSE [SQ03]
source-to-source compiler for constructing and transforming kernel representations, and for code
generation.

Howes et al. [HLKF08, HLDK09] tackle the management of data movement to/from devices
with software-managed memories, focusing on those with limited memories that require contin-
uous runtime streaming to keep computational units occupied. Devices in this class include the
Cell, with a small memory region local to each Synergistic Processing Element (SPE) [Hof05], and
CUDA GPUs, with a small shared memory region in each multiprocessor [LNOM08, NBGS08].
The authors pursue a method for automating the management of data movement into and out of
these limited memories, called Æcute. Their approach has similar requirements of information
about data dependence and memory access patterns to our own. These needs are satisfied by
programmer-supported metadata annotations, in the form of access/execute descriptors, which
capture information about the memory access patterns and scheduling requirements of computa-
tional kernels. These are analogous to our constructs of indexers and functors (Chapter 3) and
are similarly expressed in C++ source code. Metadata is generalised in this work beyond our
approximations of loop-carried dependence and spatial filter memory access patterns, into arbi-
trarily complex mappings, but no practical applications for this level of detail are described. Our
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work is indistinguishable in ideals but divergent in implementation and in the role of metadata.
Æcute is implemented as a runtime library that intercepts data accesses and initiates asynchronous
DMA transfers to keep a continuous stream of data in the small amount of available space. We
opted instead for a hybrid runtime/static code generation scheme due to our needs for schedule
and kernel transformations, which would be expensive to apply and recompile at runtime without
a caching mechanism that would complicate software distribution and deployment. Convergence
of our research lies in the generalisation of data dependence and memory access metadata. We
are still getting to grips with the applications of metadata at different levels of abstraction (see
Sections 3.3 and 7.5) but believe there is a generalised definition which could meet the needs of
both threads of research.

Baskaran et al. [BBK+08] present parallelisation and optimisation extensions to the PLuTo
[BHRS08] compiler framework for SIMT [NBGS08] architectures. PLuTo exploits the polyhedral
model (Section 2.3.5) for unassisted C parallelisation and data locality enhancement. Extension
to SIMT code generation is primarily a task of programming the hierarchical memories efficiently
and modifying tiling and loop unrolling optimisations [BGS94] to suit the SIMT execution model.
The approach is very different from our own and relies on a fusion of traditional compiler analyses
and low-level transformations with the polyhedral model to assist higher level transformations.
Similarities to our work lie mainly in the SIMT memory optimisations targeted to improve the
bandwidth and latency of data accesses from global and shared memory; e.g. through coalescing
and shared memory staging. The authors exploit the low-level optimisation capabilities of the
PLuTo framework to perform loop unrolling and sub-thread-block tiling. This is a weakness of our
approach since we do not have enough information about a kernel to tackle kernel optimisations
of this kind. There is no evidence, however, to suggest that the parallelisation functionality is able
to match the serialisation-breaking parallelism enhancements discussed in Section 6.1.5; a key
strength of our methodology. Results are presented for simple variations of transpose, matrix and
vector multiplication; codes that are well-suited to traditional compiler analysis. It is not clear if
the ideas are scalable to the complex kernels that we deal with in this thesis.

Püschel et al. [PMJ+05] describe a domain-specific optimised code generation framework for
signal processing algorithms, which they call SPIRAL. Their key innovation is to begin from an
algebraic description of the algorithm, in which analysis and optimising transformations are easy
because the representation is at a high-level. For example, rather than generating code for two
spatial filters and then attempting to fuse them, one could compose the mathematical represen-
tation before any implementation has been created. Implementation-level optimisations, such as
parallelisation and loop unrolling, benefit from the clear information about the algorithm recorded
in its algebra. This is similar to our use of structured metadata to record information about algo-
rithms that would otherwise be difficult to recover from code. SPIRAL is more restrictive in the
algorithms it can express – for example, there is no support for moving averages – but the strong
domain-specificity gives rise to a large array of static and dynamic optimisations for discrete lin-
ear signal transforms, with very favourable performance. The authors discuss a similar dilemma
to the one which we face: of finding a more generic structured representation of algorithms with a
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set of portable optimisations. Our research is one step in this direction and a good place to begin
exploring the difficulties in transitioning domain-specific optimisations to wider applications.

Donaldson et al. [DRLC08] present a semantic annotation methodology and optimising com-
piler for the parallelisation of C++ code fragments. The key innovation is the use of block seman-
tics to mark statements involving accesses to externally defined arrays as free of true dependence,
in order to sidestep the difficulties of precise dependence analysis in the presence of pointer alias-
ing. This is similar to our use of constructs to communicate information about data dependence
directly to the compiler, but with far less rigid requirements on application structure. Paralleli-
sation is implemented very differently from our own methodology; user annotations hint at par-
allelisable loops and speculative execution is used to create parallelism where iterative patterns
cannot be determined statically. These semantics are further used to assist in staging data through
hierarchical memories, which we achieve with memory access metadata. This approach is less
invasive to the client application code than our own method and would, in that regard, better meet
our goals. However, the substantially modified language semantics implied by an annotated block
are not necessarily well represented by only a minor modification of the source code. Furthermore,
information about the patterns of memory access is limited with these annotations alone.

Seinstra et al. [SK04] describe the Parallel-Horus project, a drop-in replacement for the es-
tablished Horus [Koe02] image processing library with data- and task-parallel extensions. The
authors employ an algorithm representation based upon image algebra [RW96], citing previous
work [MCB+99] which exploited this in an active library [CEG+00, VG98] for SMP parallelisa-
tion. They note concerns about this earlier work in the limited scope of collected graph fragments
between delayed evaluation force points, which may inhibit whole-program optimisation if they
are of significant number. Our research has similar limitations in scope between visual effects
which, in a complete digital composition, may be written by competing vendors and would not be
likely to take part in cross-component optimisation. Image algebra is cited as a domain-specific
subset of algebra in which a small number of primitive classes can express the majority of image
processing algorithms; analogous to our classification of algorithms with a set of common data
dependence and memory access patterns. The implementation described shares features with our
own framework, through a common representation of algorithms as templated C++ classes with
parameterised features and a kernel. The approach described in the paper is distinguished by the
use of hardware performance models to adapt the parallelisation scheme for different architec-
tures. We currently use a limited set of runtime parameters (e.g. the CUDA Compute Capability
parameters described in Section 6.2) to tune parallelisation but feel that performance models are
too rigid. In the future we plan to explore self-tuning optimisations.

Jamieson et al. [JDW+92] undertook an early study of a cross-architecture framework for
the parallelisation of computer vision algorithms. The authors were interested in mapping these
algorithms to contemporary parallel architectures, which consisted of SIMD CPUs in SMP con-
figurations, while isolating parallelisation expertise in a software framework. They make the
familiar observation, albeit in a slightly different domain, that the regular structure of computer
vision algorithms could assist in the construction of a domain-specific optimising programming
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framework. A number of algorithm characteristics are identified which could assist in paralleli-
sation and algorithm-device mapping; including patterns in data dependence and memory access
patterns which we record in metadata. Further similarity can be found in the representation of
tasks – analogous to a visual effect (Section 2.2.2) – as cyclic directed graphs of primitives. Our
work is distinguished by optimisations beyond parallelisation, and by parallelising transformation
for many more threads than were needed at the time of this publication.

Sérot et al. [SG02] revisited the problem of parallelisation of computer vision algorithms
with the SKIPPER project, building upon algorithmic skeletons [Col91] to present a functional
programming interface with well-defined semantics. Algorithmic skeletons inspired, and are
analogous to, our concepts of functors with indexers (Chapter 3). Our representation is a hy-
brid of functional and imperative programming, to selectively exploit benefits of both paradigms,
whereas the authors of this paper pursued a purely functional approach. The most recent incar-
nation of SKIPPER records a data-flow graph of primitives and the dependencies between them;
identical to our approach. As in earlier work, this paper is primarily concerned with the problems
of distributed parallelisation and communication; not of local kernel optimisation. Our research
does not focus on distributed memory architectures because this field is very mature, with highly
scalable frameworks already in industrial use.

2.6 Concluding Remarks

We have covered a wide selection of background material and related research in this chapter. A
subset of these publications have been chosen to form the foundations for this research project
from which we can build upon to achieve our objectives. What follows is a selection of pub-
lications that inspired the key underlying features of our computational framework described in
Chapters 3, 4, 5 and 6, with justification for the achievement of our goals in each case.

• Bastoul [Bas04]. The CLooG library embodies a substantial amount of polyhedral scanning
research to deliver a fast, production-quality (see GCC 4.4) loop transformation framework.
We translate a metadata representation of loop nests and data dependence into the polyhe-
dral form, in which the performance-critical space/schedule optimisation is an instance of
the already solved scanning problem.

• Beckmann et al. [BHKM03]. Runtime code generation plays a key role in a semi-offline
optimisation phase of our framework. While we chose not to move the complete opti-
misation process to runtime, as advocated by the authors in this paper, a partial runtime
phase greatly simplifies the collection of program metadata and specialisation of appropri-
ate algorithm implementations. By limiting specialisation to non-variable parameters, and
developing some novel ideas to adapt to some variable parameters, we reap many of the
benefits of runtime code generation without the cost of compilation.

• Cole [Col91]. Our visual primitive design borrows heavily from the ideas developed in
algorithmic skeleton research. Skeletons carry the benefits of functional programming to
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imperative languages, where the clear computation and communication structures trivialise
the problem of parallelisation for modern SIMD and SIMT architectures.

• Czarnecki et al. [CEG+00]. The metaprogramming active library concept underpins our
methodology of applying complex optimisations to client applications without modifying
them or requiring performance expertise on the developer’s part. Leveraging the active
library interface at runtime, through delayed evaluation, enables our library to build infor-
mation about algorithm context without source code analysis.

• Kelly et al. [KBFB01]. Previous work on cross-component optimisation and dependence
metadata heavily influences our component-oriented visual effect design and metadata en-
capsulation in indexers. Reusable component-based programming matches the structure of
a visual effect well and is thus easy and natural for algorithm developers to work within.
Dependence metadata plays a key role in numerous optimisations developed in this thesis.

• Schordan et al. [SQ03]. ROSE forms the parsing, transformation and unparsing frame-
work used to implement high-level source code translations and optimisations. A source-
to-source approach makes for simple integration into any development workflow and allows
us to leverage the existing low-level optimisations provided by vendor compilers.

• Song et al. [SXWL01]. The memory reduction optimisation proved to be a turning point in
our optimisation research. Visual effects algorithms are frequently memory intensive and
naturally structured as graphs of independent loop nests. This was an ideal opportunity to
explore the role of metadata in memory reduction and the resulting performance gains were
highly beneficial to our goal.



Chapter 3

Metadata-Augmented Single-Source
Framework

3.1 Introduction

This chapter presents our first contribution: a domain-specific data-parallel programming frame-
work with metadata augmentations to support the code generation and optimisation techniques
discussed in Chapters 4, 5 and 6. We begin by formalising a set of constraints upon the visual
effects domain to focus our study upon a subset of key algorithmic patterns. Next, we outline a
set of metadata which encapsulates the data dependence and memory access structures of each
algorithm for use in analysis-free code transformations. This is followed by a detailed discus-
sion of the framework implementation and the scalar C code generation process employed in
the associated source-to-source compiler; in subsequent chapters we build upon this compiler in-
frastructure. The chapter concludes with a study of two visual effects implemented within this
framework and demonstrates speed-ups of 1.4x–2.2x from identity code generation and static spe-
cialisation. The material in this chapter is based upon a development of previously published
work [CKPN07, CHK+09].

Whilst reading the forthcoming sections, the reader may wish to refer forwards to Figures 3.2,
3.3 and 3.4 to see how the ideas discussed within fit into our framework design. Section 3.4
explains this design in detail and illustrates how these ideas are realised in our prototype software.

3.2 Constraints upon the Visual Effects Domain

In Section 2.2 of the preceding chapter we outlined the classes of algorithms constituting a visual
effect. This definition is suitable for expressing a wide range of visual effects but is overwhelming
in its scope for optimisation. Fortunately, a large class of effects can be expressed within a much
narrower domain definition. Throughout this thesis our study will focus upon this subdomain, and
consideration of the full domain will be limited to contextual discussion and proposals for further
work. We now formalise the constraints which define this subdomain and justify our decisions.

28
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Constraint 3.2.1 (Data Type) A component in a digital image is of type IEEE 754 single-precision
floating-point.

Digital images are typically comprised of one of a wide range of data types – such as unsigned
char, signed short, signed int, float or double – in disk storage and in memory. The type is
always uniform throughout the digital image. Constraint 3.2.1 narrows our focus to float data
types. This is by far the most common data type used in VFX pipelines, owing to its favourable
balance of dynamic range, size and processing throughput. There is no fundamental limitation
in the ideas presented in this thesis which would prevent them from being applied to other data
types, but float is the most suitable type in terms of space and performance for the CPU and
GPU instruction sets we wish to program. A possible branch of further work might explore the
performance opportunities of reduced precision (e.g. unsigned char on a CPU or half on a GPU)
when float is unnecessarily precise, as it often is in VFX algorithms.

Constraint 3.2.2 (Digital Image Layout) A digital image is stored as a 1D array of pointers to
2D channel arrays, whose rows may be padded to achieve correct row-base alignment.

We restrict our interest to the planar image layout discussed in Section 2.2.1 for the reasons
outlined in that section. In addition, we permit image row padding to avoid row-to-row address
aliasing problems and to satisfy the data alignment requirements of some ISAs. Most VFX pro-
cessing is already done with padded planar image formats so this constraint does not significantly
limit the applicability of our research.

Constraint 3.2.3 (Image Reference Aliasing) References to digital images within a visual prim-
itive must not alias each other.

A common space and performance optimisation in image processing is to perform in-place
processing operations: reading from an image and overwriting the data within it. This reduces
memory utilisation and cache pressure, but optimises prematurely by introducing additional data
dependencies which can block other optimisations. Constraint 3.2.3 enforces unique images to
each input and output of a visual primitive; sharing can only occur between visual primitives.
Should an in-place optimisation be desirable, we can reintroduce it in code generation.

Constraint 3.2.4 (ROI / DOD Alignment) The ROIs and DOD of a visual primitive are centred
around location (0,0).

In generalised digital composition the alignment of a visual primitive’s ROI with respect to its
DOD is unrestricted; this is useful in e.g. shifting an image region. Furthermore, there need be no
correlation between the ROIs and DODs of different visual primitives within a composition. This
is typical of a need for varying overlaps of effects on different parts of an image. Constraint 3.2.4
enforces a common centre for all ROIs and DODs at the expense of this flexibility. It is a nec-
essary constraint to minimise the combinatorial explosion encountered in the shifted loop fusion
transformations described in Chapter 4. One might be concerned about the limiting impact this
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may have on arbitrary digital composition. In fact, any such composition can be broken down into
subcompositions in which the DODs of constituent primitives share a common centre. Addition-
ally, the correspondence between the ROIs and the DOD of a visual primitive can be restored by
offsetting input images by an appropriate amount, as this would not affect the loop structures in
the generated code.

Constraint 3.2.5 (ROI / DOD Size) The ROIs of a visual primitive must be either the same size
as its DOD or symmetrically grown in one or both dimensions.

In Constraint 3.2.5 we are establishing the input data needs of an algorithm to produce a
specified amount of output. Algorithms with a 1:1 mapping of input to output data elements
will have ROIs of identical size to their DODs. The provision for a ROI to be symmetrically
larger – that is, larger by equal amounts on both sides – than the DOD is specifically intended
for spatial filters (Definition 2.12), which consume a small region of data beyond the DOD within
their filter radii. Symmetricity is a natural property of spatial filters and a requirement to avoid
combinatorial explosion in the shifted loop fusion transformation discussed in Chapter 4. One can
certainly conceive of algorithms which do not satisfy this constraint – and we may simply have
to avoid schedule optimisation in those cases – but it is appropriate for a wide range of visual
primitives, including those studied in this thesis.

Constraint 3.2.6 (ROI / Image Correspondence) The ROIs of a visual primitive must be equal
to or smaller in size than their corresponding images.

It is common for visual primitives to require more image data than is available to a digital
composition. This data is artificially constructed on-demand through a predefined edge method –
such as set-to-black, clamp-to-edge, reflect, etc. – associated with the primitive. Constraint 3.2.6
requires that there is sufficient real image data for the visual primitive to process; where this
is not the case, input images are grown beforehand with a built-in visual primitive. We chose
this constraint to alleviate the computationally expensive conditional tests – or fragmented loop
structures – required to construct missing data on-demand. The disadvantage of this approach is
that it requires more memory, which may be unsuitable for primitives with large ROI:DOD ratios.

We have recently experimented (in work not presented in the thesis) with using lookup tables
in place of conditional tests or loop fragmentation to good effect, and in future work this constraint
may be alleviated. Figure 3.1 illustrates the use of a lookup table to determine when memory
accesses fall outside of the image data and to provide pre-generated edge values in these cases.
Since the lookup tables are small, even for large images, we could reasonably expect them to
reside in a low cache level. Preliminary experiments showed that algorithm performance with
this access method was very close to that of the pre-grown image method, although the impact of
increased cache contention has not been assessed in a wider context.

Constraint 3.2.7 (Visual Primitive Parallelism) The kernel of a visual primitive must have no
loop-carried dependence when iterated across all pixels of an image, or it must exhibit loop-
carried dependence in one axis only.
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Figure 3.1: An alternative image indexing method with which we have begun preliminary ex-
perimentation. An 8x8 image is accessed through a 14x14 ROI defined by (−3,−3)→ (10,10).
The X and Y coordinates are clamped via two small lookup tables (LUTs) in place of expensive
conditional branches. In practice, the Y LUT can directly supply an image row pointer. Similar
formulations exist for other edge methods such as set-to-black, reflect, etc.

Our final constraint is the most restrictive of all. VFX algorithms exhibit a wide variety of data
dependence structures. Most of these algorithms – or, at the very least, alternative formulations
of them – exhibit substantial amounts of parallelism. However, only a subset is entirely absent of
loop-carried dependence. Constraint 3.2.7 provisions for one class of algorithm that is not fully
parallel: the moving average (Definition 2.11). We expanded our study to incorporate this class
because one particular moving average algorithm, the box blur, is used frequently in VFX. This
algorithm can be formulated as a fully parallel spatial filter, but a variant with optimal memory
access complexity needs to maintain serialised state along the rows or columns of an image. Much
of our planned work involves relaxing Constraint 3.2.7 to support a wider class of visual effects.
However, it is not entirely clear how well the optimisations described in Chapters 4, 5 and 6 would
work in the presence of more complex dependence structures and this requires further study. In
Section 7.4 we briefly discuss some post-thesis industrial developments in this area.

3.3 Metadata Definition

Before exploring the framework in detail it is worth outlining our design goals. The key innovation
in this research is the use of metadata: high-level information about an algorithm embedded
alongside its implementation. By integrating metadata into the framework frontend we are able to
collect it during code generation and use it to direct and assist optimising code transformations. A
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key measure of success is for these optimisations to be analysis-free. Code analysis – recovering
high-level information from a program implementation – is the primary barrier to optimisation of
object-oriented programs in modern compilers. By sidestepping analysis with metadata we are
able to focus on the optimisations themselves, rather than the establishment of their necessity or
correctness. It is important to note that the correctness of this metadata for a given algorithm
can be checked at runtime to assist debugging. Each of the following subsections outlines a class
of algorithm metadata which we found useful in code generation and optimisation. All of this
metadata is embedded within the framework frontend, described in Section 3.4.1, and is used in
the optimisations discussed in Chapters 4, 5 and 6.

3.3.1 Primitive Context

Recall from Definition 2.9 that a visual effect is comprised of a connected DAG of visual prim-
itives and interconnecting images. Two such DAGs are shown in Figure 3.2: one which we saw
earlier in Chapter 2, of the wavelet-based degraining visual effect, and another for an (unpub-
lished) diffusion filtering visual effect. Both of these effects were developed commercially by
our industrial collaborators, The Foundry, and have constructions that are representative of many
different visual effects. The diffusion filtering effect contains proprietary algorithms and thus for
reasons of non-disclosure we limit their descriptions to point/filter/moving average classifications.

Metadata 3.3.1 (Visual Effect DAG) A DAG structure with node properties referencing visual
primitives and algebraic expressions of their DODs, and edge properties referencing image han-
dles and the ordinals of the input and output in the pairs of visual primitives which they connect.

The visual effect DAG constitutes an important piece of metadata because it provides context
for the execution of a visual primitive. Inter-primitive optimisations, such as schedule optimisation
(Chapter 4) and redundant transpose elimination (Chapter 6), require this information to determine
where and how to apply their transformations. For example, a loop fusion optimisation between
a spatial filter and an adjacent point primitive might be beneficial while a similar optimisation
between adjacent spatial filters may not, due to the larger temporal reuse distance and contracted
working set size. DAG metadata is stored internally as a dynamically constructed, traversable
graph structure. It is implicitly correct due to its method of construction and needs only cycle
detection to assert conformity.

The extent of the DAG is bounded by evaluation force points in the client application. An
important consequence of this is that within effects whose DAGs grow dynamically until a data-
derived termination condition is met, the complete DAG cannot be known and optimised in ag-
gregate. The smaller DAGs between evaluation force points can still be optimised in isolation.

3.3.2 Data Dependence

As specified by Constraint 3.2.7, a visual primitive must either have no loop-carried dependencies
or have loop-carried dependence in the horizontal or vertical axis. Constrained dependence blocks
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(a) Wavelet-based Degraining [SCW05] (b) Diffusion
Filtering

Figure 3.2: DAG constructions of two commercially developed visual effects. The visual effect
DAG is one piece of metadata recorded in the frontend and used in optimisation. Each node is
associated with a parameterised visual primitive. The edges between nodes indicate the flow of
image data from primitive to primitive.

some optimisations, such as vectorisation (Chapter 5) and coalescing (Chapter 6), and necessitates
others, such as split- row/column parallelisation (Chapter 6). However, it plays an important role
in reducing algorithm complexity by permitting partial data reuse. By encoding the algorithm
dependence – as fully parallel, or with a loop-carried dependence and its corresponding axis – we
can ensure that optimisations do not violate dependence and, where necessary, employ additional
optimisations to counteract its negative effects.

Metadata 3.3.2 (Visual Primitive Dependence) A static classification of each visual primitive
as fully parallel or moving average (Definition 2.11) and, in the latter case, a dynamic record of
the serialised axis.

To verify that dependence metadata is correct, one needs checks to assert that:

• Input images are read from and not written to, and vice versa for outputs.

• No variables external to the primitive representation (e.g. globals, variables accessed through
pointers, etc.) are written to.

• Only non-const class member variables are written to by the visual primitive representation
(see Section 3.4.1) when moving average metadata is specified. None must be written in the
absence of stated loop-carried dependence.
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(a) Point (0D) (b) Spatial Filter (1D) (c) Spatial Filter (2D)

Figure 3.3: Local memory access patterns currently permitted by our memory access metadata.
Each pattern is localised around a current iteration point in the image. For spatial filters, both
the axis (in 1D patterns) and size of the region inside which memory access is permitted are
recorded dynamically. This allows a uniform representation of horizontal/vertical spatial filters
with dynamically tunable filter bounds to e.g. change a brush size.

Simple syntactic analyses in the code generator are sufficient to check each of these points
and to warn the programmer if the metadata does not agree with the implementation.

3.3.3 Memory Access

Constraints 3.2.4 and 3.2.5 restrict the possible patterns of memory access in a visual primitive.
We further constrain memory access by annotating the inputs and outputs of each visual primitive
with metadata describing the patterns of access which will be made to image data through them.
Our pattern classification is illustrated in Figure 3.3. Note that only the bounds of permissible
localised access is defined; the algorithm is free to make random accesses within that region.
The choice of dimensionality is made statically, since the semantics of the kernel must change to
support different degrees of freedom. Both the axis (for a 1D region) and the bounds of a region
are chosen at runtime to enable user-tunable primitive variants.

Metadata 3.3.3 (Visual Primitive Memory Access Pattern) For each input/output of a visual
primitive: a static choice of per-pixel or per-component and the dimensionality of the local access
region, and a dynamic record of the axis of freedom (for one degree of dimensionality) and size of
the access region (for one and two degrees of dimensionality).

Verification of this metadata is most easily performed by intercepting image accesses at run-
time and checking that they lie within the specified local region. Where the specified size of the
region appears to be conservative, the runtime system may issue a warning to the user that this
may reduce the effectiveness of temporal optimisations.

Memory access metadata is used by space and schedule optimisation (Chapter 4) to determine
optimal loop shifts and array contraction sizes. SIMD optimisation (Chapter 5) makes use of this
metadata to determine vector load alignment. The metadata is further used by SIMT optimisation
(Chapter 6) to identify memory hierarchy staging opportunities and to bound them precisely.
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Figure 3.4: A block-level overview of the domain-specific VFX single-source representation, code
generation and optimisation framework.

3.4 Framework Design

With a clear definition of the constraints and goals of our framework set out in the preceding sec-
tion, we now turn our attention to the framework design and its implementation. During the three
year period of research leading to the creation of this thesis we evaluated a number of different
designs and progressively refined them to support new algorithms, backends and optimisations,
and to incorporate feedback from our industrial partners. The following description is of the final
prototype framework, at the time of writing of this thesis, and the reasoning behind its design deci-
sions. Substantial refinements have been made to the framework during its transition to industrial
software, mainly to support more complex algorithms, but these are not discussed here and have
not yet been subjected to our rigorous performance tests.

A high-level overview of the framework is given in Figure 3.4. Code generation and optimisa-
tion is built around a hybrid runtime/static paradigm. We have built upon ideas from pure runtime
solutions (e.g. [RMKB08]) but added an offline phase to alleviate the expense of runtime com-
pilation. The offline code cache is populated during application development and shipped with
the product in binary form, from which composite fragments for different devices can be located
and executed at runtime. Population occurs during development test runs of the client application,
where the availability of dynamically collected DAG metadata (Metadata 3.3.1) enables speciali-
sation of fixed sequences of visual primitives in the effect. The polyhedral loop optimisation path
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is only invoked during CPU code generation since we have not yet developed an automatic map-
ping of arbitrary loop nests to the threads of a SIMT architecture (see Section 6.3 for discussion).
Preliminary work is underway on mapping a subset of loop nests – for example those with perfect
nesting – so that simple schedule optimisations can be translated to the GPU.

We now describe the main features of the framework frontend in detail.

3.4.1 Visual Primitive Representation

For a formal definition of the framework constructs, please refer forwards to Appendix A.
Our choice of algorithm and metadata expression was driven by the objective which required

our framework to integrate seamlessly with the development workflow (see Section 1.2). Existing
algorithms in the industrial development process were implemented and debugged in C++. We
chose an embedded domain-specific language approach [Hud96] to maintain this workflow whilst
augmenting it with the facilities we needed to encode metadata. Other possible approaches, such
as an external domain-specific language or preprocessor annotations, were considered too disrup-
tive to have a realistic prospect of industrial take-up. The disadvantage of the embedded DSL is
that C++ is a difficult language to parse (both syntactically and semantically) and we would need
a powerful tool to extract the metadata.

A visual primitive is expressed as a C++ class with a data-parallel kernel and object metadata
annotations. The representation for the discrete wavelet transform (DWT) [She92] is shown in
Listing 3.1. DWT is normally implemented as a two-dimensional finite impulse response (FIR)
filter to divide a signal (in this case an image) into two frequency domains. Here, we use a more
cache-efficient one-dimensional form which can be composed in both axes to implement the Haar
transform [Chu94]. This is an example of an algorithmic optimisation which our framework is not
designed to automate. Once the developer conforms an algorithm to a particular implementation,
we control only the execution schedule and the movement of associated data. SPIRAL [PMJ+05]
is an example of a framework which does implement high-level mathematical algorithmic trans-
formations of this kind by encoding the mathematical form and its transformation rules.

The data-parallel kernel serves a similar purpose to the Intel Threading Building Blocks’
(TBB) parallel for [Rei07] callback function. It is invoked iteratively across the DOD to com-
pute each pixel in the output image(s). Separating iteration control from the algorithm body in
this way enables loop optimisations, including parallelisation and fusion, within strictly controlled
and explicitly annotated iteration structures. The iteration structure in Listing 3.1 is the simplest
– annotated as eParallel for fully parallel – of a number of possible structures, such as moving
average (Definition 2.11) or reduction (e.g. TBB’s parallel reduce [Rei07]). Memory access is
similarly abstracted through metadata-annotated Indexer objects to form a ROI/DOD correspon-
dence in the absence of explicit iteration. Each indexer is annotated with read/write semantics
(eInput or eOutput), granularity (eChannel or ePixel) and degrees of local freedom (e0D, e1D or
e2D). The notation Indexer(), Indexer(ds) and Indexer(ds,dt) indicates read or write array access,
with optional ds and dt offsets in the case of spatial filter indexers (see Figure 3.3).

In addition to metadata annotations describing the static structure of the algorithm, two dy-
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class DWT1D : public Functor<DWT1D, eParallel> {
Indexer<eInput, eChannel, e1D> Input;
Indexer<eOutput, eChannel, e0D> HighOutput;
Indexer<eOutput, eChannel, e0D> LowOutput;
mFunctorIndexers(Input, HighOutput, LowOutput);

DWT1D(Axis axis, Radius radius) : Input(axis, radius) {}

void Kernel() {
float edge1 = Input(-Input.Radius);
float centre = Input();
float edge2 = Input(Input.Radius);

float high = (centre - (edge1 + edge2) * 0.5f) * 0.5f;

HighOutput() = high;
LowOutput() = centre - high;

}
};

Listing 3.1: The one-dimensional discrete wavelet transform [She92] in a C++ visual primitive
representation. It is valid, compilable code and operates in the runtime-parameterised horizontal
or vertical axis. Static and dynamic object metadata is underlined.

namic parameters – axis and radius – modify the behaviour of the Input indexer to apply the local
offset ds in the horizontal or vertical axis and to adjust the spatial limits of local access. The
former improves maintainability by enabling a uniform implementation of axis-agnostic spatial
algorithms, instead of requiring two separate but almost identical primitives for the horizontal and
vertical implementations. The latter is used in schedule optimisation (see Chapter 4) to dynami-
cally tune loop shifting and array contraction factors in order to minimise data reuse distance.

A second visual primitive, for the box blur algorithm, is shown in Listing 3.2. This kernel has
eMoving dependence, representing a moving average (Definition 2.11) with a serialised axis. The
serialised axis is chosen dynamically when constructing the BoxBlur object to enable a uniform
representation for both horizontal and vertical forms. In addition to the kernel function, which
reads and writes the non-constant MovingSum state member variable, a roll-up function is exe-
cuted at the beginning of each serialised iteration to initialise state variables. For a box blur, this
involves constructing a partial sum which can be incrementally modified by subtracting a value
that falls outside the filter window and adding a new value that falls within at each iteration point.

3.4.2 Visual Effect Construction

A single visual primitive is rarely complex enough to implement a complete visual effect by
itself. Rather, it is intended to encapsulate a minimal reusable unit whose inputs and outputs
may be chained with other primitives – statically or dynamically – to build a complex composite
operation. The visual effect DAGs in Figure 3.2 are comprised of groups of primitives with image
connections between them. The only form of connection permitted between primitives are images
carrying intermediate data. Similarly, the source and sink nodes of a DAG carry image data into
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class BoxBlur : public Functor<BoxBlur, eMoving> {
Indexer<eInput, eChannel, e1D> Input;
Indexer<eOutput, eChannel, e0D> Output;
mFunctorIndexers(Input, Output)

BoxBlur(Axis axis, int radius)
: Functor<BoxBlur, eMoving>(axis),
Input(axis, radius),
MultBy(1.0f / float(radius * 2 + 1))

{}

void RollUp() {
MovingSum = 0.0f;
for(int i = -Input.Radius; i <= Input.Radius; ++ i)
MovingSum += Input(i);

}

void Kernel() {
MovingSum -= Input(-Input.Radius - 1); // Subtract element outside filter.
MovingSum += Input(Input.Radius); // Add new element inside filter.
Output() = MovingSum * MultBy; // Divide for mean of filter window.

}

const float MultBy;
float MovingSum;

};

Listing 3.2: The one-dimensional box blur expressed as a visual primitive. An optimal implemen-
tation is expressed as a moving average (Definition 2.11), hence the roll-up and kernel functions
to build and maintain a partial sum respectively along the axis.

and out of a visual effect.
Listing 3.3 shows the complete construction of the wavelet-based degraining [SCW05] visual

effect from visual primitives. The DeGrainRecursive function takes image data as input (to form
a source node) and produces image data as output (to form a sink node). As its name suggests, the
function calls itself recursively to chain small groups of primitives into a larger group. Parameters
to some of these primitives change at each level of recursion to select different wavelet frequency
bands. The Image object does not necessarily carry concrete data. A client application would sup-
ply concrete image data to this function, but within the function, and between levels of recursion,
empty image handles declared on the first line of the function connect the primitives together. The
precise dimensions of these images are not computed until runtime and, indeed, following space
optimisation (Chapter 4) may not exist at all.

Each primitive object is of the class type described in the preceding section and uses over-
loaded C++ operators to implement delayed evaluation. Runtime construction of the visual effect
DAG bypasses the difficult problem of deriving primitive connections through static code analy-
sis. For example, in Listing 3.3 the connections between levels of recursion cannot be determined
statically without induction variable analysis [Wol95] on the level counter. By exploiting runtime
traces of delayed evaluation calls, the problem of building the DAG becomes greatly simplified.
A disadvantage of this approach is that conditional branches in the DAG – for example, to switch
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Image DeGrainRecursive(Image input, int level = 0) {
Image HY, LY, HH, HL, LH, LL, HHC, HLC, LHC, LLC, pSum1, pSum2, output;

DWT1D hDWT(eHorizontal, 1 << level); // Horizontal, radii [1, 2, 4, 8]
hDWT(input, HY, LY);

DWT1D vDWT(eVertical, 1 << level); // Vertical, radii [1, 2, 4, 8]
vDWT(HY, HH, LH);
vDWT(LY, LH, LL);

Core core;
core(HH, HHC);
core(LH, LHC);
core(HL, HLC);

Add add;
add(HHC, LHC, pSum1);
add(HLC, pSum1, pSum2);

// Go to the next level of recursion or terminate.
LLC = (level < 3) ? DeGrainRecurse(LL, level + 1) : LL;

add(pSum2, LLC, out);
return out;

}

Listing 3.3: The recursive wavelet-based degraining [SCW05] visual effect expressed in C++.
Visual primitives are chained together with images and placeholder image handles to form a DAG.

a subset of primitives on or off at runtime – require multiple invocations with different configu-
rations to generate code for every path, whereas static analysis could conceivably build multiple
DAGs concurrently. Furthermore, neither static nor dynamic analysis can cope with graphs that
extend until a dynamic condition is reached – e.g. to implement an iterative solver. In the dynamic
case an evaluation force point is reached before the next part of the graph can be constructed.

3.5 Execution Strategy

The intended use of this framework is to construct optimised code sequences corresponding to
parts of a visual effect DAG or whole DAGs for deployment and reuse at runtime. In addition
to this, we implemented a simple execution method which could be used to validate the images
produced by the optimised code and provide a baseline performance measure from which we may
estimate the gains made by different optimisations. This method makes no use of the metadata
described in Section 3.3 and resembles existing industrial solutions with some enhancements.
These enhancements are described in detail in the following subsections.

3.5.1 DAG Serialisation

Given a visual effect DAG construction, such as the ones in Figure 3.2, it is trivial to construct
a graph algorithm which will visit each of the constituent visual primitives and execute them
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Evaluate(SinkNode)

function Evaluate(Node) {
if(Node.Evaluated)
return

// Any order, e.g. first-to-last
foreach(InputNode in Node.Inputs)
Evaluate(InputNode)

AllocateOutputs(Node)
Execute(Node)
FreeUnusedInputs(Node)

Node.Evaluated = true
}

Listing 3.4: Pseudocode for a space-oblivious visual effect DAG scheduling algorithm.

while respecting the dependence ordering. One such algorithm is given in Listing 3.4. This
typically biases execution backwards along the first inputs of each node but produces a valid
serialisation of the DAG. The biggest problem with this algorithm is that it is not sensitive to the
differences in peak memory requirements of each possible serialisation which, depending upon
resource availability, may impact performance. These differences in memory requirements arise
from input nodes whose outputs are used by more than one node – so FreeUnusedInputs() cannot
immediately release intermediate data in some serialisations – or input nodes which generate
additional output images that are not relevant to the node we are trying to execute.

Finding a space-optimal serialisation of the DAG – that is, one that minimises the peak mem-
ory consumption – is a task scheduling problem with exponential complexity. One simply evalu-
ates every possible serialisation of the DAG and simulates the execution to determine how much
space it would require. For example, the DAG in Figure 3.2a has 3072 unique serialisations. Its
optimal serialisation has a peak memory requirement of 432MB when using � 73MB images,
while the least optimal solution needs 728MB. This large disparity arises in DAGs with many
branches and necessitates smart scheduling to minimise resource usage.

We found the space-optimal DAG serialisation algorithm to run in only a few milliseconds
for the 37-primitive wavelet-based degraining effect. However, it is clearly not scalable to larger
effects and we are looking towards explore heuristic-guided scheduling algorithms to find good
solutions within reasonable complexity. This problem is not considered in the remainder of this
thesis and lies outside the scope of our optimisations.

3.5.2 DOD Propagation

Recall that the DOD (Definition 2.8) of a visual primitive places spatial bounds upon the image
data being produced, while the ROI (Definition 2.7) bounds the consumed data in a similar manner.
In a typical visual effect the client application might expect the source and sink images to be of
the same size. Thus, the DOD of the sink node should equal the ROI of the source node. Because
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Inverse Dominator Walk:
Evaluate(Node)

function Evaluate(Node) {
if(Node.Evaluated or IsSource(Node))
return

Rectangle NewDOD

foreach((Edge, OutputNode) in Node.Outputs) {
Indexer ConsumingIndexer = OutputNode.IndexerFromEdge(Edge)
Rectangle ROI = OutputNode.DOD

if(IsSpatialFilter(ConsumingIndexer))
ROI.Grow(ConsumingIndexer.RadiusX, ConsumingIndexer.RadiusY)

NewDOD.Union(ROI)
}

Node.DOD = NewDOD
}

Listing 3.5: Pseudocode for an automatic DOD computation algorithm. The output DOD is prop-
agated backwards from the sink node and grown through the ROIs of spatial filters.

visual primitives with spatial filters indexers (see Figure 3.3) have larger ROIs than their DODs
this can be difficult to effect in a chain of primitives. Furthermore, managing the ROI/DOD
correlation between primitives is difficult and error-prone. Getting this wrong leads to out-of-
bounds memory accesses and other undesirable problems.

For these reasons, our framework automates DOD computation within a visual effect; hence
the use of unsized intermediate image handles in Listing 3.3. We use a graph algorithm with
an inverse dominator traversal to walk the visual effect DAG from the sink node – where the
desired DOD is known – back to the source node. This algorithm is shown in Listing 3.5. Spatial
filters cause the ROIs to inflate and this correspondingly inflates the DODs of the visual primitives
feeding them.

This algorithm is flawed, however. It is likely that the ROIs of visual primitives attached
to the source node will now need more data than there is available to them. This is a well-
known problem in image processing and is a consequence of the finite nature of practical data sets.
In our description of Constraint 3.2.6 we discussed two solutions to this problem with different
advantages. In the prototype software developed for this thesis we choose to grow source images
to match the required ROIs with the clamp-to-black edge method. This is trivially achieved by
inserting extra visual primitive nodes after the source node of a pre-written Grow type, whose
DODs are larger than their ROIs, which segments the available and missing data regions.

3.5.3 Cache-Aware Iteration

Separation of iteration control from visual primitive kernels gives us flexibility in choosing an exe-
cution order that generates the complete set of output data. To benefit most from cache prefetching
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Figure 3.5: Vertical moving average kernels have true dependence along column iterations but
only output dependence between the end of one column and the start of the next. By replicating
one state variable per column the output dependence can be eliminated, permitting row-major,
cache-friendly iteration.

we try to iterate across image data in row-major order. In the case of vertical 1D or 2D spatial
filters there will be local column-major data access, but we can reasonably expect our working set
to contain a cache line from each row, without spilling the lower cache levels, for most smaller
spatial filters.

Moving averages (Definition 2.11) are the main barrier to row-major iteration. A vertical
moving average maintains a single piece of state which it carries from the top to the bottom of
each image column. This loop-carried dependence is violated in row-major iteration order, thus
we are forced to choose the cache-suboptimal column-major execution order. For reasonably sized
images it is likely that cache lines read near the top of the image will be expelled before they can
be reused in the next column.

To alleviate this problem we note that there is a true dependence, between statements in suc-
cessive iterations of the kernel, only along the column. See Figure 3.5 for illustration. Between
columns there is a much simpler output (write-after-write) dependence because there is no data
carried across. Thus, we may still iterate across columns (i.e. row-major order) if we create one
copy of each modifiable member variable in the visual primitive for every image column and di-
rect accesses to the correct one. This comes at the cost of slightly raised cache pressure, from the
state variable array, but in practical cases is always beneficial to performance.

3.5.4 Multicore Parallelisation

Clearly an important concern in the multicore era is our parallelisation strategy. Most applications
must choose from the two pillars of parallelism: task-parallel and data-parallel processing. Data
parallelism is generally easier to exploit when it is available, and hybrids of the two approaches can
often be employed to maximise processor utilisation. In fact, both kinds of parallelism are readily
exploitable in the VFX domain but data parallelism is in such abundance that there is no need
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to consider task parallelism. We are careful to draw a distinction between the two kinds of data
parallelism commonly found in visual effects: cluster-level high-latency many-frame rendering
and low-latency workstation single/few frame preview rendering. The latter, which is the focus of
our performance research, requires sub-frame parallelism to minimise latency.

Within a single image our parallelisation strategy is to divide the DOD of each visual primitive
into horizontal or vertical strips, each of which is computed by a different CPU core. Row-striding
strips are preferred to columnwise strips because they minimise the number of boundary cache
lines which may be contended by pairs of cores or prefetched unnecessarily. Of course, careful
alignment of the boundary lines could also eliminate this. Moving averages may be partitioned
along their parallel axis; with the state replication optimisation described in the preceding section
this could be horizontal or vertical. Partitioning parallel to the state array requires one array per
thread. Partitioning at right angles needs only one state array for all threads, but cache contention
may occur at boundaries within the state array. Thus it is normal for each thread to allocate its
own local subset of the array.

3.6 Code Generation

Our code generator builds upon the ROSE [SQ03] source-to-source compiler and CLooG [Bas04]
polyhedral loop scanning library (described in Chapter 4). The majority of code generation and
optimisation techniques are deferred until later chapters of this thesis. For now, we restrict our
discussion to the task of generating C code from the C++ visual primitives. This is largely an
identity syntactic translation with simple flattening of the C++ object-oriented representation to
loops and arrays. In Section 3.6.1 we discuss a simple static specialisation optimisation which is
appropriate for this stage. An example of the code generated by this process is given in Listing 3.6:
this is a small fragment of the wavelet-based degraining visual effect.

Code generation begins by instructing ROSE to parse the effect’s C++ source code and pro-
duce an AST. For each visual primitive in the runtime-delayed visual effect DAG, the associated
primitive class in the AST is identified and passed through a syntactic translation process. The
resulting code is compiled with the Intel C/C++ 11.0 compiler, using the flags -xHost -O3 -ansi-
alias -restrict -openmp -no-prec-div, and bundled into a library for the client application to link
against. The key translation steps proceed as follows:

• Loop nest construction. Form a loop nest with a component loop (R, G, B, etc.) on the
outside – to minimise the cache working set by isolating unrelated data – a Y loop and an X
loop. Primitives with per-pixel output access do not need the component loop. The Y loop
is annotated with an OpenMP parallel for construct for stripwise parallelisation.

• Variable localisation and hoisting. All parameters and state variables in a primitive are
hoisted outside of the loop nest and made const where possible. This localises the scope of
all variables accessed by the loop nest to a single function; in particular we have observed
performance gains by localising the constant bound of the X loop.
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float *restrict *restrict arr0x131cf50 = new float *[nPlanes];
for(c = 0; c < nPlanes; ++ c) {
arr0x131cf50[c] = f17.Indexers[1]->Image->PlanesZeroShifted[c];

}
const int arr0x131cf50Stride = f17.Indexers[1]->Image->RowStrideElems;
float *restrict *restrict arr0x131cfc0 = new float *[nPlanes];
for(c = 0; c < nPlanes; ++ c) {
arr0x131cfc0[c] = f17.Indexers[2]->Image->PlanesZeroShifted[c];

}
const int arr0x131cfc0Stride = f17.Indexers[2]->Image->RowStrideElems;
gettimeofday(&before, 0);
for(c = 0; c <= nPlanes+-1; ++ c) {
#pragma omp parallel for
for(y = y1+-8; y <= y2+8; ++ y) {
for(x = x1+-12; x <= x2+12; ++ x) {

{
float centreVal = arr0x131b960[c][y * arr0x131b960Stride + x];
float highVal = ((centreVal - ((arr0x131b960[c][(y + 4) * arr0x131b960Stride
+ x] + arr0x131b960[c][(y + -4) * arr0x131b960Stride + x])*0.5F))*0.5F);

arr0x131cf50[c][y * arr0x131cf50Stride + x] = highVal;
arr0x131cfc0[c][y * arr0x131cfc0Stride + x] = (centreVal - highVal);

}
}

}
}
gettimeofday(&after, 0);
codeTimings.AddTiming(functors[17], before, after);
f17.Evaluated = true;
f17.FreeUnusedInputs();

Listing 3.6: Fragment of raw C++ code generated by our compiler (see Section 3.6) for the
wavelet-based degraining visual effect. This fragment shows one of the 37 primitive executions
in the effect: the vertical DWT1D primitive from Listing 3.1. The effects of static specialisation
can be observed here: loop bounds are partially constant (from filter radii) and array lookups are
offset by constant radii (4 and -4). This is derived from the dynamic construction in Listing 3.3.

• State variable replication. See Section 3.5.3 for details: we make hoisted, thread-local
arrays of writable state variables and modify accesses within the kernel to reference them.

• Output allocation and input deallocation. Statements are inserted before and after the
loop nest to allocate output images before writing to them and to free input images that are
no longer in use. Because input images may be shared with other primitives, we use the
visual effect DAG metadata to determine the earliest time to safely free them.

• Indexer access substitution. A simple syntactic translation replaces centralised indexer
object accesses with their corresponding reads and writes from/to image arrays.

Once this translation is complete we apply the optimisation described in the next section.

3.6.1 Static Specialisation

Static specialisation is a program optimisation which provides additional information to the com-
piler to help it generate better code. In some cases this information can be extracted by the com-
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CPU Cores L1 Data/Inst (KiB) L2 (MiB) L3 (MiB) RAM (GiB)
Xeon E5420 8 (2x4) 32/32 12 (6 per 2 cores) 0 12

Phenom 9650 4 64/64 0.5 2 8
C2D E6600 2 32/32 4 per 2 cores 0 4

Table 3.1: Hardware specifications for the three benchmarking platforms used throughout the
performance analyses in Section 3.7. The Xeon was in 2-chip SMP configuration. Both Intel
chips share partitions of the L2 cache between pairs of cores.

piler through program analysis but our code generator presents an easy opportunity to ensure that
this information is available. We are primarily interested in specialising the values of variables
containing spatial filter radii and the axes along which they act. Radii are used as offsets for prim-
itive loop bounds and as bounds for intra-kernel loops, while the axes determine the form of local
offsets in array access expressions. Specialising their values enables better loop optimisations,
such as loop unrolling [BGS94], and simplifies array access logic.

We talked earlier about the dynamic nature of spatial filter radii, which can be used to param-
eterise a spatial primitive algorithm without modifying its implementation. This is a case where
specialisation cannot occur; or, at least, not without knowing which specialisations will be needed
ahead of time.

There are other cases in which the radii of spatial filters are fixed. A good example can be
found in wavelet-based degraining, shown earlier in Listing 3.3, where the radius of the DWT
spatial filter primitive is a static parameter. 1 << level evaluates to 1, 2, 4 and 8 as the recursive
procedure executes. Thus, we could make four specialisations of this primitive. In fact, we make
eight by specialising the horizontal/vertical filter axis as well, which simplifies the array access
logic. Overspecialisation can lead to code explosion and must be done with care. In order to derive
the specialised radii from Listing 3.3 we would need induction variable analysis to determine the
extent of recursion. To avoid this complication we exploit our runtime code generation phase to
interrogate a primitive’s indexer objects for their radii.

The results of specialisation can be observed in Listing 3.6. The values 4, 8 and 12 have been
specialised and combined from static radii and substituted directly into the generated code.

3.7 Performance Analysis

To conclude this chapter we present an analysis of the framework’s performance on two commer-
cial visual effects, both before and after code generation and static specialisation. The two effects
– wavelet-based degraining, discussed in part throughout this chapter, and diffusion filtering –
are developed and sold commercially and were provided for performance experimentation by our
industrial partners, The Foundry. Each has a very different computational pattern but is similarly
constructed from smaller, reusable primitives. The visual effect DAGs for both effects were shown
earlier in Figure 3.2. Wavelet-based degraining consists of a network of smaller primitives while
diffusion filtering has fewer primitives and its performance is dominated by one, as we will see.

Our benchmarking platforms are summarised in Table 3.1. Each platform ran Ubuntu Linux
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MPixels Dimensions Reason
0.41 720x576 SD PAL
0.92 1280x720 HD (720p)
1.00 1000x1000 Near Pow2
1.56 1440x1080 Sony HDCAM
2.07 1920x1080 HD (1080p, HDTV)
2.21 2048x1080 HD (2K, 1.85:1)
3.19 2048x1556 HD (2K, 1.33:1)
4.00 2000x2000 Near Pow2
4.96 2293x2161 Prime
6.00 3000x2000 Near Half Pow2
7.02 4096x1714 HD (4K, 2.39:1)

MPixels Dimensions Reason
8.85 4096x2160 HD (4K, Sony)
9.00 3000x3000 Near Half Pow2
9.74 3656x2664 HD (4K, Acad)

10.50 3500x3000 Fill Gap
11.21 3449x3251 Prime
12.00 4000x3000 Near Pow2
12.75 4096x3112 HD (4K, 1.33:1)
14.00 4000x3500 Fill Gap
15.09 4639x3253 Prime
16.00 4000x4000 Fill Gap

Table 3.2: Image resolutions tested in the benchmarks throughout this thesis to identify cache
spills and row-to-row memory aliasing effects.

8.10 64-bit. Software benchmarks were compiled with the Intel C/C++ 11.0 compiler with flags
-xHost -O3 -ansi-alias -restrict -openmp -no-prec-div. OpenMP [DM98] was used to exploit data
parallelism and to control the number of cores in use; we confirmed through experimentation that
as threading was scaled the most favourable CPU cores (i.e. those in least contention for shared
resources) were used first. For all data points there was sufficient free RAM to avoid paging
to disk, which would otherwise inflate our performance gains in unrealistic circumstances. The
bottleneck in VFX processing is CPU and memory throughput: capacity is trivial to scale.

The results of our first performance experiments are summarised in Figures 3.6a and 3.6b.
We began by exploring the throughput of wavelet-based degraining and diffusion filtering under
direct execution of the visual primitive representation with no code generation. Furthermore, we
restricted our study to a single core of each processor. Throughput on the Y axis is measured in
millions of output pixels generated per second for the complete effect. On the X axis we vary the
size of the input image (and correspondingly the output image) and summarise this by recording
the total number of pixels. Because the width of the image can lead to performance degradation
through row-to-row memory aliasing, particularly near powers of two, we tested a number of real-
istic and interesting image resolutions. These are summarised in Table 3.2. Furthermore, we were
careful to select image data sets with features appropriate to each effect in order to accommo-
date data-dependent performance characteristics. The performance of the diffusion filtering effect
changes substantially with degrees of brightness in the image. Thus, we ensured that the image
data tested had realistic brightness levels for the application of this effect.

The first feature of interest in these results is the consistent ranking of CPU performance
between each effect. The Xeon E5420 and Core 2 Duo E6600 led both experiments in through-
put with only a small disparity between them; likely due to the similar clock rates (2.5GHz vs
2.4GHz). The Phenom lagged slightly in wavelet-based degraining but substantially in diffusion
filtering. The diffusion filtering effect contains a cache intensive primitive and we speculate that it
spills the cache more often due to the smaller capacity in the Phenom: 2.5MB vs 4MB and 12MB
on the Intel processors.
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(a) Wavelet-based degraining
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(b) Diffusion filtering

Figure 3.6: Throughput of the wavelet-based degraining and diffusion filtering visual effects in
straightforward execution of the object-oriented representation discussed in Section 3.4.1 on a
single core of each of three benchmarking platforms. Y-axis throughput measures the number of
output pixels generated per second with variation of the input image size on the X-axis.
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Throughput is quite stable for all image sizes, although wavelet-based degraining exhibits
an interesting spike in performance with small images. Frequent exchange of images between
its many primitives is likely to benefit from smaller images fitting within the cache, although
this argument is not well supported by the data: all CPUs see a drop in performance between 2
MPixels (∼24MiB) and 3 MPixels (∼36MiB). Both of these sizes are too large for the caches of
any CPU tested and we would expect to see the Xeon benefit for longer than the Phenom, due to
their different cache capacities.

Consider now the performance of generated and statically specialised code for the same visual
effects, shown in Figures 3.7a and 3.7b. Relative CPU performance rankings remain the same
but the Phenom is now much closer to the Intel CPUs’ throughput. Our speculation about the
Phenom’s performance degradation through cache spilling is not supported by this new set of
data. The effect has been removed by the transformations described in Section 3.6 or the static
specialisation optimisation discussed in Section 3.6.1.

The throughput spike with small images has become more pronounced: there is now an ap-
proximate 1.5x difference compared with 1.2x before. New effects have appeared with image
sizes of 0.9 MPixels (but notably not at 1.0 MPixels), 9-10 MPixels and 14 MPixels. The Core
2 Duo and Phenom both experience small drops in throughput, curiously at similar image sizes,
whilst the Core 2 Duo also experiences a similarly proportioned drop at 0.9 MPixels. At all of
these sizes the Xeon’s throughput remains very stable. The widths involved are 1280 (but not
1000), 3000, 3656 and 4000. This data interestingly appears to rule out power-of-two row-to-row
aliasing effects. The similarity between these effects on the Phenom and Core 2 Duo – but not the
Xeon – would also make this explanation unlikely. We offer no further explanation but propose a
future profiling experiment to isolate the causes of this degraded performance.

A comparison of throughput before and after code generation and static specialisation is pre-
sented in Figure 3.8. The Y axis measures the speed-up (throughput after ÷ throughput before) for
each both effect on all three benchmarking platforms. We fix the image size to an unremarkable
data point from the previous four graphs, at 12 MPixels. The gains made from code flattening and
static specialisation range between 1.4x and 2.2x, with an average of 1.8x. We have introduced
no performance degradation and made substantial gains through a series of processes which our
vendor compiler does not exploit; using only static syntactic translation and information from
runtime delayed evaluation. In subsequent chapters we harness metadata to achieve even larger
performance gains on top of those which we have attained so far.

We now take our best optimised implementations and reintroduce multicore scalability to
assess their parallel throughput on each benchmarking system. Figures 3.9a and 3.9b graph the
speed-up (throughput after ÷ throughput before) over a single core on the Y axis against the
number of CPU cores used on the X axis. As stated earlier in this section, we confirmed through
experimentation that OpenMP makes use of the subset of cores with minimal resource contention
before adding those which contend more heavily with the set. We again make use of the 12 MPixel
image size to isolate outlying performance effects identified in previous graphs.

Optimum scalability follows the line Y=X on each graph. Neither effect attains this ideal, with
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(a) Wavelet-based degraining
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(b) Diffusion filtering

Figure 3.7: Throughput of the wavelet-based degraining and diffusion filtering visual effects in
execution of flattened, statically-specialised generated code (from the object-oriented representa-
tion) on a single core of each of three benchmarking platforms. Y-axis throughput measures the
number of output pixels generated per second with variation of the input image size on the X-axis.
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Figure 3.8: Relative speed-ups (1x = no speed-up) of the wavelet-based degraining and diffusion
filtering effects on a single core of each benchmarking platforms for a fixed input image size of
12 MPixels, following code generation and static specialisation (Section 3.6) from the object-
oriented representation. Speed-ups are attributable to a combination of simplified code analysis
and optimisations enabled by the presence of specialised values, such as loop unrolling.

all systems experiencing reductions in improvement as successive cores are added. On our most
scalable platform, the 8-core Xeon E5420, speed-ups of only 2.9x for wavelet-based degraining
and 4.8x for diffusion filtering are achieved, compared to an ideal speed-up of 8x. As we will
demonstrate in Chapter 4, and describe optimisations to improve it, this poor scalability is mainly
the result of contention for cache and memory bus resources. Notice in particular how the Xeon’s
scalability experiences a visible slowdown after 4 cores, where the 5th, 6th, 7th and 8th cores
contend with the 1st, 2nd, 3rd and 4th cores respectively for the shared L2 cache.

We observe that scalability is worse in wavelet-based degraining than in diffusion filtering.
There is no conclusive explanation for this, but it is likely that the more heavily networked primi-
tives in wavelet-based degraining are bottlenecked by receiving and sending images from/to other
primitives. The diffusion filtering effect, on the other hand, has a smaller number of primitives and
is dominated by one with significant computational and cache intensity. This argument is further
supported by the failure of schedule optimisation in Chapter 4 on this effect.

To conclude our performance study for this chapter we present the per-primitive throughput
breakdown of each visual effect. Figures 3.10a and 3.10b take our best optimised versions so
far – with code generation, static specialisation and full multicore parallelism – and measure the
fine-grained execution time for each primitive constituting the effect. We do this to illustrate the
different constructions of each effect and to form a basis for optimisation in the next chapter.
Wavelet-based degraining is formed from 37 primitives of 4 different types: Listing 3.3 showed
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Figure 3.9: Relative speed-ups (1x = no-speed-up) over single-core throughput of the wavelet-
based degraining and diffusion filtering visual effects for a fixed input image size of 12 MPixels,
in execution of the statically-specialised generated code as the number of active cores is scaled to
the processor limit. Cache and memory resource contention leads to sublinear scalability.
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Figure 3.10: Breakdown of the per-primitive contribution to execution time of the wavelet-based
degraining and diffusion filtering visual effects on all cores of the statically-specialised generated
code for a fixed input image size of 12 MPixels. These serialisations are space-optimal and derived
through exhaustive search.
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earlier the complete construction, with the fourth primitive growing input image data as described
in Section 3.5.2. Diffusion filtering is built from 12 primitives of 8 different types. The specific
construction cannot be disclosed here but the effect is dominated by a large 2D spatial filter.

Two very different optimisation challenges are apparent here. Wavelet-based degraining is not
dominated by any one primitive and needs a inter-primitive optimisation, which we describe in
Chapter 4, and intra-primitive optimisations, discussed in Chapter 5, to maximise its throughput.
The performance of diffusion filtering could be improved substantially by optimising the dominat-
ing primitive, which accounts for 45–60% of the total execution time. We demonstrate a different
optimisation approach which increases the hardware resources available to the algorithm, using a
GPU, in Chapter 6.

3.8 Concluding Remarks

In this chapter, we described a domain-specific C++ framework for developing VFX applications
from reusable metadata-annotated primitives. Our key innovation is to abstract information about
data dependence and memory access patterns from the algorithm and expose this information as
explicit annotations in the primitive representation. Our source-to-source compiler collects these
annotations and, as we will demonstrate in the coming chapters, exploits the information contained
within as a substitute for complex program analyses. We described a simple parallel scheduling
strategy for multicore CPUs which leverages data parallelism in the primitives constituting a visual
effect. A space-optimal schedule is desirable but we were only able to offer an intractable solution
of exponential complexity; albeit sufficiently fast for the 37 primitive effect described. We further
described a scalar CPU code generation method with a simple static specialisation optimisation to
improve the availability of program information to the compiler.

We observed 1.4–2.2x speed-ups from code generation and static specialisation over the
object-oriented form. The scalability of each effect on multicore CPUs was analysed and de-
termined to be reasonable up to 2–4 cores depending on the effect. Scaling beyond 4 cores gave
comparatively poor improvements in throughput due to saturation of parts of the memory system.



Chapter 4

Space and Schedule Optimisation

4.1 Introduction

In Chapter 3 we laid the groundwork for a metadata-supported program optimisation framework.
The performance gains documented in Section 3.7 were obtained without the use of metadata.
In this chapter we present our first set of code optimisations which make use of the metadata
encapsulated in the visual effect expression in order to simplify program analysis. We leverage
the isolation of iteration control from data access, implicit in our framework design, to study two
connected performance transformations: schedule and space optimisation. The former is imple-
mented through a combination of established transformations [BGS94]: loop shifting, loop peel-
ing, loop fusion and loop interchange. The latter is an advancement of the array contraction (also
known as memory reduction [SXWL01] or buffering) transformation. The material presented in
this chapter is based upon a development of previously published work [CKPN07].

The optimisations discussed in this chapter primarily target the wavelet-based degraining ef-
fect. Recall from Figures 3.2 and 3.10a in the preceding chapter that the degraining effect is
constructed from a network of 37 smaller primitives. Each primitive consists of a nested set of
loops iterating over the pixels of input images, some of which are shared with other primitives,
concurrently producing new pixels in output images. As data is passed from one primitive to
the next it is unlikely to reside in any cache level, as most images are substantially larger than
contemporary CPU caches. Thus, there is a performance cost in the loop control logic itself and
in the bottlenecked main memory bus. Schedule optimisation tackles the former while space op-
timisation tackles the latter. The diffusion filtering effect, on the other hand, is built from only
12 primitives and dominated by one, as can be seen in Figure 3.10b. We do not expect to make
significant gains on this effect in this chapter. The techniques we develop here are suited to large
networks of low-cost primitives: a common pattern in VFX.

4.2 Schedule Optimisation

Consider the loop nests constituting a connected series of visual primitives. The default loop
schedule executes all iterations of the first primitive before the second, and then those in the

54
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second before the third, and so on. By manipulating the schedule of the collective loop nests in a
visual effect, we might hope to:

• Reduce loop instruction control costs by sharing a single loop fragment among many
primitives that are iterating over a common, large image subregion. Most primitives in a
visual effect will have a large region of iteration space in common.

• Improve temporal data locality by rescheduling statements which use data elements to be
closer to those that produce them. The default schedule separates producers and consumers
by at least one completion iteration across a large image, by which point the produced data
will have been flushed from the cache.

Furthermore, in Section 4.2.5 we explain how specific schedule manipulations enable the
space optimisation discussed in Section 4.3.

Simple manipulations of loop schedules are traditionally carried out in a high-level form:
the GCC compiler, for example, builds a structured representation of single-latch natural loops
[ASU86, GCC09] and manipulates them through a series of independent transformations. This
leads to a phase-ordering problem and limits the kinds of optimisations which can be achieved,
leading to conservative schedule optimisation. Recent developments have focused upon the poly-
hedral loop representation [BCG+03, CGT04, CSG+05] as a tool to rephrase the schedule opti-
misation problem as a single, composite transformation guided by performance heuristics. Even
with the ability to manipulate the loop schedule in this way, constructing accurate performance
heuristics and making data dependence guarantees about unknown code is very difficult and con-
strains the optimisation capabilities of modern compilers. For example, both GCC and the Intel
C/C++ compilers fail to perform beneficial loop fusions [BGS94] between series of loop nests in
the generated code from Chapter 3.

Our contribution is an improvement upon polyhedral loop manipulation by leveraging meta-
data for dependence and performance information. We implement loop transformations in our
source-to-source code generation framework and supply source code with pre-optimised loop
schedules to the Intel C/C++ compiler for low-level optimisation. We first demonstrate how to
construct a polyhedral representation of a visual effect and then discuss a scanning strategy to
achieve the outlined performance goals.

4.2.1 Constructing the Constraint Matrices

The CLooG library [Bas04] underpins our loop representation, manipulation and code generation
phases. In its finest grain of control, CLooG allows each statement of a program to be assigned
a unique iteration space defined by a matrix of constraints upon the iteration variables. Since
most of the statements in a visual effect can be grouped together within a common iteration space
– i.e. those from the same visual primitive – we instead treat whole kernel bodies as CLooG
statements. Thus our atomic program unit is the kernel. We do not perform loop transformations
which would break a kernel into smaller pieces; e.g. loop distribution [BGS94]. Furthermore, any
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for(int y = y1; y <= y2; ++ y)
for(int x = x1 - r1; x <= x2 + r1; ++ x)
Produce data at (x,y)

for(int c = 0; c <= 2; ++ c)
for(int y = y1; y <= y2; ++ y)
for(int x = x1; x <= x2; ++ x)
Consume data in (x - r1...+r1, y) locality

Listing 4.1: Example loop nests for a visual effect consisting of two primitives, the latter of which
contains a horizontal 1D spatial filter indexer. The first loop nest produces additional data in the
radial region (x1− r1 → x2+ r2) for the second to consume.

loops contained within the kernel are neither identified nor modified by our schedule optimisation
process. Since there is no metadata associated with these loops we would need to duplicate the
analyses of a traditional compiler in order to manipulate them. There would be no advantage in
doing this at a pre-compiler stage.

To illustrate the construction of constraint matrices, consider a visual effect consisting of the
two primitives whose iteration spaces are outlined in Listing 4.1. The second primitive has a spa-
tial filter indexer to make the two loop nests distinct: the first primitive must produce additional
data in the radial region for the second primitive to consume. Furthermore, the first primitive con-
sumes whole pixels at a time (its indexers have ePixel metadata) while the second accesses each
plane independently (eComponent metadata). x and y are variable parameters to the constraint
matrix: they define the iteration domain. x1, x2, y1, y2 and r1 are constant parameters to the
constraint matrix: they allow the constraint matrix to adapt to externally variable – but constant
during iteration – parameters, such as image dimensions and spatial filter radii.

Table 4.1 shows the constraint matrices which our framework would construct for this effect.
The loop nests of each primitive are defined by a pair of bounds upon the iteration variables for
each dimension of the loop nest. These bounds define a convex polytope in a common space with
the other loop nests of the visual effect. Notice that we have used a loop interchange [BGS94]
transformation to place the component loop at the deepest nesting level. This is necessary to align
the common dimensions of each polytope and the safety of the transformation is guaranteed by
eComponent metadata, which asserts the lack of data dependence between statement instances
processing different image planes. Superposition of these polytopes within this common space is
the process by which loop control overheads can be reduced and temporal data locality improved,
as we will discuss in detail in Section 4.2.2.

Each line of the constraint matrices forms the coefficients to an equation of the form ax+by+
cz+ ...+n ≥ 0. Equality with zero is indicated by a zero in the first column, but in this example
we only use inequality. Algebraic equivalents of each matrix row are provided in the adjacent
table for convenience. There is a direct correspondence between rows of the constraint matrix and
bounds of the two loop nests. The second matrix has an additional column and two additional rows
for the component loop, as required by eComponent metadata, giving its corresponding polytope
an extra dimension.
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= /≥ y x x1 x2 y1 y2 r1 1
1 1 0 0 0 -1 0 0 0
1 -1 0 0 0 0 1 0 0
1 0 1 -1 0 0 0 1 0
1 0 -1 0 1 0 0 1 0

constraint
y ≥ y1
y ≤ y2
x ≥ x1− r1
x ≤ x2+ r1

= /≥ y x c x1 x2 y1 y2 r1 1
1 1 0 0 0 0 -1 0 0 0
1 -1 0 0 0 0 0 1 0 0
1 0 1 0 -1 0 0 0 0 0
1 0 -1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 -1 0 0 0 0 0 2

constraint
y ≥ y1
y ≤ ytex2
x ≥ x1
x ≤ x2
c ≥ 0
c ≤ 2

Table 4.1: Constraint matrices for the loop nests shown in Listing 4.1. Each loop nest has one
constraint matrix, bounding its multidimensional iteration space. Columns representing the coef-
ficients of loop control variables are separated from the coefficients of parameters to the polytope.

Constructing these matrices programmatically requires an additional step which we have not
yet discussed. While it would be trivial interrogate a primitive at runtime for its iteration bounds,
we would not be able to derive the construction of this value from the parameters shared by all
loop nests. One solution might be to assign a unique parameter to each loop bound, for which we
know the corresponding value at runtime, but this quickly leads to an intractable code generation
problem for all but the simplest loop nests. Instead, we record the algebraic construction of it-
eration bounds from image dimensions (x1...x2, y1...y2), spatial filter radii (r1) and integers (not
shown here but required by moving averages) during the DOD propagation algorithm discussed
in Section 3.5.2. Loop bound expressions are progressively constructed as the ROIs of each prim-
itive contribute radii and integers to the iteration space, in a modified version of the propagation
algorithm from Listing 3.5.

From these matrices CLooG is able to reconstruct an abstract syntax tree representing the
original loop nests, through a process called polyhedral scanning. We then translate the AST
directly into code. Before attempting to generate an optimised loop schedule from these matrices,
we demonstrate some methods for reducing code generation complexity which, as we will show,
are key to making the polyhedral scanning problem tractable.

4.2.2 Minimising Polyhedral Scanning Complexity

CLooG accepts a second matrix, called the context matrix, which is common to all of the constraint
matrices. Its sole purpose is to reduce the complexity of generated code by restricting the values
of variable parameters to the constraint matrices; or, more accurately, communicating existing
restrictions on their values to the polyhedral scanner. Table 4.2 shows the context matrix which
we would generate for the example shown in Listing 4.1.

The first row of the matrix asserts that the image is substantially larger in size than the radial
parameters to the effect, and that the rightmost bound is greater than the left. The second row
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= /≥ x1 x2 y1 y2 r1 1
1 -1 1 0 0 -1 0
1 0 0 -1 1 -1 0
1 0 0 0 0 1 -1

context
x1+ r1 ≤ x2
y1 ≤ y2
r1 ≥ 1

Table 4.2: Global context matrix used in all loop nest generations. Each matrix row defines a
relation between parameters to the constraint matrices and integers.

similarly constrains the vertical edge parameters. This allows the polyhedral scanner to omit
many fragmented, conditional paths which handle radii that are larger than the image dimensions
and dimensionally inverted images (which are disallowed in our framework). When the former
constraint is not met we do not use the optimised code path. Since the images are likely to be
very small if the radii are large in comparison, the performance impact is negligible. The third
row disallows zero-sized and negative spatial filter radii, which are of no use to us, to omit further
conditional paths.

We can further reduce polyhedral scanning complexity by exploiting redundancy in the spatial
filter radii of commonly used visual primitives. For example, the horizontal and vertical phases of
a separable 2D spatial filter may share the same radii if it is square in shape. Another example is
the series of box filters that make up a Gaussian filter approximation, which share the same radii
between different primitives. Consider the loop nests of the 2D Gaussian approximation shown in
Figure 4.1a. The first three loop nests belong to horizontal box filters while the last three form the
vertical passes. The DOD propagation algorithm (Section 3.5.2) grows the bounds of each loop
nest, starting from the end of the effect and working backwards, to feed the spatial filter indexers
of each primitive with additional border region data.

Each of the constraint matrix parameters r1, r2, r3, r4, r5 and r6 in this example share the
same value. With this knowledge in hand we would be able to generate the much simpler loop
bound expressions shown in Figure 4.1b. Thus, our framework provides a simple mechanism
through which radial objects, which wrap the different radial values, can be constructed and passed
as parameters to different visual primitives. During construction of the constraint and context
matrices we can associate a single matrix variable parameter with multiple loop nests.

The final complexity optimisation we employ was discovered by accident as a side-effect of
the symmetricity constraint we placed upon spatial filter indexers. One of the largest sources of
combinatorial loop fragment explosion in optimised schedule generation is the number of unique
loop bound expressions involved. For example, consider the superposition of the four successive
primitives with spatial filter indexers shown in Figure 4.2a. The outer loop nests produce extra
data for the inner loop nests to consume in their radial regions. There are a total of 16 different
expressions (only 8 are shown for opposite corners) defining the bounds of these loops.

As we will explain in more detail in Section 4.2.3, direct superposition of the polytopes consti-
tuting these loop nests results in invalid generated code. The loop shifting [BGS94] transformation
is needed to ensure that data dependence is not violated. Figure 4.2b shows the same superposition
once loop shifting has been applied. All loop nests, except those of the first, outermost primitive,
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/ / [ P r o d u c i n g p r i m i t i v e ]
f o r ( y = y1−r1−r2−r3 ; y <= y2+ r1 + r2 + r3 ; ++ y )

f o r ( x = x1−r4−r5−r6 ; x <= x2+ r4 + r5 + r6 ; ++ x )
. . .

/ / V e r t i c a l 1D i t e r a t i o n # 1 .
f o r ( y = y1−r2−r3 ; y <= y2+ r2 + r3 ; ++ y )

f o r ( x = x1−r4−r5−r6 ; x <= x2+ r4 + r5 + r6 ; ++ x )
. . .

/ / V e r t i c a l 1D i t e r a t i o n # 2 .
f o r ( y = y1−r3 ; y <= y2+ r3 ; ++ y )

f o r ( x = x1−r4−r5−r6 ; x <= x2+ r4 + r5 + r6 ; ++ x )
. . .

/ / V e r t i c a l 1D i t e r a t i o n # 3 .
f o r ( y = y1 ; y <= y2 ; ++ y )

f o r ( x = x1−r4−r5−r6 ; x <= x2+ r4 + r5 + r6 ; ++ x )
. . .

/ / H o r i z o n t a l 1D i t e r a t i o n # 1 .
f o r ( y = y1 ; y <= y2 ; ++ y )

f o r ( x = x1−r5−r6 ; x <= x2+ r5 + r6 ; ++ x )
. . .

/ / H o r i z o n t a l 1D i t e r a t i o n # 2 .
f o r ( y = y1 ; y <= y2 ; ++ y )

f o r ( x = x1−r6 ; x <= x2+ r6 ; ++ x )
. . .

/ / H o r i z o n t a l 1D i t e r a t i o n # 3 .
f o r ( y = y1 ; y <= y2 ; ++ y )

f o r ( x = x1 ; x <= x2 ; ++ x )
. . .

(a) Before radial sharing.

/ / [ P r o d u c i n g p r i m i t i v e ]
f o r ( y = y1−3∗R ; y <= y2+3∗R ; ++ y )

f o r ( x = x1−3∗R ; x <= x2+3∗R ; ++ x )
. . .

/ / V e r t i c a l 1D i t e r a t i o n # 1 .
f o r ( y = y1−2∗R ; y <= y2+2∗R ; ++ y )

f o r ( x = x1−3∗R ; x <= x2+3∗R ; ++ x )
. . .

/ / V e r t i c a l 1D i t e r a t i o n # 2 .
f o r ( y = y1−R ; y <= y2+R ; ++ y )

f o r ( x = x1−3∗R ; x <= x2+3∗R ; ++ x )
. . .

/ / V e r t i c a l 1D i t e r a t i o n # 3 .
f o r ( y = y1 ; y <= y2 ; ++ y )

f o r ( x = x1−3∗R ; x <= x2+3∗R ; ++ x )
. . .

/ / H o r i z o n t a l 1D i t e r a t i o n # 1 .
f o r ( y = y1 ; y <= y2 ; ++ y )

f o r ( x = x1−2∗R ; x <= x2+2∗R ; ++ x )
. . .

/ / H o r i z o n t a l 1D i t e r a t i o n # 2 .
f o r ( y = y1 ; y <= y2 ; ++ y )

f o r ( x = x1−R ; x <= x2+R ; ++ x )
. . .

/ / H o r i z o n t a l 1D i t e r a t i o n # 3 .
f o r ( y = y1 ; y <= y2 ; ++ y )

f o r ( x = x1 ; x <= x2 ; ++ x )
. . .

(b) After radial sharing.

Figure 4.1: Reducing loop bound complexity by merging filter radii variables that are known to
be identical. This is a critical polyhedral math optimisation in loop fusion.

(a) Without loop shifting. (b) With loop shifting.

Figure 4.2: Reduction in loop fragment generation following loop shifting of a superposition
of spatial filter primitives. Dotted lines indicate necessary breaks in the x and y loops and the
enclosed regions represent generated loop fragments. Loop shifting reduces fragmentation from
25 loops to just 10.
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= /≥ p1 y x c x1 x2 y1 y2 r1 1
0 0 0 0 0 0 0 0 0 0 0

= /≥ p1 y x c x1 x2 y1 y2 r1 1
0 1 0 0 0 0 0 0 0 0 0

Table 4.3: Scattering matrices for generating an unoptimised loop schedule for the loop nests
shown in Listing 4.1.

= /≥ p1 y x c x1 x2 y1 y2 r1 1
0 0 0 0 0 0 0 0 0 0 0

= /≥ p1 y x c x1 x2 y1 y2 r1 1
0 0 0 0 0 0 0 0 0 0 0

Table 4.4: Scattering matrices for generating a fused loop schedule for the loop nests shown in
Listing 4.2.

have their bounds shifted by an expression of radial parameters. The second nest has been shifted
by (r3,r6), the third by (r2+ r3,r5+ r6) and the last by (r1+ r2+ r3,r4+ r5+ r6). By nature
of the symmetricity of our spatial filter design – i.e. the left radial region is the same size as the
right, and correspondingly the bottom and top – all loop nests now share a common corner. We
have reduced the number of unique loop bound expressions from 16 to 13.

This reduction may not seem significant at first, but consider the number of number of loop
fragments this leads to. The dotted lines in Figures 4.2a and 4.2b indicate necessary breaks in the
x and y loops. Each enclosed region gives rise to a single loop fragment. We have reduced the
number of generated loop fragments from 25 to just 10. In the context of combinatorial explosion
this is a valuable tool in maintaining tractability.

4.2.3 Constructing the Scattering Matrices

The final set of matrices accepted by CLooG control its polyhedral scanning facility. The scat-
tering matrix defines a temporal ordering on a statement whose iteration space is bounded by one
of the constraint matrices. This can be used for a number of purposes [Bas04], and constructed
from complex expressions, but we limit our use to explicitly generating unoptimised or fused loop
schedules. A scattering matrix for an unoptimised schedule of our example loop nests from List-
ing 4.1 is shown in Table 4.3. We set the statement of the second loop nest to execute at a later
time step (1 vs 0) than the first. This is sufficient to reproduce the loop nest in Listing 4.1 from
the complete set of matrices.

However, consider a different loop schedule for the same code shown in Listing 4.2. This is
produced by the scattering matrix given in Table 4.4. Both statements now execute at the same
time step and the two loop nests of different sizes are fused into a single, fragmented nest. The
resulting program is incorrect: clearly it makes no sense to be producing data in the third nested
loop that will not be consumed. By performing loop fusion with this schedule we have violated
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for(int y = y1; y <= y2; ++ y)
for(int x = x1 - r1; x < x1; ++ x)
Produce data at (x,y)

for(int x = x1; x <= x2; ++ x) {
Produce data at (x,y)
Consume data in (x -r1...+r1, y) locality

}

for(int x = x2 + 1; x <= x2 + r1; ++ x)
Produce data at (x,y)

}

Listing 4.2: A fused schedule for the loop nests originally defined in Listing 4.1. The program is
invalid because data dependence was violated during loop fusion.

a data dependence between the two statements and generated an invalid program. This is a well-
known problem in schedule optimisation and can be corrected by a loop shifting transformation
prior to fusion. Loop shifting adds an offset to the bounds of the second loop so that it executes a
few iterations later, when enough data is available for it to consume.

To minimise the temporal reuse distance of produced and consumed data we would like the
loop shift factor to be as small as possible. For primitives with no spatial filter indexers this
distance is precisely 0: the consumer can collect its consumed data value(s) in a given iteration
immediately after they are produced. No shifting is required in this case. For those with spatial
filter primitives the optimal shift distance is a function of the radii and ROIs of their spatial filter
indexers. The shift for each visual primitive is computed by a dominator traversal graph algo-
rithm. This algorithm is outlined in Listing 4.3. Because the incoming edges to a primitive with
multiple inputs may have accumulated different shifts up until that point, the shift for that primi-
tive becomes the union of all shifts required by its indexer objects. This may lead to suboptimal
reuse distances for some indexers but, without loop fission, we cannot improve upon this.

Listing 4.4 shows the optimised schedule with loop shifting applied. Because the loop indices
have been offset, any use of them in the kernel body must be corrected to compensate. We ap-
ply this offset during the code generation process (Section 3.6) when replacing accesses through
spatially localised indexer objects with globally addressed array accesses. It is in fact possible
to express the loop shifting transformation as a structure in the scattering matrix. We found it
easier to use the simple scattering matrix from Table 4.4 and to reformulate the loop shifting
transformation as a modification of loop bounds during construction of the constraint matrix.

We further use a combination of the scattering matrices from Tables 4.3 and 4.4 to produce
partially optimised schedules in which some loop nests are fused but others are not. The utility of
this will become evident in the schedule optimisation discussion in the next section.

4.2.4 Impact of Schedule Optimisation on Parallelisation

Recall from Section 3.5.4 that our parallelisation strategy consists of dividing the DOD of each
visual primitive into row-striding strips and generating the data within each strip on a different
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Map[Node:Functor] LoopShifts

Dominator Walk:
Evaluate(Node)

function Evaluate(Node) {
foreach((Edge, InputNode) in Node.InputEdges) {
if(IsSource(InputNode))
// No shift needed, all data is available.
continue

// Compute the shift required by this indexer.
Indexer ConsumingIdxr = Node.IndexerFromEdge(Edge)
Vector LocalShift;

if((ConsumingIdxr.Freedom == e1D && ConsumingIdxr.Axis == eHorizontal)
|| ConsumingIdxr.Freedom == e2D)

{
LocalShift.X = ConsumingIdxr.RadiusX

}
if((ConsumingIdxr.Freedom == e1D && ConsumingIdxr.Axis == eVertical)
|| ConsumingIdxr.Freedom == e2D)

{
LocalShift.Y = ConsumingIdxr.RadiusY

}

// Accumulate the shift along this branch.
Vector AbsoluteShift = LoopShifts[InputNode] + LocalShift

// Our shift is the largest shift of all our indexers.
LoopShifts[Node].Union(AbsoluteShift)

}
}

Listing 4.3: Psuedocode for an automatic loop shift computation algorithm for maximal fusion.
Loop shifts accumulate forwards from the source node as spatial filters contribute their radii.

for(int y = y1; y <= y2; ++ y)
for(int x = x1 - r1; x < x1 + r1; ++ x)
Produce data at (x,y)

for(int x = x1 + r1; x <= x2 + r1; ++ x) {
Produce data at (x,y)
Consume data in ((x - r1) -r1...+r1, y) locality

}

for(int x = x2 + r1; x <= x2 + (2 * r1); ++ x)
Consume data in ((x - r1) -r1...+r1, y) locality

}

Listing 4.4: A fused, shifted schedule for the loop nests shown in Listing 4.1. Data dependence is
preserved by shifting the second loop with an offset of r1 before fusing the common fragments.
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Figure 4.3: A parallelised spatial filter primitive requires partial data produced by a different
core in the preceding primitive. Barrier synchronisation ensures that this data is available to each
thread. In the optimised schedule it is not possible to use a barrier in this way.

CPU core. This stripwise parallelism strategy is implemented by parallelising the y loop of each
visual primitive and placing a thread barrier between each loop nest. Two things change following
schedule optimisation: the y loops may become fragmented and there may no longer be an obvious
place to insert a synchronisation barrier.

Fragmentation of the y loop necessitates individual parallelisation of each fragment. The over-
head of parallelisation becomes proportionally larger as the trip count of the parallelised loops
decreases. Figure 4.3 illustrates the barrier synchronisation problem. By rescheduling the state-
ments of the consuming spatial filter kernel to execute closely with those of the producing kernel,
threads may try to consume data which has not been produced by other threads yet; in the unopti-
mised schedule a barrier between the producer and consumer loop nests guarantees that this data
is available.

Our solution is to parallelise the composite fused primitive as a whole. The DOD of this fused
primitive is divided into strips as per our normal parallelisation strategy. To overcome the barrier
synchronisation problem, we allow each thread to do additional work in preceding primitives in
order to construct the extra border region data they need in the consuming primitive. This leads
to redundant computation between threads but greatly simplifies the parallelisation problem. The
level of redundancy is proportional to the number of fused spatial filter primitives with a vertical
border region (i.e. 1D vertical or 2D) and inversely proportional to the height of the image. Since
the fusion of 1D vertical and 2D spatial filter primitives leads to a large temporal reuse distance,
our parallelisation strategy further reduces the gains that can be made by doing so.



4.2. SCHEDULE OPTIMISATION 64

4.2.5 Optimising the Polyhedral Schedule

Sections 4.2.1, 4.2.2 and 4.2.3 outlined the mechanics of our schedule optimisation strategy. We
now consider the application of this technique to whole visual effects and its implications for their
computational performance. Figure 4.4 illustrates the loop fusion and loop shifting process for
the wavelet-based degraining [SCW05] visual effect. We take the 37 primitives constituting the
effect and choose a space-optimal serialisation, as described in Section 3.5.1. Figure 4.4a graphs
the X and Y iteration spaces (C is not shown nor involved here) of each primitive, beginning with
the start of the serialisation at the front. Variations in the size of the iteration space are caused
by the larger ROIs of spatial filter indexers and by subtrees of the DAG having different DOD
requirements. The scales of the image bounds and spatial filter radii have been exaggerated for
illustration by using an image size of 50x50 pixels. In practice the image dimensions are much
larger than the spatial filter radii.

Figure 4.4b illustrates complete schedule fusion without the loop shifting transformation. It
is a projection of Figure 4.4a onto the frontmost plane. Different regions of the projected iteration
space, which are not fully bounded in this diagram (each horizontal line must be extended to the
edges of the plane to see the loop segmentation), correspond to different sets of kernels executing
together. The centremost region contains all of the kernels within the effect executing in order
of their serialisation. Of course, without loop shifting this schedule leads to an invalid program.
Figure 4.4c completes the illustration by showing the fused and shifted iteration spaces for this
effect. Observe the tendency for iteration spaces to share the upper-right hand corner, as we
discussed in Section 4.2.2. Not all primitives share this corner because some paths within the
visual effect DAG have smaller DODs than the others.

The fully fused effect leads to 5303 lines of condition-free generated code and takes approx-
imately 5 seconds for the polyhedral scanning process to complete. Without the context matrix
optimisation described in Section 4.2.2 the process generates 43006 lines of heavily conditional
code in 40 seconds. A partial fusion, in which we fuse pairs of iterations of the algorithm shown
in Listing 3.3, and make use of in our performance analysis, takes 2 seconds and produces 2025
lines of code. We have now completed the description of our schedule optimisation process.

Returning to the goals of schedule optimisation outlined in Section 4.2, we have made progress
towards both:

• Reduce loop instruction control costs. The constituent loop control functionality of each
primitive is now merged into a single loop nest, or few nests with partial fusion. Thus we
have reduced the costs of executing similar loop control instructions by visiting them only
once. The complexity of our loop bounds may increase slightly, from loop shifting, but code
hoisting [BGS94] of these constant bounds in the backend compiler will offset this cost.

• Improve temporal data locality. The producers and consumers of data within the opti-
mised schedule now execute as close in time as data dependence permits. The temporal
reuse distance is equivalent to the amount of relative loop shift between a pair of producer/-
consumer kernels.
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(a) Before loop fusion.
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(b) Loop fusion with no shifting.
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(c) Loop fusion with shifting.

Figure 4.4: A graphical representation of the 2D iteration spaces constituting a serialisation of the
wavelet-based degraining [SCW05] visual effect.
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In the next section we build upon these successes with a performance-critical optimisation.

4.3 Space Optimisation

Improving the temporal reuse distance of intermediate data sets is an important optimisation to
improve cache utilisation. In practice, as we will show in Section 4.4, we found that other factors
were dominating the performance gains from this process. An unfortunate side effect of sched-
ule optimisation is that a larger number of data sets are accessed together in the optimised loop
nests, which substantially increases the working set size and consequently cache pressure. We
presented the schedule optimisation material in Section 4.2 in full knowledge of this flaw, because
the transformations discussed in that section enable a key space optimisation which overcomes
these dominating cache effects. This optimisation [SXWL01] – called array contraction, memory
reduction or buffering in various literature – aims to reduce the size of memory regions touched by
the working set. By reducing this amount to magnitudes close to the cache capacities it is possible
to minimise cache spilling, leading to greatly improved utilisation of the cache interconnects and
main memory bus.

Listing 4.5 illustrates the utility of space optimisation as an enabling transformation for array
contraction. The first set of loop nests produce data into array a[], consume it and then produce
output into array b[]. b[] is considered an output array from this simple operation; a[] is not
required and is considered a transient array. Schedule optimisation, as described in Section 4.2,
leads to the second set of loop nests. The temporal reuse distance of the produced/consumed tran-
sient array a[] is reduced from 100 iterations to just 2. Although this improves cache utilisation,
the contents of array a[] are still stored and written to main memory despite not being used af-
terwards. Furthermore, since array a[] is large it will occupy multiple cache lines for some time
before being evicted, thus reducing cache availability for the working set.

The third set of loop nests in Listing 4.5 illustrate our space optimisation transformation. The
transient array a[] has been replaced by a new, much smaller array c[]. This array is just large
enough to carry data across the full reuse distance – two elements – plus a third to carry the current
intra-iteration element. Index expressions used in accesses to array a[] have been replaced by the
same expressions modulus the size of array c[]. As the iteration variable i counts from 0 to 99,
writes into array c[] follow a pattern of 0, 1, 2, 0, 1, 2, 0, 1, 2, etc. Each write to the array
overwrites a previously produced and consumed element that will not be used again. This process
of overwriting unused data corresponds precisely to the temporal reuse distance: array c[] is the
minimum size required for correctness in this example.

By applying this space optimisation we are able to keep reads and writes of the elements of
array c[] in the cache; in this example, quite possibly at the L1 level. Since we continuously reuse
the same set of cache lines, they are not evicted and do not contend for the main memory bus with
accesses to array b[]. b[] itself could be contracted to a smaller array if a subsequent primitive
consumed its elements to produce new data sets. In general, the only data sets which cannot
be contracted are those that form inputs to a visual effect – unless, perhaps, the data came from
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float a[100], b[100];

// Before schedule optimisation.
for(int i = 0; i < 100; ++ i)

a[i] = i;
for(int i = 1; i < 99; ++ i)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0f;

// After schedule optimisation.
for(int i = 0; i < 2; ++ i)

a[i] = i;
for(int i = 2; i < 100; ++ i) {

a[i] = i;
b[i-1] = (a[i-2] + a[i-1] + a[i]) / 3.0f;

// After space/schedule optimisation.
float c[3];

for(int i = 0; i < 2; ++ i)
c[i%3] = i;

for(int i = 2; i < 100; ++ i) {
c[i%3] = i;
b[i-1] = (c[(i-2)%3] + c[(i-1)%3] + c[i%3]) / 3.0f;

}

Listing 4.5: Progressive space and schedule optimisation of the transient array in a loop-fused
point primitive and 3-tap horizontal 1D spatial filter.

disk and we could include the disk loading kernel in schedule optimisation – and outputs from
it. In some cases the temporal reuse distance will be too large to maintain the contracted array
in cache. There is a balance between the gains made from space optimisation with the increased
cache pressure from schedule optimisation. Pairs of primitives with small reuse distances (e.g.
non-spatial filters and horizontal 1D spatial filters) lead to larger gains than those with large reuse
distances (e.g. vertical 1D and 2D spatial filters).

Our space optimisation implementation goes a step further to reduce the extra computational
costs incurred in the modulus expressions used in array indexing. Integer modulus is an expensive
operation and can be substituted by a much cheaper bitwise AND operator when the contracted
array size is a power-of-two. The expression (i % 4), for example, is equivalent to (i & (4-1)).
By padding the transient array to a power-of-two we can make use of this cheaper arithmetic
form. Of course, this leads to increased cache pressure and becomes particularly costly with large
contracted arrays, where the next power-of-two can be quite far from the optimal reuse distance.
Listing 4.6 presents the previous loop nest example with this method.

4.4 Performance Analysis

We now return to the two visual effects whose base performance was established in Chapter 3
to explore the effects of applying schedule and space optimisation to their constituent primitives.
As noted at the beginning of this chapter, we expect to see the largest gains in the wavelet-based
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float b[100];

// The contracted ’c’ array is padded to 4 elements.
// This allows cheap i&(4-1) bitwise index wrapping.
float c[4];

for(int i = 0; i < 2; ++ i)
c[i&3] = i;

for(int i = 2; i < 100; ++ i) {
c[i&3] = i;
b[i-1] = (c[(i-2)&3] + c[(i-1)&3] + c[i&3]) / 3.0f;

}

Listing 4.6: Space optimisation with a contracted array padded to a power-of-two to enable cheap
bitwise arithmetic in index expressions.

degraining effect, which is built from a large number of simple primitives. The diffusion filtering
effect, whose composite performance is broken down in Figure 3.10b, is not dominated by inter-
primitive traffic and will not benefit to the same degree.

Figure 4.5a graphs the throughput of the schedule- (but not space-) optimised wavelet-based
degraining effect as the input image size is varied. This effect is fully fused: all 37 primitives
execute together with optimal data reuse distances. Some results do not extend for the full range
of input image sizes. Fusion substantially increases the working set size and this leads to exhaus-
tion of the physical memory (see Table 3.1) available to those benchmarking platforms. We do
not graph the effect of disk paging systems as this is beyond the scope of our study and largely
irrelevant in practical applications, where cheap additional memory will simply be installed or the
problem tiled appropriately in a higher level application. The graph has few effects of significance
aside from slightly increased instability over Figure 3.7a as the image size is varied. There is a
stable, repeatable drop in throughput for the 3000x3000 pixel image on the Xeon and Phenom
platforms. This correlates with a similar but smaller drop in performance in the data without
schedule optimisation (Figure 3.7a) on the Phenom platform. We are unable to suggest a cause
for this effect and propose inspection with a profiling tool.

Figure 4.5b similarly graphs the throughput of the fully schedule- (but not space-) optimised
diffusion filtering effect as the input image size is varied. Most of the data extends for the full range
of image sizes because of the smaller number of primitives in this effect, compared to wavelet-
based degraining, which leads to a smaller working set inside the fused loop nests. Space/sched-
ule optimisation does not change the contribution of data-dependent performance in this effect
because the amount of computation carried out is not affected. We observe an interesting rise in
throughput as the image size is varied on the Xeon platform, which is not present on the other two
platforms or in the same data without schedule optimisation (Figure 3.7b). We speculate that this
is due to the overheads incurred by our schedule-optimised parallelisation strategy, as discussed
in Section 4.2.4: the redundant computation in a 12-primitive chain (of which 4 have vertical
border regions) with 8 cores is constant with image size, so we see proportionally more ”useful”
work done in larger images. There is a curious correlation between the small peaks and troughs of
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(a) Wavelet-based degraining
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Figure 4.5: Throughput of the wavelet-based degraining and diffusion filtering visual effects with
maximal fusion (but no space optimisation) on all cores of each of three benchmarking platforms.
Y-axis throughput measures the number of output pixels generated per second with variation of
the input image size on the X-axis.
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Figure 4.6: Throughput of the wavelet-based degraining visual effect with varying levels of sched-
ule optimisation on all cores of each of three benchmarking platforms for a 12 MPixel image.
Y-axis throughput measures the number of output pixels generated per second. Referring back
to Listing 3.3, the X-axis records the number of recursive calls to the DeGrainRecursive function
which space/schedule optimisation takes place across. 0 indicates no fusion. 1 indicates fusion
within the function. 2 indicates two fusions across two levels of recursion. 3 indicates fusion
across three levels and fusion within the last. 4 indicates maximal fusion.

the Phenom and Core 2 Duo data sets (and a smaller but still significant correlation with the Xeon
data set). This is particularly striking since the two data sets were generated by very different CPU
architectures; the implementation details of a specific CPU can normally explain the instabilities
in a pattern unique to that architecture.

Before considering the space-/schedule-optimised results in detail, we explore an intricacy of
schedule optimisation in the wavelet-based degraining effect. Figure 4.6 presents the throughput
for the space- and schedule-optimised effect on a 12 MPixel image as the level of schedule opti-
misation is varied. Recall from Listing 3.3 that the wavelet-based degraining effect is constructed
from 4 iterations of a subset of primitives. Between each iteration lies a 1D vertical spatial fil-
ter primitive which substantially increases the costs of fusion. The graph (see caption for detail)
measures the algorithm throughput as fusion is applied within the iterations but not between, and
within/between subsets of iterations as well. This graph aims to show that there is an optimal level
of fusion that is not complete fusion for this effect: the costs of increased working set size begin
to dominate the gains from space-/schedule- optimisation after a certain degree of fusion. The
optimal point is 1 or 2 iterations depending on the benchmarking platform: we choose 2, which
gives an extra 6% throughput on the Xeon platform over 1. We defer examination of the speed-up
over 0 fused/contracted iterations until Figure 4.8.

Figure 4.7a graphs the throughput of the space-/schedule- optimised wavelet-based degrain-
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(b) Diffusion filtering

Figure 4.7: Throughput of the wavelet-based degraining and diffusion filtering visual effects with
optimal fusion and space optimisation on all cores of each of three benchmarking platforms. Y-
axis throughput measures the number of output pixels generated per second with variation of the
input image size on the X-axis.
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ing effect with fusion and contraction within and between pairs of iterations, as discussed in the
preceding paragraph. Each of the data sets extend the full range of the X-axis as contraction has
immensely reduced the working set size over the schedule- but not space-optimised case in Fig-
ure 4.5a. These results are also much more stable, which is likely the result of less cache spilling.
The dips in throughput observed in the schedule- but not space-optimised graph do not appear in
this data set, which suggests that they are a cache or memory effect. The 8-core Xeon is approx-
imately four times faster than the 2-core C2D, as we would expect. The 4-core Phenom does not
perform quite as well as expected and, as we will show in Chapter 5, this is a result of being more
heavily computationally bound.

Figure 4.7b shows a similar graph for the space-/schedule- optimised diffusion filtering effect
with maximal fusion and contraction. A comparison of this graph with the schedule- but not space-
optimised case in Figure 4.5b shows that little has changed. As we expected, the performance of
this effect is not bounded by inter-primitive communication. We have improved the memory
utilisation of this effect through array contraction but not sufficiently so to fully extend the Core 2
Duo results.

Finally, we consider the improvements made from the optimisations in this chapter. Fig-
ure 4.8a summarises the performance gains and losses from schedule optimisation only in the
wavelet-based degraining and diffusion filtering visual effects. This data indicates that schedule
optimisation alone is not generally beneficial to performance. Changes in performance range from
0.7x to 1.2x. The gains from improved temporal reuse distance and reduced loop control over-
head are in strong contention with, or dominated by, increased cache pressure and memory traffic
arising from the larger working set and by inefficiencies in our parallelisation strategy.

However, Figure 4.8b vindicates our efforts by demonstrating that large performance are made
possible by schedule optimisation as an enabling transformation for space optimisation. We ob-
serve speed-ups between 2.6x–5.5x on the wavelet-based degraining effect and 0.9x–1.3x on the
diffusion filtering effect. By reducing the working set size to an absolute minimum our perfor-
mance gains are able to dominate the negative effects of schedule optimisation.

We speculated in Section 3.7 that the scalability of our generated code was limited to some
degree by inter-primitive communication. The final two graphs of our performance analysis in
this chapter support this assertion. Figures 4.9a and 4.9b graph the throughput of the wavelet-
based degraining and diffusion filtering effects following space and schedule optimisation as the
number of CPU cores in use is scaled. Compared with the same generated code without space
and schedule optimisation in Figures 3.9a and 3.9b, we have improved scalability in both cases.
Wavelet-based degraining, in particular, now achieves near-linear scalability for all benchmarked
CPUs. We observe a 7.3x speed-up with 8 cores in this effect compared with 2.9x before schedule-
and space-optimisation. Diffusion filtering experiences a smaller, but still significant, increase
from 4.8x speed-up with 8 cores to 6.3x.

The improvement is scalability is particularly evident as the number of cores in use grows.
Note the downward curve of scalability in Figures 3.9a and 3.9b compared with the new results
in Figures 4.9a and 4.9b. As the number of cores in use increases the performance of both effects



4.4. PERFORMANCE ANALYSIS 73

 0

 1

 2

 3

 4

 5

 6

Core 2 Duo E6600

Phenom 9650

Xeon E5420

R
el

at
iv

e 
Sp

ee
d-

up

Wavelet-Based Degraining
Diffusion Filtering

(a) Schedule optimisation only

 0

 1

 2

 3

 4

 5

 6

Core 2 Duo E6600

Phenom 9650

Xeon E5420

R
el

at
iv

e 
Sp

ee
d-

up

Wavelet-Based Degraining
Diffusion Filtering

(b) Space and schedule optimisation

Figure 4.8: Relative speed-ups (1x = no speed-up) of the wavelet-based degraining and diffusion
filtering effects on all cores of each benchmarking platform for a fixed input image size of 12
MPixels, following schedule- and space-/schedule- optimisation. Speed-ups are attributable to
reduced temporal data reuse distance and loop control overhead (Section 4.2). Slow-downs arise
from increased cache pressure and memory bus traffic, due to the increased working set size, and
from higher overheads in parallelisation (Section 4.2.4).
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(b) Diffusion filtering

Figure 4.9: Relative speed-ups (1x = no-speed-up) over single-core throughput of the wavelet-
based degraining and diffusion filtering visual effects for a fixed input image size of 12 MPixels,
following space and schedule optimisation. Memory optimisation improves scalability over the
previous experimental results in Figure 3.9.
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experiences a reduction in computational bound and increase in memory bound, as the compu-
tational resources increase while memory resources – such as the shared main memory bus and
partially shared cache – become increasingly contended. Thus the effects of schedule and space
optimisation become particularly significant when large numbers of cores are in use. As this is
the expected use for such a system in practice we have a strong interest in improving memory
resource utilisation. It is still possible to observe a small downward turn in Figures 4.9a and 4.9b
after 4 cores as the Xeon begins to share partitions of its cache between pairs of cores.

Having optimised the memory performance of these effects we are now in a good position
to tackle their computational performance in Chapter 5. We will return to the issue of memory
optimisation in Chapter 6 from a very different perspective by automating the generation of code
for architectures with memory resources of much higher capacity and bandwidth.

4.5 Concluding Remarks

In this chapter, we described an application of program metadata to a cross-component optimi-
sation on the graph of primitives constituting a visual effect. The goals of this optimisation are
to reduce the size of the working set, allowing it to fit into lower levels of the memory hierar-
chy, and to reduce the computational overhead of loop control structures. This optimisation is a
composite of well-known program transformations, including loop fusion and array contraction.
Static metadata facilitates a purely syntactic approach to transformation, by communicating high-
level information about data dependence and visual effect structure directly to the optimisation
engine in order to sidestep complex program analyses. Dynamic metadata further simplifies this
optimisation by capturing the visual effect construction and spatial filter parameters at runtime in
order to identify beneficial cross-component optimisations and tune the fused loop structures. Our
space and schedule optimisation adapts dynamically to the image sizes and spatial filter radii by
representing and manipulating the iteration space through variable parameters to the polyhedra.

This optimisation is best suited to effects constructed from a wide network of small intercon-
nected primitives. Wavelet-based degraining is a good example of this class of effect, owing to its
recursive construction from a short chain of 1D spatial filter and point-based primitives. Strong
performance gains are observed on all benchmarking platforms with this effect. The diffusion
filtering effect, built from a short chain of primitives in which a single primitive dominates per-
formance, provides a counterexample to the optimisation in being dominated by intra-primitive,
rather than inter-primitive, memory hierarchy throughput. Much smaller gains, and even slight
performance degradation on one platform, are observed with this effect.



Chapter 5

SIMD Code Generation and
Optimisation

In Chapter 4 we presented an application of our framework to optimising source-to-source code
transformation by making use of high-level program metadata encoded in the visual primitive rep-
resentation. This metadata can also be used to implement syntactic and semantic transformations
between different languages. In this chapter we leverage this capability to augment our frame-
work with a second code generation backend which targets SIMD ISAs. Chapter 3 established a
basic scalar CPU backend with code flattening and static specialisation. We build upon this work
by introducing vector-scale parallelisation and intrinsic instruction substitution to target the Intel
SSE vector instruction set. The ideas presented in this chapter should scale well to other SIMD-
oriented ISAs, such as the Intel Larrabee [SCS+08] graphics processor’s ISA, although we focus
on the constraints of non-scatter/gather data processing. Chapter 6 presents a third code genera-
tion backend, for SIMT ISAs, with an emphasis on large-scale parallelism and the capabilities of
scatter/gather instructions.

SIMD is of particular interest to our study by virtue of its pervasiveness in modern Intel and
AMD multicore CPUs and its severe underutilisation by contemporary vendor compilers. Au-
tovectorisation is often considered a solved problem and is easy to enable with a compiler flag. We
found the Intel C/C++ and GCC compilers’ vectorisation capabilities to be underwhelming and, as
we will demonstrate in our performance evaluation, ineffective even in the highly simplified form
of code produced by the framework of Chapter 3. Throughout our research we speculated about a
number of reasons for this: ambiguous data dependence, data alignment difficulties, conservative
optimisation to avoid performance degradation, etc. None of our experiments were conclusive on
these points but empirical evidence clearly demonstrates that compilers are failing to exploit the
SIMD computational resources of CPUs effectively.

The work in this chapter was borne out of a need to exploit these resources to maximise our
application performance on multicore CPUs. As we will demonstrate, the metadata captured by
our framework provides an easy path to sidestep the numerous problems a vectorising compiler
would face. All but one of our transformation phases are analysis-free: a single phase requires a
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simple scope analysis which is made trivial by the ROSE [SQ03] source-to-source transformation
tool. The work presented in this chapter is based on a substantial development of our published
work on this topic [CKPN07]. In particular, we transitioned our framework from packed to planar
layout images primarily to improve the ease and efficiency of SIMD parallelisation. Interaction
with the space and schedule optimisations, discussed in Chapter 4, is another post-publication
development which delivers improved performance and provides new perspective on the compu-
tation and memory bounds of VFX algorithms, and the ways in which we can tackle them.

5.1 Transformation Phases

Our SIMD code generation engine processes the C++ metadata-annotated kernel ASTs and poly-
hedral loop schedule to produce vector instruction-augmented source code for a vendor compiler,
as summarised earlier in Figure 3.4. Our SSE implementation communicates vectorised instruc-
tions to the compiler in the form of intrinsic functions, which relate closely to the machine-level
instructions. The compiler – Intel C/C++ 11.0 in our experimental backend – manages the task of
register allocation by allowing intrinsics to operate on variables. We observed that the compiler
frequently prefers in-memory operands for complex architectural performance reasons, anyway.
The intrinsic code generation process is divided into five phases, characterised by independent
traversals of the visual primitive kernel ASTs. These are summarised below and explained in
detail in the five subsections which follow.

• Strip Mining. The loop schedule is modified by a classic strip mining [BGS94] transfor-
mation to group work inside the kernel into vector-sized chunks. We leverage dependence
metadata to assert the safety of this transformation. Data sets are also padded to avoid the
need for scalar fragments where vectorised work extends beyond the loop bound, which
would otherwise pose an unacceptable cost in schedule optimisation.

• Scalar Promotion. We exploit knowledge of data dependence and parallelism in the state-
ments of the kernel, provided to us by metadata, to implement a simple iterative syntactic
translation algorithm which promotes the types of variables carrying image data, and data
derived from it, from scalars to vectors. Upon completion of this iterative process, any
statements operating on promoted vector types are themselves promoted to their vector
counterparts. This process is entirely analysis-free.

• Divergent Conditional Predication. Scalar promotion may promote the condition vari-
ables of conditional branches within the kernel. Since different control paths may be taken
for each scalar within the vector condition, we use a branch predication transformation to
execute both branches and mask the results of each branch into vectors. Determining the
variables that are live out from each branch – and hence those that must be masked – re-
quires a simple variable scope analysis. We exploit the syntactic analysis capabilities of the
ROSE library to provide this information, which our metadata does not.
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• Memory Access Realignment. A correct SSE program may be constructed by using mis-
aligned load and store instructions to move vector-sized data between main memory and
registers. We describe a metadata-supported algorithm which identifies accesses that begin
on aligned address boundaries to substitute faster aligned access instructions. Furthermore,
we modify the input and output data sets to ensure that alignment is guaranteed within the
largest loop fragments, where aligned instructions have the largest effect on performance.

• Contracted Load/Store Rescheduling. A consequence of the space optimisation transfor-
mations described in Chapter 4 is that vector accesses to contracted arrays must be wrapped
through modulo addressing. A non-scatter/gather SIMD architecture can only address the
first scalar of a vector. Thus, contracted arrays, in their post-space optimisation form, cannot
be correctly addressed in a SIMD kernel implementation. We describe an extension to con-
tracted array addressing which uses a second array to ensure that wrapping is not required
during vector load/stores in at least one of the two arrays.

Our SIMD code generation process differs from established research in two ways. First, par-
allelisation is not the primary challenge: metadata establishes clear data dependence relationships
between the statements of different kernels and between those within a kernel. Most autovectori-
sation literature research focuses on data dependence analysis and on the transformations required
to enable parallelisation. Secondly, our code generation process operates at the C source level.
Established work takes place mainly in the SSA form at a lower level of AST abstraction.

5.1.1 Strip Mining

Our first AST transformation phase is common to all SIMD code generation strategies. One
or more loops in a visual primitive loop nest must be strip mined [BGS94] in order to group
the nested computation and memory access statements into vector-sized chunks. A non-scatter /
gather architecture requires these chunks to be contiguous in memory and in registers. Thus, it
is typical to select only the x loop for strip mining, in which horizontally successive (and hence
contiguous) data members are processed. There are two cases in which this strategy fails:

• Packed image layouts. Recall from Chapter 3 that our framework operates in the planar
image layout domain. This layout forms a horizontally contiguous ordering of successive
component intensities from a common plane, which satisfies the contiguity requirement of a
non-scatter/gather SIMD architecture as described above. In an earlier prototype framework
we experimented with packed image layouts. The contiguity requirement is not broken in
this case: although intensities are no longer spatially contiguous, the data layout matches
the computation ordering of the loop nests (i.e. R, G, B, R, G, B, etc.). However, since
the component loop is nested innermost in this ordering, and because its trip count is fre-
quently smaller than the vector width (an RGB image leads to a trip count of only 3), we
are unable to strip mine it. Interchanging the x and component loops would lead to a mis-
match between data layout and computation. Thus, our only remaining options are to use
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an unroll-and-jam transformation [BGS94] or to pad images to RGBA sizes. We explored
the latter in [CKPN07] and identified overheads in memory access and limitation to archi-
tectures with a vector width no larger than 4.

• Horizontal moving averages. Recall from Definition 2.11 that a moving average primitive
has a loop-carried data dependence in one axis. In a horizontal moving average this data
dependence lies between successive iterations of the x loop. In order to strip mine the
x loop we require a guarantee that no data dependence exists between iterations within a
vector-sized group. From Metadata 3.3.2 we know that this is not the case for a horizontal
moving average. We experimented with block-transposed loads and stores (see Chapter 6)
to reformulate the primitive as a vertical moving average, which does not pose a similar
problem, but found the overheads of transposition to exceed the gains from exploiting SIMD
instructions. Thus, our SIMD code generation process leaves horizontal moving average
kernels in their scalar form.

The granularity of the strip mining transformation is determined by the vector width of the
target architecture. This process is scalable to any vector size (Vsize) that is substantially smaller
than the trip count of the strip mined loop. As Vsize increases towards the trip count, the percentage
of work lost due to the last iteration overhanging the data set tends towards 50%, with exceptions
near vector widths at which the trip count is divisible by the vector width. The SSE ISA has a
vector width of 4, which is much smaller than any image we work with in practice.

Listing 5.1 shows simplified generated code for the grain reduction visual primitive of the
wavelet-based degraining algorithm [SCW05] with strip mining for a 4-wide vector architecture.
We use an established notation from [BGS94] to indicate that a statement must be evaluated for a
set of values dependent upon the strip-mined loop’s iterator. In doing so, we are asserting that there
exist no data dependencies which would be violated in a parallel execution of this statement for
all values. Contrary to the established literature, we choose not to introduce a scalar cleanup loop
to handle the case where width is not exactly divisible by the vector width. Instead, we introduce
a padding factor into the row strides of the input and output images to ensure that vector writes at
the edge fall within an allocated but unused part of the data set. This trades a small computational
and memory access expense – at most 3 iterations per image row for SSE – for a simpler loop
structure which avoids combinatorial explosion in schedule optimisation (see Chapter 4).

The transformation is implemented as a modification of the polyhedral schedule (Section 4.2).
For example, the constraint matrix for the loop nests in Listing 5.1 is shown in Table 5.1. Strip
mining introduces a new, unused iteration variable into the matrix for each loop that is modified.
An extra constraint defines a linear relationship between the loop’s iteration variable and the extra
unused variable. The coefficient of the unused variable in this constraint is set to the granularity
of the strip-mining transformation: i.e. the vector width, which is 4 in the case of SSE. Because
the polyhedral scanning process will only visit integral points in the polyhedron, this is sufficient
to discard iterations 1...3, 5...7, 9...11 etc. of the strip-mined loop where x� would have a fractional
value. The net effect is to set the step of the strip-mined loop to the vector width.
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for(int c = 0; c <= 2; ++ c) {
for(int y = 0; y <= height - 1; ++ y) {
for(int x = 0; x <= width - 1; x += 4) {
const float val = Input[c*pStride + y*rStride + x[0:3]];
const float absVal = fabsf(val);

float newVal = val;
if(absVal < alpha1) {

newVal = 0.0f;
} else if(absVal <= alpha3) {

newVal = copysign(alpha3 * (absVal - alpha1) * beta, val);
}

Output[c*pStride + y*rStride + x[0:3]] = newVal;
}

}
}

Listing 5.1: A visual primitive implementation of the grain reduction stage in the wavelet-based
degraining algorithm described in [SCW05]. The x loop has been strip-mined for a SIMD architec-
ture with 4-element vectors. The notation x[0:3] indicates a set of successive x values, beginning
at x, for which the statement must be executed and may be computed in parallel.

= /≥ c y x x� width height 1
1 1 0 0 0 0 0 0
1 -1 0 0 0 0 0 2
1 0 1 0 0 0 0 0
1 0 -1 0 0 0 1 -1
1 0 0 1 0 0 0 0
1 0 0 -1 0 1 0 -1
0 0 0 1 -4 0 0 0

constraint
c ≥ 0
c ≤ 2
y ≥ 0
y ≤ height −1
x ≥ 0
x ≤ width−1
x = 4× x�

Table 5.1: Constraint matrix for the strip-mined loop nest shown in Listing 5.1. A new iteration
variable x� is introduced and an additional constraint links x to a multiple of x�. Since the statement
will only execute for integral configurations of the iteration variables, the unused variable x� spaces
values of x apart by its multiple.

In this intermediate form it is non-trivial to generate a valid C implementation of the vi-
sual primitive. Statements operating upon grouped values of x can be expanded with ease, but
their outputs scale to multiple values which necessitates further expansion of any other statements
which consume them. We do not consider the scalar code generation problem here – essentially a
form of loop unrolling [BGS94] – and instead leverage the grouped form to transform the kernel
statements directly into vector intrinsic equivalents.

5.1.2 Scalar Promotion

Our second AST transformation phase implements the key vector intrinsic substitution process
which replaces grouped statements from the strip-mining phase with vector instructions. The
substitution algorithm, which we call scalar promotion, leverages data dependence guarantees
from Metadata 3.3.2 to assert the absence of loop-carried data dependence between statements of
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the kernel for all iterations within the group. Note that a vertical moving average, for example,
has a loop-carried dependence between successive iterations of the non-strip-mined y loop. This
does not inhibit scalar promotion because the amount of parallelism required for SIMD is small
and constrained to the parallel x loop.

We developed an iterative algorithm which terminates when no further changes are made
to the kernel within an iteration. This iterative process allows promoted vectors to propagate
from array accesses, where grouped statements begin, through variables to other statements of the
kernel. Throughout this process the kernel will be type-unsafe; only once the iteration process
has completed is type correctness restored, with the exception of vector conditionals that are
disallowed by the language and tackled in Section 5.1.3. We make no claims about the complexity
or efficiency of this algorithm and, in particular, expect further research to uncover a more efficient
formulation of this problem and its solution. Performance of the scalar promotion algorithm has
not been a concern for the kernels we have studied in this thesis.

Listing 5.2 outlines pseudocode for the scalar promotion algorithm. The algorithm is divided
into two iterative stages: promotion of variables to vector types followed by promotion of the
expressions operating upon those variables. This division is desirable because the promotion of
a scalar variable can have propagative effects which reach other statements, whereas promotion
of a scalar expression has an influence that is limited to the statement in which the expression
is contained. Both stages are applied repeatedly until no more changes are made to the kernel
by either stage. Square-bracketed pseudocode indicates simple constructs and tests which we
trivially implemented in the ROSE compiler infrastructure through traversals of the AST. A key
advantage of this algorithm is the absence of program analysis: only type-sensitive syntax-directed
translation is used.

The first stage of this algorithm promotes the types of scalar variable declarations to their
vector counterparts. Constraint 3.2.1 narrowed the domain focus to images of floating-point data
type. In SSE intrinsic terminology, the f loat type is promoted to a vector of 4 floats: m128. Any
assignment with a scalar variable of f loat type on the left-hand side is examined for an expression
on the right-hand side of vector type. If this is found, the type of the LHS variable is promoted
to m128 by modifying its declaration statement. This process is iterated in case the promotion
of a variable gives rise to an assignment in which the RHS is a variable that we just promoted,
which may lead to promotion of another variable, etc. Promoting the declarations first has the
most wide-reaching effect on the kernel, and thus this is separated from subexpression promotion
in the second stage.

After the first stage of the algorithm terminates, our example kernel from Listing 5.2 is trans-
formed into the type-invalid intermediate form shown in Listing 5.3. Two variables are promoted
from f loat to the m128 vector type. val is the first variable to be promoted: the group of scalars
received from the Input[] array, due to the strip-mined iteration variable x, necessitates promotion
to receive all four values in a single iteration. Depending on the layout of the AST and order of
traversal, the next variable will either be promoted in the same iteration or in the next. newVal is
promoted through direct assignment from the promoted variable val. Notice that absVal has not
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do {
CycleChanged = false

// Promote variables to vector type.
do {
IterChanged = false
foreach(ScalVar in [Kernel.Assignments.LHS]) {
if [RHS is group of scalars or vector type] {

[Promote ScalVar.Declaration.Type to vector type]
IterChanged = CycleChanged = true

}
}

} while(IterChanged)

// Promote vector:scalar operations to vector:vector.
do {
IterChanged = false
foreach(ScalExp in [Kernel.Expressions]) {
foreach(SubExpr in [ScalExp.SubExpressions]) {

if [SubExpr is group of scalars or vector type] {
[Replace ScalExp with vector equivalent]
IterChanged = CycleChanged = true

}
}

}
} while(IterChanged)

} while(CycleChanged)

Listing 5.2: Pseudocode for the two-stage iterative scalar promotion algorithm.

yet been promoted: the type-validity of f abs f (val) is not be resolved until the second stage. This
is the reasoning behind the outer iterative loop surrounding both stages which does not terminate
until both stages make no further changes.

Listing 5.4 shows the kernel once the scalar promotion algorithm has terminated. absVal has
been promoted to m128 type following the promotion of the RHS of its initialiser to a vector in-
trinsic expression equivalent to f abs f (val). Promotion of expressions to their vector counterparts
propagates from those involving promoted variables to expressions consisting of promoted expres-
sions. For each target ISA we would have a set of syntactic rules for translating the scalar variables
and expressions into equivalent SIMD instructions. Some of the promotion cases we have shown
for SSE are quite complicated: for example, f abs f () and copysign() are both implemented with
bitwise mask constructs. It is important to note that this kernel is still not quite type-safe: the lan-
guage does not support conditional tests with vector expressions, which the mm cmp∗ intrinsic
family return. We will return to this problem in Section 5.1.3.

Brief consideration must be given to kernel expressions involving the strip-mined iteration
variable. The normal form of scalar variable promotion produces a vector with the value replicated
in all of its elements. A strip-mined iteration variable, such as x from Listing 5.4, however, must
be promoted to a vector consisting of [x, x+1, x+2, x+3, ...] for the semantics of the kernel to
remain unchanged. The example we show here does not make use of the iteration variable, but
other kernels, such as the image border grow kernel – which must detect regions of output that
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for(int c = 0; c <= 2; ++ c) {
for(int y = 0; y <= height - 1; ++ y) {
for(int x = 0; x <= width - 1; x += 4) {
const __m128 val = Input[c*pStride + y*rStride + x[0:3]];
const float absVal = fabsf(val);

__m128 newVal = val;
if(absVal < alpha1) {

newVal = 0.0f;
} else if(absVal <= alpha3) {

newVal = copysign(alpha3 * (absVal - alpha1) * beta, val);
}

Output[c*pStride + y*rStride + x[0:3]] = newVal;
}

}
}

Listing 5.3: The grain reduction primitive from Listing 5.1 after the first stage of the scalar pro-
motion algorithm shown in Listing 5.2. Changes are highlighted in bold.

for(int c = 0; c <= 2; ++ c) {
for(int y = 0; y <= height - 1; ++ y) {
for(int x = 0; x <= width - 1; x += 4) {
const __m128 val = _mm_load_ps(&Input[c*pStride + y*rStride + x]);
const __m128 absVal = _mm_and_ps(val, _mm_castsi128_ps(

_mm_set1_epi32(0x7fffffff)));
__m128 newVal = val;
if(_mm_cmplt_ps(absVal, _mm_set_ps1(alpha1))) {

newVal = _mm_setzero_ps();
} else if(_mm_cmple_ps(absVal, _mm_set_ps1(alpha3))) {

newVal = _mm_or_ps(_mm_and_ps(_mm_mul_ps(_mm_mul_ps(_mm_set_ps1(alpha3),
_mm_sub_ps(absVal, _mm_set_ps1(alpha1)), _mm_set_ps1(beta))),
_mm_castsi128_ps(_mm_set1_epi32(0x80000000))), val);

}

_mm_store_ps(&Output[c*pStride + y*rStride + x], newVal);
}

}
}

Listing 5.4: The grain reduction primitive from Listing 5.1 after termination of the complete scalar
promotion algorithm shown in Listing 5.2. Changes are highlighted in bold.

correspond to real data – do make use of this side case.

5.1.3 Divergent Conditional Predication

Upon completion of the scalar promotion phase described in the preceding section, the AST has
been transformed into a SIMD intrinsic-augmented form that is almost compilable. The remain-
ing correctness problem lies in the type incompatibility of the conditional test (boolean) and the
SSE vector-wide comparison intrinsic ( m128), which contains 4 boolean results from a pairwise
comparison of scalars between two vectors. Figure 5.1 illustrates why this incompatibility can-
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Figure 5.1: Illustration of divergence in a vector-conditional branch, resolved with scalar-wise
conditional predication. The boolean result vector consists of true and false elements. In predi-
cation, both branches are executed and the live-out variables of each branch are masked with this
vector and merged.

not be resolved with a simple transformation. The booleans in the mask can be, and often are,
a mix of true and false values. Taking either branch would be incorrect as we may be executing
statements for which the conditional test says we should not. One could isolate cases where the
condition vector is constructed from scalars with identical boolean values and execute the condi-
tional branch as normal, but in practice it is more expensive to test for this case than to treat all
vector conditional cases uniformly.

This is a classic problem in autovectorisation and has even been studied as a software and
hardware optimisation [TF96] for scalar code, where the costs of branch control logic and mispre-
diction can be substantial in comparison to the size of the branch bodies. The solution is branch
predication: executing both paths of the conditional branch and masking the live-out variables
of each branch to form the same outputs that would have been produced in a conditional, scalar
execution. In vectorisation, branch predication is often more of a correctness requirement than an
optimisation unless the ISA provides support for instruction predication in hardware.

Our implementation of branch predication consists of a single traversal of the AST. Listing 5.5
outlines pseudocode for this algorithm. The algorithm first identifies a set of variables that are
possibly live-out from either branch of the condition. Each of these variables is replaced with a
shadow copy of the variable and an assignment of the live-in value is made to each copy prior to
the branch bodies. The condition is removed and the true and false branches are both executed
in sequence. Finally, the copied live-out values from both branches are bitwise combined with
the vector boolean condition and assigned to the corresponding original variables to complete the
predication transformation.

The algorithm uses a function ScopeO f to determine the scope in which a variable is defined.
Since we disallow pointers and references in the kernel, which serve no useful function given
the data access methods permitted, an implementation of this function can be a pure syntactic
analysis. We use the ROSE compiler’s built-in scope analysis to derive this information.

Returning to the grain reduction primitive discussed earlier in this chapter, the kernel takes the
form shown in Listing 5.6 following the conditional predication phase. Two levels of conditionals
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foreach(IfStmt in AST.IfStatements) {
if TypeOf(IfStmt.Condition) == Vector {
foreach(BranchBody in [IfStmt.TrueBody, IfStmt.FalseBody]) {
LiveOutVariables = FindLiveOutVariables(BranchBody)

foreach(LiveOutVariable in LiveOutVariables) {
TmpLiveOutVariable = TmpVariable(LiveOutVariable)
BranchBody.Replace(LiveOutVariable, TmpVariable(TmpLiveOutVariable))
BranchBody.Prepend(Assignment(TmpLiveOutVariable, LiveOutVariable))

}
}

MergeBlock = []
foreach(TrueLiveOutVariable, FindLiveOutVariables(IfStmt.TrueBody)) {
MergeBlock.Append(Assignment(TrueLiveOutVariable,

TmpVariable(TrueLiveOutVariable) AND IfStmt.Condition))
}
foreach(FalseLiveOutVariable, FindLiveOutVariables(IfStmt.FalseBody)) {
MergeBlock.Append(Assignment(FalseLiveOutVariable,

TmpVariable(FalseLiveOutVariable) AND NOT IfStmt.Condition))
}

Replace(IfStmt with [IfStmt.TrueBody, IfStmt.FalseBody, MergeBlock])
}

}

function FindLiveOutVariables(Body) {
LiveOutVariables = []
foreach(Assignment in Body) {
if ScopeOf(Assignment.LHS) != Body
LiveOutVariables += Assignment.LHS

}
Return LiveOutVariables

}

Listing 5.5: Pseudocode for our divergent branch predication algorithm.

are predicated in turn; it does not matter in which order this occurs. A pair of vector copies is
created for the live-out vector newVal in both predicated loop nests and combined after the true
and false branches have been executed, in the manner shown in Figure 5.1, to place the correct
vector value back into newVal. The kernel is now correct, given the data alignment criteria set out
in Section 5.1.4.

5.1.4 Memory Access Realignment

The non-scatter/gather SIMD architecture, which we focus on in this chapter, is only capable
of addressing the first scalar in a vector load/store. Furthermore, for architectural reasons it is
considerably more efficient if the address of the first scalar is a multiple of Vsize [SJV06]. A
program-level choice of aligned or misaligned vector load/store intrinsics determines whether
the faster or slower method is used. Using aligned intrinsics to access misaligned data leads
to incorrect data being read or written. Using misaligned intrinsics to access aligned data is
acceptable, but will not achieve the performance of the equivalent aligned intrinsic.
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for(int c = 0; c <= 2; ++ c) {
for(int y = 0; y <= height - 1; ++ y) {
for(int x = 0; x <= width - 1; x += 4) {
const __m128 val = _mm_load_ps(&Input[c*pStride + y*rStride + x]);
const __m128 absVal = _mm_and_ps(val, _mm_castsi128_ps(

_mm_set1_epi32(0x7fffffff)));
__m128 newVal = val;
__m128 mask_0 = _mm_cmplt_ps(absVal, _mm_set_ps1(alpha1));
__m128 newVal_True_0 = newVal;
__m128 newVal_False_0 = newVal;
{

newVal_True_0 = _mm_setzero_ps();
}
{

__m128 mask_1 = _mm_cmple_ps(absVal, _mm_set_ps1(alpha3));
__m128 newVal_True_1 = newVal_False_0;
__m128 newVal_False_1 = newVal_False_0;
{
newVal_True_1 = _mm_or_ps(_mm_and_ps(_mm_mul_ps(_mm_mul_ps(

_mm_set_ps1(alpha3),_mm_sub_ps(absVal, _mm_set_ps1(alpha1)),
_mm_set_ps1(beta))),_mm_castsi128_ps(_mm_set1_epi32(0x80000000))),
val);

}
newVal_False_0 = _mm_or_ps(_mm_and_ps(newVal_True_1, mask_1),

_mm_andnot_ps(newVal_False_1, mask_1));
}
newVal = _mm_or_ps(_mm_and_ps(newVal_True_0, mask_0),

_mm_andnot_ps(newVal_False_0, mask_0));

_mm_store_ps(&Output[c*pStride + y*rStride + x], newVal);
}

}
}

Listing 5.6: The grain reduction primitive from Listing 5.4 following application of the conditional
predication algorithm shown in Listing 5.5. The kernel is now valid SSE-augmented C code.
Changes are highlighted in bold.

In this section we show how Metadata 3.3.1 (DAG) and Metadata 3.3.3 (memory access)
can be used to determine the alignment of loads/stores in a generated kernel, and then to correct
misalignment to enable high throughput aligned instructions. The kernel shown in Listing 5.6
makes use of aligned instructions – mm load ps and mm store ps instead of the misaligned
mm loadu ps and mm storeu ps – and relies on alignment techniques discussed in this section

for correctness. This is the easiest case in which to achieve alignment. Factors which complicate
alignment include:

• 1D/2D spatial access. Horizontal freedom in image access, as identified in the metadata
associated with a kernel, prevents us from guaranteeing alignment by allowing the vector
address to move in increments that are not a multiple of Vsize. Vertical freedom does not
similarly block alignment because the strides of each image are padded to a multiple of
Vsize.

• Subregion access. If the ROI of an indexer is smaller than the size of the associated image
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in the horizontal axis, accesses may or may not be misaligned in the kernel. The possibility
of misalignment can be derived from Metadata 3.3.1 (DAG). The degree of misalignment
can be computed at runtime and, if equal to zero, an aligned code variant can be used. This
is particularly beneficial on architectures with small vectors as the probability of alignment
decreases with Vsize.

• Fragmented loops. Horizontal fragmentation in visual primitive loop nests, following the
schedule optimisation described in Chapter 4, may restrict alignment guarantees to only the
first fragment in a horizontal set. We deliberately misalign access in all but the last loop
fragment, where we guarantee alignment, which is likely to have the largest trip count and
hence the biggest impact on performance.

The first problem, involving horizontal spatial freedom in vector loads/stores, is simply solved
by using misaligned intrinsics when Metadata 3.3.3 (memory access) states, statically, that an in-
dexer may have horizontal spatial freedom (e1D or e2D) and, dynamically, that the axis of spatial
freedom for e1D indexers is horizontal (eHorizontal). There is little we can do to make use of
aligned access here because scalar-separated accesses are a common pattern in spatial filter prim-
itives. We have considered, but not implemented, a scheme (illustrated in Figure 5.2) which could
try to buffer all of the data within a spatial filter window into registers using aligned reads. Align-
ment is guaranteed at the start of the window because the leftmost column of the image is aligned
and iteration increments in Vsize steps. Misaligned reads could then be simulated by permuting and
combining the segmented vectors. Similarly, for writes one could buffer multiple vector stores lo-
cally and combine them in registers to form a smaller set of aligned writes. However, our current
framework does not permit spatial filter metadata on output indexers.

The second problem, involving access to potentially misaligned subregions of image data,
cannot be corrected in the general case. There is no freedom to adjust the alignment of image data
because, by accessing a subregion, there is an implication that another primitive is consuming the
entire DOD (else the image wouldn’t have been that large to begin with) and any adjustment is
likely to induce misalignment – (Vsize − 1) out of Vsize times – in the other primitive. However,
we can detect the possibility of misalignment by searching for images which are used by multiple
primitives in Metadata 3.3.1 (DAG). With this possibility confirmed one can generate different
code variants for aligned and misaligned runtime cases. It is beneficial to detect this statically
else we observe a combinatorial code explosion as the number of different images processed by a
primitive increases. At runtime the state of alignment can be determined as follows and used to
select the appropriate aligned or misaligned code variant:

misaligned = ((roi.x1 mod vectorwidth) �= 0) (5.1)

The third problem, involving horizontal loop fragmentation following schedule optimisation,
can be corrected to a very good degree. This is important because the cost of misalignment may
reduce or overshadow any performance gains from space optimisation. An observation key to
solving this problem is that, in the majority of visual effects, spatial filter dimensions are much
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Figure 5.2: A proposed, but as yet unimplemented, solution to the problem of vector load align-
ment for an indexer with horizontal (in this case 2D) spatial freedom. Aligned loads are made to
stage the whole spatial filter window into registers and individual indexer loads are reconstructed
by combining the staged registers.

smaller than the images being processed. As a consequence, the loop shifts required in schedule
optimisation are much smaller than the whole iteration space. Fragmentation gives rise to a num-
ber of very low trip count loops followed by a single, much larger loop fragment (in which fused
kernels all execute together).

We can exploit this observation by focusing our alignment efforts on the largest loop fragment.
Since the majority of execution time will be spent here, misalignment in the other loop fragments
will have little impact on overall performance. Thus, we exploit the ability to shift the base address
of image data (or, equivalently, contracted intermediate arrays) so that it is definitely aligned in the
largest loop fragment and assumed to be misaligned everywhere else. Shifting the base address
requires that we always allocate an extra vector at the end of the image but this cost is insignificant.
The amount by which the image or contracted array must be shifted can be similarly computed:

misalignment = vectorwidth− ((roi.x1+ shi f t) mod vectorwidth) (5.2)

A caveat of shifting the image base address to align loads is that it causes misalignment in
stores in the producing kernel. Only loads or stores may be forcibly aligned for any given image.
Misaligned stores are considerably more expensive than misaligned loads because two loads must
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Figure 5.3: Array contraction on a non-scatterable SIMD device. Some data is lost and misread
off the array edge because only the first vector element is addressable.

first be issued, the new value then permuted into the two vectors, and two aligned stores issued to
write the value back to memory. Thus, our framework attempts to align stores at the expense of
misaligned loads. Prior to realignment, both are considered to be misaligned and thus we still see
a significant improvement.

5.1.5 Contracted Load/Store Rescheduling

The final transformation phase corrects a subtle problem which arises when contracted arrays,
formed during space optimisation, are accessed in Vsize blocks. Contraction requires all indices
used to access the contracted array to be wrapped inside the allocated region with a modulus
calculation. When vector loads and stores are made to the contracted array, only the first scalar can
be addressed and thus wrapped. Figure 5.3 illustrates how array contraction becomes an invalid
transformation under these circumstances. Vectors written to or read from the last (vectorwidth−
1) elements of the array lose data or read invalid data off the end of the array respectively.

We explored two methods to resolve this and settled on one as the superior solution. Our
rejected solution involved simulating misaligned reads from the contracted array – i.e. those which
might fall outside the array, which is padded to a power-of-two ≥ vectorwidth – by issuing two
aligned reads, both wrapped inside the array, and piecing together elements from the two vectors.
Similarly, misaligned writes were simulated by issuing two aligned loads, shuffling new data into
the two vectors, and issuing two aligned writes to the array. This proved to be considerably more
expensive than using real misaligned intrinsics (which of course would not perform this wrapping)
and slower than our chosen method.

Figure 5.4 illustrates our chosen solution. The contracted array is made vectorwidth − 1
elements larger to permit writes off the edge. We allocate a second contracted array of the same
size. This has the unfortunate side effect of doubling the contracted working set size, but it is an
acceptable cost for the benefits of space optimisation. Each time a store is issued to the array, a
second store is issued to the second array in a wrapped location at 180◦ to the first. This ensures
that the data is correctly written in at least one of the two arrays, if both are at least 3×Vsize in
size. The first and last vectors of both arrays are considered unsafe because loads from either may
not see correctly wrapped data.
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Figure 5.4: A scheme for correct SIMD array contraction. Stores are made to two arrays, one
shifted by 180◦, so data is not lost. Loads choose a safe array to read from.

The trick here is to select which array to read from during a load. For any given scalar offset
one or both of the arrays will contain a safe, contiguous region to read the data from. We use an
optimised bitwise expression to choose a base offset (first or second array) and a wrapped shift (0
degrees or 180 degrees) by examining the top two bits of the scalar offset. Since the array will
always be padded to a power of two in size we can conservatively assume that the first and last
quarters of the array are unsafe and that the other two are safe. Thus whenever an offset falls
within the first or last quarter of the first array it is redirected to a corresponding offset in the
second or third quarters of the second array.

5.2 Performance Analysis

Before we present experimental results it is worth considering the effects of combining the tech-
niques discussed in this chapter with the space and schedule optimisations described in Chap-
ter 4. The performance limiting factor in the experimental results presented in Chapter 3 was
the throughput of the memory hierarchy. Space optimisation improved this considerably in the
wavelet-based degraining effect, although the diffusion filtering effect remained bounded in other
ways. The ordering of these chapters is significant: the application of SIMD ISAs, whose sole
purpose is to improve computational throughput, to a visual effect which is largely memory bound
is ineffective. The experimental results in Chapter 4 rebalanced the computational and memory
bounds in favour of computational acceleration, as we will now demonstrate.

Figure 5.5a presents the throughput of SSE intrinsic-augmented generated code for the wavelet-
based degraining effect as image size is varied. Space and schedule optimisation is not applied in
this case. The range of throughputs across each platform is quite narrow. Performance is com-
pletely dominated by the memory hierarchy, which does not vary between each platform as much
as their computational capabilities. We use a large Y axis scale to permit direct comparison with
the space/schedule optimised, SSE intrinsic-augmented implementation shown in Figure 5.5b.
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Figure 5.5: Throughput of the wavelet-based degraining visual effect with an SSE intrinsic imple-
mentation for all constituent visual primitives, both with and without space/schedule optimisation,
on all cores of each of three benchmarking platforms. Y-axis throughput measures the number of
output pixels generated per second with variation of the input image size on the X-axis.
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Our goal here is not to show the speed-up from using SSE, but instead to emphasise the chang-
ing performance bound from memory to computational as space/schedule optimisation is applied.
Differences in throughput between each platform increase from 1.7x and 1.1x (two to four cores,
four to eight cores respectively) to 1.9x and 1.9x respectively. This is almost perfectly in line with
the differences in computational capability of each device, architectural differences aside.

Figures 5.6a and 5.6b present a similar progression of throughput for an SSE intrinsic aug-
mented implementation of the diffusion filtering effect. In this case only 9 out of the 12 constituent
primitives have a generated SSE kernel due to the presence of three horizontal moving averages,
which block the strip mining transformation as discussed in Section 5.1.1. Recall from Chap-
ter 4 that the speed-up from space/schedule optimisation in the scalar implementation was only
0.9x–1.3x. This effect remains largely memory bound and the application of SSE does not yield
significant growth in throughput or differentiation between the three platforms. Since SSE offers
only increased computational throughput, and no improvement in memory bandwidth or latency,
this is the expected result. SSE vectorisation reduces the contribution of data-dependent perfor-
mance in this effect (not graphed) because divergent branch predication forces the execution of
branches with data-dependent conditions which might otherwise be bypassed.

Speed-ups from SSE vectorisation, in combination with the space/schedule optimisation re-
sults from Chapter 4, are presented in Figure 5.7a. The segments of each bar are sized propor-
tionally to the speed-up (throughput after ÷ throughput before) delivered by the corresponding
optimisation, beginning at 1x for no optimisation. The total bar size indicates the overall speed-up
attained from both space/schedule optimisation and SSE vectorisation in composition. A com-
parison with Figure 4.8b reveals the space/schedule performance results that are carried over to
this new graph. In wavelet-based degraining SSE improves the speed-up over the generated code
results in Chapter 3 from 2.9x to 5.0x on the Core 2 Duo, 2.6x to 5.1x on the Phenom and 5.5x to
8.1x on the Xeon. Space and schedule optimisation tackled the memory bound of this algorithm,
whilst SSE vectorisation increases the computational throughput. Both work in concert to deliver
a large overall speed-up over the unoptimised implementation. Diffusion filtering sees a smaller
improvement from 1.1x to 1.5x (C2D), 0.9x to 1.4x (Phenom) and 1.3x to 1.5x (Xeon). We specu-
late that this algorithm remains memory bound in ways our space and schedule optimisation have
not tackled: i.e. intra-primitive bandwidth.

Figure 5.7b presents an alternative visualisation of the speed-up from SSE vectorisation. Here,
we reverse the application of space/schedule optimisation and SSE vectorisation to increase the
computational throughput before tackling the memory throughput. The wavelet-based degraining
effect shows a large difference in speed-up contributions from the first phase ordering in Fig-
ure 5.7a. Using the SSE ISA now gives a much smaller contribution to the overall performance,
before space/schedule optimisation is able to relieve the memory bound and saturate the SSE
vector units. The overall speed-up remains unchanged: both whole bars represent the composi-
tion of space/schedule optimisation followed by SSE vectorisation in the same phase ordering.
This graph is mainly intended to emphasise the need for memory hierarchy and computational
throughput optimisations to work in harmony in order to improve overall performance.
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(b) Space/schedule optimised

Figure 5.6: Throughput of the diffusion filtering visual effect with an SSE intrinsic implementation
for 9 out of 12 constituent visual primitives, both with and without space/schedule optimisation,
on all cores of each of three benchmarking platforms. Y-axis throughput measures the number of
output pixels generated per second with variation of the input image size on the X-axis.
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Figure 5.7: Relative speed-ups (1x = no speed-up) of the wavelet-based degraining and diffu-
sion filtering effects on all cores of each benchmarking platform for a fixed input image size
of 12 MPixels, following space/schedule optimisation and SSE vectorisation. In (a) we apply
space/schedule optimisation first. In (b) we apply SSE vectorisation first. The phase ordering of
the optimisation composition is fixed in both cases: space/schedule optimisation first followed by
SSE vectorisation. Speed-ups from SSE are attributable to the increased computational throughput
of the ISA over scalar paths and are particularly effective in rebalancing the computational/mem-
ory bound once space and schedule optimisation has been applied.
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To conclude our performance study of the SSE code generation process, we demonstrate the
impact on multicore scalability of, first, SSE vectorisation and, then, space/schedule optimisation.
Figure 5.8a summarises the scalability of the SSE intrinsic-augmented wavelet-based degraining
implementation without space or schedule optimisation. Scalability is slightly worse than the
scalar implementation from Figure 3.9a due to the increased memory bandwidth requirements of
each core, without a corresponding increase in memory bandwidth to supply it with data. By us-
ing space/schedule optimisation as a bandwidth enhancement, as shown in Figure 5.8b, scalability
returns to a more favourable state and is comparable to, although not quite as linear as, the corre-
sponding scalar version from Figure 4.9a. Thus, we are able to deduce that the SSE ISA requires
a little more memory bandwidth than we are able to free up with space/schedule optimisation.

Figures 5.9a and 5.9b present the corresponding scalability graphs for the diffusion filtering
effect. Scalability of the SSE vectorised, but not space/schedule optimised, implementation is
again slightly worse than the corresponding scalar implementation, whose scalability is graphed
in Figure 3.9b. Space/schedule optimisation provides a small degree of recovery but scalability
remains poor after 4 cores. The memory bound of this effect is primarily intra-primitive and we
have not yet developed a CPU optimisation to target this.

5.3 Concluding Remarks

In this chapter, we described an application of program metadata to automatic code generation for
SIMD ISAs, such as Intel’s SSE, from the visual primitive representation. Leveraging these ISAs
enables algorithms to take advantage of high computational throughput paths, which are other-
wise unused in the scalar form, by exploiting parallelism in the computations comprising a visual
effect. Parallelism is made explicit by static metadata describing the data dependence structure
of each visual primitive, thus sidestepping the complex analyses underlying the autovectorisation
problem. Furthermore, we make use of dynamic metadata to tune realignment transformations,
which enable the use of fast aligned memory access instructions, at runtime to the configurable
primitive parameters which change the fused loop structures created by schedule optimisation.
Our focus on non-scatter/gather SIMD architectures, which are common in short-vector computa-
tional paths, led to refinements of the space optimisation algorithm to operate at vector granularity.

SIMD code generation is best suited to effects which are dominated by computation, rather
than memory access. The SSE ISA, for example, offers a theoretical improvement in computa-
tional throughput of 4x; in practice, 2-3x is typically observed. Memory access relies on the same
hierarchy as scalar pathways and can therefore offer only small theoretical gains, by bypassing
certain cache levels for programmer-marked transient loads/stores; but we did not explore this
feature. We observe that the performance of the wavelet-based degraining effect does not respond
well to SIMD code generation unless space optimisation is first applied to alleviate the memory
bound, after which there are substantial gains to be made. In the diffusion filtering effect we ob-
serve that the intra-primitive memory bound, which cannot be resolved by our space optimisation,
leads to smaller gains from its SIMD implementation.
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Figure 5.8: Relative speed-ups (1x = no-speed-up) over single-core throughput of the wavelet-
based degraining visual effect for a fixed input image size of 12 MPixels, following SSE vectori-
sation both with and without space/schedule optimisation. Scalability has worsened slightly over
the scalar code from Figure 3.9a as SSE instructions saturate memory bandwidth more quickly.
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Figure 5.9: Relative speed-ups (1x = no-speed-up) over single-core throughput of the diffusion
filtering visual effect for a fixed input image size of 12 MPixels, following SSE vectorisation both
with and without space/schedule optimisation. Scalability has worsened slightly over the scalar
code from Figure 3.9b as SSE instructions saturate memory bandwidth more quickly.



Chapter 6

SIMT Code Generation and
Optimisation

In Chapter 5 we outlined an application of high-level program metadata to efficient SIMD code
generation from the visual primitive representation described in Chapter 3. We will now demon-
strate another code generation process, which shares some of the aspects of SIMD code gener-
ation, for SIMT (Single Instruction, Multiple Thread) [NBGS08] architectures. This application
of metadata is a departure from the CPU optimisation-oriented goals of Chapters 4 and 5. Here,
our aim is to improve algorithm throughput by mapping kernels to an entirely different class of
hardware: GPUs, introduced in Section 2.4.3. SIMT devices have very high computational and
memory throughput owing to their massively parallel computational units fed by high latency,
high bandwidth memory. It is a brute force approach to optimising the performance of visual
effects which, as we will demonstrate, gives a very high performance and cost effective solution
in the VFX domain.

There are two key challenges in generating high performance code for a SIMT architecture:

• Large scale parallelism. In Chapter 5 we tackled short-vector SIMD architectures with
parallelism requirements of only 4 threads. In contrast, a SIMT device must keep tens
of thousands of threads in flight in order to hide the latency of uncached memory access.
Launching fewer threads leads to underutilisation of computational and memory resources.

• Memory hierarchy optimisation. Because the memory hierarchy of a SIMT architecture
has only limited caching facilities – e.g. NVIDIA devices provide a small, programmer-
managed region of low latency memory in addition to small hardware-managed caches – it
is essential to optimise memory access by issuing superword transactions (coalescing) and
making explicit use of low latency regions to share data between threads.

The focus of our code generation process, which is outlined in Section 6.1, is on tackling these
challenges. As will demonstrate in Section 6.1.1, the process of generating correct – but not neces-
sarily fast – SIMT code is much simpler than the vectorisation and intrinsic substitution problems
in SIMD code generation. This is a direct consequence of the SIMT model, which allows each

98
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thread to run a scalar kernel independently of other threads. In addition to the code transformations
required to support efficient use of the hardware, Section 6.2 outlines our process for automatically
selecting parameters to the configurable parallelism offered by SIMT devices. The material pre-
sented in this chapter is based upon a development of our published work on this topic [CHK+09].
In particular, we offer a deeper discussion of the interactions between space/schedule optimisation
and SIMT code generation. This is a potentially valuable combination, but is complicated by the
synchronisation requirements discussed in Section 4.2.4.

6.1 Transformation Phases

Our SIMT code generation engine processes the C++ metadata-annotated kernel ASTs to produce
SIMT-optimised kernels in NVIDIA’s CUDA language, which is based upon an extension of C,
as summarised earlier in Figure 3.4. The polyhedral loop representation is not used during this
process and the reasons for this are discussed in Section 6.3. Upon completion of all transforma-
tion phases, the kernel is passed to NVIDIA’s CUDA compiler and C++ stub code is generated
to interface between the framework and the CUDA runtime. The SIMT code generation process
is divided into six phases, characterised by independent traversals of the visual primitive kernel
ASTs. These are summarised below and explained in detail in the six subsections which follow.

• Syntax-Directed Translation. The kernel is first passed through a syntactic translation pro-
cess to augment it with CUDA syntax and to map mathematical functions to corresponding
built-in CUDA intrinsics. By virtue of CUDA’s grounding in the C language, which resem-
bles the C++ abstract representation, this phase is a trivial syntactic transformation.

• Constant and Shared Memory Staging. Metadata 3.3.3 (memory access) is used to iden-
tify dynamically bounded regions of image data which will be accessed by multiple threads
in the kernel, due to spatial filter access patterns in the primitive representation. These re-
gions are first copied into the explicitly-managed cache through cooperation between groups
of threads, from which they can be accessed independently by each thread with lower la-
tency and higher bandwidth.

• Memory Access Transposition. Coalescing, a memory transaction optimisation made
available on SIMT architectures to reduce memory control traffic, can only take place if
successive threads issue loads to a dense, contiguous set of data. Because a horizontally se-
rialised primitive, as identified by Metadata 3.3.2 (data dependence), leads to discontiguous
reads between threads, we leverage a graph-level transposition optimisation which modifies
Metadata 3.3.1 (graph) by inserting extra transpose primitives before and after the opera-
tion. Thus, a vertically serialised variant of the primitive – which satisfies the constraints
for coalescing – can be generated and executed instead.

• Memory Access Realignment. In addition to the memory access transposition optimisa-
tion, coalescing opportunities are further enhanced by identifying cases in which the mem-
ory address accessed by the first thread is not aligned to a particular boundary – alignment
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being a requirement for coalescing to take place – and performing a realigning transfor-
mation, not unlike the one used for SIMD architectures in Section 5.1.4. Metadata 3.3.1
and 3.3.3 (DAG and memory access) are used to identify realignment opportunities and to
derive dynamic shift amounts for the transformation.

• Maximising Parallelism. Metadata 3.3.2 (data dependence) identifies kernels with serial-
isation in a single axis. In cases where parallelism in the other axis is insufficient to meet
the multithreaded demands of a SIMT device, we exploit the separation of roll-up and in-
cremental update kernels in the frontend of a moving average visual primitive to divide the
serial axis into a small, parallel set of serialised iterations. This doubles, triples, etc. the
amount of parallelism available at a small additional cost of roll-up computation.

• Scheduling Overhead Reduction. Compositions of simple pointwise kernels may con-
sume so little execution time individually that the cost of thread scheduling dominates the
computation. From Metadata 3.3.3 we identify kernels with a 1:1 mapping of input to output
data elements. An unroll-and-jam [BGS94] transformation is used to increase the amount of
per-thread work, reducing the number of threads needed and hence the scheduling overhead.

6.1.1 Syntax-Directed Translation

The first phase of SIMT code generation translates the C++ kernel into the CUDA language syn-
tax. CUDA is very similar to the C language, with some additional features taken from C++, so
this process is quite straightforward. Once syntax-directed translation has taken place, the kernel
is correct and sufficient for execution on a GPU. The remaining transformation phases described
in this chapter serve only to optimise parallelism and memory access in the kernel. The key kernel
features which must be translated are as follows:

• Indexer Accesses. Reads and writes to image data through C++ indexer objects are flat-
tened to array accesses, with base addresses and strides marshalled as parameters to the
CUDA kernel.

• Non-Mathematical Functions. CUDA threads do not have a stack and, as such, cannot ex-
ecute function calls. Function calls are manually inlined with a source-level transformation
from the ROSE software.

• Mathematical Functions. Some functions have optimised CUDA built-in implementa-
tions, with various trade-offs of speed and accuracy. We maintain a list of key functions
which should not be inlined but, instead, replaced with calls to these intrinsic functions.

• Constant Class Member Variables. Parameters to the kernel which were previously stored
as constant members of the kernel class are marshalled into constant memory. These pa-
rameters are shared between all threads of the computation and cannot be changed.



6.1. TRANSFORMATION PHASES 101

__global__ void BoxBlur_Horizontal_CompKernel(float *Input,float *Output,const
float MultBy,const int _radius,int __dyStride,int __dpStride,int __iyStride,
int __xElems,int __yElems)
{

float MovingSum;

// Kill threads with off-edge workloads.
int __thrOffset = __mul24(blockIdx.y,blockDim.y) + threadIdx.y;
if (__thrOffset >= __yElems)
return ;

// Roll-Up
int __i = __thrOffset * __iyStride - 1;
MovingSum = 0.0f;
for (int i = -_radius; i <= _radius; ++i) {
MovingSum += Input[__i + i];

}

// Kernel
int __j = __thrOffset * __dyStride;
int __endj = __j + __xElems;
for (; __j < __endj; ++__j) {
++__i;
MovingSum -= Input[__i + (-_radius) - 1];
MovingSum += Input[__i + _radius];
Output[__j] = (MovingSum * MultBy);

}
}

Listing 6.1: A horizontal implementation of the one-dimensional box blur visual primitive from
Listing 3.2 following syntax-directed translation for a CUDA architecture.

• Moving Averages. A moving average is constructed by joining the roll-up and kernel func-
tions, and moving non-constant class member variables – which carry state along the seri-
alised axis – into per-thread local scope.

To illustrate this transformation phase, and the optimising phases in the coming sections,
we return to the box blur visual primitive from Listing 3.2 as an example. Following syntax-
directed translation the kernel appears as shown in Listing 6.1. This is a vertically-specialised
implementation of the primitive; a corresponding horizontal implementation is also generated but
is not shown here. Notice the absence of an (x,y) iteration domain: this implicitly surrounds a
CUDA kernel and is configured through the parameters discussed in Section 6.2. The component
part of an (x,y,c) iteration, for a componentwise kernel, is implemented by repeating the entire
execution once per plane, moving the Input and Output pointer parameters to their corresponding
planes. This avoids the need for a third iteration dimension per thread block, which would negate
the benefits of componentwise iteration by processing all planes simultaneously. Most of the
apparent complexity of this kernel comes from the mapping of thread/block ID to locations in the
input and output images containing and receiving data involved in a thread’s computation.

The RollUp and Kernel functions of Listing 3.2 have been joined together to form a single,
serialised moving average per thread in the vertical axis. Thus, a single thread is responsible
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Figure 6.1: A simulated cache for primitives with spatial filter access. Threads cooperate to stage
the elements of a region of memory into local, manually managed memory, from which overlap-
ping accesses between multiple threads can be served with lower latency and higher bandwidth.

for computing an entire column of output data (the j loop iterates along this column). The
constant member variable MultBy is marshalled as a constant parameter to the kernel and the state
variable MovingSum is moved to thread scope, so that each thread maintains unique state along its
associated column. This phase constitutes well-known boilerplate work for constructing a CUDA
program and does not require sophisticated analysis or metadata. We refer the reader to [NBGS08]
for additional information.

6.1.2 Constant and Shared Memory Staging

A typical GPU memory system consists of a high bandwidth, high latency, large global memory
space and very small, very high bandwidth, low latency shared memory and constant memory
spaces. Large images are stored in global memory, small amounts of constant parameters (in our
case constant class members) go into constant memory and shared memory is used as a working
space. A typical functor with pointwise indexers has little need for shared memory, apart from
the realignment optimisation discussed in Section 6.1.4. There is no benefit to loading pointwise-
accessed data through shared memory and, indeed, the additional copy would reduce throughput.

However, with 1D and 2D spatial filter indexers there is substantial overlap between the data
read by each thread. A 3x1 spatial filter region, for example, would carry information needed by
three different threads. It would be very wasteful for each thread to issue a private global memory
load; worse, the minimum transaction size is typically four data elements of which only one would
be used. Instead, as illustrated in Figure 6.1, threads can coordinate to read common data elements
exactly once from global memory into shared memory. From there the cost of redundant, over-
lapped loads into registers is much lower due to the higher bandwidth and lower latency of this
region. Opportunities to improve performance through staging are clearly identifiable from Meta-
data 3.3.3. Static metadata defines the number of dimensions of a spatial filter region. Runtime
metadata captures the configured size of these regions to adapt the staging process dynamically.

A one-dimensional CUDA shared memory staging function is given in Listing 6.2. The func-
tion takes a source address in global memory, a destination address in shared memory, the number
of elements to be copied and a guard to test if the thread’s logical workload lies off the edge of
the image data. Each thread copies one or more elements, with the loop trying to spread the work
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__device__ inline void Stage1D(const float *const from,
float *const to,
const int nElems,
const int guardX)

{
for(int i = threadIdx.x;

i < nElems && i < guardX;
i += blockDim.x)

{
to[i] = from[i];

}
__syncthreads();

}

Listing 6.2: A 1D global-to-shared memory staging CUDA function. The i loop makes thread
block-sized strides across the data to allow more data elements to be staged than there are threads.

evenly, and all threads reach a barrier to ensure that the whole copy has completed before any
threads read from shared memory. This function does not typically carry the barrier instruction –
it has been left here for clarity – so that several regions of memory may be staged together into
different partitions with a single barrier in the calling code.

Shared memory (and constant memory) is, of course, a limited resource. When there are
multiple regions of memory to be staged, the code generator must decide which to place into the
available memory. Dynamic metadata establishes the precise amount of memory required per
indexer. There is no guarantee that a kernel will use all of the staged data; legitimate algorithms,
such as the discrete wavelet transform shown earlier in Listing 3.1, touch only a subset of an
N-element region. While it is true that all of the staged data will be read by at least one thread,
this may not be sufficient to overcome the additional cost of staging. This is really a flaw in our
approximation of the DWT access pattern, and other sparse patterns, as spatial filters: it actually
consists of just three scalar reads per iteration with left, centre and right offsets.

6.1.3 Memory Access Transposition

The coalesced memory transaction optimisation is predicated on having a contiguous, sequential
mapping of data elements to thread IDs. As illustrated in Figure 6.2, memory accesses in a hor-
izontal moving average primitive are physically disjoint. Those in the vertical moving average
are contiguous and thus meet the requirements for coalescing. Metadata 3.3.2 (data dependence)
allows the two cases to be distinguished statically. In practice, in the horizontal case it is often
faster to simply spawn one thread per pixel, each initialising its state by reading the entire filter
region beneath it, and to treat the kernel as if it had no dependence or state at all than to suffer
the performance penalty of uncoalesced access. We use this approach in the unoptimised case
because the higher thread count helps to hide the latency of uncoalesced access.

It is in the interests of performance to prefer vertical moving averages over their horizontal
counterparts. A simple way to achieve this is to transpose the input data sets to a horizontal
moving average functor, replacing it with an equivalent but faster vertical implementation, and
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Figure 6.2: SIMT threads in a moving average execution. Memory accesses made in the horizontal
moving average do not satisfy coalescing rules due to discontinuity.

then transpose the output data sets back. This would pay off if the total runtime of the three stages
– transpose, execute, transpose – is less than the horizontal implementation’s runtime. There is
an opportunity for further optimisation here if the context of the kernel is known: Metadata 3.3.1
(DAG) provides this information dynamically. Sequences of horizontal moving averages, e.g.
a series of box blurs making up the horizontal part of a Gaussian blur approximation, can be
optimised by noting the redundant double transposition nodes at the boundaries between them.
By eliminating pairs of transpositions at the graph level the effect’s performance can be increased.

A similar problem arises in fully parallel primitives with vertical 1D spatial filter access pat-
terns, identifiable from Metadata 3.3.1 and 3.3.3 (DAG and memory access). There is a trade-off
between using a vertical thread block configuration (see Section 6.2) to stage the overlapped re-
gion into shared memory, suffering discontiguous column-wise global memory reads, or using a
horizontal thread:work mapping to achieve coalescing but sharing no data at all. In practice we
found that the latter was faster. However, transposing the entire primitive is a better option as it
enables both coalescing and shared memory staging.

This optimisation tackles an instance of the data alignment problem [LC91]. The relative
distribution of each input data set to a visual primitive affects the overall amenability of memory
accesses to the coalescing optimisation. The impact of these distributions may extend beyond the
primitive: each data set can be reused in different contexts, and the distribution of new data sets
may depend upon the distribution of input data sets. An optimum distribution, minimising trans-
positions throughout the DAG, is a global optimisation problem inside the DAG, and potentially
beyond it to the producers and consumers of its input and output data sets. The functional problem
formulation may have advantages in this domain [DGTY95], but we have not yet explored this.

We explored an alternative, potentially faster solution to transposition which did not require
explicit transpose nodes in the graph. This is illustrated in Figure 6.3. Transposition was carried
out on 16x(16+2R) element blocks – where R is the spatial filter radius – with appropriately
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Figure 6.3: A scheme for memory access transposition without explicit transpose operations.
Small blocks are transposed on the fly into shared memory, where coalescing is a non-issue, and
processed by a horizontal filter implementation.

transposed indices, staging rows of a block into columns of shared memory. By padding the
shared memory row stride to 17 elements, bank conflicts were avoided in both memory spaces.
Furthermore, coalescing requirements were satisfied by the row-wise global memory loads. For
reasons which were not entirely clear we were unable to improve upon the performance of the
graph-level transpose solution with this method. We speculate that the additional shared memory
and register requirements of this approach reduced parallelism to a degree which negated the gains
from improved use of the memory system. Profiling tools, which were not available at the time of
this experiment, could shed more light on this.

6.1.4 Memory Access Realignment

A second requirement for the coalescing optimisation is that the address accessed by thread 0
must be aligned to a specific multiple: typically 64 bytes in current implementations. CUDA im-
plementations guarantee that the base address of allocated memory regions satisfy this alignment.
However, there are two key sources of misalignment in our framework:

• ROI smaller than producer DOD. The DOD of a primitive is guaranteed to be equal in size
to the primitive’s output data sets. Thus, if these data sets satisfy the alignment requirement
then the DOD will also meet this requirement. The ROI of an indexer in a consuming
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Figure 6.4: Global memory load/store misalignment occurs when the region of interest is smaller
than the input image. Coalescing can be mostly restored by redistributing the thread:data mapping
so that thread 0 is aligned on a boundary.

__device__ inline void Stage1DMisaligned(const float *const from,
float *const to,
const int nElems,
const int guardX,
const int alignBy)

{
for(int i = (threadIdx.x + alignBy) & (blockIdx.x - 1);

i < nElems && i < guardX;
i += blockDim.x)

{
toBase[i] = fromBase[i];

}
__syncthreads();

}

Listing 6.3: A 1D global-to-shared memory, realigning staging CUDA function. This function
implements the thread:data remapping scheme illustrated in Figure 6.2.

primitive, however, may be smaller than the data set it is reading from. Depending upon its
precise size, the base address of the ROI may be (and likely will be) misaligned.

• Horizontal 1D or 2D access. Alignment can be ensured in vertical spatial filters by intro-
ducing small row-to-row padding factors when data sets are allocated. Alignment cannot
be ensured with horizontal access freedom, however, because a kernel is free to request
accesses with 4 byte offsets.

(DAG and memory access) Both of these cases can be identified from Metadata 3.3.1 and 3.3.3
(DAG and memory access). The latter case is already resolved through the staging optimisation
discussed in Section 6.1.2, which always passes an aligned base address to the Stage1D function
from Listing 6.2. Alignment can be partially restored in the former case through a staging trans-
formation similar to that described in Section 6.1.2, but with a change in the thread:data mapping
to ensure that thread 0’s work is aligned. This process is illustrated in Figure 6.4 and a realigning
staging function is shown in Listing 6.3.
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Figure 6.5: Serialisation in moving average (Definition 2.11) kernels leads to underutilisation
of SIMT parallel resources. Parallelism can be enhanced by splitting serialised rows/columns
into parallel groups of serialised sub-rows/columns, exploiting the explicit roll-up function in the
visual primitive front-end.

6.1.5 Maximising Parallelism

A typical modern GPU keeps tens of thousands of threads in flight in order to tolerate latencies of
hundreds of cycles in the high bandwidth, high latency global memory system. Physical compu-
tational parallelism is measurable in hundreds of threads. Satisfying the parallelism demands of
these devices in visual effects should be easy: each image typically consists of millions of pixels.
For fully parallel algorithms this is as simple as associating each thread with a single output pixel.

However, consider the moving average algorithm shown in Figure 6.2. The loop-carried de-
pendence (in either axis) serialises entire rows or columns of pixel computations. Parallelism is
reduced from the order of millions of threads to only a few thousand for large images. This is in-
sufficient to satiate the demands of a modern GPU and will lead to underused memory load/store
and computational issue slots.

There is a way to create more parallelism. A moving average consists of a state initialisation
function and a kernel, as illustrated by the box blur example from Listing 3.2. The initialisation
function can be called from any location in the image to build up state for the next run of pixels.
By splitting the serialised row or column into several pieces, as illustrated in Figure 6.5, we can
double, triple, etc. the amount of parallelism available to us. As long as the initialisation function
is run once in each thread the results will be correct. There is a small overhead in recomputation
at the split row/column boundaries but this is dominated by improvements in processor thread
occupancy.

By looking at Metadata 3.3.2 (data dependence) we can locate primitives with moving average
dependence and the dynamically serial axis to identify functors with poor parallelism. Using the
dependence guarantees provided by Metadata 3.3.2, the split row/column transformation can be
applied with no modifications to the kernel whatsoever. By simply redistributing work:thread
mappings and increasing the number of threads the transformation is completed.
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Figure 6.6: A coalescing-safe work distribution method to assign multiple work items to each
thread. This is useful in simple kernels where the scheduling costs of high thread counts can
dominate the computational work being done. Increased register usage to manage the mapping
operation typically has no impact on parallelism due to the low register requirements of the kernel.

6.1.6 Scheduling Overhead Reduction

A 1:1 mapping of output work items to threads leads to considerable overhead in the hardware
scheduling system. This is especially significant in simpler primitives in which the runtime of the
kernel is of comparable magnitude to this overhead. A simple way to alleviate this overhead is by
using an N:1 mapping of output work items to threads. Fewer threads can be spawned with this
method and, as a result, the cost of SIMT scheduling is reduced. Any mapping of work to threads
can be used but we chose the mapping illustrated in Figure 6.6 because it preserves the require-
ments for coalescing to take place. Threads form an interleaved work pattern, as in a 1:1 mapping
of work:threads, but continue to take additional elements of data by striding over the work being
carried out by in-flight threads. Implementing this mapping carries a small computational cost
and requires additional registers; however, the kernels typically targeted for this optimisation are
already underutilising computational and register resources.

Listing 6.4 shows a sample of generated code for a two-operand summation kernel, follow-
ing a transformation to implement an N:1 thread:work mapping. The value of N is dynamic and
selected by the parallelism configuration process discussed in Section 6.2. We identify primi-
tives which might benefit from this transformation by looking for primitives with only pointwise
indexer access patterns, from static Metadata 3.3.3 (memory access). Our rationale is that we can-
not know true runtime costs without substantial static analysis or a dynamic feedback mechanism.
However, long runtimes typically arise from iteration across 1D or 2D regions of local data. It is
important to avoid applying this transformation indiscriminately because the increase in register
requirements can lead to reduced parallelism in kernels with high register counts, which is likely
to dominate any gains from scheduling optimisation.

6.2 Thread Block Size, Shape and Count Selection

Once an appropriately optimised SIMT kernel has been generated, marshalling code is also gener-
ated to manage data movement and computation. An important decision made by this code is the
configuration of parallelism for each kernel. The configuration of a SIMT kernel is parameterised
by thread block and grid configuration [NBGS08]. Choosing a thread block and grid configuration
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__global__ void Add(float *Input1, float *Input2, float *Output, int nElems)
{

for(int _off = __mul24(blockIdx.x, blockDim.x) + threadIdx.x;
_off < _nElems;
_off += __mul24(gridDim.x, blockDim.x))

{
Output[_off] = Input1[_off] + Input2[_off];

}
}

Listing 6.4: A summation kernel following the N:1 work:thread mapping optimisation described
in Section 6.1.6. The kernel strides over the data set in grid-sized steps.

can drastically alter performance. These factors can even determine whether a program can run at
all under the resource constraints of a given device. It is worth beginning by noting the hard limits
constraining our choices of thread block size, shape and count. CUDA specifies five relevant pa-
rameters in each version of its Compute Capability (CC). Tmax is the maximum number of threads
per thread block. Tmpm is the maximum number of threads that can be managed concurrently on
a multiprocessor. Rmax is the total number of registers available to a multiprocessor. Smax is the
number of bytes of shared memory per multiprocessor. Our study focuses on CC 1.0, but note
that our selection techniques scale to newer versions by simply using different parameterisations
of these factors. For CC 1.0 the parameters are:

Tmax = 512,Tmpm = 768,Rmax = 8192,Smax = 16000 (6.1)

For CC 1.3 the parameters are:

Tmax = 512,Tmpm = 1024,Rmax = 16384,Smax = 16000 (6.2)

Tmax is a hard limit on the number of threads per block, but we are additionally constrained by the
availability of registers (Rmax) for those threads to use and by the shared memory requirements
of a particular kernel. Focusing just on the register requirement for now, the maximum number
of threads per block Tpb for a given kernel is related to the number of registers the kernel uses
Rpt . The latter value can be extracted from the compiled kernel metadata. Equation 6.3 relates
these two factors. The floor notation �a,b� denotes a rounded down to the next integer multiple
of b. This equation is undocumented but used in the CUDA Occupancy Calculator spreadsheet. It
has value in choosing optimal thread block configurations and thus we have listed it. Tphw is the
number of threads per half-warp, 16 for all current versions of CC.

Tpb = min(Tmax,

�
Rmax

Tphw ×Rpt
,4
�
×Tphw) (6.3)

Per-kernel shared memory requirements are a little harder to formalise. Each kernel uses a fixed
amount of shared memory for parameters and internal use Spk, advertised in the compiled ker-
nel metadata. The remaining shared memory consumption arises from the staging optimisations
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discussed in Section 6.1.2. These can be broadly classified as shared memory per-thread Spt and
a constant amount per-block independent of the block size Scpb. Thus the maximum number of
threads per block for a given kernel is additionally constrained by Equation 6.4.

Spk +Scpb +Spt ×Tpb ≤ Smax (6.4)

The factors discussed so far are hard limits. In fact, performance can often be increased by sub-
stantially undercutting them. By reducing Tpb the shared memory Smax can be divided amongst
multiple blocks. Additionally, CC 1.0 specifies a maximum number of threads per multiprocessor
Tmpm of 768. A Tpb of 512 could not fully saturate a multiprocessor on this architecture because
there is an insufficient number of free threads to process a second block on the multiprocessor.
In this case reducing Tpb to 256 may permit three blocks to run on the multiprocessor – if shared
memory and register constraints are satisfied – potentially increasing performance further than the
512 thread block could have through its more efficient intra-block communication.

Once Tpb has been chosen it must be virtualised into a two-dimensional thread block Tpbx ×
Tpby. This could be a horizontal or vertical line, a square or something in-between. The shape
of a thread block primarily affects the ratio of information shared amongst threads to the incom-
municable but logically shared information at the boundaries of thread blocks. Maximising this
ratio requires different shapes in different cases. Additionally, the shape of a thread block may be
constrained by dependence in the horizontal or vertical axis.

Tpbx = Tpb , Tpby = 1 (a horizontal line) is required by vertical moving average functors and
the scheduling overhead reduced functors described in Section 6.1.6. It is also used to maximise
shared information in horizontal 1D spatial filter indexers: the shared information is Tpb elements
and incommunicable information is only (2 x radius) elements. On the other hand, Tpbx = 1,
Tpby = Tpb (a vertical line) is required by horizontal moving average functors. Note that we expect
vertical one-dimensional filter indexers to have been transposed by this point, thus they would also
use a horizontal thread block.

Tpbx =
��

Tpb
�
, Tpby =

��
Tpb

�
is a compromise of the two approaches. It is used for two-

dimensional spatial filters and for mixes of 1D horizontal and vertical filters. It is suboptimal in
both axes but maximises the shared data ratio in the 2D filter. Rectangular variations can be used
when the horizontal and vertical filter radii differ.

Once a thread block size has been chosen, the grid size Bpgx ×Bpgy is fixed. In most cases
this is given by Bpgx =

�
dodWidth

Tpbx

�
, Bpgy =

�
dodHeight

Tpby

�
. Scheduling overhead reduced kernels are

a special case where we set Bpgx = 160, Bpgy = 1. This block count is tuned experimentally: it
is small to minimise block management overheads but large enough to keep all multiprocessors
occupied at reasonable thread block sizes.

6.3 Challenges in SIMT Space/Schedule Optimisation

Chapter 4 outlined a cross-component optimisation which reduces data reuse distance and working
set size in a visual effect. The optimisation was designed for scalar CPU ISAs but in Section 5.1.5
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we described a simple adaptation to vector CPU ISAs. In both cases, large performance gains
were observed on an effect consisting of a large DAG of simple pointwise and 1D spatial filter
primitives. In principle, the benefits of this optimisation carry across to SIMT devices as well. A
number of challenges, however, make this transition harder than for SIMD devices:

• Limited cache space. Current generation SIMT architectures define a small piece of man-
ually managed, high bandwidth, low latency shared memory. This is typically 16KB per
multiprocessor on an NVIDIA GPU. Compared with caches exceeding 10MB per multi-
processor on modern multicore CPUs, the space available to fit contracted working sets on
a SIMT device is much smaller. Indeed, this is by design: SIMT devices are intended to
hide latency through massive multithreading. However, the bandwidth to shared memory
is considerably higher than to global memory and, as a result, array contraction remains a
potentially useful memory optimisation.

• No inter-block communication. Shared memory space is local to each multiprocessor and
there are no explicit communication language constructs to pass data between them. The
contracted working sets of fused primitives with 1D and 2D access patterns cannot be seg-
mented without synchronisation or communication because threads must read subregions
of the working set – computed by multiple threads from different multiprocessors – which
span segmentation boundaries.

• Resource/parallelism trade-off. The performance of a SIMT kernel is closely linked to the
level of parallelism that can be achieved. Parallelism is constrained by the availability of
registers and shared memory, which must be divided between all of the in-flight threads of a
multiprocessor. Fusion increases the shared memory and register requirements of a kernel,
which may lead to degraded performance when these additional resources are unavailable.
This situation differs from a CPU, which has a greater availability of cache space to spill
registers into and to store the contracted working set in.

In spite of these limitations, space/schedule optimisation remains potentially useful on SIMT
devices for fusing pointwise primitives – i.e. those with no 1D or 2D access patterns (Meta-
data 3.3.3). For such primitives, contraction can take place entirely within registers local to each
thread, since each parallel working set remains associated with a single thread. We do not explore
this option in our performance analysis, since we were seeking a uniform solution which incorpo-
rated primitives with 1D and 2D access patterns to support more interesting classes of effects. In
unpublished work we identified large performance gains with a specialisation of space/schedule
optimisation to pointwise primitives only, but do not make use of this in our evaluation.

Tackling contraction in primitives with 1D and 2D access patterns is not inconceivable and
may yet yield attractive performance gains. We propose two potential solutions to this problem:

• Partial fusion. The lack of a facility to communicate contracted data at borders of thread
blocks is the primary barrier to fusion. This problem may not affect the entirety of the
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Figure 6.7: A proposed wavefront scheduling method for executing space/schedule optimised
effects on a SIMT architecture with hardware support for inter-block shared memory communi-
cation. The first step of the fused kernel executes in parallel across all thread blocks. The second
step does not begin in each block until its neighbouring blocks have completed the first step and
synchronised to exchange computed data.

thread block, however. With a large block. comparatively small spatial filter radii and short
fusion chains, a substantial percentage of each thread block does not need to communicate
with its neighbours. It might be beneficial to compute these regions with fused/contracted
code and then complete the remaining elements with an unfused pass.

• Wavefront parallelism. If a mechanism for inter-block thread communication were to be
made available, the need for synchronisation would still limit the application of this optimi-
sation. It would be necessary to barrier the entire computation between fusion boundaries
within the fused kernel to exchange computed border data between thread blocks. The
strategy we used for CPU multicore parallelism – recomputing the missing border data on
each core – would be impractical given the scale of parallelism required by SIMT. One op-
tion would be to execute thread blocks in a wavefront pattern, as illustrated in Figure 6.7.
The first step of the fused kernel is executed by all thread blocks in parallel. The second
step in each thread block does not begin until the first step of all the blocks which pro-
vide computed data to that block has been completed. This requires synchronisation with
neighbouring blocks only or a larger set depending upon the spatial filter radius. If the com-
putation is scheduled from the bottom-left of the data set this creates a logical wavefront
along which the computation progresses.

6.4 Performance Analysis

The SIMT research in this chapter was targeted at NVIDIA’s CUDA architecture with Compute
Capability (CC) 1.0. This limited our experimentation to the GeForce 8800 GTX graphics card
throughout most of this work. In the final stages of research NVIDIA announced new GPUs with
different performance characteristics and new Compute Capability. Although we did not focus our
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Name RAM (MB) Cores Mem Bandwidth (GB/s) Compute Capability
GeForce 8800 GTX 768 128 86 1.0
GeForce GTX 260 896 216 112 1.3

Tesla C1060 4096 240 102 1.3

Table 6.1: Three NVIDIA GPUs based upon the CUDA architecture used in our performance
evaluation. Our optimisations were developed for the GeForce 8800 GTX but we evaluate them
on two newer devices as well.

optimisations on these devices, in this section we will evaluate their effectiveness on these newer
generation devices. Our evaluation focuses on the three NVIDIA GPUs listed in Table 6.1. The
two newer devices have CC 1.3, a substantial increase in processor cores and small improvements
in memory bandwidth. Their larger memory capacities do not impact our evaluation.

Figure 6.8a graphs the cumulative execution time of the automatically generated wavelet-
based degraining effect on a GeForce 8800 GTX for a 2063x1545x3 (prime stride) 32-bit floating-
point image. The effect DAG is serialised per the discussion in Section 3.5.1 and the cumulative
execution time at each primitive in the serialisation is plotted. The uppermost line represents our
best generated implementation without the optimisations described in Section 6.1. Optimisations
are applied cumulatively to form successively lower (and faster) plots. The primitives constituting
the degraining effect have largely uniform execution times, with the exception of vertical 1D
filters causing small steps in the graph. The shared memory staging optimisation (Section 6.1.2)
flattens these steps by localising thread-shared data in spatial filters and by improving coalescing
in the vertical case. Setting up an N:1 work:thread mapping (Section 6.1.6) reduces scheduling
overhead in sets of pointwise primitives (seen here in groups of three). Finally, the realignment
optimisation (Section 6.1.4) corrects image subregion ROI access in the complex DAG to improve
coalescing. Neither memory access transposition (Section 6.1.3) nor split-row/column parallelism
(Section 6.1.5) were necessary because the effect does not contain moving average primitives. We
observe an overall performance improvement of 1.7x on this hardware.

Figure 6.8b presents a similar graph for the diffusion filtering effect on a GeForce 8800 GTX
for a 3072x2304x3 32-bit floating-point image. Here, the effect’s performance is dominated by
primitives 5–8 and this manifests itself as a large rise in cumulative execution time in the graph.
There are fewer primitives in total, compared with the degraining effect, because the diffusion
filtering DAG (see Figure 3.2) is smaller. The most significant optimisation for this effect is
memory access transposition (Section 6.1.3), which works to coalesce the memory accesses in
vertical moving average primitives 6–8. Shared memory staging (Section 6.1.2) localises thread-
shared data in 2D spatial filter primitive 5 and improves coalescing. Other optimisations had a less
significant impact on this effect: DAG-level multiple transpose node elimination (Section 6.1.3)
helped to reduce the costs of memory access transposition a little. Overall, we achieved a 6.6x
speed-up on this hardware.

Figure 6.9a graphs the performance of degraining on a previously untested device: the GeForce
GTX 260. As part of an architectural improvement over the previous generation of GPUs, the costs
of uncoalesced access are significantly reduced on this device. We would expect to see a reduc-
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Figure 6.8: Cumulative execution time of the wavelet-based degraining and diffusion filtering
effects on a fixed-size single-precision floating-point images in CUDA on an 8800 GTX (CC 1.0).
Kernel execution times are cumulative across the DAG serialisation and optimisations are applied
incrementally down the graph to improve performance. Gaps indicate transpose primitives that
are not present in a particular composition of optimisations.
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tion in performance gains from memory-oriented optimisations. Two such optimisations: shared
memory staging and realignment showed no improvement at all and are omitted from the graph.
The only optimisation to have any effect in this example was scheduling overhead reduction (Sec-
tion 6.1.6), which gave a modest 1.3x speed-up. In contrast, the diffusion filtering effect on the
GeForce GTX 260, shown in Figure 6.9b, continued to benefit from the same optimisation set as
the older architecture. The gains were markedly reduced owing to the lower cost of uncoalesced
access on this architecture. We observe a 1.9x speed-up with this effect.

From these results we can deduce that the architectural changes which modern GPUs are
undergoing will have a significant impact on attempts to develop useful optimisations for them.
We have not yet had the opportunity to carry out detailed profiling analyses on the code generated
by our compiler for GPUs newer than the 8800 GTX. Our framework is well-placed to implement
new metadata-supported optimisations that may prove important on these devices.

Before comparing performance of the SIMT code with the CPU-based SIMD generated code
described in Chapter 5, we present a summary of the contribution of each optimisation described in
this chapter in Figure 6.10. An additional GPU – the workstation-oriented Tesla C1060 – has been
evaluated and added to this data set. As discussed in the preceding paragraphs, our optimisations
had only a modest effect on the wavelet-based degraining effect (left three bars). Scheduling
reduction overhead (Section 6.1.6) had the most significant effect across all three GPUs. Shared
memory staging (Section 6.1.2) and memory access realignment (Section 6.1.4) worked well on
the 8800 GTX but had limited impact on the newer cards, which exhibit less costly uncoalesced
memory access. As such, our optimisations had limited effect on the two newer GPUs.

Most of the optimisations discussed in this chapter proved beneficial on the diffusion filter-
ing effect, as shown by the right three bars of Figure 6.10. Memory access transposition (Sec-
tion 6.1.3) and shared memory staging (Section 6.1.2) had the largest effects, particularly on the
first generation 8800 GTX GPU. Split row/column parallelism (Section 6.1.5) had a useful effect
while the remaining optimisations made smaller contributions on all devices. Interestingly, the
workstation class Tesla C1060 benefitted substantially more than the similar generation GTX 260.
The data offers no clear explanation for this effect but we speculate that the weaker computa-
tion:memory access ratio (see Table 6.1) of this device lends itself better to memory optimisation.

Finally, we present a comparison of the GPU implementation with space/schedule optimised
SIMD implementations from Chapter 5. Figure 6.11a shows the now familiar throughput graph
as input image size is varied on the X axis. We have omitted price:performance data as these
variables change rapidly over time. However, for a reference comparison the most powerful CPU
configuration (2x Xeon E5420) was similarly priced to the Tesla C1060 at the time of writing.
The two higher end GPUs exhibit an interesting rise in throughput as the image size grows to
2 MPixels – images below this size are unable to saturate the computational units of these two
models – but are otherwise fairly stable. A comparison between the upper three GPU plots and
the lower three CPU plots shows perhaps less distinction than one might hope for. In fact, the
CPU implementations have benefitted greatly from the space/schedule optimisation (Chapter 4)
which we have not yet ported to the GPU, for the reasons outlined in Section 6.3. The amount by
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Figure 6.9: Cumulative execution time of the wavelet-based degraining and diffusion filtering
effects on a fixed-size single-precision floating-point image in CUDA on a GTX 260 (CC 1.3).
Kernel execution times are cumulative across the DAG serialisation and optimisations are applied
incrementally down the graph to improve performance. Gaps indicate transpose primitives that
are not present in a particular composition of optimisations.
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Figure 6.10: Relative speed-ups (1x = no speed-up) of the wavelet-based degraining and diffusion
filtering effects on each GPU benchmarking platform for a fixed input image size of 12 MPixels,
with a fractional breakdown of the contributions of each optimisation phase outlined in Section 6.1

which the two high-end GPUs are bounded by memory is evident in their similar plots; despite
a 15% difference in computational capacity. In terms of cost-effectiveness the highest end GPU
still maintains a ∼3x benefit over the highest end CPU.

The CPU/GPU performance divide is more substantial in the diffusion filtering effect, as
shown in Figure 6.11b. Here, the GPU’s high memory bandwidth proves to be an effective brute
force solution to the slow 2D spatial filter primitive contained within the effect. This leads to
a 5.3x throughput divide between the highest end GPU and CPU. The plots of each GPU are
more widely distributed than in the wavelet-based degraining effect, indicating that the devices
are not strongly memory bound with this effect. Greater availability of registers in CC 1.3 helps
to saturate all of the compute cores in the two 1.3 devices for the complex, register-intensive 2D
spatial filter primitive. There is a curious mirror effect in the plots of the two 1.3 devices for image
sizes between 4 and 11 MPixels. This effect was stable and repeatable but we are unable to offer
a reasonable explanation for it and propose further investigation with profiling tools.

6.5 Concluding Remarks

In this chapter, we described an application of program metadata to automatic code generation
for SIMT ISAs, such as NVIDIA’s CUDA, from the visual primitive representation. The fu-
ture of high throughput computational accelerators lies in massively multithreaded architectures,
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Figure 6.11: Throughput of the wavelet-based degraining and diffusion filtering visual effects
with a SIMT implementation of all constituent visual primitives, with all optimisations described
in Section 6.1, on each of three GPU benchmarking platforms. Y-axis throughput measures the
number of output pixels generated per second with variation of the input image size on the X-axis.
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which we are able to exploit through the exposure of large scale parallelism in our visual primitive
representation. We are able to sidestep complex data dependence analyses, as in Chapter 5, by
exploiting static metadata describing inter-iteration dependence. High-level transformations are
leveraged to fragment serialised algorithms when the primitive exposes insufficient parallelism to
run effectively on a SIMT device. Several optimisations are employed to improve efficiency in
memory access, by adding explicit statements to stage shared information into a small cache and
by rescheduling global memory accesses to respect the requirements for cross-thread transaction
merging (coalescing), making strong use of memory access metadata. We identified several chal-
lenges in exploiting the space/schedule optimisation on SIMT architectures and made proposals
to address this situation in the future.

SIMT code generation worked best when the effect was not dominated by inter-primitive com-
munication. Our optimisations achieved only 1.3–1.7x speed-ups on the wavelet-based degraining
effect, which requires space/schedule optimisation to use the memory system efficiently. These
optimisations were more effective on the diffusion filtering effect, which is bounded by a slow
2D spatial filter primitive, achieving 1.9–6.6x speed-ups through better use of the memory system
and exploitation of additional parallelism. The divide between the CC 1.0 generation of GPUs,
which this research focused upon, and the newer CC 1.3 GPUs proved to be quite substantial. This
was mainly due to improvements in the memory system which reduced the cost of uncoalesced
memory access, making some of our optimisations less useful. Further research is needed to iden-
tify the performance limiting factors of these newer devices in order to better target optimisations
for them. Finally, a comparison between space/schedule optimised SIMD throughput and SIMT
throughput identified 3.2–5.3x improved performance with the highest end GPU over the highest
end CPU. Both were priced similarly at the time of writing.



Chapter 7

Conclusions and Further Work

This chapter concludes our study with a review of the research contributions and the successes and
lessons learned throughout the work described in this thesis. A discussion of proposals for future
work follows, outlining key threads of research to tackle new challenges identified throughout this
thesis. Finally, we conclude the thesis with an analysis of the tangible outcomes of our continued
partnership with commercial VFX developers The Foundry.

7.1 Review of Objectives

From the objectives outlined in Section 1.2:

• To devise a single-source modular representation of a visual effect which closely resembles
the algorithm structure and integrates seamlessly with the development workflow.

Sections 3.4.1 and 3.4.2 describe a reusable component-based representation which exploits
the decomposable structure of visual effects into graphs of kernels within skeleton abstrac-
tions. Section 3.4 describes a novel hybrid static/dynamic code generation toolchain which
exploits the active library paradigm to minimise workflow interference.

• To develop a methodology for automatically deriving SIMD and SIMT parallel implemen-
tations from the scalar single-source representation.

Section 3.3 outlines three key metadata augmentations to the effect representation which
enable analysis-free parallelisation and related memory optimisations. Sections 5.1 and 6.1
describe in detail compiler-driven methods for exploiting this metadata to construct opti-
mised SIMD and SIMT implementations.

• To identify performance-critical optimisations for these implementations and to devise a
strategy for automatic optimisation of known and previously untested visual effects.

Chapter 4 discusses a compiler-driven performance-critical memory optimisation for CPUs
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and Sections 5.1.5 and 6.3 describe its application to SIMD ISAs and to (potentially) GPUs.
Sections 5.1 and 6.1 describe several compiler-driven device-specific optimisation phases.
Each leverages metadata to optimise any primitive which fits into the skeleton abstraction.

• To evaluate the efficacy of these ideas on industrial VFX software.

Sections 3.7, 4.4, 5.2 and 6.4 document empirical analyses of each code generation pro-
cess and optimisation for two industrial visual effects on a set of CPUs and GPUs.

7.2 Technical Achievements

• We presented an adaptation of space and schedule optimisation to the dynamic working sets
and schedules of a runtime-parameterisable visual effect in Chapter 4. By fusing polyhedral
schedule transformation with static metadata encoded in the visual effect representation and
dynamic metadata captured from the effect parameterisation at runtime, we were able to
create an optimal analysis-free space and schedule optimisation engine. We exploited three
properties to maintain the tractability of the polyhedral scanning process: symmetricity in
spatial filters, parameter constraints for the common case and redundancy in spatial filter
sizes both between and within primitives. By isolating fused schedule generation to an
offline code generation process with minimal runtime parameterisation, to tune the schedule
to a given effect configuration, we were able to eliminate the cost of schedule generation
completely. This came only at the expense of unspecialised code: a minor concern given the
large ranges of parameters that would need to be generated by runtime static specialisation.

• We presented a set of analysis-free transformations on a scalar data-parallel kernel to pro-
duce optimised non-scatter/gather SIMD vector-parallel implementations in Chapter 5. A
combination of static and dynamic metadata provided sufficient information about data de-
pendence and memory access patterns to guide SIMD vectorisation and optimisation. Our
vectorisation techniques succeeded on many kernels on which the Intel C/C++ vendor com-
piler failed. We found that SIMD code generation was most effective when coupled with
the memory bandwidth-enhancing space/schedule optimisation. The composite of these op-
timisations required a novel modification of the array contraction transformation to support
the coarser granularity of vector addressing in a non-scatter/gather architecture.

• We presented a set of analysis-free transformations on a scalar data-parallel kernel to pro-
duce optimised SIMT massively parallel implementations in Chapter 6. Static and dynamic
metadata were again used as a substitute for program analysis in the SIMT code generation
process, demonstrating its scalability from SIMD to the very different challenges of a SIMT
architecture. An analysis of our optimisations on two newer generation devices, which we
had not previously studied, showed that some of our optimisations were no longer neces-
sary; others continued to deliver strong speed-ups. The architectures of SIMT devices are
evolving rapidly at this time. The parallel structure of a SIMT architecture proved to be a
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formidable challenge in composing the space/schedule optimisation: the principles still ap-
ply, but the cache space is much smaller, synchronisation is more complex and the infancy
of the CUDA compiler led to parallelism-reducing rises in per-thread register consumption.
We were unable to reconcile these two optimisations by the time our research concluded.

• We presented an experimental evaluation of the first three contributions on two industri-
ally developed visual effects algorithms in the penultimate sections of Chapters 4, 5 and 6.
The two effects presented unique performance challenges and consequently responded in
different ways to our optimisations. The sprawling DAG of simple primitives constituting
wavelet-based degraining responded well to space/schedule optimisation, SIMD code gen-
eration and, to some degree, SIMT code generation. The smaller DAG of diffusion filtering,
bounded primarily by a single complex primitive, saw much smaller gains from CPU-based
optimisations. A SIMT implementation, however, showed large improvements by making
much more bandwidth available to the effect. Our speed-ups ranged from 1.5–8.1x (mean:
3.8x) on CPUs and 1.2–6.6x (mean: 2.7x) on GPUs.

7.3 Critical Analysis

With the benefit of hindsight, we can now address the relative merits and weaknesses of the re-
search documented in this thesis. As with all research, there are aspects which we would liked to
have tackled differently. Similarly, there are elements of the work which were spontaneous and
worked out better than we could have hoped. Here are some of the key aspects for criticism:

• Optimisation efficacy. Establishing a set of important optimisations in the VFX domain
was a key goal throughout our research. Strong performance gains proved to be elusive in
the early phases, even once the theory for each optimisation had been established. However,
perseverance in experimentation eventually led to a step change in performance: the speeds
established are capable of making previously non-realtime effects run in realtime. We were
unfortunate to begin our SIMT research at a turbulent point in GPU architectural develop-
ment, which eroded some of our gains on the newer GPUs available towards the end of the
research period.

• Experimental scope. One of the strong elements of our experimental analyses was realism:
the two effects we studied were genuine industrial applications. However, this worked
against our goals in several ways. A significant amount of time was invested in the recovery
and verification of algorithms from dusty-deck code. This severely limited the scope of our
experiments to just two effects, since we had little time to construct more examples. In
lieu of this limitation, we chose two very different effects which would illustrate all of the
aspects of our research. In retrospect, a stronger focus on academic and open source image
processing libraries would have lent more weight to our experimental analyses.

• Practicality. The practical applications of this research surpassed our expectations. By
working closely with an industrial partner we were able to address many of the issues which
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hinder the uptake of academic research in commercial software. The scope and design of
the framework proved aptly scalable to new problems following the research period. Many
of the changes made during the transition to an industrial setting were purely aesthetic,
while the core ideas of component dependence and memory access metadata were carried
across as they are presented in this thesis.

• Parallelisation study. Parallelisation was a key concern in the work on SIMT optimisation.
However, our emphasis on this aspect was weaker in the settings of space/schedule optimi-
sation and SIMD vectorisation. We chose a simple parallelisation strategy with wasteful re-
computation at parallelisation boundaries, on the assumption that this recomputation would
be small. Our use of the polyhedral model presented an interesting opportunity to imple-
ment a more optimal parallelisation strategy, but we did not attempt this. Furthermore, we
did not fully explore the failings of SIMD autovectorisation in contemporary compilers. We
cannot deduce whether the vectorisations were too complicated for the compiler, or whether
they were not attempted because it was not clear whether they would improve performance.

• Flexibility. A key strength of our work proved to be its adaptability. Despite the simplicity
of the metadata to which we had constrained our study, we were able to apply the informa-
tion it held to a variety of complex optimisations. This allowed us to focus on new problems
while continuing to treat each algorithm as a black box. The metadata has only marginally
evolved in the industrial setting to accommodate new domain-specific information and op-
portunities for optimisation.

• Formality. An informal link between this work and that of the seminal THEMIS [KBFB01]
paper was well known from an early stage. However, a formal link to the metadata defi-
nitions set out in that paper was not established until much later into the research period
and was not documented in this thesis. The informal optimisation algorithms described in
Chapters 4, 5 and 6 would also have benefited from stronger links to established work. In
particular, we did not describe some circumstances under which those optimisations would
not be applicable within the existing algorithm formulations.

7.4 Further Work

In light of the research pathways we have explored in this thesis, we now present ideas for promis-
ing new threads of research to build upon our work. Some of these ideas are being explored in
a commercial context (see Section 7.5) while others are more speculative in nature and would
require further academic study before yielding potentially useful results.

7.4.1 Compiler-Assistive Metadata

The set of metadata outlined in Section 3.3 is a domain-specific instance of generic program in-
formation of use to compilers. Indeed, many of the optimisations we described in this thesis
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are supported by existing vendor compilers which simply lack a mechanism to obtain this infor-
mation; e.g. through ambiguities in the results of their program analyses. Our decision to rely
on domain-specific metadata came about for two reasons. Firstly, the granularity of information
recorded in metadata must be brought to an appropriate level for the VFX developer to express. We
chose a much more constrained structure of dependence metadata, for example, than advocated
by [KBFB01] in order to keep the frontend representation concise. Secondly, we were unable to
find a compiler with a mechanism to receive metadata from our framework. We chose instead to
build a source-to-source preoptimisation phase in front of the vendor compiler.

There is potential value in exploring a direct route for program metadata, such as data depen-
dence and patterns of memory access, to the optimisation phases of a compiler. Striking a balance
between the granularity of the frontend expression and the needs of low-level optimisations would
be crucial to generalising the approach we have demonstrated. Substantial gains stand to be made,
however. We have shown the effectiveness of leveraging a small number of compiler transforma-
tions – including loop fusion, array contraction, vectorisation and parallelisation – in situations
where vendor compilers were unable to apply these themselves. However, similar limitations may
apply to much finer grained optimisations (e.g. instruction pipelining) which are much harder to
tackle without direct integration with the compiler.

7.4.2 Dynamic Runtime Optimisation

Our hybrid offline runtime code generation process, described in Section 3.4, was designed to
mitigate the performance impact of runtime code generation while retaining some of the benefits of
greatly simplified analysis, e.g. to construct a component graph. A disadvantage of this approach
is that information which can change at runtime – e.g. the user-tunable parameterisation of a
visual effect – cannot be used in an offline optimisation process without specialising generated
code to all possible values, or at least to common values. True runtime code generation requires
a careful balance of specialisation against code generation costs to maintain a net performance
benefit.

One opportunity we identified is to specialise to non-static graph structures which are con-
structed by the user at runtime. We observed in a compositing environment that graphs change
infrequently with respect to parameter changes on those graphs once constructed. Furthermore,
we identified an opportunity for an even higher level of cross-component optimisation. It is com-
mon for users to connect multiple effects of the same type, or effects of a similar class (e.g. colour
corrections), which can be combined together and replaced with a composite node – or even the
same node with a composite parameterisation – at an abstract level. This avoids the costly pro-
cess of runtime code generation altogether while leveraging runtime context to implement cross-
component optimisations. A component-level mechanism through which these interactions might
be managed is left open to future research.
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7.4.3 Heterogeneous Multiprocessing

The device-specific code generation procedures and optimisations discussed in Chapters 5 and
6 are, in our current framework, essentially incompatible. We choose a homogeneous subset of
devices – e.g. a set of SMP multicore CPUs, or two GPUs – on which to evaluate a computation
and maintained that same set throughout. In doing so, we are leaving other resources in the system
unused or underutilised to avoid the complication of heterogeneous scheduling and data placement
management. Clearly, there is scope to extend our framework with a scheduling subsystem to
distribute the workload – either through data- or task-parallelism – across all of the computational
resources of a given system. Our metadata abstractions encapsulate ample degrees of parallelism
to support heterogeneous multiprocessing on even the highest end workstations. There is, perhaps,
scope to extend metadata to record – through analysis, modelling, runtime feedback or otherwise
– the affinity of individual algorithms to the capabilities and resources of different devices.

7.5 Conclusions

In this thesis we presented a novel approach to software optimisation which discards program
analysis in favour of programmer annotations to support performance-critical high-level optimi-
sations. The ease with which we were able to compose complex transformations and optimisations
– albeit in a domain-specific context – under the guidance of metadata convinced our researchers
and industrial partners that this was a powerful approach to delivering high performance soft-
ware. Far from being a burden upon the programmer, we found that our metadata abstractions
were succinctly interwoven with the algorithm expressions to the point of being useful program
documentation in addition to guiding our optimising compiler.

Testament to the accomplishment our objectives, as set out in Section 7.1, is the successful
transfer of this technology to an industrial environment. Throughout the three years of research
culminating in this thesis, we met regularly with our research partners at The Foundry to discuss
our ideas, results and the technical requirements that would need to be satisfied in order to deploy
our optimisations in commercial software. I have personally continued this relationship with the
company during the write-up period of this thesis to ensure that we have met both our academic
and industrial goals. The formation of a High Performance Computing team at The Foundry came
as a direct result of our interactions and many of the technologies we have constructed together
are now being adapted for commercial deployment.

Some of the technical advances we made after the research period had completed include:

• An extension to the algorithmic patterns described in this thesis to support new visual ef-
fects. We defined a class of globally random access indexers with locally coherent access
patterns to support projections in motion estimation algorithms. We permitted per-indexer
local shifts so that the DWT algorithm, from Listing 3.1, could be efficiently implemented
with three pointwise indexers. We also added support for parallel reductions to our depen-
dence metadata suite to support statistical calculations on image data.
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• A backend for the cross-device OpenCL parallel compute language – similar in many ways
to CUDA – with true runtime code generation for cross-component fusion. The low cost
of compilation with the Clang/LLVM compiler removed the main barrier to runtime opti-
misation and we observed 10x speed-ups when fusing graphs of visual primitives in a com-
positing prototype; caching and restricted parameter specialisation ensured that parameters
could be tuned in realtime without recompilation.

• Metadata mappings from iteration space to indexer accesses. We found that the direct spa-
tial correspondence of iteration space to data source/sinks in input and output images was
insufficient to represent many algorithms. For example, a filtered scaling algorithm needs
a fractional correlation between ROI and DOD with locally contiguous access to read the
filter taps. We introduced a set of well-defined metadata mappings, as well as an arbitrary
homogeneous transform mapping, which had value in producing fast SIMD and SIMT im-
plementations.

• Metadata filters on indexer accesses. To support the application of common reconstruction
filters – such as bilinear, Gaussian, Bell, etc. – we defined a set of well-known functions
that take an indexer object and a floating-point coordinate and return a filtered result. This
is especially useful on SIMT devices which often support a subset of filtering modes in
texturing hardware. Work is ongoing to identify an elegant extension to indexer metadata
to eliminate filtering functions entirely and provide explicit floating-point access on the
indexers themselves; this would greatly simplify the SIMT code generation process and
reduce clutter in the frontend.

Our research has begun to evolve in two directions. Firstly, we are beginning to generalise
the framework by introducing metadata at a lower level of abstraction. This exhibits elements of
the approach taken by Æcute and similarly allows our framework to encompass a wider domain
of applications. Secondly, we are introducing metadata with deeper domain-specific meaning. In
doing so, we can exploit common elements of a given domain to target optimisations to the specific
performance challenges of applications within that domain. This shares ideals with the field of
domain-specific languages. What we have constructed is a compromise of these two research
pathways to tackle the broad but individually challenging domain of visual effects applications.

We continue to develop this framework in a commercial context and are working hard to find
opportunities to collaborate on future topics of performance research. There is much crossover in
the work of academia and industry and our research is strongest and most valuable when working
together to assist each others’ goals. This thesis concludes as a reminder of what can be achieved.



Appendix A

Framework Ontology

An accompaniment to the research in this thesis is a software implementation of the ideas from
which the experimental results were derived. This software is informally outlined in Chapter 3. In
this appendix we formally define the language constructs used to synthesise visual effects in the
active library front-end.

A.1 The Functor Class

The Functor class, whose interface is defined in Listing A.1, is a base class from which all
visual primitives are derived. The key elements of the interface are:

• Axis: An enumeration categorising the axis of serialisation in a moving average, or the
axis of freedom in a 1D spatial filter indexer. eHorizontal indicates the horizontal, or
X, axis. eVertical indicates the vertical, or Y, axis.

• Dependence: An enumeration categorising the pattern of data dependence in a visual
primitive. eParallel indicates that there is no loop-carried dependence between any it-
erations of the X and Y loops: i.e. all iterations can execute in parallel. eMoving indicates
the presence of a loop-carried dependence, and hence serialisation, in the X or Y axis.

• Image: An opaque handle linking the outputs of a visual primitive to the inputs of another.

• DERIVED: A template parameter to the Functor class identifying the type of the derived
visual primitive class. This parameter is exploited to implement the Curiously Recurring
Template Pattern (CRTP) [Cop96], a form of static polymorphism, for efficient invocations
of methods in the derived class.

• DEPENDENCE: A template parameter to the Functor class identifying the data depen-
dence pattern used by the derived visual primitive class.

• dependenceAxis: A runtime parameter to the Functor class constructor specifying
the axis of serialisation when DEPENDENCE is eMoving. This value is ignored when
DEPENDENCE is eParallel.
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enum Axis
{

eHorizontal,
eVertical

};

enum Dependence
{

eParallel,
eMoving

};

class Image {};

template <class DERIVED,
Dependence DEPENDENCE = eParallel>

class Functor
{
public:

Functor(Axis dependenceAxis = eHorizontal);

void RollUp() {}

void Kernel() {}

void operator()(Image image1, ...);
};

Listing A.1: The C++ interface to the Functor class.

• RollUp: A default implementation of a method which should be overridden in the derived
class when DEPENDENCE is eMoving. This function is invoked once at the beginning of
the serialised row or column (as specified by dependenceAxis) to provide the opportu-
nity to initialise state member variables in the derived class.

• Kernel: A default implementation of a method which should be overridden in the derived
class. This function is invoked at every point in the (X, Y) iteration space and should be
used to compute and write elements of output data from input data. When all Indexer
instances (see Section A.2) have eChannel granularity this function is invoked once per
channel at each point in the iteration space. When all have ePixel granularity the function
is invoked only once at each point. Other configurations are rejected by our compiler.

• void operator()(Image image1, ...): A delayed evaluation function which
constructs a visual effect DAG by connecting the inputs (defined by the Indexer member
objects with DIRECTION of eInput) in the derived visual primitive class to the outputs
(those with DIRECTION of eOutput) of another. The order in which parameters are
passed corresponds to the order of Indexer member objects in the derived class to which
they are connected. Each Image may be connected to more than one visual primitive but
must only be connected to a single Indexer with DIRECTION of eOutput.
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enum Direction
{

eInput,
eOutput

};

enum Granularity
{

eChannel,
ePixel

};

enum Freedom
{

e0D,
e1D,
e2D

};

template <Direction DIRECTION,
Granularity GRANULARITY,
Freedom FREEDOM>

class Indexer
{
public:

Indexer(Axis freedomAxis = eHorizontal,
int freedomRadiusX = 0,
int freedomRadiusY = 0);

float &operator *(); // GRANULAIRTY = eChannel

float &operator[](int channel); // GRANULARITY = ePixel

float &operator()(int offX); // GRANULARITY = eChannel

float &operator()(int offX, int channel); // GRANULARITY = ePixel

float &operator()(int offX, int offY); // GRANULARITY = eChannel

float &operator()(int offX, offY, int channel); // GRANULARITY = ePixel
};

Listing A.2: The C++ interface to the Indexer class.

A.2 The Indexer Class

The Indexer class, whose interface is defined in Listing A.2, encapsulates access to image data.
Instances of the class are declared as members of the visual primitive class, which derives from
Functor, and bound to the primitive with the mFunctorIndexers macro. Each instance
manages access to a single input or output image. The key elements of this interface are:

• Direction: An enumeration categorising the form of data access allowed on an Indexer
instance. eInput indicates read-only access to the underlying data. eOutput indicates
write-only access to the data.
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• Granularity: An enumeration categorising the granularity of data access allowed on
an Indexer instance. eChannel indicates that each channel can be processed indepen-
dently and that only a single channel will be available at each invocation of the Kernel
method. ePixel indicates that channels must be processed together and that all channels
will be available together at each point in the iteration space.

• Freedom: An enumeration categorising the dimensionality of axial freedom (see Sec-
tion 3.3.3) of data access allowed on an Indexer instance. e0D indicates that only a
single component or pixel centred on the (X, Y) iteration position will be accessible. e1D
indicates that a row or column of components or pixels will be accessible. e2D indicates
that a rectangular region of components or pixels will be accessible.

• DIRECTION: A template parameter to the Indexer class identifying the form of data
access permitted.

• GRANULARITY: A template parameter to the Indexer class identifying the granularity
of data access permitted.

• FREEDOM: A template parameter to the Indexer class identifying the dimensionality of
axial freedom of data access permitted.

• freedomAxis: A runtime parameter to the Indexer class constructor specifying the
axis of freedom when FREEDOM is e1D. This value is ignored when FREEDOM is e0D or
e2D.

• freedomRadiusX: A runtime parameter to the Indexer class constructor specifying
the radius of access freedom permitted in freedomAxis when FREEDOM is e1D. This
specifies the horizontal radius when FREEDOM is e2D. This value is ignored when FREEDOM
is e0D.

• freedomRadiusY: A runtime parameter to the Indexer class constructor specifying
the vertical radius of access freedom permitted when FREEDOM is e2D. This value is ig-
nored when FREEDOM is e0D or e1D.

• float &operator *(): A component access method available when GRANULARITY
is eChannel. A reference to a single component of image data, centred at the (X, Y)
iteration position, is returned. This value can be read when DIRECTION is eInput and
written to when DIRECTION is eOutput.

• float &operator [](int channel): A component access method available when
GRANULARITY is ePixel. A reference to a single component of image data, centred
at the (X, Y) iteration position and selected by index channel from the RGBA set, is
returned. This value can be read when DIRECTION is eInput and written to when
DIRECTION is eOutput.
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• float &operator ()(int offX): A component access method available when
GRANULARITY is eChannel and FREEDOM is e1D. A reference to a single component
of image data, centred at the (X + offX, Y) iteration position, is returned. This value can
be read when DIRECTION is eInput and written to when DIRECTION is eOutput.

• float &operator ()(int offX, int channel): A component access method
available when GRANULARITY is ePixel and FREEDOM is e1D. A reference to a single
component of image data, centred at the (X + offX, Y) iteration position and selected by
index channel from the RGBA set, is returned. This value can be read when DIRECTION
is eInput and written to when DIRECTION is eOutput.

• float &operator ()(int offX, int offY): A component access method avail-
able when GRANULARITY is eChannel and FREEDOM is e2D. A reference to a sin-
gle component of image data, centred at the (X + offX, Y + offY) iteration position,
is returned. This value can be read when DIRECTION is eInput and written to when
DIRECTION is eOutput.

• float &operator ()(int offX, int offY, int channel): A component
access method available when GRANULARITY is ePixel and FREEDOM is e2D. A refer-
ence to a single component of image data, centred at the (X + offX, Y + offY) iteration
position and selected by index channel from the RGBA set, is returned. This value can
be read when DIRECTION is eInput and written to when DIRECTION is eOutput.
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