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Abstract

This thesis concerns techniques for using hierarchical storage formats such as Morton layout as an

alternative storage layout for regular scientific programs operating over dense two-dimensional arrays.

Programming languages with support for two-dimensional arrays use one of two linear mappings

from two-dimensional array indices to locations in the machine’s one-dimensional address space: row-

major or column-major. Unfortunately, a wrong choice of one of these two layouts can lead to very

poor spatial locality if an array is not traversed in the order in which it is stored. Although a simple

loop interchange transformation may resolve the situation, such a transformation may not always be

valid due to actual dependencies or dependencies assumed by conservative compiler analyses.

An attractive strategy is to store elements in such a way that both row-major and column-major

traversals offer good spatial locality. Hierarchically-blocked non-linear storage layouts, such as Mor-

ton ordering have been proposed as a compromise between row-major and column-major layouts.

Morton layout offers some spatial locality whether traversed row-wise or column-wise.

The contributions of the thesis are:

• An experimental exploration of performance issues of Morton layout using a suite of micro-

benchmark kernels on several hardware platforms.

• We show that the performance of the basic Morton scheme can be improved by aligning the

base address of Morton arrays to the largest significant size in the memory hierarchy, namely

page size.

• We show that unrolling the loops with strength reduction reduces address calculation overhead

associated with the usage of Morton layouts and significantly improves performance of basic

Morton scheme.

• We discuss the design issues for implementing a prototype compiler to support Morton layout

in large scientific programs including required transformations.

The optimisations we propose here enable Morton layout to be a promising alternative to conventional

array layouts. Further, we support our claims through experimental results using selected benchmark

kernels on several hardware platforms.
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Chapter 1

Introduction

Two-dimensional arrays are generally arranged in memory in row-major order (for C, Pascal etc) or

column-major order (for Fortran). These layouts are known as lexicographical or canonical layouts.

Modern processors rely heavily on caches and prefetching, which work well when the order in which

data is accessed matches the storage layout. Sophisticated programmers, or occasionally sophisticated

compilers, match loop structures to the language’s storage layout in order to maximise spatial local-

ity. However, it is common that either the compiler cannot do this automatically due to conservative

compiler analyses, or the transformation may not be valid due to dependencies.

If the access pattern conflicts with the storage layout and if the compiler or programmer is not

sophisticated enough to perform the required transformations to resolve this, the resulting performance

loss can be dramatic — a factor of 10 or more, as we show in Chapter 4.

An alternative strategy to loop nest transformation is to change the way that elements are laid out

in memory — storage layout transformation. Compared to loop nest restructuring, the main advantage

of storage layout transformation is that it preserves the semantics of the program in all cases and

therefore it is always valid.

Space-filling curves [33, 66, 75] offer several alternative ways of storing array elements in main

memory. Storage layouts based on these space-filling curves offer substantial spatial locality whether

traversed in row-major or column-major order, subject to certain conditions (see Section 5.2). One

such layout is Lebesgue’s space-filling or Z-Morton curve and for reasons explored in Chapter 3, this

thesis entirely focuses on the Z-Morton layout.

This thesis explores whether and when Morton layout can be an attractive alternative to canonical

layouts.

1.1 Approach

Morton layout offers equal spatial locality whether traversed in row-major or column-major order,

subject to certain conditions which we explain in Chapter 5 (see Section 5.2). Such a layout is an

attractive option when the access pattern conflicts with the order in which array elements are stored.

If Morton layout can be used as an alternative, the performance penalty for choosing a wrong layout

or wrong traversal order is reduced.

It is our hypothesis that Morton layout is an attractive alternative to canonical layouts, that offers

substantial spatial locality in any lexicographical traversal order and provides a clear performance
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programming model. To test this hypothesis, this thesis takes the following approach:

1. We analyse theoretical characteristics of Morton layout.

2. We study the performance characteristics of the default Morton layout using a suite of micro-

benchmarks.

3. We determine the optimisations that a compiler would need to perform to make Morton layout

work.

We conclude that Morton layout is an attractive compromise to canonical layouts when combined

with the optimisations we determine in our later chapters. Further, using Morton layout enables us to

simplify the performance programming model for unsophisticated programmers, without relying on

very powerful compiler technology.

1.2 Contributions

This thesis is based on four papers published in refereed conference proceedings and journals:

1. Paper I. “Is Morton layout competitive for large two-dimensional arrays?” [85].

— In Proceedings of the Euro-Par 2002 Conference, Paderborn, Germany.

2. Paper II. “An exhaustive evaluation of row-major, column-major and Morton layouts for large

two-dimensional arrays” [81].

— In Proceedings of the UK Performance Engineering Workshop 2003, University of Warwick,

England.

3. Paper III. “Improving the Performance of Morton Layout by Array Alignment and Loop Un-

rolling: Reducing the Price of Naivety” [82]

— In Proceedings of the Workshop on Languages and Compilers for Parallel Computing 2003,

Texas, USA.

4. Paper IV. “Is Morton layout competitive for large two dimensional arrays, yet?” [83].

— A journal paper due to appear in Concurrency and Computation: Practice and Experience,

2005.

The contributions of these papers and thus of this thesis, are as follows:

1. We perform an experimental analysis of the basic Morton scheme on different architectures

using a suite of micro-benchmark kernels. We describe the performance characteristics of the

basic Morton scheme, compared to canonical layouts. The architectures were chosen to have

different and interesting cache characteristics and the benchmark kernels chosen were a small

collection of scientific loops operating on dense, two-dimensional arrays.

2. We show that a simple table lookup scheme is remarkably effective for calculating the offset

addresses of elements of Morton arrays.
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3. We perform a careful analysis of the effects of alignment of the base address of Morton arrays.

We show that aligning the base address of Morton arrays to the largest significant size in the

memory hierarchy leads to better performance.

4. We analyse methods to unroll loops which operate over Morton arrays and show that unrolling

Morton loops with appropriate alignment and strength reduction can lead to a significant im-

provement in performance.

5. From our experimental evaluation of simple optimisations we have suggested above, we estab-

lish the design requirements for a prototype compiler to support Morton layout in real scientific

programs.

1.3 Structure

The remainder of this thesis is organised as follows:

1. Chapter 2 reviews locality-improving iteration space and data-layout transformations. The chap-

ter restricts its attention to optimisations which improve locality of sequential code on uni-

processors.

2. Chapter 3 reviews data-layout transformations in detail. The chapter discusses multi-dimensional

array layouts in detail including methods for calculating offset addresses of array elements.

3. Chapter 4 is based on Papers I , II and IV. This chapter analyses Morton layout in depth and

evaluates its effectiveness as a compromise between row- and column-major layouts using a

suite of micro-benchmarks.

4. Chapter 5 is based on Papers III and IV. The chapter evaluates the impact of alignment of the

base address of Morton arrays on performance.

5. Chapter 6 is based on Paper III. The chapter describes a method for unrolling loops operat-

ing over Morton arrays with appropriate strength reduction. We show that the performance of

Morton layout can be improved significantly.

6. Chapter 7 describes the design issues for implementing a prototype compiler to support Mor-

ton layout in real scientific programs. Following this, the chapter discusses future work and

concludes the thesis.

1.4 Summary

This chapter has stated the approach, contributions and structure of the thesis. In the next two chapters,

we review relevant research literature.



Chapter 2

Locality-Improving Transformations

In this chapter, we review existing work on locality-improving compiler transformations. We entirely

focus on a uni-processor memory model for sequential applications.

2.1 Introduction

The performance gap between modern microprocessors and memory system architecture is one of

the major factors which demands powerful compiler transformations. The aim of locality-improving

compiler transformations is to bridge this gap. The main focus of such transformations are loops with

array accesses [5]. In this thesis, our main interest is on kernels or programs which extensively use

multi–dimensional arrays, which are, by default, stored lexicographically.

We refer to row-major and column-major as lexicographic orders, i.e. elements are arranged by

the sort or linear order of the two indices (another term is “canonical”). When making a memory refer-

ence, for example referencing an array element, modern memory hierarchy designs fetch neighbouring

elements into different levels of memory hierarchy. Any subsequent references to adjacent elements

will be supplied by one of these levels. This improves spatial locality and the overall performance of

a program. When array elements are accessed in the opposite direction of storage, the access is with

non-unit stride and does not make use of data already available in the memory hierarchy and wastes

memory bandwidth.

Locality optimisation techniques aim to improve temporal and spatial locality of accesses and

they are often primarily concerned with loops. Transforming the iteration space of the surrounding

loops and restructuring the underlying data layout of the arrays have been proven to be very effective

techniques [21, 41, 62]. It is also possible to combine these two techniques to complement each other.

This chapter introduces these techniques and pays particular attention to iteration space re-ordering

techniques and combined transformations. We review important frameworks for transforming the

iteration space, rather than individually covering each and every iteration space reordering technique.

The next chapter covers the data layout transformations in detail.

2.2 Architectural Features — A Review

In this section, we briefly review the salient features of the memory hierarchy of modern computer

systems.
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Figure 2.1 illustrates the structure of the memory hierarchy and memory sub systems in a typical

modern machine. As shown in Figure 2.1(a), the memory system is structured as a hierarchy of suc-

cessively larger, slower and cheaper memory levels with the faster level being closer to the processor.

These levels are connected through buses of varying bandwidth. Data is transferred from one level

to another via these buses in fixed-sized blocks. The size of these blocks, the transfer time and the

number of blocks that fit in a level are larger for levels farther from the processor. When a data item

is required from the farthest memory level, it is transferred to the processor through these memory

levels and retained for as long as possible. Subsequently, future requests for the same item may be

satisfied by one of the memory levels closer to the processor. As a result, intermediate memory levels

bridge the performance gap between the main memory and the processor by caching required data at

appropriate levels.
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(b) Cache/Main Memory Structure

Figure 2.1: Structure of memory/memory hierarchy in modern architectures. The figure shows

a simplified structure of memory hierarchy and memory sub systems in modern architectures. Fig-

ure 2.1(a) shows the structure of the memory hierarchy present in modern systems; Figure 2.1(b)

shows the structure of main/cache memory pair, in view of illustrating the placement of multiple words

in a single cache block. In this figure, N words (N = 2k for some integer k > 0) are placed into a single

cache line, starting from address zero. The address is often used as part of the mapping function to

determine the cache line to occupy (see Figure 2.2 for more illustration on placement). Architectural

and functional aspects of real systems are extremely complicated and their description can be found

elsewhere [31]. (Diagram source: [31])

While individual registers hold a word, the structure of cache memory is slightly complicated.

The cache memory is arranged as sequence of cache blocks and each of these blocks can hold multiple

words — the block size. Since the capacity of cache memory is limited, a placement and a replacement

policy are needed. The cache organisation describes the way that blocks are organised inside the cache

and partly controls the placement — where a particular memory block goes inside the cache memory.

A simple organisation is a direct mapped cache. The mapping function uses part of the address
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bits to determine the cache block that the memory block should belong to. In other words, part of the

address bits are used to index the cache blocks and these bits are known as index bits. Because of

this simple indexing scheme, each cache block is shared by multiple addresses in the main memory.

This means that it is possible for a program to have access conflicts, where multiple locations compete

for a placement inside the cache. In summary, each memory block has only one cache block inside

the cache. There is no replacement policy in the direct mapped cache, as the candidate block for

replacement is determined by the address and not by the usage.

The fully-associative cache permits a memory block to be placed anywhere in the cache and thus

offers the best performance. However, the complexity in implementation limits the size of fully-

associative caches.

A set-associative cache is a compromise between direct-mapped and a fully-associative cache, in

terms of performance and cost. In an n-way set-associative cache, the set of cache blocks are divided

into n ways and each set includes a cache block from each way. A memory block can be placed in

one of the n cache blocks that make up a set. A segment of the address bits of a memory block is used

to select the set. The actual placement within the set is then determined by the replacement policy.

Figure 2.2 illustrates how a memory location is mapped into different types of caches with different

associativities.

Upon a cache miss, the cache controller should find a block to be replaced by the newly fetched

block. As mentioned above, in a direct mapped cache, there is no choice. However, in a set-associative

cache, once the set is determined, there are many blocks to choose from for replacement. Often, the

replacement strategy is based on usage: the least recently used item is evicted when required. This

means that the controller chooses between constituent blocks of the indexed set.

Use of cache memories is one of the most powerful ways of hiding and reducing the memory

latency in memory intensive applications. Cache memories exploit the locality of data access. Locality

of data accesses occurs in two different, but related ways: temporal and spatial locality. The property

that the same data items tend to be used again in the near future can be defined as temporal locality

and the property that data items which are adjacent to a particular data item tend to be accessed in the

near future can be stated as spatial locality. As illustrated in Figure 2.1(b), when moving data items

into cache, multiple words (which are adjacent in main memory address space) are moved together to

amortise the cost of memory transfer. The spatial reuse is easily satisfied as cache memory contains

adjacent memory items in the cache.

Real memory system hierarchy architecture is far more complicated than it is discussed here.

Detailed analyses and treatment could be found in [31].

The key idea of iteration space transformations, discussed in the next section, is to restructure the

loop nests in order to increase the locality of reference.

2.3 Iteration Space Transformations

The structure of a given loop nest determines the amount of data brought in between iterations. This

in turn determines the likelihood of eviction of data items and therefore the locality of the program.

The key idea behind iteration space transformations is to restructure the loop nests in order to increase

the locality of reference. Iteration space transformations modify the iteration domain parameters and

iteration schedule of each statement so that the required level of locality is achieved. For example,
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Figure 2.2: Associativity and addressing in cache memory. The figure illustrates the placement

of a memory block in different associative caches and the general addressing scheme used by them.

Figure 2.2(a) shows the placement of a memory block. The example assumes that memory block #3

has to be placed in a direct mapped, 2-way set associative and in a fully-associative caches, each with

a total number of 8 blocks. In a direct mapped cache, the block has only one designated place —

location 3 (block number modulo number of blocks). In a fully-associative cache, the block can be

placed anywhere. In an n-way set associative cache, (2-way, here), the block can be placed anywhere

within set 3 (block number modulo number of sets). The exact location within the set is determined

by the replacement policy. Figure 2.2(b) illustrates how the virtual address bits are used for cache

addressing. The first n1 bits are used for tagging - for cache lookup, the next n2 bits are used as index

bits to select the set and the remaining n3 bits are used as block offset bits, to address the desired

data within a block. Fully-associative caches will not have the index bits. The exact values of n1, n2

and n3 may vary by model for a given level of cache, but the principle remains the same. (Diagram

source: [31])
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do i = L1, U1
  do j = L2, U2
     do k = L3, U3
        <statements>

1    0    0
0    0    1
0    1    0

do i = L1, U1

        <statements>

do i = L1, U1

     do k = L3, U3
        <statements>

do i = L1, U1

        <statements>

  do j = L2, U2
     do k = L3, U3

  do j’ = U2, L2,−1

1    0    0
1    1    0
0    0    1

(a) Loop Permutation

(b) Loop Reversal

(c) Loop Skewing

1     0    0

0     0    1
0     1    0

  do j’ = L2+i, U2+i
      do k = L3, U3

Figure 2.3: Basic unimodular transformations and transformation matrices. The diagram illus-

trates the basic unimodular transformations: loop interchanging, loop reversal and loop skewing with

corresponding unimodular matrices.

tiling, an iteration space transformation, may introduce new loops, may change the loop bounds,

strides of innermost loops can be altered, and the exact sequence that points in the iteration space

visited can be changed.

Other examples for iteration space transformation include loop interchange and loop reversal. A

loop interchange transformation permutes a pair of loops in a loop nest and this can aid vectorisation

and parallelisation or can transpose the access pattern of the enclosed arrays. Loop reversal, a valid

transformation in the absence of loop carried dependencies, transforms a loop to run backward. This

can enable further transformations, such as loop fusion. Loop tiling partitions the iteration space

into uniform tiles of a given shape and size, such that computations are re-grouped. The re-grouping

changes the execution order while improving the temporal locality. Computation on a single tile is

completed before proceeding with another tile permitting maximal reuse of elements in a tile. In

general, iteration space transformations change the order of execution, resulting in the order in which

the data elements are accessed being changed, possibly improving locality of reference [15,21,45,46,

56, 59, 91].

Unimodular transformations [6, 91] are a unified framework that can describe any composition of

the interchanging, skewing and reversal loop transformations. In this framework, a transformation is

represented using a square integer matrix whose determinant is ±1 (otherwise known as a unimod-

ular matrix). Figure 2.3 illustrates the basic re-ordering transformations using this framework and

corresponding matrices.

With the definition of unimodular matrices for basic transformations, any loop transformation

can be expressed as a linear algebraic equation, consisting of a transformation matrix T and iteration

vector I. The transformation matrix T restructures the original iteration space I to I ′ such that I ′ = T I,

resulting in better locality.

Compiler infrastructures like Polaris [12] and SUIF [88] include unimodular transformations.
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do x1= L1, U1

S1a: H1a(x1)
do x2= L2, U2

S2a: H2a(x1, x2)
. . .

do xn= Ln, Un

Sn: Hn(x1, . . . , xn)
. . .

S2b: H2b(x1, x2)
S1b: H1b(x1)

(a) Model of an imperfectly nested loop of depth n

do x1= L1, U1

do x2= L2, U2

. . .

do xn= Ln, Un

S′

1a: if x2 = L2 ∧ . . . ∧ xn = Ln then H1a(x1)
S′

2a: if x3 = L3 ∧ . . . ∧ xn = Ln then H2a(x1, x2)
. . .

S′

n: Hn(x1, . . . , xn)
. . .

S′

2b
: if x3 = U3 ∧ . . . ∧ xn = Un then H2b(x1, x2)

S′

1b
: if x3 = U2 ∧ . . . ∧ xn = Un then H1b(x1)

(b) Loop nest in (a) is converted to a perfectly nested one using Lamport’s Technique.

Figure 2.4: Lamport’s technique. The figure illustrates Lamport’s technique [52] being used to trans-

form an imperfectly nested loop to a perfectly nested one. The idea is to move all imperfectly nested

statements into the innermost loop and guard their execution using the IF statements.

These libraries accept as input a matrix Tx, representing the desired compound transformation, a

pointer to the loop nest to be transformed, and the set of dependence vectors describing the dependen-

cies between statements for the loop nest. They verify the legality of the transformation using the set

of dependence vectors, and if the transformation is legal, proceed to transform both the dependence

vectors and the code.

However, unimodular transformations are limited to perfectly nested loops and all statements in

the loop body are changed in the same way. Imperfectly nested loops can be converted into perfectly

nested ones using loop distribution [93] and Lamport’s technique [52], where non-tightly nested state-

ments are moved inside the innermost loop. In the absence of dependence cycles, loop distribution

can be used to obtain several perfectly nested loops and unimodular transformations can be applied

to them. If some of the statements in an imperfectly nested loop have dependency cycles, loop dis-

tribution may be illegal. In such situations, Lamport’s technique may be used to move imperfectly
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Figure 2.5: Illustration of the Kelly and Pugh’s unifying framework. The figure shows how a de-

sired transformation can be derived through composition of other transformations in Kelly and Pugh’s

Framework [44]. In this figure, the desired transformation is a schedule S which changes the iteration

space I with dimension n1 to an iteration space F with dimension nk based on some optional condition

C. Ti’s are schedules with corresponding optional conditions Ci and S = T1 ◦ T2 ◦ . . . ◦ Tn where the

operator ◦ corresponds to composition.

nested statements to the innermost loop. Figure 2.4 illustrates how an imperfectly nested loop can be

converted to a perfectly nested loop using these techniques.

Since all statements inside a loop nest are affected in the same way by the unimodular transfor-

mations, it is difficult to represent other forms of loop transformations such as loop fusion and loop

distribution.

Kelly and Pugh propose a framework [44] to overcome this problem. They generalise a large set

of reordering transformations into a unified polyhedral framework. Their framework transforms one

iteration space I = [i1, . . . , im] to another iteration space F = [ f 1, . . . , f n], based on an optional condition

C. In their framework, a transformation is called a schedule and denoted by T . Multiple schedules can

be composed to derive a desired schedule. In other words, the reordering transformations are based

on schedules. A schedule T in [44] has the following general form:

T : [i1, . . . , im] → [ f 1, . . . , f n]|C (2.1)

where [i1, . . . , im] is the original iteration space, [ f 1, . . . , f n] is the new iteration space and C is an

optional condition. The transformation takes place only if the condition C is satisfied. i j’s and f j’s are

functions of iteration variables. Figure 2.5 shows the the basic idea behind the framework.

This framework relaxes most of the constraints in the original unimodular transformations framework.

Most importantly, this framework permits:
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• A separate schedule for each statement; this permits each statement inside a loop nest to be

transformed independently of others.

• the dimensions of the mapped space and the original space to be different.

• non unimodular, but invertible schedules,

• functions of iteration variables ( f j’s) to include division and modulo operations with the condi-

tion that the denominator is a known integer constant,

• schedules to be piecewise such that a single schedule is expressed as a union of other schedules.

These features enable a broader set of reordering transformations to be represented. The set of trans-

formations represented by this framework includes any combination of the following:

• interchange

• reversal

• skewing

• fusion

• tiling

• scaling

• distribution

• interleaving

• alignment

• coalescing

• statement reordering

• index set splitting

Figure 2.6, adopted from [44] illustrates a tiling transformation for the LU decomposition.

Unimodular transformations are a special case, where:

• all statements are mapped with the same schedule,

• the dimensions of the mapped space and the original space are the same,

• the schedule is unimodular and invertible,

• f j’s are affine functions of the iteration variable,

The framework also provides a set of algorithms to manipulate (build, use and validate) schedules

and to generate optimised codes for validated schedules. However, the framework does not provide

support for analysing the suitability of a transformation for a given problem, and this is left to the

user of the framework. Ideally, this framework would be a part of a larger system, for example an

optimising compiler.

Although this framework demonstrates that most loop transformations can be modelled as geomet-

ric transformations of polyhedra, the framework is limited to iteration reordering only. Temam et al. [8]

propose a similar polyhedral framework, covering a wide range of program transformations.

Kelly and Pugh’s framework is sufficient to cover the basics of iteration space transformations.

However, in reality, a sequence of transformations may be necessary to derive a desired transforma-

tion. For example, imperfectly nested loops can be converted into perfectly nested loops, using a

sequence of transformations, including loop fusion and loop distribution. Then, iteration space trans-

formations over this perfectly nested loop can be performed to improve performance. In [57], Li and

Pingali extend the basic transformations to cover non-singular matrices by including loop scaling.

Knijnenburg et al. [48] extend this framework by including support for loop alignment and statement-

wise transformations.
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Original code

do 20 k = 1, n

do 10 i = k+1, n

10 a(i,k) = a(i,k) / a(k,k)

do 20 j = k+1, n

20 a(i,j) = a(i,j) - a(i,k) * a(k,j)

Schedule (for locality)

T10 : [k, i ] → [64((k − 1) div 64) + 1, 64(i div 64), k, k, i]
T20 : [k, i, j] → [64((k − 1) div 64) + 1, 64(i div 64), j, k, i]

Transformed code to satisfy schedules

do 30 kB = 1, n-1, 64

do 30 iB = kB-1, n, 64

do 5 i = max (iB, k+1), min(iB+63,n)

5 a(i,kB) = a(i,kB) / a(kB,kB)

do 20 t3 = kB+1, min(iB+62,n)

do 10 k = kB, min(t3-1,kB+63)

do 10 i = max(k+1,iB), min(iB+63,n)

10 a(i,t3) = a(i,t3) - a(i,k) * a(k,t3)

do 20 i = max(iB,t3+1),min(iB+63,n)

20 if (t3<=kB+63) a(i,t3) = a(i,t3) / a(t3,t3)

do 30 t3 = iB+63, n

do 30 k = kB to min (iB+62,kB+63)

do 30 i = max(k+1,iB), iB+63

30 a(i,t3) = a(i,t3) - a(i,k) * a(k,t3)

Sequence of elementary transformations required to achieve the results of schedules
T10 and T20

• strip mining
• index set splitting
• loop distribution
• imperfectly nested triangular loop interchange

Figure 2.6: An example illustrating the application of Kelly and Pugh’s framework. The figure

shows an example code (LU decomposition - non-pivoted version), the schedules T10 and T20 needed

to tile the code (for statements at lines 10 and 20), the resulting code (after applying the schedules)

and the sequence of elementary transformations to achieve the same result as from schedules T10 and

T20. However, note that the tile size selection is not part of the framework.

When applying step by step transformations, an interesting problem is the effect of the order of

these transformations. One way to deal with this problem is to rely on predictive heuristics [2, 5, 92].

Predictive heuristics try to determine a priori whether or not applying a particular optimisation will

be beneficial. However, the complexity of this process limits the precision of predictive heuristics in

practice. An alternative approach is to rely on iterative compilation [49], where a program is compiled

multiple times with different optimisation configurations.

Some of these transformations require optimal selection of certain transformation parameters,

which will not be part of the transformation itself. For example, tiling [14, 50, 51] requires select-

ing an optimal tile size. Choosing an inappropriate tile size may lead to disappointing performance.

In the case of multi-level or hierarchical tiling [16], the size of each level in the memory hierarchy

influences tile size selection. For example, a tile size optimised for first-level cache performance is

likely to thrash the TLB (and vice versa) [60] and this can lead to a dismal performance [76]. There

are different methods to solve this problem. Coleman and McKinley [22], Chame et al. [17] and
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Knijnenburg et al. [49] describe different methods to automate the tile size selection when tiling loop

nests. For example, the ATLAS project [87] automatically tunes several linear algebraic routines by

empirically determining parameter values for various transformations.

In general, there are two classes of strategies used for optimisation: one strategy is empirical-

driven optimisation, as in ATLAS [87], Fast Fourier Transform Compiler [26] and in iterative com-

pilation frameworks [49]; and the other strategy is model-driven optimisation — a technique adopted

by many compilers. Kamen Yotov et al. [96] compare these two optimisation strategies and they find

that on some of the platforms for a restricted set of benchmarks, model-based optimisation strategies

are more effective and are similar to empirical-driven optimisations.

In addition to the transformations covered by this framework, there are other transformations

which can be very effective in performance optimisation. An interesting example is recursion. Ahmed

and Pingali [1] describe a compiler technology for automatically converting loop nests with arrays to

blocked-recursive versions. They consider perfectly nested loops and programs where array references

are affine functions. With these considerations, partitioning the iteration space also results in parti-

tioning the data space. The resulting code can be generated in blocked-recursive fashion. Yi et al. [95]

also provide a similar compiler transformation for converting arbitrary loop nests into recursive code,

to support multi-level memory hierarchies. They base their algorithm on ordinary dependence analysis

and iteration space slicing [68].

2.3.1 Complementing Iteration Space Transformations

Iteration space transformations, while improving locality of reference may also lead to other perfor-

mance problems. For example, cache memories have limited associativity; because of this, in a loop

nest with array accesses, different blocks of data, either from the same array or from different arrays,

can compete for the same cache line. In a loop nest, this can lead to repeated eviction of potentially

useful data blocks. If this interference happens within the same array, it is known as self-interference

and when it happens across different arrays it is known as cross-interference. While tiling improving

locality, it may introduce self- or cross-interference. Some of these problems occurring during iter-

ation space transformation can be overcome by complementing iteration space transformations with

layout transformations. For instance, self-associativity conflicts due to tiling can be avoided by copy-

ing data accessed by a tile into contiguous memory locations [51]. If copying at runtime does not

amortise the cost, it can be avoided by building the array in the desired layout or a selective copying

could be done at compile time [80]. Alternatively, the array can be padded to avoid conflict misses

as in [65, 71], often known as intra-array padding. Similarly, cross-interferences can be avoided by

inter-array padding [71, 72].

Iteration space transformations can be very effective in improving locality of reference. Some

transformations require optimal parameter selection, and some of them need to be complemented with

layout techniques such as padding and copying in order to achieve better performance. However, when

optimising loop nests, their dependence structure may prevent some of the transformations. In such

cases, layout transformations can be used as an alternative technique or as a complementary technique

to iteration space transformations. Layout transformations are briefly discussed in the next section and

a detailed discussion is deferred for the next chapter.
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2.4 Layout Transformations

Current programming languages support one of the two linear layouts: row-major and column-major

layouts. Mapping function for the row-major (column-major) array layouts favour loops which ac-

cesses the array in row-major (column-major) order. When arrays are not accessed in their major

order, neighbouring elements become distant in memory and this is known as the dilation effect. This

means that accessing a row-major (column-major) array in column-major (row-major) order experi-

ences the dilation effect. The dilation effect is one of the reasons for poor spatial locality when arrays

are traversed in any order other than the array’s major order. As discussed in the previous section,

iteration space transformations may change the access pattern and may improve locality. However, it-

eration space transformations may not always be valid due to dependencies or due to complex control

structures. An alternative strategy to this is to change the underlying array layouts. This technique

is known as layout transformation or as array restructuring. Figure 2.7 illustrates an example layout

restructuring which improves performance of a naively written code.

. . .
.

.

.
 
.
 
.

. .

A[100,200]
do i = 1, 200
   do j = 1, 100

B = A’

      A(i,j) = ...

do i = 1, 200
   do j = 1, 100

B[200,100]

      B(j,i) = ...

Figure 2.7: Example layout restructuring. The figure illustrates a simple layout restructuring optimi-

sation. The code shown on the left traverses the column-major array A in row-major order. Instead

of interchanging the loop, the underlying array layout is transposed with corresponding changes to the

array indices. This results in improved spatial locality of the code.

The idea behind storage layout transformation is to choose or change a layout so that spatial

locality is improved. When changing layouts, the mapping has to be one-to-one or invertible, so that

it is unique. Array restructuring is attractive for several reasons: most importantly, the restructuring is

not constrained by loop carried dependences or by the imperfectly nested loop structure and therefore

layout restructuring is always valid. Further, given a loop nest with multiple array accesses, each array

can be restructured independently of each other to maximise locality. However, loop restructuring

affects only the loop nest to which the transformation has been applied whereas array restructuring

affects all subsequent array accesses and can lead to differing performance in various parts of the

code.

When switching between layouts, original array elements have to be mapped/de-mapped through

corresponding mapping/de-mapping functions. Depending on the complexity of associated mapping

functions and resulting spatial locality from target layouts, the choice for such layout switching can
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be justified. Non-linear and blocked or recursive layouts discussed in Chapter 3 offer better spatial

locality for blocked algorithms. Since blocking or tiling involves a non-linear mapping/de-mapping

functions, these layout transformations are non-linear. Resulting mapping functions are fairly com-

plicated compared to that of the linear layouts. Since compilers do not support layouts other than

language-mandated layouts, the choice of layouts and possible optimisations are left to the program-

mer. We defer the discussion of storage layout optimisation, different storage layouts and their map-

ping functions until Chapter 3.

Layout transformation improves only spatial locality and does not affect temporal locality. This

property leads to the idea of combining iteration space transformations with layout transformations

such that both temporal and spatial locality can be improved. In the next section, we consider com-

bined transformations — where both iteration space transformations and layout transformations are

combined.

2.5 Combined Layout and Iteration Space Transformations

do 10 j = 2, n

do 10 i = 2, n

10 U[i,j] = V[j,i] + U[i-1,j] * V[j-1,i+1]

do 20 j = 1, n

do 20 i = 1, n

20 U[i,j-1] = V[i,j-1] + 1

Figure 2.8: An example motivating combined transformations. Due to conflicting accesses, both

data and iteration space transformations need to be combined to improve the performance. The first

loop nest could be optimised by transposing the layout of one of the arrays. The second loop nest has

to be optimised taking the assumed layout into account. Although there is a choice of performing a

layout transformation, performing an iteration space transformation in the second loop nest is optimal.

As illustrated in the previous section, combining iteration space and layout transformations enables us

to exploit both temporal and spatial locality. Consider the example shown in Figure 2.8, assuming that

the arrays are laid out in column-major order. In the first loop nest, array U is accessed in column-major

order while the array V is accessed in row-major order. For the same array layout, these access patterns

are conflicting. The dependence structure in the first loop prevents loop interchanging. However,

in the first loop nest, the underlying data layout of one of the arrays (for example array V) can be

transposed, as in Figure 2.7. This should improve locality of reference and therefore the performance.

However, due to this transformation, array accesses in the second loop nest now become conflicting.

The second loop nest has to be optimised taking the underlying layout of the array V into account.

A layout transformation can be performed again in the second loop nest, transposing the array U.

Alternatively, the loop nest can be interchanged, taking the array layout of V into account. However,

when considering the overheads associated with dynamically switching between layouts and copying,

performing an iteration space transformation is optimal.
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This example demonstrates the need to combine both iteration space and data layout transforma-

tions. When all or some of the iteration space transformations are prevented by dependency structure

of a loop nest, it is possible to use layout transformation techniques as an alternative to iteration space

transformations or to create additional opportunities. Further, in the presence of multiple layouts in a

loop nest, an iteration space transformation in favour of one layout may affect another one. Combin-

ing layout transformation with the iteration space transformation provides a means to overcome this

problem.

Li and Cierniak [21] discuss techniques to unify control and data layout transformations. With

the standard definition of access matrix, they use stride vectors instead of re-use vectors. Elements

of a stride vector carries information about data re-use specific to loop nests. For example, if an

element is 0, the corresponding loop nest has temporal locality and if an element is less than the size

of the cache-line, then the loop carries spatial locality. Given a mapping vector m (for column-major

layout m = mc = (1 n)T and for row-major layout m = mr = (n 1)T and access matrix A, the stride

vector is defined as vx = AT mx. For different layouts, different stride vectors could be obtained. Now

combining this with the non-singular iteration space transformation requires a transformation matrix

T with a mapping vector m such that a stride vector v is obtained satisfying the constraint:

T T v = AT m (2.2)

The solution for the transformation matrix finds legal loop transformations and finding solutions for

the mapping vector m means finding legal data layout transformations. An optimal solution for Equa-

tion( 2.2) could be found by solving the equation heuristically with the legality constraints for mapping

and transformations. Since the potential search space is very large, they limit their search space by

introducing more constraints and assumptions. This is only valid for single array reference and the

case of multiple array references can be addressed similarly. However the search space in the case of

multiple array references is much larger than for the single array reference.

Kandemir et al. present a cache locality optimisation algorithm [43] which can optimise a loop

nest for locality in the presence of multiple layouts for arrays within a loop nest. Their transformation

techniques improve the spatial locality with respect to the innermost loop. They use a single linear

algebraic framework to represent both layout and loop transformations. Then, for a given loop nest,

they compute a non-singular loop transformation matrix to exploit the data locality in the innermost

loop. To simplify the problem, they consider the case where arrays have different but non-dynamic

layouts, meaning that array layouts do not change between loops.

2.6 Summary

In this chapter, we have reviewed closely-related compiler techniques for improving locality. Al-

though iteration space transformations can improve locality, their application is often limited by the

capability of the compiler in inferring dependencies. Data layout transformations can be used as a

complementary technique or as an alternative to iteration space transformations. We discuss layout

transformations in detail in the following chapter.



Chapter 3

Storage Layout Optimisation

In the previous chapter, we considered locality improving transformations, and iteration space trans-

formations in particular. In this chapter, we introduce linear and non-linear layouts, layout transforma-

tions, mapping functions and their spatial locality. In particular, we pay special attention to recursive

non-linear layouts such as Morton layout, which is the subject of this thesis.

3.1 Introduction

Iteration space reordering may not always be valid due to dependencies and/or due to the complexity

of control structures. Further, iteration space transformation may need to be complemented by layout

transformations techniques. Unlike iteration space re-ordering, data-layout restructuring is always

valid as long as the mapping is invertible. The purpose of data-layout restructuring is to change

the underlying data-layout such that spatial locality is improved. Layout transformations include

transposition, stride re-ordering [42], intra- and inter-array padding, array merging [53], copying and

recursive non-linear array layouts. Copying, intra- and inter-array padding and stride re-ordering are

often used to complement iteration space transformation techniques.

When a layout transformation is performed, the resulting layout is chosen to match the dominant

access pattern of the code. Applications may also demand different layouts at different phases of

execution. In such cases, it may be difficult to decide on a single optimum layout. If the layout

selection is static, performance may vary across different parts of the code. This problem can be

overcome by selecting layouts dynamically: permitting the layouts to change at different parts of the

code. However, when using dynamic layouts, the overhead of switching layouts is paid at runtime.

Further, it may not be possible to determine an optimal layout at compile time for an array (for a given

loop nest) as the information available about the access in a given region of code may be insufficient.

Although this information will become available at runtime, the cost of determining an optimum layout

and data copying may outweigh any performance benefit. On the other hand, if dynamic layouts are

permitted, it is possible to restructure each array independently for maximum locality in a loop nest.

Locality and parallelism are also coupled together. Although our work is restricted to the uni-

processor memory model, it is possible to extend it to parallel machines and applications, where the

memory model is different. In parallel applications, non-local data accesses resulting in communi-

cation can greatly affect application performance. Parallel data placement [9], array-alignment in

parallel programs and computers [18, 94] and iteration space transformations such as tiling are used
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to minimise remote data accesses. We again restrict our attention to the uni-processor memory model

and sequential applications in the following sections and chapters.

Existing work on data or storage layout transformations is motivated by seeking maximum spatial

locality for each array in a loop nest. In contrast, our motivation is to analyse and evaluate how

non-linear layouts can be a compromise storage layout.

3.2 Linear layouts

Programming languages support one of the two lexicographical layouts: row- and column-major lay-

outs. For a two-dimensional M ×N array, let S (M,N)
x (i, j) denote mapping function S for a layout x

for an element at (i, j). The mapping functions for the lexicographical layouts, row-major (rm) and

column-major(cm), are given by Equations (3.1) and (3.2).

S (M,N)
rm (i, j) = N × i+ j (3.1)

S (M,N)
cm (i, j) = i+M× j (3.2)

These linear layouts have the dilation effect - meaning that elements in the opposite order of

their major traversal order becomes distant in memory. That is, for row-major (column-major) array,

elements along a column (row) becomes distant in memory — stride equal to the row-length (column-

length). This dilation effect leads to poor spatial locality upon accessing elements in the wrong order.

In general, a k-dimensional array can be stored in k! linear forms and each of them corresponds to a

nested traversal of the axes in some pre-determined order. When the access pattern matches the fastest

changing dimension of the layout, spatial locality is exploited. A linear storage layout transformation

technique can opt for one of these possible layouts if that improves spatial locality.

The simplest linear storage layout transformation is a permutation of array dimensions [21, 40].

For a two-dimensional array, this would be a transpose — row-major array is transformed to column-

major array and vice versa.

A linear layout can be restructured to another linear layout by means of a linear transformation of

index vectors. Consider an m-dimensional array U being accessed in a loop nest of depth n. Assuming

that all array indices are affine functions of loop variables, the index for the kth dimension (k < m) can

be expressed as v′k = ak0i0 +ak1i1 + . . .+aknim +ok, where ok is a constant offset and ak j’s are integer

coefficients and i j’s are loop variables. It is possible to express an index vector for all indices by :

VU = AU I+oU (3.3)

where AU is an m× n access matrix, I is the iteration vector, VU is the index vector of the element

and oU is an m dimensional constant offset vector, specific to this access. Each row of AU and oU

correspond to one dimension of the array index vector. For example, a regular, nested loop of depth n

can be represented by Equation 3.4.

VU =













a00 a01 . . . a0n

a10 a11 . . . a1n

. . . . . . . . . . . . .

am0 am1 . . . amn

























i0

i1

.

im













+













o0

o1

. .

om













(3.4)
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Leung and Zahorjan [54] discuss a technique whereby they transform the original array index

space VU to V′
U so that new accesses exhibit more spatial locality. They achieve this through an

m×m uni-modular index transformation matrix TU such that

V′
U = TU VU

= (TU AU)I+(ToU) (3.5)

The mapping is invertible, meaning that it can de-mapped. Now the transformed index vector V ′
U

is used to index the restructured array. This transformation matrix is chosen for each array in a loop

nest based on the access pattern that the array exhibits. So the selection of an optimum layout for an

array is performed in two steps: determining the index transformation matrix T and then refining it

for better locality using uni-modular transformations.

Kandemir et al. [41] suggest a technique to select a layout to match the execution order, at com-

pile time. They use the concept of reuse vectors [56, 91]. The idea is to obtain these reuse vectors

representing the direction in which the reuse occurs and then transform loop nests such that these

reuse vectors have some desired properties. Linear-algebraic techniques are used to derive the locality

information from these re-use vectors and used to guide the selection process of a layout for an array.

With the definition of spatial locality, two different iterations I and J access elements residing in the

same row (or column) when the condition AUs I = AUs J is satisfied. Where AUs is the access matrix for

U with the first row deleted [91]. Thus AUs(J − I) = 0 =⇒ AUsrUs = 0, where rUs = J − I is a spatial

reuse vector associated to an instance of array U . An important attribute of a spatial reuse vector is its

height which is defined as the number of dimensions from the first non-zero entry to the last entry. By

transformations, it is possible to introduce more leading zeros in the reuse vector and this is known

as height reduction [56]. Kandemir et al. uses the spatial and temporal reuse vectors and their height

information to form locality information. Then this locality information is used to reproduce the ef-

fects of iteration space transformation by using linear layout transformations, if possible. If there are

multiple instances of the same array, then a spatial reuse matrix can be constructed instead of a vector.

The same theory can be used to derive the temporal reuse vector(matrix), which is a special case of

spatial reuse. Although the choice of layouts for spatial reuse is restricted to canonical layouts, this

framework selects optimum array layout for each array individually.

Another domain, where data-layout transformations are used is in the synthesis of memory archi-

tectures, where efficient mapping of array elements in storage devices of embedded systems is crucial

for optimal power/space consumption. Panda et al. [64] try to reduce the system power requirements

of memory subsystems by minimising the transition count on the memory address bus when array ele-

ments are accessed. In order to achieve this, they exploit regularity and spatial locality in the memory

accesses and determine the mapping of behavioural array references to physical memory locations.

Hettiarachi et al. [32], map spatially and temporally local array elements to the same row, so that

the transition count would be low for row- and column-address strobes for the memory subsystem.

These power reduction optimisations are essentially data space transformations to improve locality of

reference.
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Figure 3.1: Blocked row-major (“4D”) layout. The diagram illustrates the 4D layout where an array is

arranged into tiles. Tiles and elements within each tile are arranged in one of the lexicographical orders,

independent of each other. If the original array size is not a multiple of tile size, it can be padded or

unequal tile sizes can be chosen.

3.3 Recursive and Non-linear Layouts

Conventional canonical layouts assume a flat, linear model of memory when mapping array elements

to memory. However, modern machines have multiple levels of memory hierarchy with varying per-

formance characteristics in terms of access time, capacity and cost (see Section 2.2). This mismatch

between the actual and represented models accounts for poor spatial locality and poor performance in

many applications. Non-linear and recursive layouts have hierarchical storage model. This matches

well with the hierarchical memory model of modern machines.

A simple non-linear memory layout scheme is studied by Chatterjee et al. in [19], known as 4D

layout. The idea is to divide the original array into lexicographically arranged tiles of tR × tC (tR is the

number of tiles across a column, and tC is the number of tiles across a row) and then lay out elements

inside these tiles in canonical order. Layout of tiles and of elements inside a tile can be independent of

each other. Chatterjee et al. argue that such a freedom in the choice of layouts can help overcoming

the dilation effect in canonical layouts in addition to closely mapping an array layout to the machine’s

memory model. Figure 3.1 shows this simple blocking scheme.

If a blocked row-major mapping function S (M,N)
brm (i, j) is defined for an element at (i, j), such that:

S (m,n)
brm (i, j) = (tR × tC)×S (M/tR,N/tC)

rm (i/tR, j/tR) (3.6)

+S (tR,tC)
rm (i%tR, j%tC)

elements could be mapped and de-mapped from two-dimensional space to the one-dimensional space

and vice versa. We further illustrate this layout with tR = 4, tC = 4 with ordering of tiles and elements

within tiles to be row-major in Figure 3.2. If we consider 16-word cache blocks, each block holds a

tR × tC = 16-word sub-array. In row-major traversal, the four iterations (0,0), (0,1), (0,2) and (0,3)

access locations on the same block. The remaining 12 locations on this block are not accessed until

later iterations of the outer loop. Thus, for a large array, the expected cache hit rate is 75%, since

each block has to be loaded four times to satisfy 16 accesses. The same cache hit rate results with

column-major traversal, i.e. when the loop structure is “do i...do j” rather than the “do j...do
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Column−major traversal: one in four accesses

Figure 3.2: Blocked row-major (“4D”) layout. S (8,8)
brm (i, j) with block-size parameters tR = tC = 4. The

diagram illustrates that with 16-word cache lines, illustrated by different shadings, the cache hit rate is

75% whether the array is traversed in row-major or column-major order.

i” loop of row-major traversal.

Modern computer systems rely on a Translation Look-aside Buffer (TLB) to cache address trans-

lations: a typical 64-entry data TLB with 8KB pages has an effective span of 64×8 = 512KB. Unfor-

tunately, as illustrated in Figure 3.3, if a blocked row-major array is traversed in column-major order,

only one sub-array per page is usable. Thus, we find that the blocked row-major layout is still biased

towards row-major traversal. We can overcome this by applying the blocking again, recursively. Thus,

each 8KB page (1024 doubles) would hold a 16×16 array of 2×2-element sub-arrays. Further, mod-

ern systems often have a deep memory hierarchy, with block size, capacity and access time increasing

geometrically with depth [4]. Therefore applying blocking recursively should also help matching an

array layout with the memory model.

The tile sizes tR and tC can be made architecture-dependent and can be chosen empirically. The

original array may need to be padded to have equal tile sizes, involving a space overhead. Alterna-

tively, unequal tile sizes may be selected for the last row and column of the matrix. With the blocked

4D layout, the address calculation for an element requires two levels of computation: one for the tile

containing that element and then the offset within that tile. This address calculation problem is easier

in their work [19], because all their codes are tiled or shackled which greatly simplifies the address

computation. Further, by tiling and shackling, the performance is less sensitive to small changes in

tile size and problem size, which can result in cache associativity conflicts with conventional layouts.

Gustavson et al. [29] apply blocked layouts over blocked algorithms. Their data structure, which is

known as new data structure (NDS) or as blocked hybrid format (BHF), is very similar to the 4D layout

described above in [19], except the fact that algorithms in the former are carefully designed to exclude

the padded elements from computation. The new data structure is also called square blocked packed

format for square arrays. Gustavson et al. [30] extend this to triangular arrays. With the symmetric
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Figure 3.3: Blocked row-major layout for large array. If a large blocked row-major array is traversed

in column-major order, only one sub-array per page is usable. The diagram shows an array with rows

of 2048 doubles, using the blocked row-major layout with 4× 4 blocks. Each 8KB page holds 1024

doubles, in 64 blocks. When traversed in row-major order, one fresh page is accessed every 256

accesses (a hit rate of 1−1/256 = 99.6%), but when traversed in column-major order, a fresh page is

accessed every 4 accesses (a hit rate of 1−1/4 = 75%).

triangular matrices, the square blocked packed format becomes square blocked lower packed (SBLP)

or square blocked upper packed (SBUP) formats, and the storage requirement is halved. They report

promising results for selected linear algebraic algorithms after combining recursion with these layouts.

The use of Quad- or Oct-trees is known in parallel computing for improving the load balancing and

locality [7,34,67]. These data structures are used in information theory for bandwidth reduction [11],

in graphics and database applications [39]. Quad- and Oct-trees can be generalised through space-

filling curves (or plane-filling curves) described in [33, 66]. Space-filling curves produce similar line

segments with varying scales and with varying orientations (by rotating these line segments) over a

given region. These space-filling curves are recursive in nature and can be described by a family of

non-linear functions.

Multidimensional arrays can be thought of formed up of planes, and elements on each of these

planes being laid out using a mapping function. Since space-filling curves can fill a plane without

holes, it is possible that elements of an array to be laid along one of such plane-filling curves. This

results in recursive layouts for arrays. Space-filling curve used to lay out the elements of an array is

the required mapping function for the chosen layout.

Frens and Wise [90] advocated Morton layout for multidimensional arrays, based on these space-

filling curves. The idea with Morton layout is to divide the original matrix into four different quadrants

(NW, NE, SW, SE) and arrange these quadrants in the order of (NW, NE, SW, SE) quadrants in

memory, then recursively apply the same technique for each tile until no further tiles are left. As in the

blocked 4D layout, the address computation cost for Morton layout is high if elements are accessed

at random. Frens and Wise found that it is hard to overcome the addressing costs. Again, as with

the blocked 4D layout, the iteration space can either be tiled or recursively formulated to minimise

address computation cost. If the original size of the matrix is not a power-of-two then the matrix has

to be padded to the next integer power-of-two size.

The elements inside the smallest Morton block (2×2 tile) can be arranged in many different ways.
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Figure 3.4 illustrates different Morton mappings. Each of these Morton layouts have different orienta-

tions and different addressing costs. We discuss four different space-filling curves in this chapter, all

derived from Hilbert curve. Lebesgue’s layout or Z-Morton layout, U-Morton and X-Morton layouts

have single orientation, i.e. line segments are never rotated. The mnemonics represent the English

alphabet that their ordering pattern resembles. G-Morton layout has two orientations - line segments

rotated by 180 degrees.

Morton layout requires array size to be a power-of-two size in each dimension. If this is not the

case, the array has to be padded to the next power-of-two, involving a space overhead as high as 75%.

Valsalam et al. [86] studied an alternative approach, where they use Morton layout with an arbitrary

size matrix. The idea behind their work is to identify non-square tile sizes, such that padding is avoided

or minimised.

Drakenberg et al. [23] present a semi-hierarchical array layout (called HAT) to enable precise

analysis of cache behaviour at compile time. The semi-hierarchical layout they propose is a hybrid

of Morton and lexicographic layouts. In their semi-hierarchical layout they arrange large tiles in

lexicographical layout and elements inside the tiles are arranged in Morton order. They choose each

tile size to be a multiple of page size to improve TLB performance. Their compile time cache analysis

is based on the cache miss equations framework proposed by Ghosh et al. [28].

In all these recursive layouts, although padding adds to the space overhead, they do not affect the

performance as they are never fetched to smaller levels of memory hierarchy. However, padding may

not be acceptable for systems which do not have virtual memory. From the computational point of

view, either the computation could be done over these padded area (after initialising them to zero)

or loop boundaries can be adjusted to avoid any computation over this padded area. For example,

Chatterjee and Gustavson et al. chose the latter method, while Frens and Wise chose the first one.

3.4 Mapping Functions for Recursive Array Layouts

All recursive layout functions share a common operational interpretation inherited from Peano’s and

Hilbert’s interpretation of space-filling curves [33, 66, 75]: divide the original matrix into four quad-

rants and lay out these sub-matrices or quadrants in memory using a layout function, say S M/P,N/Q
T .

Then repeat this recursively using the same layout function, until no further division is possible.

We use the following notations and assumptions in our analyses:

• We assume that all arrays are indexed from base zero.

• For an M×N array with a layout l, the offset of an element at (i, j) is given by S (M,N)
l ,

• For a non-negative integer i, let B(i) be the binary representation, i.e. B(i) = in−1in−2 . . . i0.

• For a bit string s, let B−1(s) be the non-negative integer i such that B(i) = s,

• For a non-negative integer i, let G(i) be the Gray encoded representation [58],

• For a non-negative integer i, let D0(i) be the left dilated (or odd dilated) representation, i.e.

B(D0(i)) = 0in−10in−2 . . .0i20i10i0.

• For a non-negative integer i, let D1(i) be the right dilated (or even dilated) representation, i.e.

B(D1(i)) = in−10in−20 . . . i20i10i00.
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Figure 3.4: Morton layouts. The diagram illustrates a family of Morton layouts for an 8× 8 array.

The array is divided into four different quadrants of {NW, NE, SW and SE}. Quadrants are stored as

consecutive tiles, in the order of {NW, NE, SW, and SE} for Z-Morton (Figure 3.4(a)), {NW, SW, SE

and NE} for U-Morton (Figure 3.4(c)) and {NW, SE, SW and NE} for X-Morton (Figure 3.4(b)). For

these three layouts, it could be noticed that the orientation of the placement does not vary from block

to block. However, for G-Morton, the orientation alternates between the order of {NW, NE, SE, and

SW} and {SE, SW, NW, and NE} for every two blocks. Thus G-Morton has the orientation of 2. This

technique is applied recursively for each of the quadrant. The addressing function for these layouts is

tabulated in Table 3.1.
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• the exclusive OR operator is ⊕

• the bitwise OR operator is |

• the bitwise concatenation operator is ||

Canonical Layouts

Assume for the time being that, for an M×N array, M = 2P, N = 2Q. Write the array indices i and j

as

B(i) = in−1in−2 . . . i3i2i1i0 and

B( j) = jm−1 jm−2 . . . j3 j2 j1 j0
(3.7)

respectively. For simplicity, we restrict our analysis to square arrays (where M = N), but this constraint

is relaxed in the next section. Now the lexicographic mappings can be expressed as bit-concatenation:

S (M,N)
rm (i, j) = N× i+ j = B(i)‖B( j)

= in−1in−2 . . . i3i2i1i0 jn−1 jn−2 . . . j3 j2 j1 j0 (3.8)

S (M,N)
cm (i, j) = i+M× j = B( j)‖B(i)

= jn−1 jn−2 . . . j3 j2 j1 j0in−1in−2 . . . i3i2i1i0 (3.9)

Recursive Layouts

If P = 2p and Q = 2q, the blocked row-major mapping is

S (M,N)
brm (i, j) = (P×Q)×S (M/P,N/Q)

cm (i, j)+ S (P,Q)
rm (i%P, j%Q)

= B(i)(n−1)...p‖B( j)(m−1)...q‖B(i)(p−1)...0‖B( j)(q−1)...0 (3.10)

Now, choose P = Q = 2, and apply blocking recursively:

S (N,M)
mz (i, j) = in−1 jn−1in−2 jn−2 . . . i3 j3i2 j2i1 j1i0 j0 (3.11)

= D1(i)|D0( j) (3.12)

This mapping is called Z-Morton layout and the operation is known as bit-interleaving. This is illus-

trated in Figure 3.5.

Bit-interleaving is too complex to execute at every loop iteration. Wise et al. [89] explore an

intriguing alternative: with the definitions of D0 and D1, and with the notion of loop control variable i

being denoted as a dilated integer: increment of a loop control variable at each loop iteration is fairly

straightforward. Let “&” denote bitwise-and. Then:

D0(i+1) = ((D0(i) | Ones0)+1) & Ones1 (3.13)

D1(i+1) = ((D1(i) | Ones1)+1) & Ones0 (3.14)

where

B(Ones0) = 10101 . . .01010 (3.15)

B(Ones1) = 01010 . . .10101 . (3.16)
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Figure 3.5: Morton storage layout for an 8×8 array. Location of element A[5,4] is calculated

by interleaving “dilated” representations of 5 and 4 bitwise: D1(5) = 1000102 , D0(4) = 0100002 .

Smz(5,4) = D1(5) | D0(4) = 1100102 = 5010. A 4-word cache block holds a 2× 2 sub-array; a 16-

word cache block holds a 4× 4 sub-array. Row-order traversal of the array uses 2 words of each

4-word cache block on each sweep of its inner loop, and 4 words of each 16-word block. Column-order

traversal achieves the same hit rate.

Layout Layout function Mapping function Number of orientations

Z-Morton S (N,M)
mz (i, j) D1(i)|D0( j) 1

U-Morton S (N,M)
mu (i, j) D1( j)|D0(i⊕ j) 1

X-Morton S (N,M)
mx (i, j) D1(i⊕ j)|D0( j) 1

G-Morton S (N,M)
mg (i, j) G−1(D1(G(i))|D0(G( j)) 2

Table 3.1: Mapping functions and number of orientations of recursive layouts summarised

from [11, 20]. The Table tabulates the mapping functions and their orientations for various recur-

sive, non-linear layouts. The operators D∗(.) and G(.) follow the definitions stated at the beginning of

Section 3.4.
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We call this approach the dilated arithmetic scheme. However, implementing this dilated arithmetic

scheme in all for-loops is a cumbersome process. Alternatively, we could pre-calculate the dilated val-

ues (DO(i) and D1( j)) in lookup tables and we could use these lookup tables to find the corresponding

offset address. Exact number of lookup tables dependents on the number of array dimensions and not

on the number of loop control variables. We explore this further in the next chapter.

Mapping functions for the other layouts in the Morton family can be obtained similarly. Table 3.1

summarises the mapping functions and orientations for the layouts in the Morton family. H-Morton (or

Hilbert Curve) has four orientations with line segments rotated by 90,180 and 270 degrees. The map-

ping function for the Hilbert layout is computationally more complex, which is informally described

by Bially [11]. In summary, in the recursive layouts we discussed, we observe the following:

• The fact that only two of the four neighbours of element at (i, j) can be adjacent to each other

in the mapped space, leads us to conclude that all layouts should experience the dilation effect.

In recursive layouts, the dilation effect varies with the level of blocking involved and with the

number of orientations.

• The instruction sets of current architectures do not include support for dilated arithmetic, Gray-

coding or for bit dilation. Assuming that array indices are pre-dilated (or Gray-coded) and either

table lookup or direct arithmetic is used to calculate the offset address, then the instruction count

for each of layout function leads us to conclude that Smz is computationally cheaper than other

mapping functions.

• We have not included any recursive layouts with three orientations, though Chatterjee et al. [20]

informally discuss this issue.

• All layouts in the Morton family show identical spatial locality whether traversed in row-major

or column-major order (see Section 3.5).

3.5 Spatial Locality in Recursive Array Layouts

Consider a loop nest accessing a 2m ×2n array A, arranged in any one of the radix-2 Morton layouts,

in either row- or column-major order. Also assume that the cache capacity is C with an even power-of-

two cache line size B (= 22b). The innermost loop traverses the array in either row- or column-major

order with a unit stride. If 2m,2n > C, spatial re-use along the other direction of traversal can be

neglected. With these assumptions, the Proposition 3.1 holds true.

Proposition 3.1 (Morton layout offers same spatial locality for both canonical traversal orders)

In Morton layouts, given a cache with any even power-of-two block size, with an array mapped ac-

cording to one of the Morton layouts (Smz, Smg, Smu or Smx), the cache hit rate of a row-major traversal

is the same as the cache-hit rate of a column-major traversal. This applies given any cache hierarchy

with even power-of-two block size at each level. The proof is as follows:

Array A can be viewed as an array of 2m

2b ×
2m

2b blocks of size 22b. That is, each block holds 2b ×2b

square sub-array of A. When elements of A are accessed, corresponding blocks are accessed in some

order. Following a cache miss, the square sub-array containing of the requested element of array A (of

size 2b ×2b) is fetched. For the row-major traversal, the first access will cause a cache miss, but since
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Figure 3.6: Comparison of neighbourhood r-model spatial locality and spatial locality interpreted

by modern machines. The figure shows the major difference in the interpretation of spatial locality as-

sumed by Avigail and Itai [63] from the standard interpretation. Their model assumes r-neighbourhood

model, and all cells within the radius of r are considered to be demanded and fetched by cache whereas

the standard model of spatial locality assumes that limited number of adjacent elements in the direction

of layout axis are fetched in to a cache line. Figure (a) shows the case for r = 1 and the issue of

alignment is ignored here.

Row-major layout Morton layout Column-major layout

32B cache line 75% 50% 0%

128B cache line 93.75% 75% 0%

8KB page 99.9% 96.875% 0%

Table 3.2: Theoretical hit rates for row-major traversal of a large array of double words on dif-

ferent levels of memory hierarchy. Possible conflict misses or additional hits due to temporal locality

are ignored. This illustrates the compromise nature of Morton layout.

the square sub-array includes the rest of the 2b-element row, the next 2b−1 accesses will be cache hits

The same is true for the column-major traversal as well. Thus, in either case, the cache miss rate is at

most 1 in 2b or 1
2b .

Thus, Morton array offers equal spatial locality whether traversed in row- or column-major order.

�

However, the presence of temporal re-use and spatial re-use along the other direction of traversal

(row-to-row or column-to-column) will improve the miss rate (i.e. the miss rate is reduced).

Avigail and Itai [63] measure the locality of space filling curves and they conclude that space

filling curves have better locality compared to row-major or column-major traversals. However, their

cache model and the interpretation of spatial locality are much more restricted to the domain of image

processing applications. In particular, their interpretation of spatial locality is bound to the data ele-

ments lying within a radius r from a considered data element. Figure 3.6 illustrates this difference in

the interpretation of spatial locality.
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3.6 Choice of a Layout for Experiments

When considering alternatives to canonical layouts, we have a choice between fully recursive layouts,

where decomposition is applied up to the element level, and minimal blocking schemes, where the

blocking is applied with specific block sizes, based on the underlying memory system. First, we

justify our selection for a fully recursive layout over minimally blocked layout and then we justify the

selection of a specific recursive layout, Z–Morton layout in particular, as the experimental layout to

test the hypothesis that Morton layout is an attractive compromise and alternative to canonical layouts.

3.6.1 Criteria for Selection

We consider the following as some of the important criteria to select a layout:

• Architecture Independence: The chosen layout should work well on a wide range architectures

with little or no tuning of the layout.

• Addressing Cost: The overall instruction count (in terms of simple instructions), which is a

direct measure of relative addressing cost, should be as small as possible.

• Spatial locality: The dilation effect (see Section 3.4), and thus the number of orientations, has

a direct connection to the spatial locality of a layout. As the number of orientations increases,

this dilation effect is less pronounced and spatial locality is improved.

• Symmetry: The layout should offer the same spatial locality, for row-major and column-major

traversals.

• Space overhead: Non-linear layouts may require additional padding. It can be argued that,

given smaller system page-size, the space overhead introduced by padding has little impact on

the overall performance of Morton layouts, as these pages are never loaded. However, if the

system supports super-pages [61] and if the application uses this feature, then this argument is

not valid.

3.6.2 Recursive Layouts

As pointed out in the earlier sections of this chapter, recursive layouts apply blocking at every power-

of-two down to the element level. Depending on the array size, the number of levels to which the

blocking is applied may vary and may even exceed the number of actual levels of memory hierarchy

in the system, which rarely exceeds four (L1, L2, L3-level caches and system pages — we ignore

register level blocking). Complete recursive blocking of these layouts matches well with the uniform

memory hierarchy model suggested by Alpern et al. [4]. Extra levels of blocking have little impact

on the overall performance and recursive layouts require no special tuning across architectures, which

helps architecture-independent programming.

Characteristics, such as the number of orientations and address mapping functions of recursive

layouts vary greatly. Part of the addressing cost can be recovered by control structures if the algorithms

are tiled or recursively formulated. When this is not the case, the table-lookup scheme can be used. For

Z-Morton, two lookup tables are sufficient. The Hilbert curve and G-Morton schemes require more
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than two lookup tables. For X-Morton and U-Morton, the address calculation is partly complicated

with the presence of the Exclusive-OR operation.

The Hilbert curve has the highest number of orientations — 4 and the layout suffers least from the

dilation effect. G-Morton has two orientations and all other members of the Morton family have only

single orientation.

Recursive layouts are only applicable to arrays with power-of-two sizes. When the size is not a

power-of-two, the array has to be padded to the next power-of-two size. For small-sized system pages,

padding has little impact on the overall performance as padded pages are never touched. However, in

the presence of super-pages, padded space will be a significant overhead.

3.6.3 Minimally-Blocked Layouts

Minimally-blocked layouts have fewer levels of blocking — only to match the actual levels of mem-

ory hierarchy in the system. Once the number of levels for blocking is decided, block size for each

level is carefully chosen to match the block size of the corresponding level in the memory hierarchy.

Depending on the implementation, either tiles or elements of tiles can be ordered linearly. The 4D

layout discussed in Section 3.3 is an example of minimally-blocked layout, where tiles are arranged

in row-major order and elements inside these tiles are ordered in column-major order (or vice versa).

Despite the fact that minimally-blocked layouts may offer good performance, there are disadvantages

in using this layout scheme. Firstly, choosing the correct block size for each level is a search space

problem, partly due to the fact that block size optimised for one level is likely to influence the perfor-

mance of other levels [60, 76]. Secondly, the layout is a serious limitation for portability as the layout

needs to be tuned based on the architectural parameters. In other words, the underlying architecture

has a greater influence in the layout structure.

The address calculation cost, as in recursive layouts, can partly be recovered by means of control

structures. The table-lookup scheme can also be utilised to simplify the implementation and unrolling,

often with two different lookup tables.

Minimally-blocked layouts require the array sizes (of each dimension) to be a multiple of the

chosen tile size (in the corresponding direction). Often, this involves padding but less than that of the

recursive layouts.

3.6.4 Selection of a Layout

When considering these facts, we observe the following:

• Minimally-blocked layouts offer reduced space overhead over fully recursive layouts. However,

in the absence of support for super-pages, the extra space overhead is expected to have little

impact on performance.

• In many cases, both fully recursive and minimally-blocked schemes have similar addressing cost

for non-tiled/non-recursive implementations. The exact cost of addressing may vary slightly, if

recursive algorithms are used. However, all our kernels are non-blocked and are not recursive.

• For minimally-blocked layouts, choosing the correct block size is always restricted by the target

architecture and involves further tuning. However, when optimal blocking factors are chosen,

better performance can be expected. On the other hand, fully recursive layouts are inherently
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blocked up to the element level and guaranteed to cover all levels of memory hierarchy. This, in

contrast to minimally-blocked scheme, should cover a wide variety of architectures. By choos-

ing a fully recursive layout, the implementation can be made architecture/platform independent.

So fully recursive layouts have all the locality benefits of minimally-blocked layouts.

Based on these arguments, we consider that fully recursive layouts to be more promising in terms

of architecture independence and in terms of offering equal spatial locality for row-major and column-

major traversal orders. If, as we claim, extra blocking does not hurt us very much in terms of perfor-

mance, fully recursive layouts are the best choice to test our hypothesis.

Among recursive layouts, the Hilbert layout has the overall minimum dilation effect. However, the

addressing cost compared to the other layouts is very high, involving more than just the two lookup

tables, required by Z-Morton. By the same token, G-Morton does not qualify. Among the remaining

layouts, Z-Morton is an ideal choice considering the addressing cost and symmetry property within

larger blocks. This has led us to select the Z-Morton layout to test our hypothesis, in this thesis.

3.7 Summary

In this chapter, we have discussed different recursive array layouts and layout transformations. Their

orientations determine the address calculation complexity and the dilation effect. We also have justi-

fied the selection of Z-Morton layout to test the hypothesis outlined at the beginning of this thesis.

Theoretically, we have illustrated how a member in the Morton layout family can be a compromise

and an attractive storage layout to canonical layouts. The hypothesis is entirely based on theoretically

predicted/calculated values and they may vary on real machines. This hypothesis can only be verified

with a systematic implementation and analysis of the results - which is explored in the chapters which

follow.



Chapter 4

An Experimental Study of Basic Morton

Layout on a suite of Micro-Benchmarks

In this chapter, we experimentally evaluate our hypothesis that Morton layout is a compromise storage

layout between row-major and column-major layouts. We also evaluate two different methods of

address calculation for Morton layouts. This chapter, which serves to establish a baseline against

which the experiments in the later chapters are compared, is based on papers presented at Euro-Par

2002 [85], UKPEW 2003 [81] and on our journal paper [83].

4.1 Introduction

In the previous chapter, theoretically, we have illustrated that Morton layout is a compromise between

row-major and column-major, with some spatial locality whether traversed in row-major or column-

major order — but in neither case is spatial locality as high as the best case for row-major or column-

major. The hypothesis is entirely based on theoretically predicted/calculated values and they may vary

on real machines. In this chapter, we verify this hypothesis through systematic implementation of

experiments and analysis of these experimental results.

Perhaps controversially, we confine our attention to “naively” written codes, where a mismatch

between access order and layout is reasonably likely. In the final chapter of this thesis, we discuss

how this constraint could be relaxed. We also assume that the compiler does not help, neither by

adjusting storage layout, nor by loop nest restructuring such as loop interchange or tiling. Naturally,

we fervently hope that users will be experts and that compilers will successfully analyse and optimise

the code, but we recognise that very often, neither is the case.

4.2 Contributions of this Chapter

In this chapter:

• We present an extensive and systematic study of Morton layout using a substantial range of

problem sizes. This shows a number of interesting effects, and Morton layout appears less

attractive to the better performing canonical layout. However, in the later chapters, we discuss

further improvements to the performance of Morton layout.
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#define ONES_1 0x55555555

#define ONES_0 0xaaaaaaaa

#define INC_1(vx) (((vx + ONES_0) + 1) & ONES_1)

#define INC_0(vx) (((vx + ONES_1) + 1) & ONES_0)

void mm_ikj_da(double A[SZ*SZ], double B[SZ*SZ],

double C[SZ*SZ])

{

int i_0, j_1, k_0;

double r;

int SZ_0 = Dilate(SZ);

int SZ_1 = SZ_0 << 1;

for (i_0 = 0; i_0 < SZ_0; i_0 = INC_0(i_0))

for (k_0 = 0; k_0 < SZ_0; k_0 = INC_0(k_0)){

unsigned int k_1 = k_0 << 1;

r = A[i_0 + k_1];

for (j_1 = 0; j_1 < SZ_1; j_1 = INC_1(j_1))

C[i_0 + j_1] += r * B[k_0 + j_1];

}

}

Figure 4.1: Morton-order matrix-multiply implementation using dilated arithmetic for the address

calculation. Variables i 0 and k 0 are dilated representations of the loop control counter D0(i) and

D0(k). Counter j is represented by j 1= D1(j). The function Dilate converts a normal integer in

to a dilated integer. The macros INC 1(.) and INC 0(.) increments the dilated variables D1(.) and

D0(.) respectively.

• The dilated arithmetic approach for address calculation works when the array is accessed using

an induction variable which can be incremented using dilated addition. Despite the performance,

the dilated arithmetic approach is too complex to execute at every loop iteration. We found that

a much simpler scheme often works nearly as well: pre-computing two different tables for the

two mappings D0(i) and D1(i) and using lookup tables to calculate Morton layout addresses

is remarkably effective. We show that it compares well with the dilated arithmetic scheme

proposed by Wise et al. [89, 90], and offers useful flexibility.

• We evaluate the hypothesis that Morton layout, implemented using lookup tables, is a compro-

mise between row-major and column-major layout. We present extensive experimental results

using five simple numerical kernels, running on five different processors (Section 4.5).

In order to make sure that the performance results we obtain for different benchmarks on different

hardware platforms are as good as can reasonably be evaluated if the micro-benchmark code were

part of a larger program and yet representative of likely experience in practice, we need a common

set of compilers and compiler flags. Compilers and compiler flags recommended by the vendors of

hardware, for their SPEC CFP2000 (base) benchmark reports, are chosen to address exactly the same

issue of fair comparison. We therefore use the same compilers and compiler flags recommended in the

CFP2000(base). In addition to this, for each micro-benchmark, we manually verified that all compilers

generate similar code, i.e. no loop interchange or vectorisation took place.
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void mm_ikj_tb(double A[SZ*SZ], double B[SZ*SZ],

double C[SZ*SZ],

unsigned int MortonTabEven[],

unsigned int MortonTabOdd[])

{

int i, j, k;

double r;

for (i = 0; i < SZ; i++)

for (k = 0; k < SZ; k++){

r = A[MortonTabEven[i] + MortonTabOdd[k]];

for (j = 0; j < SZ; j++)

C[MortonTabEven[i] + MortonTabOdd[j]]

+= r * B[MortonTabEven[k] + MortonTabOdd[j]];

}

}

Figure 4.2: Morton-order matrix-multiply implementation using table lookup for the address cal-

culation. The compiler detects that MortonTabEven[i] and MortonTabEven[k] are loop invariant,

leaving just one table lookup in the inner loop.

4.3 Morton Order Address Calculation

A naive, but correct implementation strategy for calculating the offset address of an element at (i, j) in

a Morton array A is to call a subroutine to compute that address. As discussed in Chapter 3, Section 3.4,

this involves bit-dilation and bit-interleaving, which are expensive operations to execute at every loop

iteration. As in linear layouts, it is possible to integrate the process of address computation into loop

structures that surround the array accesses — the dilated arithmetic scheme. An alternative strategy is

to pre-compute the values for D1(i) and D0( j) into two different look-up tables and perform lookups

on demand.

Note that for programs with regular stride, the table accesses are very likely cache hits, as their

range is small and the tables themselves are accessed in unit stride. One small but important detail:

we use addition instead of logical .or. This may improve instruction selection. It also allows the same

loop to work on lexicographic layout using suitable tables. If the array is non-square, (for example,

2n ×2m, n < m), we construct the lookup-tables with different sizes, so that corresponding indices are

dilated only up to bit n and up to m. Such a scheme permits us to vary the radices used and to construct

a completely non-uniform layout.

We have evaluated these two techniques using the Matrix-Multiply (ikj variant) on a number of

different platforms. The code variants are shown in Figures 4.1 and 4.2 and resulting performance

results are shown in Figure 4.3. Results show that the dilated arithmetic implementation is almost

always faster; but, the difference is usually less than 20%. The exact performance of dilated-arithmetic

scheme may vary depending on the benchmark kernel and on the architecture. In the remainder of this

thesis, we use the table lookup scheme exclusively, for the following reasons:

• We expect the difference in performance can be regained by unrolling.

• The table lookup scheme offers considerable flexibility in choosing and mixing different layouts

very easily.
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Figure 4.3: Matrix multiply (ikj) performance (in MFLOPs) of dilated arithmetic Morton address

calculation compared against the table-based Morton address calculation. Graphs show perfor-

mance achieved by the two different implementations (in MFLOPs) on different platforms, for problem

sizes ranging from 200× 200 to 2048 × 2048, wherever possible. Details of the systems are given

in Table 4.1. On nearly all systems , the dilated-arithmetic implementation performs relatively better

than the table implementation. However the difference is usually less than 20%. Further, our results in

following chapters, show that this performance loss can be re-gained by unrolling the innermost loops

of the kernels.



4.4 Experimental Setup 48

System Processor Operating L1/L2/Memory Compiler

System Parameters and Flags Used

Alpha Alpha 21264 OSF1 V5.0 L1 D-cache: 2-way, 64KB, Compaq C

Compaq (EV6) 500MHz : 64B cache line Compiler V6.1-020

AlphaServer L2 cache: direct mapped, 4MB -arch ev6 -fast -O4

ES40 Page size: 8KB

Main Memory: 4GB RAM

Sun UltraSparcIII(v9) SunOS 5.8 L1 D-cache: 4-way, 64KB, Sun Workshop 6

SunFire 6800 750MHz : 32B cache line -fast -xcrossfile

L2 cache: direct-mapped, 8MB -xalias level=std +FDO

Page size: 8KB FDO: PASS 1: -prof gen

Main Memory: 24GB FDO: PASS 2: -prof use

PIII PentiumIII Linux 2.4.20 L1 D-cache: 4-way, 16KB, Intel C/C++

Coppermine : 32B cache line Compiler v7.00

450MHz L2 cache: 4-way 512KB, -xK -ipo

: sectored 32B cache line -O3 -static +FDO

Page size: 4KB FDO: PASS 1: -prof gen

Main Memory: 256MB SDRAM FDO: PASS 2: -prof use

P4 Pentium 4 Linux 2.4.20 L1 D-cache: 4-way, 8KB, Intel C/C++

2.0 GHz : sectored 64B cache line Compiler v7.00

L2 cache: 8-way, 512KB, -xW -ipo

: sectored 128B cache line -O3 -static +FDO

Page size: 4KB FDO: PASS 1: -prof gen

Main Memory: 512MB DDR-RAM FDO: PASS 2: -prof use

AMD AMD Athlon Linux 2.4.20 L1 D-Cache: 2-way, 64KB, Intel C/C++

XP 2100+ 1.8GHz : 64B cache line Compiler v7.00

L2 cache: 16-way, 256KB, -xK -ipo

: 64B cache line -static +FDO

Page size: 4KB FDO: PASS 1: -xprofile=collect

Main Memory: 512MB DDR-RAM FDO: PASS 2: -xprofile=use

Table 4.1: Cache and CPU configurations used in the experiments. Compilers and compiler flags match

those used by the vendors in their SPEC CFP2000 (base) benchmark reports [78].

• Although our benchmarks are limited to simple array subscripts, in some applications where

array subscripts are not induction variables, Dilated Arithmetic cannot be used.

However, with compiler support, many applications could benefit from the dilated arithmetic ap-

proach, possibly leading in many cases to more positive conclusions,

4.4 Experimental Setup

Benchmark kernels and architectures. To test our hypothesis that Morton layout, implemented

using lookup tables, is a useful compromise between row-major and column-major layout experimen-

tally, we have collected a suite of simple implementations of standard numerical kernels operating on

two-dimensional arrays and carried out experiments on five different architectures. The benchmarking

kernels used are shown in Figures 4.4 and 4.5 and the platforms in Table 4.1.

Problem sizes. In carrying out an exhaustive study, we collected performance data, where possible,

for all problem sizes between 100× 100 and 2048× 2048. In some cases, the running-time of the

benchmarks was such that we were not able yet to collect data up to 2048×2048. In those cases, we

report data up to 1024×1024. In all cases, we used square arrays.
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/* ADI Main Loop */

for (t=0;t<nIters;t++){

for (i=1;i<sz;++i){

for (j=0; j< sz; ++j)

A[i][j] += A[i-1][j];

for (i=0;i<sz;++i){

for (j = 1; j< sz; ++j){

A[i][j] += A[i][j-1];

}/*end of time loop*/

(a) Alternating Direction Implicit Kernel (ADI) – ii, ij order

/* MMijk Main Loop */

for( i = 0; i < sz; ++i ){

for( j = 0; j < sz; ++j){

for( k = 0; k < sz; ++k ){

C[i][j] += A[i][k] * B[k][j];

}

}

}

(b) Matrix Multiply. ijk loop nest order

/* MMikj Main Loop */

for( i = 0; i < sz; ++i ){

for( k = 0; k < sz; ++k ){

r = A[i][k];

for( j = 0; j < sz; ++j){

C[i][j] += r * B[k][j];

}

}

}

(c) Matrix Multiply. ikj loop nest order

Figure 4.4: Core loops of the MMijk, MMikj and ADI kernels used in our experimental framework.

The Figure shows the key loops of the MMijk, MMijk and ADI kernels. Though the kernels shown here

use standard ’C’ style notations, the actual implementations are slightly different. The ijk variant of the

matrix multiply should perform very poorly due to large stride access for one of the arrays. The ikj

variant should perform better than the ijk variant as it has a unit stride access for all of the arrays.



4.4 Experimental Setup 50

/* Jacobi2D Main Loop */

for (it=0; it<nIters; it++) {

for (i=1; i<sz-1; ++i){

for (j=1; j<sz-1; ++j){

B[i][j]= 0.25 *(A[i-1][j]+A[i+1][j]+A[i][j-1]+A[i][j+1]);

}

}

it++;

if (it >= nIters) break;

for (i=1; i<sz-1; ++i){

for (j=1; j<sz-1; ++j)

A[i][j]= 0.25 *(B[i-1][j]+B[i+1][j]+B[i][j-1]+B[i][j+1]);

}

}

}/* End of Time Loop */

(a) Jacobi2D two-dimensional four-point stencil smoother

for (k=0;k<sz;k++){

A[k][k] = sqrt(A[k][k]);

for (i=k;i<sz;i++){

A[i][k] /= A[k]+[k];

for (j = k; j < i; ++j){

A[i][j] -= A[i][k] * A[j][k];

}

}

}

(b) Cholesky, K-Variant

Figure 4.5: Core loops of the Jacobi2D and Cholesky kernels used in our experimental frame-

work. The Figure shows the key loops of the Jacobi2D and Cholesky (k-variant) kernels. Though the

kernels shown here use standard ’C’ style notations, the actual implementations are slightly different.
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Experimental methodology. Most of the architectures we used for experiments were multi-user

platforms. In the case of the x86 architectures (Pentium III, Pentium 4 and Athlon), we used clusters

of identical teaching machines. The absence of a fully-controlled environment, and our desire to

collect data for a full range of problem sizes (which implies running experiments for a very long time

in total), led us to design carefully an experimental methodology aimed at minimising the impact of

external interferences in our results.

• During off-peak hours, we ran a script for collecting measurements on each available platform.

In order to minimise the impact of any transient effects on particular ranges of experiments, the

scripts are programmed to repeatedly make a random choice of benchmark kernel (from the list

of kernels described in Figures 4.4 and 4.5), array layout (i.e. row-major, column-major or

Morton), alignment of the base address of the array (from a list of all significant sizes in the

memory hierarchy, i.e. cache line lengths and page size) and problem size. However for ease of

completion of experiments, we preferred to specify the experiment to randomise the selection

of experiment.

• Once a kernel, layout, alignment and problem size are chosen, the kernel is run once and the

time recorded in a shared file structure using suitable locking.

• In our evaluation, we proceeded as follows: For each tuple of platform, experiment (kernel),

layout, alignment and problem size, we gather all timing results obtained. Notice that due to

the random choice of parameters, the number of samples for each point varies. We first use

the Dixon’s Q-Test [74], a simple method to determine if the individual values that are farthest

from the mean lie outside the confidence limits, to eliminate up to one outlier. Following that,

we calculate various statistical parameters, such as mean, standard deviation, median and 90%

confidence intervals.

• The performance numbers we report in this thesis are all based on the median of measurements

taken. The reason for this is that the median is less liable to interference from outliers than the

mean [74]. Although we do not show these in this thesis, we have calculated and plotted 90%

confidence intervals for all data we report.

4.5 Experimental Results

Table 4.2 shows the baseline performance achieved by each machine using standard row-major layout.

In Figures 4.6–4.15 we show our interesting/important results in detail. For each experiment/architec-

ture pair, we give a broad characterisation next to each graph.

As an overview, for the Morton layout, we notice that

• For the Adi kernel, on Alpha, Pentium III and Sparc systems, Morton layout performs well

compared to column-major but not compared to row-major layouts. (Figures 4.6 and 4.7).

However, on Athlon and Pentium 4, Morton layout performs as badly as the column-major

layout, especially for problem sizes larger than around 1000×1000 (Figure 4.7).
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Adi Cholk Jacobi2D MMijk MMikj

min max min max min max min max min max

Alpha 27.0 84.5 6.8 40.6 26.8 167.1 5.8 139.5 52.7 177.0

Athlon 43.8 210.4 8.8 308.5 150.6 1078.6 10.1 655.2 117.4 884.2

P3 21.8 46.6 3.9 42.1 51.7 141.5 14.8 134.1 45.9 153.8

P4 48.9 134.1 4.8 266.1 126.6 1337.3 17.9 766.0 281.4 939.1

Sparc 14.6 54.5 17.8 78.5 33.2 139.2 12.4 131.9 33.5 145.2

Table 4.2: Baseline row-major performance of various kernels on different systems. For each

kernel, for each machine, we show the performance range in MFLOPs for row-major array layout over

all problem sizes covered in our experiments (as shown in Figures 4.6–4.15).

• For the Jacobi2D kernel, on Alpha and Sparc systems, Morton layout performs better than

column-major but not better than row-major layouts. (Figure 4.8). Morton layout performs as

badly as or worse than the column-major layout on all x86 platforms (Figure 4.9).

• For the MMikj kernel, on Alpha and Sparc systems, Morton layout performs better than column-

major but not better than row-major layouts (Figure 4.10). On Athlon and Pentium III, Morton

layout is worse than or as badly as the column-major layout. On Pentium 4, Morton layout is

slightly faster than the column-major layout ((Figure 4.11).

• For the MMijk kernel, Morton layout performs better than both the canonical layouts on Alpha,

for problem sizes larger than around 350×350. On Sparc, Morton layout performs better than

the worst canonical layout for problem sizes larger than around 750×750 (Figure 4.12). On all

x86 platforms, Morton layout performs worse than the column-major layout (Figure 4.13).

• For the Cholesky-k kernel, on Alpha, Morton layout performs worse than both the canonical

layouts for problem sizes up to around 512×512. However, for problem sizes larger than 512×

512, Morton layout performs better than both the canonical layouts. On Sparc, Morton layout

performs better than column-major but not better than row-major for problem sizes up to around

512×512. Following the cross-over point at around 512×512, Morton layout performs worse

than both the canonical layouts (Figure 4.14). On all x86 platforms, Morton layout performs

worse than both the canonical layouts (Figure 4.15).

These results show that Morton layout fails to be an attractive compromise to canonical layouts,

on most of the x86 platforms. On Alpha and Sparc platforms, Morton layout performs better than the

worst canonical layout. This appear to suggest that Morton layout performs well on machines with

large L2 caches.

On nearly all systems, the results clearly show the impact of L2 cache and TLB span on overall

performance. Frequently, when either the whole working set or some part thereof exceeds the capac-

ity of a particular level of memory hierarchy, a substantial drop in performance can be observed. For

example, a sudden drop in the performance of MMijk with the column-major layout on Alpha (Fig-

ure 4.12), near the problem size 350 coincides with the working set exceeding the size of the TLB
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span (Alpha has 128–entry Data TLB, each entry pointing to an 8KB page: This matches the size

of a 362× 362 array of doubles). Similarly for Adi on Alpha (Figure 4.6) where the sudden drop

occurs near the problem size 700× 700, which is approximately 4MB. This corresponds to the L2

cache size of the Alpha. Similar observations can be made in Figures 4.6, 4.8 and 4.10 near problem

sizes corresponding to their L2 cache size.

For kernels with high spatial locality, such as MMikj and Jacobi2D, where high MFLOPs are

achieved, Morton layout might be slowed down by insufficient memory accesses compared to that for

the canonical layouts.

Further, row-major and column-major layouts show wide variations in performance with small

changes in problem sizes whereas the performance of Morton layout remains very consistent. Al-

though padding the length of the rows or columns of an array can significantly improve performance,

the amount of padding required is small, but needs to be chosen very carefully.

These results are further improved in Chapters 5 and 6.

4.6 Conclusions

Using a small suite of dense kernels working on two-dimensional arrays, we have carried out an ex-

tensive study of row-major, column-major and Morton layouts, covering non-power-of-two problem

sizes within a substantial range. On some machines, we found that Morton array layout, even imple-

mented with a lookup table with no compiler support, to be potentially promising alternative to both

row-major and column-major layouts. We also found that using a lookup-table for address calculation

allows flexible selection of fine-grain non-linear array layout, while offering attractive performance on

some architectures compared with lexicographic layouts on untiled loops. The overall performance of

the basic Morton scheme, from our experimental results, suggests it is only attractive for some archi-

tectures and kernels. However, our analysis points to potential improvements of the Morton layout.

We describe two such optimisation techniques to improve the performance of basic Morton layout in

the next two chapters.
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• The fall-off in RM performance occurs at

1024×1024 when the total datasize exceeds the
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assumes a working set of 1024×1024 doubles.

• Notice the drop in CM performance which

occurs after 720×720.

• Morton version has high variation (confidence

intervals for the measurements are also larger

than on other machines).

Figure 4.6: ADI performance in MFLOPs on Alpha and Sparc. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. These results are further improved

in Chapters 5 and 6, whose results are reported in Figures 5.4 and 6.7, respectively.
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• Morton generally performs no better than CM.

• Notice, however, some really bad drops in CM

performance for some datasizes.

Figure 4.7: ADI performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. These results are further improved

in Chapters 5 and 6, whose results are reported in Figures 5.5, 5.6 and 6.7, respectively.
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• There is a sharp drop in Morton, and to a

slightly lesser extent in CM,

performance at 512×512.

• RM performance drops off after

725×725. Assuming a working set of

two arrays of 725×725 doubles, this is

the point where the working set exceeds

L2 cache size (8MB, direct mapped).

Figure 4.8: Jacobi2D performance in MFLOPs on Alpha and Sparc. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. These results are further improved

in Chapters 5 and 6, whose results are reported in Figures 5.7 and 6.8, respectively.
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Figure 4.9: Jacobi2D performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. These results are further improved

in Chapters 5 and 6, whose results are reported in Figures 5.8 and 6.8, respectively.
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Figure 4.10: MMikj performance in MFLOPs on Alpha and Sparc. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. These results are further improved

in Chapters 5 and 6, whose results are reported in Figures 5.9 and 6.9, respectively.
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• Morton layout is only slightly faster than

CM.

Figure 4.11: MMikj performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. These results are further improved

in Chapters 5 and 6, whose results are reported in Figures 5.10 and 6.9, respectively.
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Figure 4.12: MMijk performance in MFLOPs on Alpha and Sparc. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. These results are further improved

in Chapters 5 and 6, whose results are reported in Figures 5.11 and 6.10, respectively.
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• Notice that for some individual problem

sizes, both RM and CM drop drastically

below Morton.

• In overall, lexicographical layouts

perform better than Morton layout.

Figure 4.13: MMijk performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. For Morton, performance is shown

for default alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

These results are further improved in Chapters 5 and 6, whose results are reported in Figures 5.12

and 6.10, respectively.
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performance around 750×750.

• Performance of the Morton layout varies

throughout but seems to be promising

for problem sizes larger than

1024×1024.

Figure 4.14: Cholesky k-variant performance in MFLOPs on Alpha and Sparc. We compare row-

major (RM), column-major (CM) and Morton implemented using lookup tables.
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• The worst layout is at-most 30% slower

than best canonical layout.
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• Morton layout performs as badly as the

CM layout.

• Notice the sharp drop in RM and CM

performance.

Figure 4.15: Cholesky k-variant performance in MFLOPs on Athlon, P3 and P4. We compare

row-major (RM), column-major (CM) and Morton implemented using lookup tables. These results are

further improved in Chapters 5 and 6, whose results are reported in Figures 5.13 and 6.11, respectively.



Chapter 5

Significance of Memory Alignment in

Morton Order Performance

In this chapter, we analyse the effect of alignment of base address of Morton array in overall perfor-

mance and show that aligning Morton arrays at the page level leads to better performance. This chapter

is based on our paper presented at Languages and Compilers for Parallel Computing Workshop(LCPC)

2003 [82], and on our journal paper [83].

5.1 Introduction

In the previous chapter we exhaustively evaluated Morton layout over number of different platforms

using a suite of micro-benchmarks. Our results have shown that naive implementation of Morton

layout is only attractive for some platforms and kernels and often we find their performance disap-

pointing. In this chapter, we analyse the effect of alignment of base address of Morton array in overall

performance and show that aligning Morton arrays at the page level leads to better performance.

5.2 Effect of Memory Alignment in Morton Layouts

With lexicographic layouts, it is often important to pad the row (respectively column) length to avoid

associativity conflicts [71]. With Morton layout, it turns out to be important to consider padding the

base address of the array, as will be explained below.

In Chapter 3, Section 3.5, we discussed the cache hit rate resulting from Morton order arrays

implicitly assuming that the base address of the array will be mapped to the start of a cache line. For a

32 byte, i.e. 2×2 double word cache line, this means that the base address of the Morton array needs to

be 32-byte aligned. Such an allocation is unbiased towards any particular order of traversal. However,

in Figure 5.1 we show that if the allocated array is offset from this “perfect” alignment, Morton layout

may no longer be an unbiased compromise storage layout. Furthermore, the actual average hit rates

over the entire array can be significantly worse compared with perfect alignment of the base address.

In Figure 5.2, we consider the case where the size of a cache line does not match a square tile of array

elements. This is the case, for example with 64 byte cache lines and arrays of double word floating

point numbers. As shown in the figure, this means that the symmetry property of Morton order is

lost. It still appears, however, that perfect alignment of the base address of the Morton array, 64-byte
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Figure 5.1: Alignment of Morton order arrays I: Figures illustrate how the cache performance can

change when the alignment is varied (in the order of perfectly aligned at 32-byte boundary and offset

from there by 8, 16 and 24 bytes) for a part of a larger Morton array. The numbers next to each row

and below each column indicate the number of misses encountered when traversing a row (column)

of the block in row-major (column-major) order, considering only spatial locality. Underneath each

diagram, we show the average theoretical hit rate for the entire Morton array for both row-major (RM)

and column-major (CM) traversal. As can be seen by the illustrations, when an array is imperfectly

aligned, in addition to losing the symmetry of the Morton layout, spatial locality also worsened.

alignment in this case, leads to the best hit rates in both traversal orders. A similar effect is replicated

on each level of the memory hierarchy.

In our experimental evaluation, we have studied the impact on actual performance of the alignment

of the base address of Morton arrays. For each architecture and each benchmark, we have measured

the performance of Morton layout both when using the system’s default alignment (i.e. addresses as

returned by malloc()) and when aligning arrays to each significant size of memory hierarchy. The

results, which are included in Figures 5.4–5.13 and discussed in more detail in the next section, broadly

confirm the conclusion of our theoretical analysis.
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Figure 5.2: Alignment of Morton order arrays II: For a non-square cache block, such as 64 bytes

or 8 double words, this figure illustrates how cache performance varies with the alignment of the base

address of the array, in the order of perfectly aligned at 64 bytes (top-left), and offset by 8 (top-right),

24 (bottom-left) and 40 (bottom-right) bytes. Although, there are 7 possible misalignments, we show

only some interesting examples. Numbers next to (below) each row (column) show the number of

misses encountered when traversing a row (column) of the block in row-major (column-major) order,

considering only spatial locality. Underneath each diagram, we show the average theoretical hit rate for

the entire Morton array for both row-major (RM) and column-major (CM) traversal. As can be seen by

the illustrations, when the array is imperfectly aligned, in addition to losing the symmetry of the Morton

layout we get worse spatial locality.
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Figure 5.3: Miss-rates for row-major and column-major traversal of Morton arrays. We show the

best, worst and average miss-rates for different units of memory hierarchy (referred to as block-sizes),

across all possible alignments of the base address of the Morton array. The top two graphs use a linear

y-axis, whilst the graph underneath shows the same data on logarithmic y-axis to illustrate that the

pattern of miss-rates is in fact highly structured across all levels of the memory hierarchy. Notice that,

for square block sizes, miss-rates for row- and column-major traversals coincide.

5.3 Effect of Alignment Across Different Levels of Memory Hierarchy

In order to investigate this effect further, we systematically calculated the resulting miss-rates for

both row- and column-major traversal of Morton arrays, over a range of possible levels of memory

hierarchy, and for each level, different mis-alignments of the base address of Morton arrays. The

range of block sizes in memory hierarchy we covered was from 22 double words, corresponding to a

32-byte cache line to 210 double words, corresponding to an 8KB page. Architectural considerations

imply that block sizes in the memory hierarchy such as cache lines or pages have a power-of-two size.

For each 2n block size, we calculated, over all possible alignments of the base address of a Morton

array with respect to this block size, respectively the best, worst and average resulting miss-rates for

both row-major and column-major traversal of the array. The standard C library malloc() function

returns addresses which are double-word aligned. We therefore conducted our study at the resolution

of double words. The results of our calculation are summarised in Figure 5.3. Based on those results,

we offer the following conclusions.

1. When no special steps are taken to align the base address of a Morton array, the average hit
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rates resulting from traversing the same Morton array either in row- or column-major order are

always suboptimal.

2. The best average hit rates for both row- and column-major traversal are always achieved by

aligning the base address of Morton arrays to the largest significant block size of memory hier-

archy (e.g. page size).

3. The difference between the best and the worst miss-rates can be very significant, up to a factor

of 2 for both row-major and column-major traversal.

4. We observe that the symmetry property which we mentioned in Chapter 3, Section 3.5 is in fact

only available when using the best alignment and for even power-of-two block sizes in the mem-

ory hierarchy. For odd power-of-two block sizes (such as 23 = 8 double words, corresponding

to a 64-byte cache line), we find that the Z-Morton layout is still significantly biased towards

row-major traversal. An alternative recursive layout such as Hilbert layout [20, 33] may have

better properties in this respect.

5. The absolute miss-rates we observe drop exponentially through increasing levels of the memory

hierarchy (see the graphs in Figure 5.3). However, if we assume that not only the block size

but also the access time of different levels of memory hierarchy increase exponentially [4],

the penalty of mis-alignment of Morton arrays does not degrade significantly for larger block

sizes. From a theoretical point of view, we therefore recommend aligning the base address of

all Morton arrays to the largest significant block size in the memory hierarchy, i.e. page size.

In real machines, there are conflicting performance issues apart from maximising spatial locality,

such as aliasing of addresses that are identical modulo some power-of-two, and some of these could

negate the benefits of increased spatial locality resulting from making the base address of Morton

arrays page-aligned.

5.4 Experimental Evaluation

In our experimental evaluation, we have studied the impact on actual performance of the alignment

of the base address of Morton arrays. For each architecture and each benchmark, we have measured

the performance of Morton layout both when using the system’s default alignment (i.e. addresses as

returned by malloc()) and when aligning arrays to each significant size of memory hierarchy. Our

experimental methodology is same as described in Section 4.4. Our theoretical assertion that aligning

with the largest significant block size in the memory hierarchy, i.e. page size, should always be best

is supported in most, but not all cases, and we assume that where this is not the case, this is due

to interference effects. Figures 5.4–5.13 include performance results for Morton storage layout with

different alignments of the array’s base address.

5.5 Performance Results

In Chapter 4, we evaluated the Z-Morton layout with the default alignment. In this chapter, we evaluate

and present the performance results, when Morton order arrays are aligned at significant boundaries

of the memory hierarchy.
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Figures 5.4–5.13 show our results in detail. We make some comments on each graph directly in the

figures. For each experiment / architecture pair, we give a broad characterisation of whether aligning

Morton arrays at different memory boundaries is useful or not. We summarise our observations here:

• On Alpha (Figures 5.4, 5.7, 5.9 and 5.11):

– Alignment does not improve the performance of the default Morton layout in the Adi and

MMikj kernels.

– However, aligning Morton arrays at the L2 or page-level speeds up the default Morton

performance in the Jacobi2D and MMijk kernels.

– For the Jacobi2D kernel, aligning Morton arrays at the L2-level provides the best Morton

performance while aligning to the page-level is less effective.

– For the MMikj kernel, aligning at the page-level provides marginal benefit compared to

aligning at the L2-level.

– In summary, alignment improves the performance of most of the kernels. However, there

is no clear indication whether aligning Morton arrays at the page-level is always the best.

• On Sparc (Figures 5.4, 5.7, 5.9 and 5.11):

– Alignment improves the performance of the default Morton layout in the Adi, MMikj and

MMijk kernels.

– Aligning at the page-level improves the performance of the default Morton layout by at

least 50%, in the Jacobi2D kernel.

– For the ADI kernel, aligning at the L2-level provides the best performance. Aligning at

the page-level is less effective.

– For all the other kernels, aligning at the page-level provides the best performance.

– In summary, alignment improves performance and aligning at the page-level is not wrong.

• On Athlon (Figures 5.5, 5.8, 5.10, 5.12, and 5.13):

– Alignment makes very little difference to the overall Morton performance. The speedup

gained by aligning Morton arrays are very small (regardless of the alignment boundaries).

– Wherever there is a speedup, aligning beyond the L2-level is less effective.

– In summary, alignment rarely improves the overall performance and aligning at the L2-

level is sufficient.

• On Pentium III (Figures 5.5, 5.8, 5.10, 5.12, and 5.13):

– Aligning Morton arrays at different memory boundaries provides a little, but considerable,

speedup.

– Page-aligning Morton arrays in the Adi kernel provides at least 50% speedup from the

default version. Only by alignment, Morton layout becomes a compromise layout between

row- and column-major layouts.
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– In all other kernels, the speedup gained by aligning Morton arrays is rather small.

– Among all experimental results, the page-aligned version is the fastest.

– In summary, alignment improves the overall performance. Aligning at the page-level is

often produces the best possible performance.

• On Pentium 4 (Figures 5.6, 5.8, 5.10, 5.12 and 5.13):

– In overall, alignment improves the default Morton performance only by a small factor.

– In all cases, the page-aligned version is the fastest.

– For the MMikj kernel, aligning at the L1 level, slows downs the performance of Morton

layout.

– In summary, aligning at the page-level always improve the default Morton performance.

These observations appear to suggest that aligning Morton arrays can improve the performance

in majority of the cases. We further observe that, the maximum speedup that could be gained varies

depending on the alignment, platform and the application. On some of the platforms for some of

the kernels, aligning beyond the L2-level produced suboptimal performance results (Adi on Alpha).

In some cases, aligning beyond the L2-level is less effective (Adi on Sparc, Adi on Athlon, Adi on

Pentium III, Jacobi2D on Athlon, Jacobi2D on Pentium III, MMikj on Athlon, MMikj on Pentium III,

Cholesky-k on Athlon and Cholesky-k on Pentium III). In all other cases, aligning Morton arrays at the

page-level produces the best performance results. From these results, we can conclude that aligning

Morton arrays should improve the performance of Morton layout and aligning at the page-level, in

majority of the cases, is not always wrong. These results are further improved in Chapter 6.

5.6 Conclusions

This chapter has pointed out and illustrated the importance of alignment of base address of Morton

order arrays and showed the performance benefits achieved when the arrays are aligned properly at

the significant boundaries of memory-hierarchy of a system.

For most of the experiments, with the exceptions mentioned in the previous section, our theoretical

conclusions from Section 5.2 are supported by our experimental data: padding the base address of

Morton order arrays to a significant size in the memory hierarchy, such as cache line size or page size

can significantly improve performance.

Considering spatial locality alone, we would expect alignment to the largest significant size, i.e.

page size, to have the greatest benefit. This is supported in most, but not all cases by our experimental

data, and we assume that where this is not the case (such as MMijk on Alpha), this is due to interfer-

ence effects. This is to suggest that, aligning at page level is guaranteed to offer better performance

than default alignment but the improvement over the L2-level alignment can be marginal depending

on the platform.

Although we have shown that proper alignment can increase the performance of Morton layout,

and therefore increase the competitiveness of the basic Morton scheme, the performance gained by

proper alignment is still very low.

In the next chapter, we look at another simple optimisation which improves performance Morton

layout — unrolling.



5.6 Conclusions 71

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Alpha: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 8192-Byte Aligned 

Adi on Alpha

• Alignment does not make any difference to the

Morton performance, all three lines coincide.

As in Chapter 4 (Figure 4.6):

• Notice upper limit is 1024×1024.

• The fall-off in RM performance occurs at

725×725 when the total data-size exceeds L2

cache size (4MB, direct mapped). This assumes

a working set of 725×725 doubles.

• RM below about 725×725 has a bimodal distribution.

• Notice the sharp drop in CM performance at around 360×360.
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Adi on Sparc: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 32-Byte Aligned 
Morton 64-Byte Aligned 

Morton 8192-Byte Aligned 

Adi on Sparc

• Both the 64-Byte and 32-Byte aligned versions

have equal performance characteristics.

• These two versions perform better than the

default aligned and page aligned versions.

• Page aligned Morton version performs slightly

better than the default Morton layout.

As in Chapter 4 (Figure 4.6):

• For smaller problem sizes (less than around 200×200) alignment makes very little difference.

• The fall-off in RM performance occurs at 1024× 1024 when the total data-size exceeds the L2

cache size (8MB, direct mapped). This assumes a working set of 1024×1024 doubles.

• Notice the drop in CM performance which occurs after 720×720.

• All Morton versions have high variation between problem sizes (confidence intervals for the mea-

surements are also larger than on other machines).

Figure 5.4: ADI performance in MFLOPs on Alpha and Sparc. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. For Morton, performance is shown

for default alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

These results are further improved in Chapter 6, whose results are reported in Figure 6.7.
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Adi on Athlon: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 4096-Byte Aligned 

Adi on Athlon

• The page-aligned and 64-byte aligned versions

have the same performance characteristics.

• Within the problem size range of 200×200 and

900×900, default Morton performs better than

any other aligned versions of Morton.

Following the cross-over point at around

900×900, both page-aligned and 64-byte

aligned versions perform better than the default

Morton layout. That is, for large data-sizes,

page-aligned is the best Morton version.

• From this cross-over point, CM version performs better than any Morton version.

As in Chapter 4 (Figure 4.7):

• Notice some very bad performance drops on CM for individual problem sizes.
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Adi on P3: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 32-Byte Aligned 

Morton 4096-Byte Aligned 

Adi on Pentium III

• Morton with default alignment virtually

coincides with CM.

• Morton aligned to L2 cache line length (32

bytes) leads to a clear improvement. Alignment

to page-size offers no further benefit.

(Alignment at page-size is superimposed over

alignment at L2 cache line length)

• Morton layout performs better than

column-major layout only with alignment.

Figure 5.5: ADI performance in MFLOPs on Athlon and P3. We compare row-major (RM), column-

major (CM) and Morton implemented using lookup tables. For Morton, performance is shown for default

alignment and significant sizes in the memory hierarchy (cache line lengths and page size). These

results are further improved in Chapter 6, whose results are reported in Figure 6.7.
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Adi on P4: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 128-Byte Aligned 
Morton 4096-Byte Aligned 

Adi on Pentium 4

• Page-aligned Morton version has only a very

little performance gain from L2 (128-Byte)

aligned Morton version.

• L1-aligned (64-Byte) Morton version has the

same performance characteristics as

L2-aligned/page-aligned versions up to the

problem size around 1024×1024. Starting

from the problem size around 1024×1024,

L1-aligned version performs worse than any of

the Morton versions.

• For larger problem sizes, L1 aligned version performs worse than CM.

• For large problem sizes, L2 aligned is slightly faster than page-aligned Morton.

• All Morton versions except the page-aligned version, has considerably larger variation starting from

problem size at around 1024×1024.

• All Morton versions generally performs no better than CM.

• Notice, that there are some really bad drops in CM performance.

Figure 5.6: ADI performance in MFLOPs on P4. We compare row-major (RM), column-major (CM)

and Morton implemented using lookup tables. For Morton, performance is shown for default alignment

and significant sizes in the memory hierarchy (cache line lengths and page size). These results are

further improved in Chapter 6, whose results are reported in Figure 6.7.
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Jacobi2D on Alpha: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 8192-Byte Aligned 

Jacobi2D on Alpha

• Alignment to page or L2 cache line

length improves Morton performance.

• Page-aligned version performs slightly

better than L2 aligned version.

As in Chapter 4 (Figure 4.8):

• Notice upper limit is 1024×1024

• RM performance drops off after 512× 512. Assuming a working set of two arrays of 512× 512

doubles, this is the point where the working set exceeds L2 cache size (4MB, direct mapped). RM

performance levels off after 725× 725, which appears to be when one single 725× 725 array of

doubles exceeds the L2 cache size.
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Jacobi2D on Sparc: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 32-Byte Aligned 
Morton 64-Byte Aligned 

Morton 8192-Byte Aligned 

Jacobi2D on Sparc

• Aligning to page-level improves Morton

performance by around 50%.

• Page-aligned Morton performs better

than CM starting from problem size

around 600×600.

• There is a cross-over between

page-aligned Morton and all other

Morton versions at 512×512.

• For larger problem sizes, 32- and 64-Byte aligned versions perform as badly as the default Morton

layout. However, default Morton layout has less variation.

As in Chapter 4 (Figure 4.8):

• There is a sharp drop in Morton, and to a slightly lesser extent CM, performance at 512×512.

• RM performance drops off after 725× 725. Assuming a working set of two arrays of 725× 725

doubles, this is the point where the working set exceeds L2 cache size (8MB, direct mapped).

Figure 5.7: Jacobi2D performance in MFLOPs on Alpha and Sparc. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. For Morton, performance is shown

for default alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

These results are further improved in Chapter 6, whose results are reported in Figure 6.8.
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Jacobi2D on Athlon: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 4096-Byte Aligned 

Jacobi2D on Athlon

• Aligning to L2-/page-level slightly

improves the performance of default

Morton layout, especially for large

problem sizes.

• Even the best Morton version (with

alignment) does not perform any better

than CM.

• Notice there is a cross-over between the default and L2-/page-aligned Morton versions at around

450×450.
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Jacobi2D on P3: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 32-Byte Aligned 

Morton 4096-Byte Aligned 

Jacobi2D on Pentium III

• Aligning to L2- and page-level improves

the performance of default Morton.

• Both the L2- and page-aligned versions

improve the performance of default

Morton almost by the same factor.

• However, the best Morton version (L2-/page-aligned) performs as badly as the CM version.
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Jacobi2D on P4: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 128-Byte Aligned 
Morton 4096-Byte Aligned 

Jacobi2D on Pentium 4

• Page-aligned and L2-aligned Morton are

slightly better than default-aligned.

• Page-aligned version performs better

than L2-aligned; and L2-aligned version

performs better than L1-aligned version.

• For large problem sizes, Morton layout performs marginally better than CM.

Figure 5.8: Jacobi2D performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. For Morton, performance is shown

for default alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

These results are further improved in Chapter 6, whose results are reported in Figure 6.8.
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MMikj on Alpha: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 8192-Byte Aligned 

MMikj on Alpha

• Alignment makes little difference to the

overall Morton performance.

As in Chapter 4 (Figure 4.10):

• Notice upper limit is 1024×1024.

• The drop in RM (and Morton)

performance occurs at 725×725. This

corresponds to the data-size where one

array of 725×725 doubles exceeds the

L2 cache size (4 MB, direct mapped).
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MMikj on Sparc: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 32-Byte Aligned 
Morton 64-Byte Aligned 

Morton 8192-Byte Aligned 

MMikj on Sparc

• L2-aligned (64-Byte) aligned version is

slightly faster than other Morton

versions for up to problem sizes around

1024×1024.

• For larger problem sizes, page-aligned

Morton is slightly faster than the other

versions.

• The overall improvement in the performance of Morton layout is considerably small.

As in Chapter 4 (Figure 4.10):

• The drop in RM (and Morton) performance occurs at 1024×1024. This corresponds to the data-size

where one array of 1024×1024 doubles exceeds the L2 cache size (8MB, direct mapped).

Figure 5.9: MMikj performance in MFLOPs on Alpha and Sparc. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. For Morton, performance is shown

for default alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

These results are further improved in Chapter 6, whose results are reported in Figure 6.9.
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MMikj on Athlon: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 4096-Byte Aligned 

MMikj on Athlon

• Alignment makes little difference to the

overall Morton performance.

• Aligning Morton arrays beyond L2 level

does not improve performance.

• L2/Page-aligned Morton versions

perform slightly better than

default-aligned.

• Notice there is a cross-over between the default and L2-/page-aligned Morton versions at around

500×500.

• Morton layout performs as badly as the CM version.
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MMikj on P3: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 32-Byte Aligned 

Morton 4096-Byte Aligned 

MMikj on Pentium III

• Aligning to L2- and page-level slightly

improves the performance of default

Morton layout, for all problem sizes.

• Aligning beyond L2 level does not

improve performance of Morton layout

(i.e. L2 and page-aligned versions

virtually coincide).

• Morton layout, even with the best alignment, performs as badly as the CM version.
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MMikj on P4: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 128-Byte Aligned 
Morton 4096-Byte Aligned 

MMikj on Pentium 4

• L2 (128 byte) and page-aligned Morton

are slightly better than default aligned

version.

• L1 (64 byte) alignment is slightly worse

than the default aligned version.

• Morton layout with L2/page alignment

performs marginally better than the CM

version.

• Notice that the variations that Morton layouts experience are not random and they are reproducible.

Figure 5.10: MMikj performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. For Morton, performance is shown

for default alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

These results are further improved in Chapter 6, whose results are reported in Figure 6.9.
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MMijk on Alpha: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 8192-Byte Aligned 

MMijk on Alpha

• Page-aligned Morton is faster than

default, but L2-aligned is faster than

page-aligned.

• The performance gain by different

alignments diminishes as the problem

size increases.

• Morton layout performs better than both

the RM and CM versions.

As in Chapter 4 (Figure 4.12):

• Notice upper limit is 1024×1024.

• Notice the sharp drop in RM and CM performance around 360×360.

• For Morton on problem sizes 832(= 26∗32) – 864(=27∗32) and 992(= 31∗32) – 1024(=32∗32)

we see a noticeable drop in performance, presumably due to some interference effect.
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MMijk on Sparc: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 32-Byte Aligned 
Morton 64-Byte Aligned 

Morton 8192-Byte Aligned 

MMijk on Sparc

As in Chapter 4 (Figure 4.12):

• Notice upper limit is 1024×1024.

• Notice the sharp drop in RM and CM

performance around 720×720.

• Notice that for large problem sizes

Morton is faster than both the

lexicographic layouts.

Figure 5.11: MMijk performance in MFLOPs on Alpha and Sparc. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. For Morton, performance is shown

for default alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

These results are further improved in Chapter 6, whose results are reported in Figure 6.10.
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MMijk on Athlon: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 64-Byte Aligned 

Morton 4096-Byte Aligned 

MMijk on Athlon

• Default Morton is faster than L2- or

page-aligned for smaller problem sizes.

• Alignment makes very little difference

in overall performance of Morton layout.

As in Chapter 4 (Figure 4.13):

• Performance of Morton layout is worse

than that of canonical layouts, starting

from problem sizes around 700×700.
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MMijk on P3: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 32-Byte Aligned 

Morton 4096-Byte Aligned 

MMijk on Pentium III

• Speedup by aligning Morton arrays at

L2-/Page-level is negligible.

• Aligning Morton layout any more than

at L2 level does not improve the

performance.

As in Chapter 4 (Figure 4.13):

• The mean RM and CM performance across the range of data sizes is very close. There are many

problem sizes where RM is worse than CM; however, for particular problem sizes (or, carefully

chosen row padding), RM can perform much better than CM.

• Performance of Morton layout is worse than both the canonical layouts, throughout all problem

sizes.
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MMijk on Pentium 4

• L2 (128 byte) and page-aligned Morton

is slightly better than default Morton.

• L1 (64 byte) alignment is slightly worse

than default-aligned.

• Notice that for some individual problem

sizes, both RM and CM drop drastically

below Morton.

Figure 5.12: MMijk performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM),

column-major (CM) and Morton implemented using lookup tables. For Morton, performance is shown

for default alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

These results are further improved in Chapter 6, whose results are reported in Figure 6.10.
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Cholesky-k on Athlon

• L2 and Page-aligned versions perform

slightly better than default layout.

• Aligning beyond L2 level does not

improve the performance.

• L2-/Page-aligned versions perform as

badly as the worst layout throughout all

problem sizes.

• Notice the sharp drop in performance of

RM and CM implementations.
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• L2- and page-aligned implementations

are significantly faster than default

version.

• Aligning Morton arrays to page-level

has the same effect as aligning them to

L2-level.

• All Morton implementations are worse

than or as badly as the CM

implementation.
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• Alignment improves the default Morton

performance only by a small factor.

• For large problem sizes aligning Morton

arrays at the L2-level improves the

performance slightly. Aligning at

page-level has the same effect as

aligning at the L2-level.

• Aligning at the L1-level has no effect (i.e. it’s performance characteristics are similar to the default).

• Morton layout performs as badly as the CM version.

Figure 5.13: Cholesky k-variant performance in MFLOPs on Athlon, P3 and P4. We compare

row-major (RM), column-major (CM) and Morton implemented using lookup tables. For Morton, per-

formance is shown for default alignment and significant sizes in the memory hierarchy (cache line

lengths and page size). These results are further improved in Chapter 6, whose results are reported in

Figure 6.11.



Chapter 6

Unrolling Loops Over Morton Arrays

This chapter discusses how loops operating over Morton arrays can be unrolled with appropriate

strength reduction. This chapter is based on our paper presented at Languages and Compilers for

Parallel Computing Workshop (LCPC) 2003 [82].

6.1 Introduction

In the previous chapter, we explored how spatial locality of Morton layout depends on the alignment of

the array’s base address. In this chapter, we see how loops over Morton arrays can be unrolled and how

they have to be aligned to reduce address calculation overhead. Although unrolling is a straightforward

process, strength reduction over loops operating over Morton arrays is not. We discuss this in detail

in this chapter and we show how unrolling can be effective over Morton arrays, using a small suite of

micro-benchmark kernels.

6.2 Unrolling Loops

Let L(
(

i
j

)

) be the address calculation function, which returns the offset from the array base address of

the array, of an element stored at (i, j), expressed by an index vector (
(

i
j

)

). Then, for any offset-vector
(

k
l

)

, linear layouts have the following property:

L
((

i
j

)

+
(

k
l

))

= L
(

i
j

)

+ L
(

k
l

)

. (6.1)

As an example, for a row-major array A, A(i, j + k) is stored at location A(i, j) + k. Compilers

can exploit this transformation when unrolling loops over arrays with linear array layouts by strength-

reducing the address calculation for all except the first loop iteration in the unrolled loop body to

simple addition of a constant.

However, with Morton layout the strength reduction is not straightforward when unrolling loops.

As stated in Chapter 3, Section 3.4, the Morton address mapping is Smz(i, j) = D1(i) | D0( j), where

“|” denotes bitwise-or, which can be implemented as addition. If given offset k,

Smz(i, j + k) = D1(i) | D0( j + k) = D1(i)+ D0( j + k) .

The problem is that there is no general way of simplifying D0( j+k) for all j and all k. Proposition 6.1

simplifies this.
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double mmijk_unrolled(unsigned sz,double *A,double *B,double *C)

{

unsigned i,j,k;

unsigned int t1i, t0j;

for (i=0;i<sz;i++){

t1i= T1[i];

for (j=0;j<sz;j++){

t0j= T0[j];

for (k=0;k<sz;k+=4){

C[ t1i + t0j ] += A[ t1i + T0[k] ] * B[ T1[k] + t0j ];

C[ t1i + t0j ] += A[ t1i + T0[k+1]] * B[ T1[k+1] + t0j ];

C[ t1i + t0j ] += A[ t1i + T0[k+2]] * B[ T1[k+2] + t0j ];

C[ t1i + t0j ] += A[ t1i + T0[k+3]] * B[ T1[k+3] + t0j ];

}

}

}

}

(a) Naive unrolled Morton order matrix multiply

double mmijk_unrolled(unsigned sz,double *A,double *B,double *C)

{

unsigned i,j,k;

unsigned int t1i, t0j;

for (i=0;i<sz;i++){

t1i= T1[i];

for (j=0;j<sz;j++){

t0j= T0[j];

for (k=0;k<sz;k+=4){

C[ t1i + t0j ] += A[ t1i + T0[k] ] * B[ T1[k] + t0j ];

C[ t1i + t0j ] += A[ t1i + T0[k] + T0[1]] * B[ T1[k] + T1[1] + t0j ];

C[ t1i + t0j ] += A[ t1i + T0[k] + T0[2]] * B[ T1[k] + T1[2] + t0j ];

C[ t1i + t0j ] += A[ t1i + T0[k] + T0[3]] * B[ T1[k] + T1[3] + t0j ];

}

}

}

}

(b) Improved version of unrolled Morton order matrix multiply

double mmijk_unrolled(unsigned sz,double *A,double *B,double *C)

{

unsigned i,j,k;

unsigned int t1i, t0j;

for (i=0;i<sz;i++){

t1i= T1[i];

for (j=0;j<sz;j++){

t0j= T0[j];

for (k=0;k<sz;k+=4){

C[ t1i + t0j ] += A[ t1i + T0[k] ] * B[ T1[k] + t0j ];

C[ t1i + t0j ] += A[ t1i + T0[k] + 2] * B[ T1[k] + 1 + t0j ];

C[ t1i + t0j ] += A[ t1i + T0[k] + 4] * B[ T1[k] + 4 + t0j ];

C[ t1i + t0j ] += A[ t1i + T0[k] + 8] * B[ T1[k] + 5 + t0j ];

}

}

}

}

(c) Strength-reduced version of unrolled Morton order matrix multiply

Figure 6.1: Unrolling Morton-order matrix-multiply implementation using table lookup scheme.

The figure shows unrolled Morton order matrix multiply being strength reduced using table lookup

scheme. T0[.] corresponds to D0(.) and T1[.] corresponds to D1(.). As can be seen, when

strength-reduced, most of the table lookups need to be performed only once per iteration.
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Proposition 6.1 (Strength-reduction of Morton address calculation)

Let u = 2n for some integer n > 0. Assume that j mod u = 0 and that k < u. Then,

D0( j + k) = D0( j)+ D0(k) . (6.2)

This follows from the following observations: If j mod u = 0 then the n least significant bits of j are

zero; if k < u then all except the n least significant bits of k are zero. Therefore, the dilated addition

D0( j + k) can be performed separately on the n least significant bits of j.

�

As an example, assume that j mod 4 = 0. Then, the following strength-reductions of Morton order

address calculation are valid:

Smz(i, j +1) = D1(i)+ D0( j +1)

= D1(i)+ D0( j)+ D0(1)

= D1(i)+ D0( j)+1

Smz(i, j +2) = D1(i)+ D0( j)+4

Smz(i, j +3) = D1(i)+ D0( j)+5 .

An analogous result holds for the i index. Therefore, by carefully choosing the alignment of the

starting loop iteration variable with respect to the array indices used in the loop body and by choosing

a power-of-two unrolling factor, loops over Morton order arrays can benefit from strength-reduction

in unrolled loops.

In our implementation, this means that memory references for the Morton tables are replaced by

simple addition of constants. Existing production compilers cannot find this transformation automat-

ically. We therefore implemented this unrolling scheme by hand in order to quantify the possible

benefit. We report very promising initial performance results in Section 6.5.

Figure 6.1 illustrates the unrolling with strength reduction for the matrix multiply (MMikj variant)

kernel. As we strength reduce, most of the table lookups need to be performed only once per iteration.

Figures 6.3–6.6 show the unrolled implementation of our micro-benchmarks.

6.3 Validity of Strength Reduction Over Morton Arrays

Let j0 be the starting value of a loop. Unrolling a loop with an unrolling factor u = 2n along with

strength reduction technique we have discussed in Section 6.2 is valid only if j0 mod u = 0. However,

this is only a necessary condition but not sufficient: it does not guarantee that a loop can be unrolled

with strength-reduction, as illustrated below.

• If j0 mod u 6= 0 (starting value is not aligned at multiple of power-of-two), for example as in

Jacobi2D kernels, the unrolling has to be done along with loop peeling. This means that, when

the starting value of a loop induction variable is not a multiple of power-of-two, the loop should

be split into three loops consisting of a pre-loop, a main-loop and a post-loop. The pre-loop

and the post-loop enable the main loop to start and stop at desired values by performing any

remaining iterations.
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• Strength reduction is easy when index variables are straightforward expressions of loop in-

duction variable. Complicated expressions, consisting of non-constants, may prevent strength

reduction. Presence of non-constant terms in index expressions does not guarantee the unrolled

loop index to be within bounds.

• Loops with variable stride cannot be unrolled.

One other interesting issue is the issue of loop alignment: In the presence of multiple arrays and/or

multiple instances of an array, there exists multiple possible alignments. An example code shown in

Figure 6.2 illustrates this.

6.4 Experimental Evaluation

With the same experimental setup and framework discussed in previous chapters (see Section 4.4),

we have evaluated the effect of unrolling with appropriate strength reduction on a number of micro-

benchmarks. The unrolling factor for the hand-unrolled version of the implementation is 4. For higher

unrolling factors, we automated the code generation using the TaskGraph Library [10]. In overall,

the data underlying the results presented in this chapter, consist of more than 27 million individual

measurements.

6.5 Performance Results

Detailed performance results showing the impact of unrolling with appropriate strength reduction are

shown in Figures 6.7–6.11, and, as in the previous chapter, we make some comments directly in the

figures.

Results in the previous chapter established the fact that aligning Morton arrays to significant mem-

ory boundaries, particularly at the page-level, can improve the performance of the default Morton

layout. However, in majority of the cases, the performance improvement was so small and the perfor-

mance of Morton layout, in general, was disappointing. From the results presented in this chapter, we

notice that unrolling the best aligned Morton version (often page-level) has improved the performance

very significantly over the basic performance.

In order to evaluate quantitatively whether Morton layout is a good compromise with respect to the

better of the two canonical layouts, we establish a metric where the slowdown factor s (with respect

to the better of the two) should fall within an acceptable range of 1 ≤ s < c, where c is the acceptable

maximum slowdown factor. If we can accept a maximum slowdown factor of 2 (c = 2), we can make

the following conclusions, categorised according to our experiments:

• For ADI (Figure 6.7), on all platforms, the slowdown with Morton layout is less 2.

• For Jacobi2D (Figure 6.8),

– On Alpha, the slowdown factor is substantially less than 2.

– On Sparc, Morton layout performs worse than the row-major layout, offering around

20% of the best speedup (or s > 2) for a range of problem sizes between 500 × 500–

1000 × 1000. For larger problem sizes (beyond 1000 × 1000), the slowdown factor is

slightly less than 2.
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for (j=1; j<40; ++j){

C[i][j] + = p*(A[i][j-1] + B[i+1][j+3]);

}

(a) Original code (to be unrolled by a factor of 4)

for (j=1; j<U; j += 4){

C[i][D[j-1]+D[1]] + = p*(A[i][D[j-1]] + B[i+1][D[j+3]]);

C[i][D[j-1]+D[2]] + = p*(A[i][D[j-1]+D[1]] + B[i+1][D[j+3]+D[1]]);

C[i][D[j-1]+D[3]] + = p*(A[i][D[j-1]+D[2]] + B[i+1][D[j+3]+D[2]]);

C[i][D[j+3]] + = p*(A[i][D[j-1]+D[3]] + B[i+1][D[j+3]+D[3]]);

}

(b) Unrolled loop aligned at j = 1. Aligning at j = 1 requires 2 table lookups per iteration

(D[j-1] and D[j+3])

for (j=2; j<U; j += 4){

C[i][D[j-2]+D[2]] + = p*(A[i][D[j-2]+ D[1]] + B[i+1][D[j+2]+D[1]]);

C[i][D[j-2]+D[3]] + = p*(A[i][D[j-2]+ D[2]] + B[i+1][D[j+2]+D[2]]);

C[i][D[j+2]] + = p*(A[i][D[j-2]+ D[3]] + B[i+1][D[j+2]+D[3]]);

C[i][D[j+2]+D[1]] + = p*(A[i][D[j+2] ] + B[i+1][D[j+6]]);

}

(c) Unrolled loop aligned at j = 2. Aligning at j = 2 requires 3 table lookups per iteration

(D[j-2], D[j+2], and D[j+6])

for (j=4; j<40; j += 4){

C[i][D[j]] + = p*(A[i][D[j-1]] + B[i+1][D[j]+D[3]]);

C[i][D[j]+D[1]] + = p*(A[i][D[j]] + B[i+1][D[j+4]]);

C[i][D[j]+D[2]] + = p*(A[i][D[j]+D1]] + B[i+1][D[j+4]+D[1]]);

C[i][D[j]+D[3]] + = p*(A[i][D[j]+D[2]] + B[i+1][D[j+4]+D[2]]);

}

(d) Unrolled loop aligned at j = 4. This version also requires 3 table lookups per iteration

(D[j], D[j-1] and D[j+4])

Figure 6.2: Unrolling and loop alignment. When unrolling loops, there may exist multiple alignment

points to which the loop startup variable should be aligned. The figure illustrates such a case using an

example code given in Figure 6.2(a). Here, we consider only the innermost loop. Aligned and unrolled

versions of the loop are shown in Figures 6.2(b), 6.2(c) and 6.2(d). The number of table lookups vary

depending on the alignment point of the loop. An optimal alignment point should minimise the number

of table lookups per iteration. In all cases, D[.] denotes the appropriate table lookup.
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for (t=0;t<nIters;t++){

for (i=1;i<sz;++i){

for (j=0; j< sz; ++j)

A[T1[i] + T0[j]] += A[T1[i-1] + T0[j]];

for (i=0;i<sz;++i){

for (j = 1; j< sz; ++j){

A[T1[i] + T0[j]] += A[T1[i] + T0[j-1]];

}/*end of time loop*/

for (t=0;t<nIters;t++){

for (i=1;i<sz;++i){

const unsigned int t1i = T1[i];

const unsigned int t1im1 = T1[i-1];

for (j=0; j+3 < sz; j += 4){

const unsigned int t2j = T0[j];

A[t1i + t2j] += A[t1im1 + t2j];

A[t1i + t2j + 1] += A[t1im1 + t2j + 1];

A[t1i + t2j + 4] += A[t1im1 + t2j + 4];

A[t1i + t2j + 5] += A[t1im1 + t2j + 5];

}

for (m = j; m < sz; ++m){

const unsigned int t2m = T0[m];

A[t1i + t2m] += A[t1im1 + t2m];

}

}

for (i=0;i<sz;++i){

const unsigned int t1i = T1[i];

for (j = 1; j+3 < sz; j += 4){

const unsigned int t2jm1 = T0[j-1];

unsigned int t2jp3 = T0[j+3];

A[t1i + t2jm1 + 1] += A[t1i + t2jm1];

A[t1i + t2jm1 + 4] += A[t1i + t2jm1 + 1];

A[t1i + t2jm1 + 5] += A[t1i + t2jm1 + 4];

A[t1i + t2jp3 ] += A[t1i + t2jm1 + 5];

}

for (m = j; m < sz; ++m){

const unsigned int t2mm1 = T0[m-1];

unsigned int t2m = T0[m];

A[t1i + t2m] += A[t1i + t2mm1];

}

}

}/*end of time loop*/

Figure 6.3: Unrolled Morton-order ADI implementation using table lookup scheme. The figure

shows the original implementation of Morton-order ADI kernel (top) and a strength-reduced implemen-

tation of the unrolled ADI kernel (bottom). Both the implementations use the table lookup scheme. In

the figure, T0[.] corresponds to D0(.) and T1[.] corresponds to D1(.). Notice that the main loop

has been peeled in order to enable alignment at the start of loop iteration.
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for (k=0;k<sz;k++){

A[T1[k]+T0[k]] = sqrt(A[T1[k]+T0[k]]);

for (i=k;i<sz;i++){

A[T1[i]+T0[k]] /= A[T1[k]+T0[k]];

for (j = k; j < i; ++j){

A[T1[i]+T0[j]] -= A[T1[i]+T0[k]] * A[T1[j]+T0[k]];

}

}

}

for (k=0;k<sz;k++){

const unsigned int t1k = T1[k];

const unsigned int t2k = T0[k];

A[t1k+t2k] = sqrt(A[t1k+t2k]);

for (i=k;i<sz;i++){

const unsigned int t1i = T1[i];

A[t1i+t2k] /= A[t1k+t2k];

/* Pre-Loop */

const unsigned int j1_end = ((k>>2)<<2);

for (j1 = k; j1 < j1_end; j1++){

const unsigned int t1j1 = T1[j1];

const unsigned int t2j1 = T0[j1];

A[t1i+t2j1] -= A[t1i+t2k] * A[t1j1+t2k];

}

for (j2 = j1; j2+3 < i; j2 +=4){

const unsigned int t1j2 = T1[j2];

const unsigned int t2j2 = T0[j2];

A[t1i+t2j2] -= A[t1i+t2k] * A[t1j2+t2k];

A[t1i+t2j2+1] -= A[t1i+t2k] * A[t1j2+2+t2k];

A[t1i+t2j2+4] -= A[t1i+t2k] * A[t1j2+8+t2k];

A[t1i+t2j2+5] -= A[t1i+t2k] * A[t1j2+10+t2k];

}

for (j3 = j2; j3 < i; j3 ++){

const unsigned int t1j3 = T1[j3];

const unsigned int t2j3 = T0[j3];

A[t1i+t2j3] -= A[t1i+t2k] * A[t1j3+t2k];

}

}

}

Figure 6.4: Unrolled Morton-order Cholesky-K implementation using table lookup scheme.

Strength-reduced version of the unrolled Morton-order Cholesky (K-Variant) implementation using ta-

ble lookup scheme (bottom). We show the original implementation of the same kernel (top) for ease of

reference. In the figure, T0[.] corresponds to D0(.) and T1[.] corresponds to D1(.). Notice that the

main loop has been peeled in order to enable alignment at the start of loop iteration.
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for ( it = 0; it < nIters; it++ ) {

for ( i = 1; i < sz - 1; i++ ){

const unsigned int t1i = T1[i];

const unsigned int t1im1 = T1[i-1];

const unsigned int t1ip1 = T1[i+1];

for ( j = 1; j < j_end; j += 4 ){

const unsigned int t0jm1 = T0[j-1];

const unsigned int t0jp3 = T0[j+3];

B[t1i + (t0jm1 + 1)] = 0.25 * ( A[t1im1 + (t0jm1 + 1)] + A[t1ip1 + (t0jm1 + 1)] +

A[t1i + (t0jm1) ] + A[t1i + (t0jm1 + 4)] );

B[t1i + (t0jm1 + 4)] = 0.25 * ( A[t1im1 + (t0jm1 + 4)] + A[t1ip1 + (t0jm1 + 4)] +

A[t1i + (t0jm1 + 1)] + A[t1i + (t0jm1 + 5)] );

B[t1i + (t0jm1 + 5)] = 0.25 * ( A[t1im1 + (t0jm1 + 5)] + A[t1ip1 + (t0jm1 + 5)] +

A[t1i + (t0jm1 + 4)] + A[t1i + (t0jp3) ] );

B[t1i + (t0jp3) ] = 0.25 * ( A[t1im1 + (t0jp3) ] + A[t1ip1 + (t0jp3) ] +

A[t1i + (t0jm1 + 5)] + A[t1i + (t0jp3 + 1)] );

}

for ( j = j_end; j < sz - 1; j++ ){

const unsigned int t0j = T0[j];

const unsigned int t0jm1 = T0[j-1];

const unsigned int t0jp1 = T0[j+1];

B[t1i + t0j] = 0.25 * ( A[t1im1 + t0j ] + A[t1ip1 + t0j ] +

A[t1i + t0jm1] + A[t1i + t0jp1] );

}

}

it++;

if (it >= nIters) break;

for ( i = 1; i < sz - 1; i++ ){

const unsigned int t1i = T1[i];

const unsigned int t1im1 = T1[i-1];

const unsigned int t1ip1 = T1[i+1];

for ( j = 1; j < j_end; j += 4 ){

const unsigned int t0jm1 = T0[j-1];

const unsigned int t0jp3 = T0[j+3];

A[t1i + (t0jm1 + 1)] = 0.25 * ( B[t1im1 + (t0jm1 + 1)] + B[t1ip1 + (t0jm1 + 1)] +

B[t1i + (t0jm1) ] + B[t1i + (t0jm1 + 4)] );

A[t1i + (t0jm1 + 4)] = 0.25 * ( B[t1im1 + (t0jm1 + 4)] + B[t1ip1 + (t0jm1 + 4)] +

B[t1i + (t0jm1 + 1)] + B[t1i + (t0jm1 + 5)] );

A[t1i + (t0jm1 + 5)] = 0.25 * ( B[t1im1 + (t0jm1 + 5)] + B[t1ip1 + (t0jm1 + 5)] +

B[t1i + (t0jm1 + 4)] + B[t1i + (t0jp3) ] );

A[t1i + (t0jp3) ] = 0.25 * ( B[t1im1 + (t0jp3) ] + B[t1ip1 + (t0jp3) ] +

B[t1i + (t0jm1 + 5)] + B[t1i + (t0jp3 + 1)] );

}

for ( j = j_end; j < sz - 1; j++ ){

const unsigned int t0j = T0[j];

const unsigned int t0jm1 = T0[j-1];

const unsigned int t0jp1 = T0[j+1];

A[t1i + t0j] = 0.25 * ( B[t1im1 + t0j ] + B[t1ip1 + t0j ] +

B[t1i + t0jm1] + B[t1i + t0jp1] );

}

}

}

Figure 6.5: Unrolled Morton-order Jacobi2D implementation using table lookup scheme.

Strength-reduced version of the unrolled Morton-order Jacobi2D implementation using table lookup

scheme. Please see the original version in Figure 4.5 of Chapter 4. In this figure, T0[.] corresponds

to D0(.) and T1[.] corresponds to D1(.). Notice that the main loop has been peeled at the tail of the

loop by introducing a post-loop (no pre-loop) in order to enable alignment at the start of loop iteration.

Also, the main loop is aligned at 0 though the loop starting value is 1, with an additional table-lookup

for an index which crosses the index boundary.



6.5 Performance Results 89

for( i = 0; i < sz; ++i ){

for( k = 0; k < sz; ++k ){

const double r = A[T1[i] + T0[k]];

for( j = 0; j < sz; ++j){

C[T1[i] + T0[j]] += r * B[T1[k] + T0[j]];

}

}

}

const unsigned int j_end = sz - mod( sz, 4 );

for( i = 0; i < sz; ++i ){

const unsigned int t1i = T1[i];

for( k = 0; k < sz; ++k ){

const unsigned int t1k = T1[k];

const unsigned int t0k = T0[k];

const double r = A[t1i + t0k];

for( j = 0; j < j_end; j += 4 ){

const unsigned int t0j = T0[j];

const unsigned int c_idx = t1i + t0j;

const unsigned int b_idx = t1k + t0j;

C[c_idx] += r * B[b_idx];

C[c_idx + 1] += r * B[b_idx + 1];

C[c_idx + 4] += r * B[b_idx + 4];

C[c_idx + 5] += r * B[b_idx + 5];

}

for( j = j_end; j < sz; ++j ){

const unsigned int t0j = T0[j];

const unsigned int c_idx = t1i + t0j;

const unsigned int b_idx = t1k + t0j;

C[c_idx] += r * B[b_idx];

}

}

}

Figure 6.6: Unrolled Morton-order MMikj implementation using table lookup scheme The figure

shows the original implementation of MMikj kernel (top) and a corresponding strength-reduced version

of the unrolled Morton-order implementation. Both the kernels use the table lookup scheme. In the

figure, T0[.] corresponds to D0(.) and T1[.] corresponds to D1(.). Notice that the main loop has

been peeled and a post-loop has been introduced to cover the remaining iterations.



6.5 Performance Results 90

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Alpha: Performance in MFLOP/s

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 8192-Byte Aligned 

Morton 8192-Byte Aligned  Hand-Unrolled

 0

 10

 20

 30

 40

 50

 60

 70

 200  400  600  800  1000  1200  1400  1600  1800  2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Sparc: Performance in MFLOP/s

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 8192-Byte Aligned 

Morton 8192-Byte Aligned  Hand-Unrolled

0

50

100

150

200

250

300

350

200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Athlon: Performance in MFLOP/s

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 4096-Byte Aligned 

Morton 4096-Byte Aligned  Hand-Unrolled
Morton 4096-Byte Aligned  TG-Unrolled-Factor-04

0

5

10

15

20

25

30

35

40

45

50

200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on P3: Performance in MFLOP/s

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 4096-Byte Aligned 

Morton 4096-Byte Aligned  Hand-Unrolled
Morton 4096-Byte Aligned  TG-Unrolled-Factor-04
Morton 4096-Byte Aligned  TG-Unrolled-Factor-16
Morton 4096-Byte Aligned  TG-Unrolled-Factor-32

 0

 50

 100

 150

 200

 250

 200  400  600  800  1000  1200  1400  1600  1800  2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on P4: Performance in MFLOP/s

Row-Major Default Alignment 
Column-Major Default Alignment 

Morton Default Alignment 
Morton 4096-Byte Aligned 

Morton 4096-Byte Aligned  Hand-Unrolled

• Unrolling significantly improves

performance of the best aligned Morton

array on nearly all platforms.

• Notice for Alpha, the upper limit is

1024×1024.

• For Alpha (Sun), the fall-off in RM performance occurs at 725×725 (1024×1024) when

the total datasize exceeds L2 cache size of 4MB (8MB), direct mapped. This assumes a

working set of 725×725 (1024×1024) doubles.

• Performance drop on Pentium 4 and Athlon around 1024×1024 broadly agrees with our

hypothesis in Section 7.3.1, where the row-length exceeds the limits of conflict-free region.

• In summary, for ADI, Morton layout is a good compromise between row- and column-major

layouts, on nearly all platforms. However, arguably, P3 may be an exception, where for small

data sizes, canonical layouts are faster than Morton layout.

Figure 6.7: ADI performance in MFLOPs on different platforms. We compare row-major, column-

major, Morton with default alignment of the base address of the array, Morton with page-aligned base

address and unrolled-Morton with page-aligned base address and factor 4 loop unrolling.
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• Unrolling improves performance of the

best aligned Morton implementation, in

particular on x86 where the unrolled

Morton performance is within reach of

the best canonical.

• Performance drop on Pentium 4 and Athlon around half of 1024×1024 ((Jacobi2D uses two

arrays) broadly agrees with our hypothesis in Section 7.3.1, where the row-length exceeds

the limits of conflict-free region.

• In summary, for Jacobi2D, Morton layout is an attractive compromise, depending on the

platform and problem size. On Sparc, Morton layout is a useful compromise for problem

sizes larger than 600×600 where the crossover occurs.

Figure 6.8: Jacobi2D performance in MFLOPs on different platforms. We compare row-major,

column-major, Morton with default alignment of the base address of the array, Morton with page-aligned

base address and Morton with page-aligned base address and factor 4 loop unrolling.
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• Unrolling improves the performance of

best aligned Morton implementations.

• On x86 platforms, high unrolling factors

makes the Morton performance very

comparable to the row-major

performance, especially on Athlon.

• For Alpha, notice that upper limit is 1024×1024.

• Performance drop on Pentium 4 and Athlon around third of 1024×1024 (MMikj uses three

arrays) broadly agrees with our hypothesis in Section 7.3.1, where the row-length exceeds

the limits of conflict-free region.

• In summary, Morton layout is an attractive compromise between row-major and

column-major layouts, on nearly all platforms.

Figure 6.9: MMikj performance in MFLOPs on different platforms. We compare row-major, column-

major, Morton with default alignment of the base address of the array, Morton with page-aligned base

address and Morton with page-aligned base address and factor 4 loop unrolling.
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• Unrolled and page-aligned Morton is

considerably faster than default on most

platforms.

• For Alpha, notice that the upper limit is

1024×1024.

• Notice the sharp drop in RM and CM

performance on Alpha (around

360×360) and on Sparc (around

700×700) platforms .

• Performance drop on Pentium 4 and Athlon around thirds of 1024×1024 (MMijk uses three

arrays) broadly agrees with our hypothesis in Section 7.3.1, where the row-length exceeds

the limits of conflict-free region.

• In most of the cases, Morton layout is a compromise between row-major and column-major

layouts except on Alpha and Sparc.

Figure 6.10: MMijk performance in MFLOPs on different platforms. We compare row-major,

column-major, Morton with default alignment of the base address of the array, Morton with page-aligned

base address and Morton with page-aligned base address and factor 4 loop unrolling.
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• Unrolling improves the performance of the best aligned Morton version considerably.

• On Pentium III and Pentium 4, the speedup gain is sustained for larger range of problem

sizes than on Athlon.

• For Alpha, notice that the upper limit is 1024×1024.

• Notice the sharp drop in RM and CM performance on Alpha (around 400×400).

• Except on Alpha and Pentium III, the worst canonical layout (column-major, in our case)

performs better than or even closer to the performance of unrolled, best aligned Morton

implementation, for larger problem sizes. Although the slowdown compared to the best

canonical layout is smaller, the slowdown factor is as badly as that of the worst canonical

layout. On Alpha, Morton layout performs better than both the canonical layouts starting

from problem size around 500×500. On Pentium III, Morton layout is a compromise

starting from problem size around 800×800.

• In summary, Morton layout can be a compromise layout on restricted set of platforms and

never performs worse than the column-major layout.

Figure 6.11: Cholesky-k performance in MFLOPs on different platforms. We compare row-major,

column-major, Morton with default alignment of the base address of the array, Morton with page-aligned

base address and Morton with page-aligned base address and factor 4 loop unrolling.



6.5 Performance Results 95

– On Athlon, Pentium III and Pentium 4, the slowdown factor is less than 2. However, on

Pentium 4, for problem sizes larger than 1800×1800, the slowdown factor is only slightly

larger than 2.

• For MMikj (Figure 6.9),

– On Alpha, the worst slowdown factor is substantially less than 2.

– On Sparc, for larger problem sizes (larger than 1200×1200), the slowdown factor is less

than 2. However, for a range of problem sizes (500× 500–1000× 1000), the slowdown

factor can vary as the variation in the RM performance is very high. The average slowdown

factor is less than 2.

– On Pentium III, for all problem sizes up to 1100× 1100, Morton layout runs only about

40% as fast as the best layout (or s > 2). For problem sizes beyond 1100 × 1100, the

slowdown factor less than 2.

– On Athlon and Pentium 4, the worst slowdown factor is less than 2 for all problem sizes up

to 1800×1800. For larger problem sizes (larger than 1800×1800), the slowdown factor

is larger than 2.

• For MMijk (Figure 6.10), on all platforms the slowdown factor is less than 2.

• For Cholesky-k (Figure 6.11), the slowdown is less than 2 on nearly all platforms. On Alpha,

Morton version is faster than both the canonical layouts for problem sizes larger than 500×500.

In other words, summarising architecture-by-architecture:

• On Alpha, for all benchmark kernels, Morton layout is a good compromise with respect to the

better of the two canonical layouts.

• On Sparc, Morton layout is guaranteed to be a good compromise only for the ADI and MMikj

kernels. Morton layout falls above the maximum slowdown of 2 on some subranges of problem

sizes, for the Jacobi2D and MMijk kernels. However, for some restricted range of problem

sizes, Morton layout is a good compromise.

• On Athlon, Morton layout is a good compromise.

• On Pentium III, except for the MMikj kernel, Morton layout is a good compromise. Even with

the MMikj kernel, Morton layout fails only for a small subrange of problem sizes.

• On Pentium 4, except for the MMikj and Jacobi2D kernels, Morton layout is a good compro-

mise. On failed benchmarks, Morton layout fails to offer the acceptable slowdown factor for

small range of problem sizes.

Our evaluation of Morton layout with the best possible alignment and unrolling points out that

Morton layout is a good compromise to the better of the two canonical layouts on nearly all platforms,

with very few exceptions. These exceptions occur on Sparc, Pentium III and on Pentium 4 platforms

on subranges of problem sizes of different kernels.
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6.6 Conclusions

By inspecting the assembly code, we established that at least the icc compiler on x86 architectures

does automatically unroll our benchmark kernels for row-major layout. Our results in this chapter

show that unrolling the loops over Morton arrays, using the technique described in Section 6.2, can

result in a significant performance improvement of the Morton code: On several architectures, the

unrolled Morton codes are, for part of the spectrum of problem sizes, very close to, or even better

than, the performance of the best canonical code. We have done a preliminary investigation on the

effect of larger unrolling factors on performance and the results are promising.

In summary, we improved the performance of basic Morton scheme (whose results are presented

in Chapter 4) by aligning the starting address of the Morton arrays (corresponding results are in Chap-

ter 5). We further improved the performance by loop unrolling with strength reduction which partly

minimised the address computation overheads. Results presented in this chapter are the best obtained

results for these benchmarks when using Morton layout. Our evaluation of Morton layout on number

of different platforms, using a suite of benchmarks has shown that Morton layout can be an attractive

and promising compromise and even an alternative layout to canonical layouts, with few exceptions.

In this chapter and in the chapters so far, we have evaluated the performance basic Morton layout

and improved the performance by two simple optimisation techniques. These steps can be considered

as a pre-cursor to incorporating support for Morton layout in compilers. In the next chapter, we

describe the design issues for implementing a prototype compiler to support Morton layout in real

Fortran programs.



Chapter 7

Conclusions and Directions for Further

Work

In this chapter, we review the contributions of this thesis and we discuss the design considerations

for the implementation of a prototype compiler to support Morton layout in scientific applications.

Following this, we point out a number of possible directions for future research where we could

extend the work presented in this thesis.

7.1 Review of the Contributions of this Thesis

The goal of this thesis was to analyse alternative array storage layouts for regular scientific programs.

As presented in previous chapters, we found that recursive array layouts, Morton layouts in particular,

are an attractive alternative to canonical layouts. As evidenced by our experimental results, on suitable

hardware platforms, we demonstrated that Morton layout can be an attractive compromise storage

layout compared with canonical layouts, provided that the techniques developed in this thesis are

used. Towards this, the thesis has made the following contributions:

• We have reviewed existing techniques for locality optimisation under three different categories.

Most importantly, we paid particular attention to recursive and non-linear array layouts and

how both iteration space and data layout techniques can be integrated for better results. The

valuable part of this survey is to point out the current state of the optimisation techniques and

how data-layout transformations can aid in optimisation.

• We have exhaustively evaluated the Morton layout over a full range of problem sizes, on various

representative architectures for a suite of benchmark kernels.

As pointed out in the earlier chapters, Morton layout is only applicable to arrays whose sizes are

a power-of-two. However, by padding the rows and columns, we were able to apply the Morton

layout to non-power-of-two array sizes. With this technique, we exhaustively evaluated the

Morton layout. Such an exhaustive evaluation has enabled us to comprehensively observe and

analyse performance of Morton layout in a selected set of scientific benchmark kernels. Further,

this evaluation has also demonstrated the effectiveness of the lookup-table scheme compared to

the original dilated arithmetic scheme.
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• Performance of the straightforward implementation of Morton layout is often poor. In Chap-

ters 5 and 6, we have illustrated and evaluated how simple optimisations can improve the per-

formance of the basic Morton scheme by a significant factor.

– As discussed in Chapter 5, aligning the base address of Morton arrays significantly im-

proved the performance of basic Morton layout. Aligning Morton arrays at significant

words corresponding to levels of the memory hierarchy has improved the performance in

a majority of the architecture/benchmark pairs. We often found that aligning to the largest

significant sizes of the memory hierarchy (page-level) guarantees improved performance,

though the same could be achieved by aligning the arrays to one of the levels below, in

some cases.

– Then, in Chapter 6, we suggested a technique to unroll the loops with Morton array ac-

cesses with appropriate strength reduction. We found that unrolling with strength reduc-

tion has always improved the performance of basic Morton layout, often dramatically.

Conventional compilers, due to lack of information passed about the underlying storage layout,

fail to perform these optimisations.

• We have evaluated the hypothesis that Morton layout is a good compromise between row-major

and column-major layouts.

Our best results, in Chapter 6, have shown that Morton layout is often a good compromise

between row-major and column-major layouts, with few exceptions.

We view our contributions presented in this thesis as a pre-cursor to incorporating support for

alternative storage layouts, especially for hierarchical storage layouts, in compilers. Our results are

promising, however restricted to micro-benchmarks and one of the hierarchical storage layouts. In

order to evaluate the effectiveness of hierarchical layouts in real scientific applications, such compiler

support is necessary. A prototype compiler could provide a framework for generalising and automating

the addressing and optimisations for different hierarchical storage layouts. In relation to this, we

present our initial findings and plans in the design of a prototype compiler, in the next Section.

7.2 Design Considerations for a Compiler to Support Morton Layout

It is essential to use an existing compiler infrastructure like ROSE [69] or Stanford University In-

termediate Format (SUIF-1) [88] to limit the investment in time and resources. Since the internal

functionalities and mechanisms of these frameworks may vary very greatly, exact implementation of

the prototype compiler is entirely dependent on the underlying framework. Our design considerations

are generic as much as possible so that the techniques could be implemented using any of the available

compiler frameworks.

7.2.1 Structure of the Prototype Compiler

The original source code is converted into an intermediate format supported by the underlying com-

piler framework. Then transformations to support Morton layout are applied to this intermediate
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representation. The corresponding source code is then generated with the help of the framework.

Figure 7.1 illustrates the overall structure of the prototype compiler.

. . .      #1 #2 #3}Front−End
Source File

     (.f, .c or .cc)

IR

format
Back−End

Transformed Source File

     (.f, .c or .cc)

Transformations

Figure 7.1: General Structure of the Prototype Compiler to support Morton layout in scientific

programs The Figure shows the overall structure of the prototype compiler, assuming an underlying

compiler framework is used. The source program is converted to an intermediate representation (IR)

supported by the underlying compiler infrastructure using a front–end. Different transformations to

support Morton layout are then applied to this intermediate format in a preferred order. Finally, the

transformed intermediate format is translated to a source form (either C/C++ or Fortran format), using

a back–end tool.

The front-end of the underlying compiler infrastructure translates the source file into an interme-

diate representation that the chosen infrastructure supports. For example, in SUIF-1, the scc tool is

a front-end to translate C and Fortran sources to SUIF-1 intermediate format. The ROSE [69] frame-

work, for example, uses Edison Design Group’s [24] front-end to handle C++ sources.

The intermediate representation of a source program is the basis for developing compiler trans-

formations — transformations to support hierarchical storage layouts in our context. The intermedi-

ate representation should retain almost all the high-level information from the source code such that

both high-level program-restructuring transformations and low-level analyses and optimisations can

be supported. Different compiler frameworks usually have at-least one intermediate format and should

support plugging transformations to manipulate the intermediate representation of the program.

For example, in SUIF, this intermediate representation is a mixed-mode program representation

for fine grain control of transformations — supporting low-level instructions, basic blocks and trees

of blocks. This representation is based on an object oriented class library, but source language in-

dependent. The ROSE framework uses Edison Design Group’s [24] intermediate representation and

their own representation (as AST). Both the frameworks support plugging transformations together to

operate on corresponding intermediate representations.

The back-end is then used to generate a source program from the intermediate format so that it

could be compiled using one of the vendor supplied compilers. SUIF-1, for example, has a back-end

to generate sources for C and Fortran. The ROSE supports generation of C++ source code.

7.2.2 Transformations to Support Morton Layout

To implement hierarchical storage layouts in real Fortran or C++ programs, we need to convert ex-

isting multi-dimensional (most specifically two-dimensional arrays) row- or column-major arrays to

a desired member of the hierarchical storage layouts. A transformation pass is necessary to achieve

this. Additional passes or transformations are required to support optimisations for a chosen layout.

Required transformations to perform these operations are discussed below.
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Converting to Morton Layout

When converting row- or column-major arrays to Morton arrays, the following operations should be

performed:

• Flattening: Although Morton arrays are viewed as two-dimensional arrays, from the implemen-

tation point of view, they are one-dimensional arrays. For this reason, declaration of existing

two-dimensional arrays should be flattened. This involves modifying corresponding symbol

table entries and procedure signatures. Symbol table entries for flattened arrays are altered to

reflect the fact that their dimensions and size have changed. Similarly, subroutine signatures

need to be modified to conform with the typing rules.

• Padding: Morton layout is available only to power-of-two size matrices. If the original array

size is not a power-of-two (sizes in each dimension), the array should be padded to the next

power-of-two size in addition to flattening. Again, corresponding entries in the symbol table

should be modified.

• Addressing: As illustrated in Chapter 3, Morton order addressing is a complicated process. We

demonstrated that table lookup scheme offers an easier implementation solution at the cost of

slight performance penalty, compared to the dilated arithmetic scheme. Further, when imple-

mented with unrolling, the advantages obtained from the dilated arithmetic scheme could easily

be matched. This necessitates lookup tables to be setup (i.e. to be declared, entered in to symbol

tables) and filled up with correct values. Using a lookup table scheme has an additional flexibil-

ity of mixing storage layouts and this requires separate lookup tables for each array. If the layout

of all arrays is consistent throughout the program, a common set of tables could be used for all

arrays. An important phase of addressing is that all two-dimensional array references need to

be re-indexed using the appropriate addressing scheme, for example for Z-Morton layout using

the scheme illustrated in Chapter 3.

In summary, these set of transformations, when combined, should convert all existing two-dimensional

arrays to Morton arrays with appropriate re-indexing and lookup tables.

Unrolling with Strength Reduction

This is one of the key transformations to improve the performance of basic Morton layout and amortise

the cost of addressing. In order to unroll Morton loops with appropriate strength reduction, following

steps are required:

• Identify Candidate Loops: When unrolling loops over Morton arrays, innermost loops should

be considered as candidate loops for unrolling. However, the unrolling can be restricted only to

the loops with Morton array accesses.

• Loop Alignment: Aligning the starting value of the loop to a power-of-two value (see Sec-

tion 6.3) is the next step in the transformation. In order to do this, it may be necessary to do

loop peeling, converting the original loop into three loops: a pre-loop, a main loop and a post-

loop. The pre-loop and post-loop should cover remaining iterations and should ensure the loop

alignment of the main loop. However, if the step value of the loop is not a constant or if it is a

non-power-of-two value, then it is not possible to align the loop at power-of-two values.
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• Unroll/Strength Reduce: Once the loop is aligned, the loop body should be replicated with

appropriate re-indexing. Further, when necessary conditions are satisfied, the strength reduction

should be be applied (as in Chapter 6) with the help of pre-calculated lookup tables. The strength

reduction should be applied, only in the presence of Morton arrays.

Transformations discussed above are the minimal set of transformations required to support Mor-

ton layout, as discussed in the previous chapters of this thesis. Having a prototype compiler with these

set of transformations should enable the effectiveness of Morton layout in real scientific programs to

be tested.

7.3 Further Directions for Future Work

The work described in this thesis analysed alternative array layouts for regular scientific programs

and demonstrated the concept using one of the hierarchical layouts — Morton layout. We have also

discussed how well these layouts match with the hierarchical memory model present in modern ma-

chines. However, the lack of support from compilers, as evidenced by our experimental results, and

the lack of support from performance tools prevent the widespread usage of these layouts. One of the

key reasons for lack of support for these layouts is that performance characteristics of these layouts

are not well known. Contemporary performance tools do not exploit any context information specific

to these layouts. We argue that our work can be used and extended to provide support for these layouts

in scientific programs. Most specifically, we argue that providing an abstraction for these array layouts

at the compiler level is the right approach.

The key aspects towards providing an abstraction are discussed in the following sub-sections.

7.3.1 Associativity Conflicts in Morton layout

It is our hypothesis that associativity of various levels of the memory hierarchy influences the overall

performance of Morton layout.

In Figure 7.2, we illustrate the row-to-row associativity conflicts in Morton layout, for a direct-

mapped cache. The diagram shows how systematic associativity conflicts occur with both row- and

column-major traversals when problem size exceeds the square root of the cache-size (for a direct-

mapped cache). In general, for a w-way associative cache with capacity C, addresses aligned at

(C
w ) bytes are mapped to the same set. If each word is l bytes, each way holds C

w.l words. This

means any two arbitrary addresses s and t should collide when |s− t|% C
w.l = 0. With row-major lay-

out, this happens with A[i,s] and A[i,t], or for elements separated by a multiple of |s− t|. With

Z-Morton layout this happens with A[i,u] and A[i,v] where |u− v| =
√

C
w.l . Thus, with row-major

traversal, Z-Morton layout is expected to suffer from associativity conflicts for smaller problem size

than row-major. We call a region within which canonical traversal of a layout is free from conflicts as

a conflict-free region. The size of the conflict-free region for row-major traversal of row-major array

is C
w.l . The size for the row-major traversal of a Morton array is

√

C
w.l .

For Pentium 4 and Athlon systems with the cache parameters given in Table 4.1 (P4: 512KB/8-

way/128B, Athlon: 512KB/16-way/64B), for a benchmark with single Morton array, it can be expected

that the associativity conflicts to have greater impact on performance when the array size exceeds
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Figure 7.2: Conflict Misses in Morton Layout. The figure illustrates the nature of associativity con-

flicts in Morton layout. We show the mapping of page-sized Morton blocks into linear memory and into

a direct-mapped 4-page cache. When accessing the Morton array in row-major order, pages 0 and 1

conflict with pages 4 and 5. Similarly, when traversed in column-major order, pages 0 and 2 conflict

with pages 8 and 10. This generates 2 misses per row or column for each traversal order. The analysis

can easily be extended for caches with higher levels of associativity .

1024 words (P4: 128 × 7, Athlon: 64 × 16). From our experimental results reported in last three

chapters, it can be noticed that Morton performance drops near the problem sizes stated above. These

observations broadly confirm our hypothesis. In our technical report [84], we perform an in-depth

analysis of associativity conflicts in Morton layout and an alternative layout is proposed to minimize

the associativity conflicts.

7.3.2 Implementation of High Level of Abstraction for Hierarchical Storage Layouts

The first step towards providing a compiler support for hierarchical storage layouts is to develop ef-

ficient abstract representations of a wide range of hierarchical storage layouts. Abstractions should

include meta-data so that an underlying compiler infrastructure could use that information to selec-

tively apply appropriate optimisations. Padua et al. [3] provide such an abstraction for hierarchical

storage layouts but without any domain specific compiler support.

7.3.3 Combining Iteration and Data-Space Transformations

As discussed in Chapter 2, Kandemir et al. [41], Cierniak and Li [21], O’Boyle et al. [62] have

demonstrated the profitability of combined transformations. Support for combined transformations

is very crucial with hierarchical storage layouts and this involves automatic tiling and recursion of

control flow structures.
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7.3.4 Data Structure Specific Performance Metrics

Existing performance measurement techniques do not provide data structure specific performance

results. Such data structure specific performance metrics are crucial, for example, in justifying a

choice of a layout for an array. Gerndt et al. [47] discuss a memory access monitoring environment

for Fortran programs. Combining such methods with performance measurement techniques which use

hardware performance counters [13] is useful for developing data structure specific performance tools.

7.3.5 Low Level Support for Hierarchical Storage Layouts

When compiling the code generated from the domain-specific abstractions, the instruction set and

hardware play an important role. Investigation of providing low level support for hierarchical storage

layouts is important. For example:

• Instruction set support for address computation: As illustrated in Chapter 3, the address com-

putation for hierarchical layouts is fairly expensive process. While traditional layouts access

neighbouring elements just by incrementing one of the array indices, hierarchical layouts often

involve operations on dilated indices, which are expensive to implement using existing instruc-

tion sets. Instruction set support for address computation is particularly important for random

accesses, for example, with many levels of indirection, where other optimisation techniques,

such as unrolling, do not help. The effect of hardware support for dilated operations could be

evaluated, initially in a simulated environment like SimpleScalar [77].

• Caching/Prefetching mechanisms: Modern architectures, for example Pentium IV, detect any

constant stride access for arrays in a loop nest and successfully prefetch elements to hide access

latency. This technique has been proven to be an effective optimisation [36, 38] on many

applications. However, with hierarchically stored arrays, the strides are non-constant but follow

a predictable pattern. The issue of prefetching for hierarchical storage layouts is an interesting

issue to be addressed.

• Interaction with SIMD Instructions: Modern processors support SIMD instructions — the VIS

instructions in UltraSparc processors [79], SSE/SSE2/SSE3 in Pentium IV [37] and AltiVec

in Motorola processors [25, 27]. However, these instructions inherently assume that data ele-

ments are arranged in one of the lexicographic orders when performing most of the cacheability

and data management instructions. Direct SIMD operations on Morton array elements is not

possible without involving additional data movements. If the interaction between Morton, or

hierarchical layouts in general, and SIMD instruction set is improved, many classes of applica-

tions could benefit from such layouts.

7.3.6 Hierarchical Storage Layouts for Sparse Matrix Computations

There are numerous storage formats for sparse matrices. However, these storage formats lack the

concept of compromise layout. Though Morton layout offers some compromise, it is not readily

applicable for storing sparse matrices. Initially, we would like to investigate the performance impact of

using Morton layout in sparse matrix computations and in libraries like Sparsity [35]. Following this,

we would like to find a compromise storage layout for sparse matrices, based on recursive blocking.
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7.3.7 Address Computation

In this thesis, we looked at two different methods of address computation for Morton layouts, which

is generally applicable for any hierarchical storage layout. Raman and Wise discuss alternative ways

of converting to and from dilated integers in one of their recent papers [70]. This leads us to consider

applying different methods for address calculations based on the underlying layout. More investigation

is needed in evaluating the most beneficial method of computation for a given layout.

7.3.8 Optimal Layouts

In this thesis, we have taken the approach of assigning all arrays with the same array layout. However,

as discussed in Chapter 2, different layouts could be chosen to improve locality of individual arrays.

We believe that cross interference effects between arrays could be minimised by mixing layouts.

In addition to the techniques suggested by Kandemir et al. [41], the optimal layouts for arrays can

be determined at compile time by using the profiled or trace data, as discussed by Rubin et al. [73].

Beckmann et al. [9] use a technique whereby they delay the execution of a program to determine

optimal data placement techniques for parallel programs. It is possible to adopt this technique to

perform runtime layout transformation. If we assume that the layouts are dynamically changed, we

will be delaying the execution of a program, as long as possible so that optimal layouts could be

chosen minimising the layout changes.

7.3.9 Multi-dimensional Arrays

This thesis is entirely focused on applications/kernels that use two-dimensional arrays. Though the

layouts and associated techniques are equally applicable for higher-dimensional arrays, the poten-

tial performance benefit should be worse than for two-dimensional arrays. For example, for three-

dimensional arrays, the basic block which to be contained in memory levels is now a three-dimensional

cube. If we assume that Morton layout is used, the spatial locality along one of the dimensions is cube-

root of the cubic block size, much worse than the square-root value of two-dimensional case. However,

we are interested in particular application classes, like ray casting [55], that might benefit from such

layouts. One of the ways to improve the spatial locality is to select a layout with the highest number

of orientations, such as the Hilbert curve which may minimise the self-interference effects.

7.4 Summary

This chapter has pointed out the contributions made by this thesis and discussed the design consid-

erations for compiler support for hierarchical layouts. The chapter has also outlined a number of

directions for further research. The main challenge in using these layouts in scientific programs is to

provide compiler support for which this thesis stands as a starting point.
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Annalen, 38:459–460, March 1891. In German.

Cited on page 13, 34, 35, 68

[34] Yu Charlie Hu, S. Lennart Johnsson, and Shang-Hua Teng. High performance Fortran for highly

irregular problems. In PPOPP ’97: Proceedings of the Sixth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 13–24. ACM Press, 1997.

Cited on page 34

[35] Eun-Jin Im, Katherine A. Yelick, and Richard Vuduc. SPARSITY: An optimization framework

for sparse matrix kernels. International Journal of High Performance Computing Applications,

18(1):135–158, February 2004.

Cited on page 103

[36] Intel Corporation. IA-32 Intel Architecture Optimization: Reference Manual, 2004.

Cited on page 103

[37] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual: Basic Architecture,

2004.

Cited on page 103

[38] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual: System Programming

Guide, 2004.

Cited on page 103



BIBLIOGRAPHY 109

[39] H. V. Jagadish. Linear clustering of objects with multiple attributes. In SIGMOD ’90: Pro-

ceedings of the 1990 ACM SIGMOD International Conference on Management of Data, pages

332–342. ACM Press, May 1990.

Cited on page 34

[40] Y.-J. Ju and Henry G. Dietz. Reduction of cache coherence overhead by compiler data layout

and loop transformation. In Uptal Banerjee, David Gelernter, Alex Nicolau, and David Padua,

editors, Proceedings of Languages and Compilers for Parallel Computing, volume 589 of LNCS,

pages 344–358. Springer-Verlag, August 1992.

Cited on page 30

[41] Mahmut T. Kandemir, Alok N. Choudhary, J. Ramanujam, N. Shenoy, and Prithviraj Banerjee.

Enhancing spatial locality via data layout optimizations. In D. Pritchard and J. Reeve, editors,

Euro-Par ’98: Proceedings of the 4th International Euro-Par Conference on Parallel Processing,

volume 1470 of LNCS, pages 422–434. Springer-Verlag, September 1998.

Cited on page 16, 31, 102, 104

[42] Mahmut T. Kandemir, Alok N. Choudhary, N. Shenoy, Prithviraj Banerjee, and J. Ramanujam.

A linear algebra framework for automatic determination of optimal data layouts. IEEE Transac-

tions on Parallel and Distributed Systems, 10(2):115–135, February 1999.

Cited on page 29

[43] Mahmut T. Kandemir, J. Ramanujam, Alok N. Choudhary, and Prithviraj Banerjee. A

layout-conscious iteration space transformation technique. IEEE Transactions on Computers.,

50(12):1321–1336, 2001.

Cited on page 28

[44] Wayne Kelly and William Pugh. A framework for unifying reordering transformations. Technical

Report CS-TR-3193, Department of Computer Science, University of Maryland, April 93.

Cited on page 22, 23

[45] Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and improving data lo-

cality via loop fusion and distribution. In Proceedings of the 6th International Workshop on

Languages and Compilers for Parallel Computing.

Cited on page 20

[46] Ken Kennedy and Kathryn S. McKinley. Optimizing for parallelism and data locality. In ICS

’92: Proceedings of the 6th International Conference on Supercomputing, pages 323–334. ACM

Press, 1992.

Cited on page 20

[47] Edmond Kereku, Tianchao Li, Michael Gerndt, and Josef Weidendorfer. A data structure ori-

ented monitoring environment for Fortran OpenMP programs. In Macro Danelutto, Marco Van-

neschi, and Dominico Laforenza, editors, Euro-Par 2004 Parallel Processing:Proceedings of

the 10th International Euro-Par Conference, volume 3149 of LNCS, pages 133–140. Springer-

Verlag, September 2004.

Cited on page 103



BIBLIOGRAPHY 110
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