University of London
Imperial College of Science, Technology and Medicine

Department of Computing

Dynamic performance optimisation of

distributed Java applications

Kwok Cheung Yeung

March 2004

Submitted in partial fulfilment of the requirements for the degree
of Doctor of Philosophy in Engineering of the University of

London



Abstract

This thesis describes a novel approach to automatically optimising the performance of dis-
tributed Java applications that make use of Remote Method Invocation (RMI) while pre-
serving the original application semantics.

The key enabling optimisation is call aggregation, where the execution of remote calls is
delayed for as long as possible on the client side until a dependency forces their execution.
The delayed calls are sent over to the server as a single unit, along with metadata describing
the remote calls. This reduces the number of network transfers, and the increased context
information in conjunction with the metadata enables the application of cross-call optimi-
sations such as data sharing and dead-variable elimination. Other optimisations include
server forwarding, which can reroute data communications to exploit fast connections, and
plan caching, which is used to reduce communication overheads. Experimental evaluation
suggests that the performance of applications under these optimisations can be comparable
to that of implementing the aggregation and forwarding optimisations by hand.

The Veneer virtual Java Virtual Machine (vJVM) is presented as a flexible platform
on which to base the RMI optimisations by providing a level of control over an executing
program close to that of a customised interpreter while still running on a standard JVM.
Veneer can intercept selected methods of a program and delegate the process of execution
to a user-defined ezecutor, which is essentially a simple interpreter that may deviate from
normal execution while executing the method if required.

There are many circumstances in which the optimisations might alter the semantics of
a RMI program, and practical ways to detect and correct this are investigated. A simple
logical framework on which to reason about the optimisations has been developed, and used

to show that call aggregation is safe provided that certain conditions are met.



Acknowledgements

I wish to thank the following people for their help during my career as a PhD student at
Imperial College:

e My supervisor, Paul Kelly, for his guidance and support throughout this work

e Sarah Bennett, for her help in testing Veneer and the DESORMI optimisations dur-
ing the development process, and for her subsequent bug reports (which were often
alarmingly long in length...)

e Olav Beckmann, for helping me getting settled into my first year as a PhD student

e The rest of the Software Performance Optimisation group, for all the discussions and

reading groups that have considerably broadened my knowledge of computing
e My parents, for both moral and financial support throughout the years

e My uncle, for igniting my interest in computing and the scientific disciplines in the

first place, and for the encouragement throughout the years
e The rest of my family, for simply being there for me

e The Sable research group at McGill University, for producing the Soot framework,

which has saved me from enormous amounts of work

e My PhD examiners, Alan Dearle and Wolfgang Emmerich, for their advice on improv-

ing this thesis

e The Engineering and Physical Sciences Research Council (EPSRC), for financial sup-
port with a research studentship and grant (GR/R 15566)



Contents

1 Introduction 14
1.1 Programming for networks . . . . . . . .. ... L oo 14
1.2 Problems with remote object programming . . . . . ... ... ... ... .. 15
1.3 The current state of distributed program optimisation . . . .. ... ... .. 16
1.4 Goals . . . . . 17
1.5 Anewapproach . .. . ... . 17
1.6 Contributions . . . . . . . .. o 18
1.7 Thesisoutline . . . . . . . . ... 18

2 Related work 20
2.1 Work related to Veneer . . . . . . . . . ... L 20

2.1.1 Dynamic program optimisations . . . . . . ... ... ... ... ... 20
2.1.2 Metaprogramming . . . . . . . .. ... e 21
2.1.2.1 Aspect-Oriented programming . . . . . ... ... .. .... 21

2.1.2.2 Reflective architectures . . . . . .. .. ... ... ... .. 22

2.1.3 Automatic runtime program optimisation . . . . . ... ... ... .. 22
2.1.3.1 HotSpot performance engine . . . ... ... ... .. .... 22

2.1.3.2 Dynamoand Mojo . . . . . ... .. .. ... .. 23

2.1.4 Nested virtual machines . . . . . . . .. .. ... oL 24
2.1.5 Interpreters . . . . . . . . ..o e e 24
2.1.6 Conclusion . . . . .. . . 25
2.2 Work related to DESORMI . . . . . . ... ... ... ... 26
2.2.1 Design patterns . . . . . . ... 26
2.2.2  RMI protocol optimisations . . . . . . ... ... ... ... ... 27
2.2.2.1 Dropping support for unneeded RMI facilities . . . . .. .. 27

2.2.2.2 Using less expensive network protocols . . . .. .. ... .. 28

2.2.3 Specialising object serialisation to RMI . . . . .. ... ... ... .. 29
2231 Manta. . ... ... e 29

2.2.3.2 Optimising CORBA . . . . . ... ... ... . ... ..... 30

2233 Flick . ... ... ... 31

2.2.3.4 Compiler optimised RMI . . . .. ... ... ... . ..... 31

2.2.4 Asynchronousremote calls. . . . . . .. ... . L o Lo 31
2.2.4.1 Asynchronous RMI . .. ... ... .. ............ 32

2.2.5 RMI object caching . . . . ... .. ... ... oo 32
2.2.6 Performance tuning systems . . . . . . . .. ... oo 33



CONTENTS 5

2.2.7 Delayed execution . . . . ... .. ... oo 34
2.2.71 Delayed RMI . . . . . ... .. . 34

2.2.7.2 Batched Futures and Promises in Thor . ... ... ... .. 36

2.2.7.3 Data placement optimisation . . . . .. .. .. ... ... .. 36

2.2.8 Conclusions . . . . . . ... 37

3 The Veneer virtual Java Virtual Machine 39
3.1 Motivation . . . . ... 39
3.1.1 The static program rewriting approach . . . . . . . ... ... ... .. 40
3.1.1.1 Conditional force points . . . . . . ... ... 0oL 41

3.1.1.2 Branches . . . ... .. ... 42

3.1.1.3 Loops . . . . .. 42

3.1.14  State . ... 43

3.1.1.5 Factoring out code blocks . . . . . ... ... .. ... ... . 43

3.1.2 The virtual JVM approach . . . . . . ... ... ... 0., 44
3.1.21 Amnewapproach . . .. .. ... ... .. 44

3.1.2.2 Veneer . .. . . . e e e e 46

3.2 OVEIVIEW . . . o e e e e e e 46
3.3 Veneer structures . . . . . . . . ... e e 46
3.3.1 Plan-sets . . . . . . . L 48
3.3.2 Executionplans. . . . . . ... .. 48
3.3.3 Codeblocks . . . . .. 49
334 Methodstate . . . . . . . . .. 49
3.3.5 Executors . . . . . . .. e e e 49
3.3.5.1 Exceptions . . ... .. .. ... e 50

3.3.5.2 Threading . . . .. .. ... 51

3.3.6 Stubs . . . ... e e 51
3.3.7 Theruntime policy . . . . . . . . . . ... 52

3.4 Veneer runtime behaviour . . . . . .. ... ... .. . e 52
3.4.1 The bootstrapper . . . . . . . . . .. 52
3.42 The custom classloader . . . . . . . .. .. ... L. 52
3.4.2.1 The Veneer class loader hierarchy . ... ... ... ... .. o4

3.4.3 The fragmentation process. . . . . . . ... ... L. o4
3431 Plancreation . . . . . ... ... Lo o 55

3432 Plancorrection . . . . . .. ... o 55

3.4.3.3 Control-flow determination . . . . ... ... ... . ... .. 55

3.4.3.4 Exception handler determination . . . . . .. . ... ... .. 95

3.4.3.5 Local variable determination . . . . . . ... ... ... ... 55

3.4.3.6 Parameter determination . . ... ... ... ... ... .. 56

3.4.3.7 Fragment generation . . . . .. .. ... o6

3.4.3.8 Metadata generation . . . . . . ... ... L. 56

3.5 Optimisations . . . . . . . . . . .. 56
3.5.1 Fragment merging . . . .. .. ... ... oo o6
3.5.2 Plan-set caching . . ... ... ... ... ... 0 0. o7

3.5.3 Short-circuit return statements . . . . . . . . .. .. .. ... ... 58



CONTENTS 6

3.5.4 Embedded exception handlers . . . . . . .. ... ... .. .. ..... 58
3.5.5 Reducing reflection . . . . . . .. ..o 58
3.5.6 Executor and state pooling . . .. ... .. ... ... ... 0. o8
3.5.7 Mutable value types . . . . . . .. ... 59

3.6 Limitations . . . . . . . .. L 59
3.6.1 The standard Java library . . . . . . .. ... oL oo 0oL 59
3.6.2 Intercepting constructors . . . ... .. .. ... ... . 0oL 99
3.6.3 Allocating new objects . . . . . . . ... ... oo 60
3.6.4 Obfuscatedcode . . . . .. . . . ... 60
3.6.5 User-defined class loaders . . . . .. ... ... ... ... ... . 61

3.7 Evaluation . . . . . . . . . . 61
3.7.1 Testsetup . . . . . . L e 61
3.7.2 Analysis . . . . ... 62
3.7.2.1 Effect of the policy type . . . . . . ... ... . ... 63

3.72.2 Calloverhead . . . . . . . . .. . o 64

3.7.2.3 Effect of the Veneer optimisations . . . ... ... ... ... 64

3.8 Alternative approaches to runtime code modification in Java . . .. ... .. 65
3.8.1 Classloaders . . . .. . ... .. . 66
3.8.1.1 Accessibility . ... ... 66

3.8.1.2 Classreplacement . . . . . ... .. .. ... ... ..., . 66

3.82 HotSwap . . . . . . . . . 67
3.8.3 Implementation at the virtual machine level . . . . . . . ... ... .. 67

3.9 Otherusesof Veneer . . . . . . . . . . ... 68
3.10 Conclusion . . . . . . . .. 68
4 Optimising Java RMI 69
4.1 Modelling performance . . . . . . . . ... L o 69
4.1.1  Assumptions . . . ... oo 69
4.1.2 Parameters . . . . . . . . .. e 69
413 Costmodel . . . . . . . ... 70
4.1.4 Limitations . . . . . . . . . e 71

4.2 Imitialisation. . . . . . . . . . L. 71
4.2.1 Client startup . . . . . . o . oo 71
4.2.2 Server startup . . . . ... ..o 72
4.2.3 Proxy/object resolution . . . . . ... ... Lo L 72

4.3 Call aggregation . . . . ... . .. . 72
4.3.1 Relation to distributed program design . . . . . . .. .. ... ... .. 73
4.3.2 Effect on the cost model . . . . . . . .. ... oL 74
4.3.3 Client-side implementation . . .. .. ... .. ... ... .. ..., . 76
43.3.1 Localcode .. .. ... ... .. ... ... e 76

4.3.3.2 Saving delayed call state . . . . . .. ... .. ... ... .. 76

4.3.3.3 Forcing execution . . . .. .. ..o 77

4334 Methodexit . .. ... .. ... ... o 77

4.3.4 Server-side implementation . . .. ... ... 0oL 77

435 Example. . . . . ... 78



CONTENTS 7

4.4

4.5

4.6

4.7
4.8

4.9

4.3.6 Implementation optimisations . . . . . . . . ... .. ... ... 81
4.3.6.1 Transportation of plans . . . . . . ... ... ... ... ... 82
4.3.6.2 Resolvingmethods . . . . .. ... ... ... ... ..., 82
Server forwarding . . . . ... ... 83
441 Effect on the cost model . . . . . . . .. ... oL 83
4.4.2 TImplementation . . . . . . . . ... Lo 84
443 Example. . . . . .. e 85
Plan caching . . . . . . . . . L 87
4.5.1 Effect on the cost model . . . . . . . .. ... oL 89
4.5.2 Client-side implementation . . . . .. ... ... ... ... ... .. 89
4.5.3 Server-side implementation . . .. ... ... 90
454 Example. . . . . .. 90
Maintaining the original program semantics . . . . . . . . ... .. ... ... 93
4.6.1 Direct data dependencies . . .. .. ... ... . ... . .. 94
4.6.2 Callbacks . . . . ... e 94
4.6.2.1 Problems caused by callbacks . . . . . ... .. ... ... .. 94
4.6.2.2 Detecting remote methods that make callbacks . . . . . . . . 96
4.6.2.3 Finding the define-use set of callbacks . . . . . ... ... .. 97
4.6.2.4 Escape analysis . . . ... .. ... oo 98
4.6.2.5 Compensating for callbacks . . . . . . ... .. ... ... .. 98
4.6.2.6 Ignoringcallbacks . . . ... ... ... ... L. 99
46.3 I/Oordering . . ... ... ... .. 99
4.6.4 Exceptions . . . . . . . oo 101
4.6.5 Multi-threading . . . . . . . . . ... Lo 102
4.6.5.1 Synchronised code . . . . . ... ..o L L 102
4.6.5.2 Unsynchronisedcode . . ... ... ... ... ... ..... 102
4.6.5.3 Waits and notifications . . . .. ... ... 0oL 104
4.6.5.4 Joins . ... e 104
4.6.6 Difference between local and remote semantics . . . . . ... ... .. 104
46.6.1 Local RMIcalls ... ... ... ... ... ... ..... 106
4.6.6.2 Copying using serialisation . . . . . ... ... .. ... ... 107
4.6.6.3 Avoiding parameter copying . . . . . . ... ... ... ... 107
Current status of the DESORMI optimisations . . . . ... .. ... ... .. 107
Evaluation . . . . . . . . .. e 108
481 Test procedure . . . . . . ... 108
4.8.2 Vector arithmetic — call aggregation . . . . . . . ... ... ... ... 109
4.8.2.1 Test configuration . . . .. ... ... ... .. ... ... .. 109
4822 Results . . .. .. L 110
4.8.3 Vector arithmetic — server forwarding . . . . . . ... ... ... ... 110
4.8.3.1 Test configuration . . . .. ... ... ... ... ....... 110
4832 Results . ... ... 110
484 Multi-User Domain . . . . . . . . ... ... o 116
4.8.4.1 Test configuration . . . ... ... ... ... L. 116
4842 Results . ... ... 118

Security . . ... 118



CONTENTS

4.9.1 Aggregation vulnerabilities . . . . . . ... ...
4.9.1.1 Object ID spoofing . . . . ... ... ... ... ... ..
4.9.1.2 Denial-of-service attacks . . . . . ... ...

4.9.2 Callinterception . . . . . . . . o . o
4.9.2.1 Argument interception . . . ... ... .. oL,
4.9.2.2 Repudiation . .. ... ... 0o

4.10 Alternative Platforms . . . . . ... . ... .. L o o

4.10.1 RMI/TIOP . . . . . . .

4.10.2 Enterprise JavaBeans . . . . . . .. ... oo o oL
4.10.2.1 Possible improvements. . . . . .. ... .. Lo,

4.11 Conclusion . . . . . . . . e e
5 Correctness of call aggregation

5.1 General approach . . . . . . .. oL Lo e

5.2 Concepts of the logical framework . . . . . ... ... ... ... ... ...

52.1 Globalstate . . . . . . . . . ..

5.2.2 Traces . . . . . .. e

5.2.3 Imstructions . . . . . . . . ..

524 Remotecalls . . ... ... .

5.2.5 Remote actions . . . . . . . . .. Lo
5.2.5.1 Marshalling . . . ... ... ... ..o o o
5.2.5.2 Remote transformation . . . ... ... ... 000

52.6 Inputandoutput . . .. .. .. ... ...

5.2.7 Exceptions . . . . . . . . ...

5.3 Correctness of clustered call aggregation . . . . ... ... ... ... .....

5.3.1 Adapter operators . . . . . . . . .. .. ...

5.3.2 The isolation property of deserialised variables . . . . ... ... ...

5.3.3 Approach toproof . . .. ... ...

5.3.4 Showing that values used by remote actions are correct . . ... ...
5.3.4.1 Internalvalues . . ... .. ... .. .. ... ... .....
5.3.4.2 External values. . . . . . . ... ... L.
5.3.4.3 Direct values . . . . .. .. ... o
5.3.4.4 Indirect values . . . .. .. ... ... ..o

5.3.5 Showing that values that reach the end of the cluster are correct
5.3.5.1 Direct values . . . . . . .. ...
5.3.5.2 Copied values . . . .. ... .o

5.3.6 Conclusion . . . ... . ...

5.4 Problems with aggregation of clusters . . . . . .. ... ... ... ......
5.4.1 Callbacks . . . . . ..
5.4.2 Reference semantics problem . . . . ... ... oL o000

5.5 Aggregating across local code . . . . . .. ...

5.6 Evaluation . . . . . . .. ...

5.7 Related work . . . . . . .. ..

5.8 Conclusion . . . . ... L e

118
119
120
120
120
121
121
122
122
122
123



CONTENTS

6 Conclusions

6.1
6.2

6.3

Al

A2

A3

Summary . . ..o
Future work . . . . . . . . .
6.2.1 Further evaluation . . .. ... .. ... ... ... .. L.
6.2.2 Improved early detection of RMI calls . . . ... ... ... .. ....
6.2.2.1 Using type-inference . . . . . . . . .. oL oL oo
6.2.2.2 Using data-flow analysis . . . . . ... ... ... ... ....
6.2.2.3 Reducing runtime type-checking . . . . ... ... ... ...
6.2.3 Using high-level information . . . . . .. .. ... ... ... ... .
6.2.4 Intermediate local method calls . . . . ... .. ... .. ... .....
6.2.5 Improveddatareuse . .. ... .. ... ... .. ..o
6.2.6 Using performance metrics to control forwarding . . . . ... ... ..
6.2.7 Direct data forwarding . . . . . . .. ..o oo
6.2.8 Interprocedural delayed RMI . . . . ... ... ... .. ........
6.2.9 Improved alias handling . . . ... ... .. ... ... ... . ....
6.2.10 Inter-thread delayed RMI . . . . . . .. .. ... ... . ........
6.2.11 Server plan code optimisation . . . . . . .. .. ..o
6.2.12 Asynchronous delayed RMI . . . . . .. .. ... ... ... ... ..
6.2.13 Delaying localcode . . . . . . . ... .. . oo
6.2.14 Code motion between hosts . . . . . .. .. ... ... ... ..
6.2.14.1 Exporting loops . . . . . . . ... Lo
6.2.14.2 Code fragments as mobile agents . . . . . ... ... .. ...
6.2.15 Veneer performance optimisation . . . . . . ... ... ... ... ..
6.2.15.1 Method-specificstate . . . .. ... .. ... ... ......
6.2.15.2 Switchable fragmentation schemes . . . . ... ... ... ..
6.2.15.3 Low-level support . . . .. ... .. ... ... ... ... .
6.2.15.4 Specialisation . . . . . . .. ... o L
6.2.16 .NET Remoting . . . . . . .. . . ... ... . .o
6.2.17 Veneer using NET . . . . ... ... .. ... . .. oo
6.2.17.1 Passbyreference. . . . . . ... ... Lo
6.2.17.2 Interprocedural control flow . . . . . . . . ... ... ... ..
Conclusion . . . . . . . ..
A Working with Java bytecode
Class files . . . . . . . . .
A1l Constant pool. . . . . . . .. L
A.1.2 Method definitions . . . . . . . . ...
Class loaders . . . . . . . . . . e
A21 Class namespaces . . . . ¢ v v v v v v e e e e e e
A.2.2 The delegation model . . . . . .. ... L oo
A.2.3 The base class loader hierarchy . . . . ... ... ... ... ......
Tools for working with bytecode . . . . . ... .. ... ... ... ...
A31 Soot . ..
A3.11 Jimple . ...
A.3.1.2 Other facilities . . . . . . . .. ...

144
144
145
145
146
146
146
146
146
147
147
148
148
149
150
150
151
151
153
153
154
154
154
155
155
155
156
156
157
157
157
158



CONTENTS 10

A32 BCEL . . ... . . e 165

B Writing distributed programs in Java 166
B.1 Java RMI . . . . . oo e 166
B.1.1 Programming with RMI . . . . .. ... ... ... ... ... ..... 166
B.1.2 Object serialisation . . . . . . . . .. .. L o o 167
B.1.2.1 Automatic object serialisation . . . ... ... ... ... .. 167

B.1.2.2 Controlling object serialisation . . . . . . ... ... ... .. 168

B.2 RMLIIOP . . . . . 168
B.3 Enterprise JavaBeans. . . . . . . . ... Lo 169
B.3.1 Beans . . . . . . .. e 169
B.3.1.1 Entity Beans . . . . .. .. ... oo o oL 169

B.3.1.2 Session Beans . ... ... ... ... 0 oo 170

B.3.1.3 MessageBeans . . . . ... ... . Lo oo 170

B.3.2 Containers . . . . . . . . . .. 170
B.3.3 JBoss . ... 170
B.3.3.1 Dynamic proxies . . . . . . . .. ... Lo 171

B.3.3.2 Interceptors. . . . . . . . . ... . .. ... 171



List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

An example program fragment using DRMI . . . . .. ... .. ... ..... 35
Rewriting a program to delay block A if z is true and block B if y is true . . 40
Rewriting a program with conditional force points . . . . . . . ... ... .. 41
Rewriting a program to delay blocks contained in loops . . . . .. ... ... 43
Conditionally delaying and forcing code using the virtual JVM approach . . 45
Data structures used by Veneer . . . . . . . . ... ..o 47
Visualisation of a Jimple plan fragmented for RMI optimisations . . . . . .. 48
The executor baseclass . . . . . ... ... ... o 50
Structure of a basic executor that executes a plan without any changes. . . . 51
Example showing the Java equivalent of a method stub containing two variants 53

The Veneer class loader hierarchy . . . . . . ... ... ... ... ....... 54
A fragment method . . . . . . ... oL 57
Example of ashim class . . .. ... ... . o 58
Example of a class hierarchy that provides an interface leading to a remote

call without implementing Remote. . . . . . . . .. ... ... .. ... ... . 71
Example of call aggregation . . . . . . .. ... ... L. 73
Sequence of events without call aggregation . . . . . . . .. ... ... .... 79
Remote plans during the call aggregation example . . . . ... ... ... .. 80
Sequence of events with call aggregation . . . . . . . ... ... ... ... .. 81
Implementation of call forwarding. . . . . . . ... ... ... L. 86
Sequence of events without call forwarding . . . . . ... ... ... ... ... 87
Sequence of events with call forwarding . . . . .. ... ... ... ... ... 88
Example of a loop that results in a different remote plan on every iteration . 89
Sequence of events without caching . . . . . .. .. ... ... 0oL 91
Sequence of events with caching . . . . . . . ... ... . o L. 92
Remote plans built during the caching example . . . . . . ... ... ... .. 93
Example of code leading to a callback . . . .. .. ... ... ... ..., 95
Compensating for callbacks . . . . . . . .. ... 000, 100
Memory actions in the Java memory model . . . . . ... ... ... ..... 103
Differences in structure sharing . . . . . . . .. .. ... ... ... 105
Copying data structures . . . . . . . . . . . ... 106
Results for the vector arithmetic example with no call aggregation . . . . . . 111
Results for the vector arithmetic example with two calls aggregated . . . . . 112

11



LIST OF FIGURES 12

4.20
4.21
4.22
4.23

4.24

5.1
9.2
9.3
5.4
5.5

6.1

Al
A2

A3

B.1

Results for the vector arithmetic example with three calls aggregated . . . . . 113
Results for the vector arithmetic example with four calls aggregated . . . . . 114
Results for the vector arithmetic example with five calls aggregated . . . . . . 115
Graph of results for the forwarding optimisation of the vector arithmetic

example . . . .. L 117
Code for the look method of the MUD example . . .. ... ... ...... 117
Dataflow of internal values in a remote cluster . . . . . . . ... .. ... ... 133
Dataflow of external values in a remote cluster . . . . ... .. ... ... .. 135
Dataflow of direct values in a remote cluster . . . . . . .. ... ... ... .. 136
Dataflow of indirect values in a remote cluster . . . . . . . ... ... ... .. 137
Effect of the update operation on indirect variables . . . . . . ... ... ... 140
Balancing factors in asynchronous delayed RMI . . . . . . .. ... ... ... 153
A simple Java program . . . . . ... Lo 160
The constant pool of the class file produced by compiling the Java program

in Figure A.1 . . . . Lo e 161
Disassembly of the class file produced by compiling the Java program in Figure

AL e 162

A portion of the XML configuration file standardjboss.xml from JBoss 3.2.1 172



List of Tables

3.1
3.2

3.3

34

3.5

3.6

4.1
4.2

Times for the six benchmark programs under the different test configurations
Normalised execution times for the six benchmark programs under the differ-
ent test configurations relative to time taken by HotSpot . . . . . . . ... ..
Extra time taken by first-time runs in addition to the mean runtime . . . . .
The total number of times that a block is entered from the executor for the
two variants of the extensive fragmentation scheme, and the number of times
that an executor is entered during the course of a program . . . . . . ... ..
Times for the six benchmark programs under the different test configurations
running on an old version of Veneer . . . . . ... ... .. L.
Slowdowns for the six benchmark programs under the different test configu-

rations running on an old version of Veneer . . . . ... ... ... ... ...

Results for the aggregation optimisation applied to the MUD example . . . .
Percentage breakdown of the time spent executing 1000 iterations of the look
method in the MUD example . . . . . . . . .. .. ... ... ... ... ..

13

62



Chapter 1

Introduction

The focus of the computing industry has changed dramatically during the past decade, from
computers working as independent units to computers working together as part of a group to
achieve some overall task. This move has been fuelled largely by the growth of the Internet,
which has provided a wide-area network of unprecedented size and pervasiveness, offering
new opportunities in many diverse areas. However, in order to exploit the Internet, one
must develop distributed applications to use on it.

There are many abstractions available that make distributed programming easier by
using familiar concepts from conventional single-machine programming, such as objects with
callable methods. However, none of them are able to maintain the illusion for long in terms
of performance, since invoking a method over a network is orders of magnitude slower.
Developers must therefore make remote calls sparingly in order to achieve good performance,
which typically forces applications into conforming to one of several performance-oriented
design patterns, which may or may not be a natural fit for the application logic.

The goal of the work presented in this thesis is to change this, so that developers can
write programs as if they were meant to run on a local machine, and program would be
automatically and transparently transformed into one that is comparable in performance to

an equivalent application that was designed with performance in mind from the start.

1.1 Programming for networks

The Internet is built on top of the Internet Protocol (IP), which provides a simple means
for one computer to deliver data to another at a specified address, with additional protocols
such as TCP providing the notion of a connection between hosts. Practically all modern
systems have since adopted these protocols as their core network protocols.

These protocols by themselves already provide enough functionality for developers to
write programs that can communicate with other programs running on separate hosts by
means of raw data exchanges. However, this is still too low-level for some applications, espe-
cially those with less specialised and fixed purposes. This has led to a variety of abstractions
that provide for easier development of general distributed applications.

Oune popular abstraction is that of a Remote Procedure Call (RPC), which provides the
illusion of one process being able to call a procedure in a second process that is running on

a different host. With the increasing popularity of Object-Oriented Programming (OOP)

14



CHAPTER 1. INTRODUCTION 15

and component-based programming, the concept of RPCs has been extended to the object
domain, enabling the methods of objects to be invoked remotely. Examples of such systems
are the Common Object Resource Broker Architecture (CORBA) [39], DCOM (Distributed
Common Object Model) [41], .NET Remoting [61] and Remote Method Invocation (RMI)
[63].

1.2 Problems with remote object programming

The creators of CORBA, DCOM, Remoting and RMI have put considerable effort into
making calls to remote methods behave as closely as possible to calling local methods, but
that does not mean that one can write a program exactly as if the remote methods were
local.

One problem is that the semantics of remote calls differ from those of local calls in several

aspects:

e There is always the possibility of network failure

e Arguments to remote methods are passed by value (since the remote method operates
in a different address space), whereas local methods offer at least the possibility of

passing the arguments by reference

These semantic differences are stated in the specifications, and the programmer is expected
to handle these explicitly.

However, a potentially more serious problem is performance. The cost of a remote call
may be several orders of magnitude greater than a local call, since in addition to the time
taken for the callee to execute, there is also the time consumed by network latency and
the time taken to marshal data across the network!. Whereas the semantic differences may
necessitate localised changes or additions to an existing code-base, solving the performance
problem may require the restructuring of the entire application.

Traditional OOP often leads to a proliferation of small methods and objects, with ac-
cessor methods (i.e. get and set methods) for every field, one object per conceptual entity,
and so on. If this approach is taken with remote objects, then the result will typically per-
form poorly, since the network boundary is being crossed frequently. Performance can be
drastically improved by reducing the number and size of network transactions made by the
distributed application. This is normally done by structuring the application in ways that
are covered later in Chapter 2.

The structuring of an application is obviously best done at design-time, before any code
has been written. Restructuring an existing application is much more problematic, especially
if it has already been widely deployed. It requires source-code access, is often tedious? and

new bugs might be introduced into the code during the process.

I Marshalling is the process by which data is transmitted from one host to another.
2 Automatic refactoring tools can help here.



CHAPTER 1. INTRODUCTION 16

1.3 The current state of distributed program optimisa-
tion

In many respects, the situation with remote-calls is analogous to the early days of structured
programming, where procedure calls had a relatively high overhead, and developers wanting
optimal performance either avoided them altogether in favour of gotos or subroutines, or
used them sparingly. However, this is no longer a major issue, due to the vastly improved
performance of modern processors and compilers. Fast modern CPUs with the aid of features
such as branch prediction and speculative execution have dramatically reduced the overhead
of procedure calls, while modern compilers, with features such as inlining and interprocedural
data analysis, can often eliminate procedure calls altogether or at least remove the barriers
posed to code optimisation by the call boundary.

Network speeds are also increasing, though at a considerably slower rate compared to
CPU speeds. This means that the network overhead of remote calls will tend to decrease as
time progresses, but communicating across networks is still far slower than local communi-
cation within a single system.

Most approaches to optimising existing distributed programs involve fine-tuning the re-
mote call mechanism and the underlying communication protocol, so that each call takes
as little time as possible. However, these optimisation schemes often have limitations, such
as having a restricted context in which the optimisations are valid. These techniques are
addressed in Chapter 2.

Relatively little investigation has been done into trying to apply the principles of modern
optimising compilers to distributed programs as a whole, to improve performance at the
application level by utilising knowledge of the structure and state of the programs running
on all communicating hosts. So far, the closest attempts have been in the area of remote-

object caching (see Section 2.2.5). There are a few possible reasons for this.

e Code visibility — in order to optimise code, one must have access to it. This is clearly
not the case in a distributed environment, since the client never sees the body of the
remote method that is executed on its behalf at any point. Similarly, the server is
unaware of the context of the client in which the remote method is being invoked.

e Versioning — in a generalised distributed environment, there may be many different
types of client programs, and many instances of each of those types. On the server,
a given remote object might be accessed simultaneously by several different clients at
any point in time. It would obviously not be acceptable to modify the behaviour of
the remote object in order to optimise the performance for one particular client, or

even for one particular class of client, if that would break the other clients.

e Maintainer separation — clients and servers might not be created and/or maintained
by the same parties. This means that proposals for improvement from another party

will often take a long time to be processed, with no guarantee of acceptance.

e Failure — local method calls are very reliable, and the possibility of unexpected fail-
ure can essentially be ignored. However, with remote calls, the possibility of sudden

failure is always present, and must be accounted for. This means that remote call



CHAPTER 1. INTRODUCTION 17

optimisations must respect the original behaviour under failure conditions as well as

normal execution, limiting the possible scope for optimisation.

The current state of affairs is clearly undesirable from the software engineering perspective
— in order to achieve good performance, the design of distributed applications must revolve
around the performance issues, rather than issues such as maintainability, simplicity and
clarity. Extra effort is also needed on the part of the developers, since they must spend time
in learning and applying high-performance design patterns.

At present, these problems are tolerated in the developer community. This is because
most distributed applications are either developed in-house, or have a narrow, clearly-defined
role to play, thereby limiting the number of remote methods that need to be provided.
However, this may well change in the future as concepts such as web services and grid
computing gain wider acceptance, and servers begin to offer a wide range of services to the
public. A client may well wish to compose different services from different servers together
to achieve some overall task. In that scenario, the current conditions will eventually break

down, and the performance and maintenance problems will come into the foreground.

1.4 Goals

The ultimate goal of this thesis is to do for distributed programs what optimising compilers
have done for local programs — so that developers can, within reason, write code as they
see fit, and the compiler will automatically modify the code to achieve a high level of
performance without changing the overall behaviour. To this end, the following problems
are investigated:

e Reducing the number of times that the network boundary is crossed

Reducing the amount of data that is sent over the network

Routing around slow connections

e Overcoming the optimisation barrier posed by the network in order to allow code

optimisation to take place

Maintaining the semantics and security of the original code as far as possible

1.5 A new approach

Java [6, 38] Remote Method Invocation has been chosen as the target for optimisation pri-
marily because it is much smaller, simpler and cleaner when compared to technologies like
CORBA or DCOM, and hence is easier to work with and manage. Furthermore, it forms
the base upon which Enterprise JavaBeans [65] (Sun’s distributed component-based archi-
tecture) is built, which is becoming increasingly important in commercial applications. How-
ever, the principles that are explored in this thesis should be applicable to other distributed
architectures as well, although the dynamic nature of the optimisations make similarly dy-
namic systems such as Java, Python or .NET more suitable as implementation platforms
compared to static systems such as CORBA programs written in C++, which will have to

rely heavily on static source-to-source transformations instead.



CHAPTER 1. INTRODUCTION 18

The core concept is to intercept each remote method invocation made by the client.
Instead of executing it immediately, it is placed into a queue of pending remote calls instead,
and execution continues. The queue continues to build up until some local operation leads
to a condition that necessitates the execution of the delayed remote calls (for example, if the
local code uses a value defined by one of the local calls). At that point, the client dispatches
the delayed calls as a group to their destinations, where they are executed. Normal execution
of the local code may proceed after the remote calls have been executed.

This scheme has a number of benefits. Firstly, sending delayed calls in batches reduces the
number of times the network is crossed, thereby decreasing the amount of network latency
incurred. Secondly, it also increases the scope of the client context information available to
the remote servers, by dealing with groups of calls at a time instead of individual calls. This
opens up the possibility of optimising between remote calls by exploiting the relationships
between calls.

In addition to the identity of the remote method and the call arguments, the client also
sends additional metadata to the server regarding the relationship between the calls within
the group, and that of the group with the remainder of the program. This enables the remote
server to make optimisations that could not have been performed otherwise. For example,
it is possible to avoid returning values that are not subsequently used by the client.

Other optimisations can also be performed, such as rerouting communications to exploit
fast connections, and caching frequently occurring groups of calls on the server so that they
can be quickly executed when the client encounters the same group of calls again.

1.6 Contributions

The following original contributions are made by this thesis:

e A new approach to automatically optimising distributed applications using Java RMI

is presented, based on the principles of delayed evaluation.

e A prototype implementation of the new RMI optimisations was designed and built.
A novel optimisation framework was created to support the implementation of this

prototype.

e The effect of the optimisations was evaluated using the prototype on a selection of test

applications.

e A number of issues are identified, that may lead to semantic problems when the RMI

optimisations are applied, as well as possible solutions.

e A theoretical framework on which to reason about the effects of the RMI transforma-
tions on the data flow of distributed programs is formulated, and the validity of one
of the RMI optimisations is demonstrated using this framework.

1.7 Thesis outline

Existing work related to the Veneer virtual JVM and the RMI optimisations is surveyed

in Chapter 2. Each major topic is examined in turn, and the relative advantages and



CHAPTER 1. INTRODUCTION 19

disadvantages of each are discussed. The relationship of the topic with respect to the work
presented in this thesis is also discussed.

The new runtime optimisation framework that was developed to implement the RMI op-
timisations is presented in Chapter 3. The performance of the framework has been evaluated
under some common benchmarks.

The new RMI optimisations are presented in Chapter 4. The various problems that may
occur are laid out, along with possible solutions. The optimisations have been experimentally
evaluated using a small suite of examples.

A theoretical framework on which to model the RMI optimisations is developed in Chap-
ter 5. The effects of the optimisations, the problems that arise and their solutions are
described in terms of the framework.

The thesis is concluded in Chapter 6 by summarising the main contributions of this
thesis, and discussing potential future extensions to this work.



Chapter 2

Related work

This thesis covers a broad range of work, including code optimisation, software engineering,
virtual machines and distributed systems. This chapter surveys existing work related to the
major contributions of this thesis — the DESORMI optimisations, and the virtual JVM
platform upon which the RMI optimisations are implemented. Since these are fairly disjoint
topics, this chapter is split into two major sections to cover the work related to each of these
subjects. For more information on the Soot framework used to implement Veneer and on
Java RMI itself, please refer to Appendices A and B respectively.

Related work is grouped by the general approach taken. The approach is introduced,
and the general advantages and disadvantages inherent to the approach are discussed, and
contrasted with work covered by this thesis. Specific implementations of the approach are

then presented.

2.1 Work related to Veneer

This section covers work related to the Veneer virtual JVM, which is described in Chapter
3.

2.1.1 Dynamic program optimisations

There are many different types of dynamic optimisations. For example, many optimisations
are only valid under certain conditions. If these conditions cannot be determined statically,
then the optimisation can still be used by guarding the optimised code with a runtime check,
falling back to the original code if the check fails. One example of such an optimisation is
partial evaluation [82, 83|, where a function is specialised assuming that certain parame-
ters take on particular values on entry. Naturally, the resulting function is only valid if
this assumption is true at runtime, which requires a runtime check to be made before the
specialised function is called.

Dynamic optimisation is also used to work around the limits of static data-flow analy-
sis for more aggressive optimisations. Conventional data-flow analyses lose information at
program branches, since the combining of data from the various branches must be done
conservatively. For example, if one branch only uses a variable A, while the other branch
only uses a variable B, then both A and B will be identified as being live at the branch point

20



CHAPTER 2. RELATED WORK 21

despite only one actually being used at runtime. If the branch that will be taken is known
beforehand, it may be possible to optimise the program more aggressively by knowing which
of A and B are live. Sharma [84] uses this concept to perform accurate data prefetching.
More ambitious dynamic optimisations involve modifying a program on-the-fly. For
example, the Sun HotSpot JVM [64] can generate compiled code containing inlined methods,
but when classes are dynamically loaded, some of the inlinings may be invalidated. In this
case, HotSpot must remove the inlined code immediately and revert back to unoptimised

code, although it may be reoptimised later.

2.1.2 Metaprogramming

Metaprogramming is the creation of metaprograms, which are programs that operate on
other programs. Compilers and interpreters can regarded as a type of metaprogram. Metapro-
gramming is an umbrella term that encompasses a large and diverse range of subjects, such
as reflection and multi-stage programming.

Veneer is a metaprogramming tool, since it is used to modify the behaviour of existing
programs as defined by the executors used to execute application code. As a result, a number
of metaprogramming subjects are particularly closely related to Veneer, which are presented

in this section.

2.1.2.1 Aspect-Oriented programming

A number of parallels can be drawn between the Veneer execution model and the aspect-
oriented programming [45] world. Aspect-oriented programming (AOP) deals with the sep-
aration of cross-cutting concerns. For example, when adding support for logging, logging
statements need to be inserted throughout a program at various points, which is error-prone
and laborious. It is also lacking in modularity, which can be especially problematic if all the
logging statements need to be changed in some way.

AOP modularises this process by introducing the concept of aspects as separate program
units. An aspect defines the changes needed to implement a cross-cutting concern (known
as advice in AOP terminology) and the program points that the changes need to be applied
to (the program points are known as join-points, and are specified by pointcut designators).
The process of applying the changes defined by an aspect to an application program is known
as aspect weaving.

The process of fragmenting a method and introducing points at which the executor can
regain control is analogous to establishing join-points in the program. The actions performed
by the executor can be considered a form of advice, and the decision code in the executor is
similar to the pointcut designators of AspectJ [24].

The main advantage of Veneer over existing implementations of AOP on Java is the
control that Veneer provides over control-flow. AspectJ provides a limited form of method
control-flow by using ‘around’ advice, where the advice is executed in place of the original
point-cut, with the possibility of executing the original code using the proceed construct.
However, AspectJ does not permit one to manipulate the code at join-points as a first-order
object, which was needed for the RMI optimisations. In essence, blocks, in conjunction with

the method state, form closures that can be passed around arbitrarily.



CHAPTER 2. RELATED WORK 22

2.1.2.2 Reflective architectures

Guarana [71] and metaXa [37] are reflective architectures for Java. Essentially, they provide
a means of attaching meta-objects to objects, such that any accesses to and from an object
are intercepted by the meta-object. The meta-objects can then decide what to do next. For
example, if one invokes a method on an object, then the meta-object can perform tasks such
as:

Return a value, without ever calling the intended method

Modify the parameters to the method before passing control to the method

Allow the method to be executed but modify the result before it gets back to the

programiner
e Redirect the method call to another object

e Redirect the method call to another method

An obvious application for Guarana and metaXa would be in delaying remote calls, by
attaching a meta-object to objects that are potentially remote stubs. However, the only
time when meta-objects have control is when the object they are associated with is accessed
in some way. At other times, they are powerless. This means that they are not powerful
enough to arbitrarily insert force-points inside an executing method even if meta-objects were
attached to all objects. This is because simple operations such as a = b, where a and b are
both local variables, will not be intercepted since they do not modify the state of any objects.
Also, they cannot radically alter control-flow (i.e. arbitrarily jumping from one point in a
method to another), or generate new code except in the limited sense of composing existing
code together. Furthermore, both systems rely on direct modifications to the JVM. This
makes them platform-specific, which is especially undesirable in a heterogeneous distributed

environment.

2.1.3 Automatic runtime program optimisation

Runtime platforms that automatically optimise the performance of programs running on
them are now mainstream technologies, primarily due to the rapid rise of Java. They typi-
cally work by gathering information about a program as it runs, and using this information
to focus program optimisations on the problematic areas detected. This process is typically
transparent to the user, and requires no manual intervention.

The main problem is that the optimisations carried out by these runtime platforms are
usually generic in nature and fail to exploit domain-specific knowledge, although this is not
inherent to the approach. By contrast, Veneer does not perform any optimisations per se,
but provides a convenient platform on which runtime optimisations can be implemented,

which can be generic or domain-specific in nature.

2.1.3.1 HotSpot performance engine

HotSpot [64] is an advanced Java virtual machine developed by Sun that attempts to solve

the performance problems of Java using dynamic optimisation. It can collect information



CHAPTER 2. RELATED WORK 23

about a program as it is running, and make use of this to efficiently optimise the program
on-the-fly.

One way in which this information is used is in deciding what code should be compiled.
Since just-in-time compilation is a relatively expensive process, HotSpot starts execution in
interpretive mode, and only applies compilation to code that is determined to be frequently
executed, so that the improvement gained by compilation outweighs the cost of compilation.
Another optimisation is the aggressive inlining of virtual calls, which eliminates method call
overhead and exposes more opportunities for code optimisation. The inlined code can be
‘de-inlined’ when the type of object upon which the call is invoked changes.

The great advantage of HotSpot is that it is completely transparent to the user, and
does not require the source code to a program. However, it is limited in the scope of its
optimisations to fairly low-level optimisations such as common-subexpression elimination
and dead-code elimination — higher-level optimisations such as that being done in this

project are generally not possible. It is also highly platform-specific.

2.1.3.2 Dynamo and Mojo

Dynamo [9], DynamoRIO [15] and Mojo [18] are dynamic optimisation systems, with Dy-
namo running on PA-RISC based workstations running HP-UX, while DynamoRIO and
Mojo work on TA-32 architectures running Windows 2000. They operate by executing a
program, building up an instruction trace as they proceed. When a particular trace is iden-
tified as ‘hot’ (i.e. often used), the trace is compiled into a fragment and is run through an
optimiser. When control later passes to the point marking the beginning of the hot-trace,
control is passed to the optimised fragment instead. Fragments that pass control to a point
that marks the beginning of another hot-trace are patched so that they jump directly to the
next fragment in line instead of returning control to the runtime system.

The underlying principle is practically identical to Veneer, differing only in environment
and usage. Dynamo and Mojo both operate at the machine-code level. Machine code is
essentially unstructured in nature, while structured-programming is strictly enforced in Java
bytecode. For example, no jumping between instructions in different methods is permitted.
To obtain the same effect, a new class must be created with the two method bodies joined
together and subsequently loaded into the JVM, as opposed to simply appending a jump
instruction in Dynamo when linking fragments together. It is also not possible to truly
change code that has already been loaded into the JVM, so this must be emulated by
generating new code and pointing everything in the direction of the new code. Although the
low-level nature of machine code makes program analysis difficult for Dynamo and Mojo, the
freedom provided by machine code makes it relatively easy to implement efficiently. With
Java bytecode, the situation is reversed.

Dynamo needs to process all the code that a program executes in order to ensure that
control is maintained, since there may be constructs such as direct jumps to arbitrary lo-
cations, functions that never return, return-address rewriting, longjmps etc. Veneer does
not need to do this, hence intercepted code may call original code, and vice-versa. This is
possible due to the rigid structure of Java bytecode, where the only interprocedural jumps
permitted are method calls. This guarantees that all method calls are guaranteed to return

eventually, via either a method return or a thrown exception, at which point control is re-



CHAPTER 2. RELATED WORK 24

gained. Object fields are also left in place, so that unintercepted methods can find the data
at the expected locations.

Also, whereas Dynamo and Mojo are primarily concerned with extracting the maximum
performance out of software, Veneer also acts as an enabling architecture that permits

programmers to do new things that they would not have been able to without it.

2.1.4 Nested virtual machines

The concept of implementing a virtual machine for one language on top of another is not
original to this thesis. It is relatively uncommon though, due to the obvious performance
penalty involved.

Examples of Java Virtual Machines implemented on top of another JVM are JavalnJava
[87] and Rivet [16]. However, unlike Veneer, they attempt to manually simulate every aspect
of a JVM, including memory allocation, multi-threading and garbage collection. Unsurpris-
ingly, the result is extremely slow. Veneer attempts to avoid this by delegating as much as
possible to the underlying JVM, taking control only when strictly necessary.

The Jikes RVM [4], which is also written in Java, takes a completely different approach
in that it compiles the bytecode to machine code which is then executed natively rather
than on an underlying JVM. This has the advantage of high execution speed, but sacrifices
portability since the output of the compiler is highly platform-specific.

2.1.5 Interpreters

Gagnon [34] classifies interpreters into the following categories based on the method used to

dispatch instructions:

e Switching — the interpreter consists of a large switch statement inside a loop. Each
branch of the switch statement contains the implementation of one instruction. On
each iteration, the opcode pointed to by the program counter is used to select which
branch of the switch statement should be taken to execute the current instruction.

The program counter is then updated, and the next iteration begins.

e Direct threading — the opcodes that constitute an executable program are replaced
by the addresses of the code that implement the instructions. In the implementation
of every instruction, after the instruction has been executed, the program counter
is incremented, and an address is fetched from the memory location pointed to by
the updated program counter. A jump is then made to the fetched address. In this
model, each instruction implementation jumps directly to the implementation of the

next instruction via an indirect jump.

e Inline threading — this is an extension of direct threading. A buffer is allocated for
every basic block of the program. For every instruction in the block, the corresponding
code that implements it in the interpreter is copied into the buffer. At the end of the
basic block, dispatch code is added to use the contents of the location pointed to by
the program counter as the destination of an indirect jump. The original opcode at the
beginning of each basic block is then replaced by the address of the newly allocated

buffer corresponding to the basic block. In this model, all instruction implementations



CHAPTER 2. RELATED WORK 25

within a basic block fall-through to the next instruction implementation, with the
sole exception of the last instruction, which must use an indirect jump to the buffer

containing the implementation of the next basic block.

Veneer is unusual in that it exhibits characteristics of all three dispatch models. It behaves
similarly to inline-threaded interpreters in that multiple instructions can be grouped together
and executed at full-speed with no extra overhead involved in moving between instructions.
In fact, Veneer goes beyond inline-threading in that more than one basic block can placed
into the same group — the user-supplied runtime policy is responsible for determining where
the breaks between groups occur. In Veneer, such instruction groups are referred to as
instruction blocks, or just blocks.

Veneer diverges from the threaded dispatch models when moving between blocks. Since
Java requires all executable code to be inside methods, blocks are implemented as methods
in new classes generated at class load-time. In order to execute the next block, the method
encapsulating it must be invoked. However, if this is done from within another block, it
may eventually lead to a stack overflow since the method activation records are not removed
from the call stack until the end of the method being executed is reached. If the executed
code contains loops, then the number of calls made is potentially unbounded.

This problem may be solved using tail-recursive calls, but Java does not currently support
this. The workaround used in Veneer is to adopt a continuation-passing style, where each
block returns an index that identifies the next block when it finishes. At the top level of
execution implemented by a Veneer executor, there is a loop that on each iteration executes
the current block and then updates the current block to its successor based on the returned
index. This resembles the classic switching dispatch mechanism. However, the pointer to
the next block is a reference to a polymorphic object rather than an index to an opcode.
Blocks are therefore dispatched by a virtual call rather than by a switch statement, which
is closer to the principle of threaded dispatch than to switching since virtual calls are a
form of indirect jump. A similar approach was used by Meehan and Joy [62] to compile

tail-recursive Haskell functions into Java methods that execute in constant space.

2.1.6 Conclusion

Veneer is a tool that provides an interpretive model of program execution, which facilitates
the easy implementation of metaprogramming techniques by modifying the interpreter. This
low-level view of a program permits a higher degree of functionality compared to other
existing metaprogramming frameworks.

As an interpreter, Veneer uses a mixture of the switched and inline threaded dispatch
methods due to the limitations of the Java programming model. This means that perfor-
mance is much better than a pure switched interpreter, but is lower than the potential
performance of an interpreter with true inline threading.

Since Veneer is used as a metaprogramming tool, it is only used to control the execution
of a program. It makes no attempt to handle VM functions such as memory allocation or
threading, relying instead on the facilities provided by the underlying JVM. This makes
Veneer considerably faster compared to other nested virtual machines which attempt to
emulate all aspects of the JVM.



CHAPTER 2. RELATED WORK 26

2.2 Work related to DESORMI

This section covers work related to the DESORMI optimisations, which are presented in
Chapter 4.

2.2.1 Design patterns

There are a huge number of ways to write a distributed application. However, programming
practices that lead to good applications and to bad applications tend to occur repeatedly.
These practices are codified into what are known as ‘patterns’ and ‘anti-patterns’ respec-
tively. There are many works on design patterns, such as [5, 7, 59].

Design patterns play a vital role in enterprise development, since the design of an ap-
plication has such a drastic impact on its performance. Examples of performance-related

patterns are:

o Command objects — a command object is an object that contains a script along with
some data that is to be executed by the server. The server needs to provide a remote
method that accepts a command object, and when this method is called, the server
executes the script to completion before returning. Since command objects can contain
multiple commands, one can execute many commands on the server-side using only
a single remote call. The IBM SanFrancisco project uses this approach to speed up

remote calls [20].

e Session facades —the session facade pattern is probably the most commonly used
design pattern of all. In a sense, it is the opposite of the command-object pattern —
instead of the client sending the server a set of operations to be executed, the server
offers a choice of predefined sets of operations for the client to choose from. Session
facades may therefore be regarded as ‘pre-bottled’ batch scripts that are explicitly
provided by the server. There are numerous advantages to using session facades. The
‘scripts’ are already situated on the server, so there is no need to transport them across
the network explicitly — all that is required is the identity of the facade method. Also,
since the facades are explicitly provided by the server and are limited in number, there
are likely to be fewer security holes in the server than if arbitrary scripts were accepted

from the client.

e Value objects —methods to access fields of an object (i.e. get and set methods) are
very common in object-oriented programming in general, and compulsory in RMI since
there is no way to set fields on a remote object directly. However, it is very inefficient
to make many remote calls just to get or set the contents of multiple fields in the
remote object. Value objects are essentially a specialised type of command object
used to ‘bundle’ the set of data to be sent or retrieved so that multiple get or set

operations can be performed using a single remote call.

e Session state — a remote object can store state between method calls so that the client
does not have to resend previously sent data. The main disadvantage is that it adds
additional complexity due to the need to manage the storage of state, especially when

multiple clients access the same object.



CHAPTER 2. RELATED WORK 27

These patterns operate on the same general principle — to reduce the amount of traffic
over the network by lowering the number of calls made or the amount of data sent in each
call. These are the same principles that the DESORMI optimisations are based around.
Indeed, the DESORMI optimisations can be viewed as a way to dynamically restructure a

sub-optimal program to implement these design patterns automatically.

2.2.2 RMI protocol optimisations

RMI was designed for operation across large, unreliable networks where the servers and
clients may be updated at any time. This means that the RMI protocol is rather verbose in
order to deal with the various situations that may arise. It is therefore possible to achieve
better performance with RMI by reducing the amount of information sent on each call.

The main problem with this type of optimisation is that it inevitably reduces the re-
silience of RMI. It can also be argued that the relatively minor reductions in the amount of
data sent are unimportant in the long term, since there is no practical limit on the amount
of bandwidth one can have (provided that one is willing to pay for it), and the cost per unit
of bandwidth is steadily decreasing in any case.

The DESORMI optimisations also aim to reduce the amount of network bandwidth used
in addition to reducing latency. This is performed by making use of prior knowledge gained
during previous remote calls. For example, call aggregation enables the sharing of data
between calls, while plan caching makes use of call patterns that have been encountered
before to effectively compress the remote plan description.

DESORMI shares the same weakness as the other examples of this approach in that it
is more fragile than the original RMI mechanism, although it manifests in a different way.
This is due to the networked hosts relying more on implicit knowledge of each other. For
example, if the plan cache was corrupted on a server, it might execute the wrong set of

remote calls in response to a request to execute a cached remote plan from a client.

2.2.2.1 Dropping support for unneeded RMI facilities

One example of RMI protocol optimisation is UKA serialisation [75]. This work was done
in the context of using RMI as a communication mechanism between nodes for high-
performance parallel programs, so during a single run of the entire parallel program, the
code at each node will not change. Support for versioning may therefore be safely dropped
within this context. Two main techniques were used for this:

e Slim type encoding — when an instance of a class is first serialised by the default
mechanism, a description of the class layout is written (i.e. the names and types of the
fields) so that the instances can be reconstituted when deserialised later. UKA serial-
isation skips this, reasoning that the same bytecode for the class should be available
to both client and server. Instead, it only writes the textual name of the class, which
is considerably shorter and faster than the complete type information.

e Partial resets — the output streams used to serialise objects are reset between remote
calls, which flushes the object type information as well as the hash-table used to keep
track of objects that have already been serialised. UKA serialisation resets only the



CHAPTER 2. RELATED WORK 28

hash-table between calls, and not the type information. Type information therefore
does not need to be sent again between calls.

UKA serialisation does not support automatic object serialisation, which is a major incon-
venience. However, since the target is for high-performance programs, it would be better
for the serialisation routines to be made explicit anyway to eliminate the reflective overhead
required for automatic serialisation. This limitation is likely due to the order of fields re-
turned by the getFields method in the reflection API being non-deterministic, and so the
receiver will not be able to determine the order in which the fields were originally serialised.
However, since UKA serialisation assumes that the classes are identical on server and client,
it should have been possible to sort the fields lexicographically by name and type, and force
serialisation and deserialisation to occur in that order.

Although UKA serialisation offers good performance, it cannot be recommended in a
general, loosely-coupled distributed environment. Versioning issues will arise, since both
clients and servers are constantly changing by upgrading their JVMs and class libraries,
modifying their programs etc. Under these conditions, interoperability would break down

sooner or later with the UKA serialisation approach.

2.2.2.2 Using less expensive network protocols

RMI is based on the TCP networking protocol, which offers a reliable transport channel
between two endpoints. However, when operating on reliable networks, it may be more
efficient to use a less reliable protocol such as UDP, since it has less overhead.

An implementation of this approach can be found in the KaRMI framework [69], which is
a ‘lean and fast’ reimplementation of the JDK 1.2 RMI specification. Unlike the monolithic
implementation found in the standard JDKs, KaRMI permits the implementation of the
three main layers of RMI (stub, reference and transport layers) to be changed in order
to best suit the architecture on which the program is running. It has several advantages

compared with the implementation supplied by the JDK:

e Support for communications protocols other than socket communications built on top
of TCP/IP

o Takes short-cuts when a remote-object residing on the same host as the client is called
via RMI

e Reduced reliance on hash-tables
e Less debugging code

e Distributed garbage collection algorithm may be altered to suit the situation at hand

The ability to change the layers in KaRMI leads to several possible optimisations, one of
which is to exchange the default TCP transport layer for one which uses UDP instead for a
lower communication overhead. However, KaRMI cannot deal with applications that make
use of the fact that the JDK implementation is built on top of sockets by explicitly giving
the port numbers to which to send objects. Programs that rely on undocumented classes of
the JDK RMI implementation will obviously be broken by using KaRMI.



CHAPTER 2. RELATED WORK 29

Another approach is implemented by R-UDP [46], which is a modification of standard
RMI rather than a complete reimplementation. It uses the unreliable UDP transport pro-
tocol as opposed to TCP, trying to exploit properties specific to RMI in order to produce
an efficient communications protocol. In particular, it exploits the request-response nature
of RMI — since a remote call will always produce a response, then the equivalent of the
ACK signal in TCP that acknowledges the successful receipt of a number of packets may be
‘piggy-backed’ on top of the reply, thereby cutting down on the overall number of low-level
signal exchanges.

Unfortunately, in practice R-UDP turns out to be about to be about twice as slow as
standard TCP communications for making RMI calls. This was attributed to use of multiple
threads to handle transmission, retransmission and acknowledgement, with the requirement

for synchronisation between threads placing extra overheads on the system.

2.2.3 Specialising object serialisation to RMI

One of the reasons for the inefficiency of the RMI protocol is that the marshalling of data
to and from the remote object is handled using Java object serialisation. The object seri-
alisation API in Java exists separately from RMI, and as such is rather generalised, being
designed for flexibility and convenience rather than performance.

For example, when automatic serialisation is employed, reflection is used to first discover
the structure of an object, and then to write data to or read data from the object in an
interpretive fashion. Even providing explicit read0bject and writeObject methods does
not avoid the use of reflection, since reflection is also used to discover the presence of these
methods, and to serialise superclasses.

Since marshalling can take a substantial portion of the time required for an RMI call,
especially when operating over fast networks, it makes sense to optimise the serialisation
process with respect to RMI. However, although optimising serialisation can provide signif-
icant gains, it is also of questionable importance in the long term since the time taken to
serialise data is proportional to the speed of the CPU and the quantity of data to be seri-
alised. Since the speeds of CPUs are increasing at a far quicker rate than those of networks,
the proportion of time spent in marshalling will become more and more insignificant as time
progresses.

The DESORMI optimisations are orthogonal to this form of optimisation since DES-
ORMI does not make any attempt to optimise the underlying serialisation mechanism,
although it attempts to use it as efficiently as possible. Instead, it focuses on improving the
pattern of communication patterns between network hosts, using standard RMI to commu-

nicate when necessary.

2.2.3.1 Manta

An example of specialising object serialisation is Manta, which is a native compilation system
for Java that among other things contains an efficient implementation of RMI [58, 57]. In
keeping with the theme of native compilation, the majority of code in the critical path of
RMI is precompiled as well.

Manta uses the Panda library to handle low-level communication rather than the multi-

layered streams system provided by the Java library. At compile time, marshalling code is



CHAPTER 2. RELATED WORK 30

generated for all available classes that are used as arguments to remote calls. This code
explicitly reads/writes the contents of the class from/to the buffers provided by Panda,
thereby providing automatic object serialisation without the overhead of reflection incurred
by the default Java mechanism. The Manta equivalent of method stubs and skeletons also
read and write directly into Panda buffers, making use of the compiled marshalling code to
serialise the arguments of method calls.

Marshalling code is generated at runtime only for classes that have been dynamically
loaded. This only needs to occur once for every new class, since the generated code is
retained. Note that dynamic inspection of the class does not occur at any point during an
RMI call regardless of whether the class was dynamically loaded or not.

Manta also offers some other RMI optimisations:

e Arrays of primitives are copied into message buffers using a direct memory copy.

e Remote methods that can be conservatively determined to be non-blocking are serviced
by the thread that receives incoming connections rather than delegated to a new thread

to eliminate the overheads of context switching.

e Full type information for any class is only sent once to a given host. On subsequent
sends, a short, host-specific type ID is sent instead.

One weakness of Manta RMI is that it can only reach its full potential when communicating
between Manta systems. Manta does provide interoperability with standard Java RMI, but
most of the benefits are lost. Manta is not in widespread use, but this should not matter
for running tightly-coupled parallel programs. However, as with most Java implementations
built from scratch, Manta implements Java 1.1, which is far behind in terms of functionality
compared to the latest offerings from Sun and IBM, and will limit its acceptance.

2.2.3.2 Optimising CORBA

The work done on optimising CORBA by Gokhale and Schmidt [36] relies upon improve-
ments to the algorithms used in the free SunSoft implementation of the CORBA IIOP
(Internet Inter-ORB Protocol). Improvements include:

e Inlining of frequently called methods

e Precomputing and storing frequently-used information

Specialising generic methods with regard to caller context

Eliminating needless waste

Splitting large general functions up into smaller, specialised ones for better cache use

This main problem with this work is that it is far too implementation specific, since the
improvements made apply to that one implementation and no others, although the principles
are widely applicable. Indeed, it seems more like an exercise in program optimisation in
general, since the optimisations are not specific to the distributed context in which the

program will be used.



CHAPTER 2. RELATED WORK 31

2.2.3.3 Flick

Flick [30] is an IDL compiler that attempts to speed-up remote calls by applying tech-
niques that are found in optimising compilers for traditional languages such as Fortran or
C, plus a few domain-specific ones, to the compilation of stubs and skeletons. It performs

optimisations such as:

e Avoiding unnecessary tests for sufficient buffer space by analysing the storage require-

ments of messages at compile-time

Efficient management of memory allocated for parameters

Block-copying instead of component-by-component copying

Transport specialisation

Code inlining

2.2.3.4 Compiler optimised RMI

A recent paper [91] describes an approach using a form of heap analysis [35] to optimise the

performance of RMI as used in JavaParty [76] in three ways:

o If the analysis can detect the exact type of a call parameter, it can generate specialised

inline code to marshal it

o If it can be proven that there are no cyclic references in objects passed as arguments,

then cycle detection code is removed from the serialisation process

e Space allocated for arguments and return values from previous remote invocations is

reused if escape analysis indicates that the space does not escape from the caller thread

The first two optimisations are per-call optimisations that cut down on the amount of work
that needs to be done to serialise call arguments. The third optimisation is interesting in
that it is a rare example of a RMI optimisation that spans more than one call. However, it is
far less ambitious than the optimisations presented in this thesis in that it only implements
a form of pooling — it only reuses space allocated for objects, and not the actual value of

the objects.

2.2.4 Asynchronous remote calls

One obvious way of improving the performance of distributed programs is to employ paral-
lelism, where the client performs some other task while waiting for a remote call to finish.
Systems such as .NET Remoting and CORBA explicitly provide support for this, while
RMI does not. However, the same effect can be produced in an ad-hoc manner by using the
standard Java mechanisms for multi-threading.

The main conceptual difference between this and the DESORMI optimisations is in the
way they deal with latency. By using asynchronous calls, latency is hidden by performing
work in time that would otherwise be wasted. For this to be effective, there must be work
available locally that can be done while the remote call is in the process of executing, since

the latency is still present. However, this local work must generally be independent of the



CHAPTER 2. RELATED WORK 32

work being done remotely. Such work cannot always be found, and in any case requires
explicit code rescheduling on the part of the application developer, which may complicate
the structure of the program. If no local work can be found to execute in parallel with the
remote call, then asynchronous calls are usually slower than synchronous calls due to added
administrative overheads.

By contrast, the DESORMI approach actually reduces the overall amount of latency
incurred, rather than hiding the consequences of it. It does not rely on having work that
can be done independently of the remote call for efficiency, although it can also exploit
independent local code by aggregating calls after it, which helps to reduce latencies further.

The relative performance of the two approaches depends very much on the application
being optimised. If useful local work can always be found during a remote call, then asyn-
chronous calls will perform better since DESORMI is inherently serial rather than parallel.
However, if parallelisation is not always possible, then DESORMI will perform better since
the time wasted due to latency is reduced. A scheme to merge the two types of remote call

is proposed as future work in Section 6.2.12.

2.2.4.1 Asynchronous RMI

Asynchronous RMI (ARMI) [79] is an RMI variant which provides explicit support for
asynchronous remote calls. This is done by the client explicitly providing a mailbox into
which the server can drop completed results into. Every remote call results in a receipt,
which acts as a key into the mailbox. The server uses it to deposit the finished result of the
call, while the client can use it to retrieve the result.

ARMI is an explicit mechanism that modifies the semantics of RMI, which may make
it unattractive to move existing RMI programs onto, since the changes that need to be
made might not be obvious. A trivial way of maintaining semantics would be to explicitly
wait after each call for the result to arrive in the mailbox before continuing, but this has
been shown to behave worse than standard RMI due to the extra administrative overhead.

However, it may provide a good point from which to start.

2.2.5 RMI object caching

The concept of caching a remote-object locally is covered in the same paper as R-UDP [46].
The basic idea is to keep copies of previously accessed remote-objects on the same same host
as the callee, such that subsequent remote calls will be received by the cached copy instead
of the ‘true’ remote object.

When a write occurs to a local cached object, the client communicates with the server
hosting the real remote object, which in turn sends out invalidation messages to all hosts
that have a cached copy. When the invalidation is complete, the client may continue with
its operation. Changes are not written back to the server. When another client attempts
to access read invalidated data, it makes a request to the server, which may have to fetch it
from the client that holds the latest state of the object.

This works well provided that most operations on cached objects are reads. A write
operation incurs high penalties for all users of the cached object, since the client has to
wait for invalidation to finish before proceeding. The first request for invalidated data will

also incur an extra delay as the server fetches it from the client performing the update.



CHAPTER 2. RELATED WORK 33

Essentially, extra timing dependencies have been introduced where there were none before,
with performance limited by the speed of the slowest link. Also, this work does not appear
to consider the size of the object state in question. If the object state is large, then the cost
of transporting it around may outweigh the benefits gained by having a local copy.

A later implementation of remote-object caching [29] deals with this problem by im-
plementing the notion of reduced objects, where only a subset of the remote-object state is
cached on the client. The subset that is cached depends on the properties of the invoked
methods — for example, if a called method only accesses immutable variables, then those
variables can be cached on the client without needing to deal with consistency issues.

Other potential weaknesses of object caching include:

e [t takes time to transport bytecode across a network and to load it into a virtual
machine. This time may outweigh the speedup gained by local execution if the cached

object is rarely used.

e The balance of work between the client and server is drastically changed, with the
client taking on more work. If the original purpose for distributing an application
was to offload work from the client, then moving it back would obviously defeat the

original intent.

e The host that contains the most up-to-date state of a remote object will shift around
as clients write to the object. Moving the master copy of an object onto a potentially
unreliable client is dangerous, since the client may fail, causing the most recent state
of the object to be lost. A malicious client may even deliberately corrupt the state in

an attempt to disrupt the overall system.

o Clients will be able to inspect the implementation of the remote object, which may be

a problem if the implementation contains sensitive code.

2.2.6 Performance tuning systems

One of the best ways of optimising the performance of an application is to profile it first.
Profiling provides information regarding program behaviour such as time spent in different
methods or memory usage, which helps developers to efficiently find the location, severity
and type of performance problems in a program. There is a large body of work in this area,
and profiling tools are also widely available. Examples of commercial profiling tools for Java
are JProbe [44] and Optimizeit [73].

However, while profiling tools can help to locate performance problems, they cannot
actually solve them, since they are primarily programming aids. A further development of
profiling is to use the collected information to automatically optimise a program as it runs.
Systems exist that perform this at various levels of abstraction.

At one end of the abstraction scale are high-level systems such as AutoTune [28], which
collect performance data for an application such as a web server via a system of monitoring
agents. These agents monitor the workload and performance level of an application, and
modify adjustable parameters of the application to dynamically optimise performance as
the workload changes. By using a feedback system where the consequences of a parameter
change are correlated with its results, it is possible for such systems to learn how to maximise

the performance of the application.



CHAPTER 2. RELATED WORK 34

At the other end of the scale are systems that operate at low levels of abstraction, such as
Dynamo and the Sun HotSpot JVM discussed earlier in Section 2.1.3. These typically insert
profiling hooks into the program code to measure certain performance characteristics, and
after gathering enough information, they modify the actual code executed by the program
in order to improve performance based on the measured information.

The high-level approach has various advantages. It is usually safer, since it operates on
a predefined set of parameters, and so any mistakes made by the optimisation system are
unlikely to be disastrous. The tuning parameters are also likely to be domain-specific with
a well-defined effect. However, some of the burden of optimisation is now placed on the
developers of the application since they must provide these tunable parameters.

The low-level approach has the advantage in that it is usually transparent from the point
of view of the developer, who does not need to do anything special to enable optimisation.
However, generalised systems such as HotSpot are limited in the scope of their optimisations
since they tend to be generic and conservative in nature.

At present, the RMI optimisations covered in this thesis do not rely on any form of
profiling. Instead, the optimisations are applied at every available opportunity. However,
it is possible to extend at least the server forwarding optimisation to make use of profiled

information. This is discussed as future work in Section 6.2.6.

2.2.7 Delayed execution

The general concept of automatically aggregating a large number of small operations into a
smaller number of large operations for more efficient processing is very old and ubiquitous,
occurring at all levels in a computer system from the underlying hardware to the operating
system in the form of buffering. However, while it is fairly easy to automatically buffer
low-level operations because they typically behave in a uniform manner and work within
a fixed context, it is considerably harder to apply this to application programs due to the
high-level dependencies that occur between instructions and the sheer number of possible
instruction mixes.

There is also a connection with functional languages featuring lazy-evaluation such as
Haskell, in that work is only done when required, and at the last possible moment, thereby
gathering a higher degree of context information with which to optimise the operation.
However, in functional languages, it is possible to avoid doing work altogether if it is not
ultimately needed (which allows one to write elegant programs that involve operating on
infinite data structures). Since Java is an imperative language with side-effects, it can be
very difficult to determine whether operations are needed, and so all operations are executed
eventually. The presence of I/O and multi-threading only serve to compound the problem.

The remainder of this section deals with existing work that shares the same basic phi-
losophy of delaying operations for as long as possible to accumulate context information in

order to find better optimisation opportunities at the application level.

2.2.7.1 Delayed RMI

Delayed RMI (DRMI) [60] was the predecessor of this project, and essentially had the same
aims and the same basic technique as this project, but was much more primitive in many

ways.



CHAPTER 2. RELATED WORK 35

d_RemoteObj d_r = (d_Remotelbj) r;

d_int d_x = d_r.f(new d_int(a));
d<String> d_y = d_r.g(d_x);
d<String> d_z = d_r.h(d_y);

d_z.claim();
force();

z = d_z.getValue();

Figure 2.1: An example program fragment using DRMI

The main difference is that it relies on the manual specification of where the delaying of
remote calls should take place. An example of an RMI program transformed to use delayed
RMI is shown in Figure 2.1. This code fragment calls methods f, g and h on remote object
r, passing the output of each method as the input to the next. Some points to note are:

e The remote object r (which is assumed to be of type RemoteObj) is enclosed in a
delayed wrapper of type d_RemoteObj. This wrapper is generated offline using a

separate code-generation tool.

e The return values and arguments of the delayed methods must be in delayed form.
This means that values that are not generated by other delayed methods must be
wrapped. Wrappers for value types are explicitly defined, while wrappers for reference

types are instantiated at compile-time from Generic Java [12, 13] templates.

e The claim method is invoked on z to indicate that it is the only result that is wanted.
When the delayed calls are forced, only the value of d_z is updated from the server.

This value can subsequently be fetched using the getValue method.

In addition to the changes to the client, the remote interface and the remote object need
to be changed to inherit from drmi.Remote and drmi.RemoteObject respectively, and the
stubs must be recompiled using a specialised stub compiler.

The main advantage of DRMI over the DESORMI framework described by this thesis lies
in its explicit nature, since the developer is generally in a better position to know whether
a delayed call sequence will be valid or not in a given context compared to the runtime
system presented in this thesis, which has to make some conservative assumptions due to
limited information. Even if delaying calls is invalid, the developer might be able to work
around any changes in program behaviour due to the modified semantics. DRMI also has
less overhead, and so may be capable of performing better.

The main disadvantage of DRMI also lies in its explicit nature, since it takes some effort
on the part of the programmer to incorporate. The effects of callbacks, exceptions etc.
are not handled by the DRMI library, and it will be up to the developer to compensate
for these if necessary. The DRMI library is also intimately tied to the implementation of
RMI provided by version 1.1 of the Sun JDK, and will not work with later versions without

changes.



CHAPTER 2. RELATED WORK 36

2.2.7.2 Batched Futures and Promises in Thor

Batched futures [11] are an optimisation that was developed on an object-oriented database
system called Thor [55]. Results returned from Thor are either handles to objects or basic
values such as integers. Batched futures take advantage of this existing programming infras-
tructure to implement a form of lazy evaluation, where calls that return a handle are delayed
on the client side instead of being executed immediately. These calls return a special handle,
called a future, which may be used in other calls. Futures act as ‘stand-ins’ for entities that
might not have been created yet.

The batched calls are evaluated when a call that returns a basic value (which is the only
way to retrieve raw data in Thor) is encountered, or a transaction is committed. At this
point, the delayed calls are sent as a single group to the server to be evaluated, and the
return value of the call that led to the evaluation is returned.

In general, the performance increases as more calls are batched, since the number of
communications between client and server is reduced. However, Boyle reports the average
batch size for a real-world benchmark to be at 2.33 calls per batch, for an average speedup of
about 1.7, which is fairly low. One reason for this low batch size is due to the high frequency
with which methods that return basic values occur, which is not surprising since these are
the means by which actual information is obtained from Thor.

Zondervan [98] extends this system with promises [56], which applies the same technique
to values as well. The Thor implementation uses tagged unions as promises — when the
promised value is available, it contains that value and is tagged as such, otherwise it contains
a future that refers to the value. Since value-returning methods were originally the triggering
mechanism for batched futures, the programming interface must be changed to accommodate
promises. This was done by creating alternative sets of access methods that accept and
return promises instead of values. These alternative methods will not lead to the execution

of the delayed calls, whereas the original value-returning methods will.

2.2.7.3 Data placement optimisation

Beckmann [10] uses concepts similar to those detailed in this thesis to implement a data
placement optimisation framework for parallel architectures. It also relies on delaying the
execution of potentially expensive operations until the results are definitely needed, such
that opportunities for inter-call optimisations, that would otherwise have been lost, can be
exploited.

However, this work differs from the DESORMI work in several aspects:

e The emphasis is different — the RMI optimisation tries to reduce the number and
size of network transactions and to create opportunities for low-level optimisations
where none previously existed, whereas the data placement optimisation tries to select
an optimal data placement scheme for a set of operations that minimises the overall

runtime cost, using a collection of prebuilt components

e The execution of delayed operations in the data placement work is completely data
driven, whereas with the RMI optimisation, execution is both data and control driven

due to the possible presence of side-effects in delayed operations



CHAPTER 2. RELATED WORK 37

e The data placement work deals with data in terms in primitives and arrays only,
whereas the RMI work also has to deal with more complex structures such as complex

objects, aliasing, remote callbacks etc.

2.2.8 Conclusions

There is a large volume of work related to optimising the performance of RMI. The techniques

tend to be variations of one or more of the following themes:

Overlapping computation

Compiler optimisation of the code path between the remote call and the remote method

Caching state to avoid future network transfers

Taking advantage of special scenarios to make assumptions that would not be guaran-

teed to hold in normal circumstances

Although most of these approaches do not conflict in principle, the implementations generally
do, making it nearly impossible to use more than one at the same time without considerable
reworking.

From the perspective of an end user who merely wishes to speed up existing RMI appli-

cations, the same issues show up repeatedly when employing the techniques discussed:

e Source code modifications required — many approaches require the source code to be
modified. This may be a problem with end users who may not even have the source
code. Even if the source code is available, it takes time and effort to locate and modify
the code unless some automated tool is provided. It is also another potential source

of errors.

e Qutdated Java implementation — systems that have been built from the bottom-up
such as Manta inevitably implement an extremely out-of-date version of Java (usually
comparable to Sun JDK 1.1).

e Invalid assumptions — some approaches make assumptions about the environment in
which the applications using them will be run in. For example, UKA serialisation
discards most of the type information, assuming that classes do not change during
any execution of an application. This assumption is clearly not true when applied to
long-running servers that could run continuously for months or even years while the

clients using it are updated regularly.

e Focus on individual calls — most approaches focus on making individual remote calls
fast, with little regard as to the context in which that call is made. Although an
application that makes many remote calls will speed up under such optimisations,
it will still perform poorly compared to an equivalent application that makes fewer

remote calls under the same optimisation.

The approach taken by this thesis to resolve these problems is to build a flexible runtime
system into which RMI optimisations can be easily incorporated. This system should apply

the optimisations automatically on applications running under this system. It should be



CHAPTER 2. RELATED WORK 38

layered on top of the Java runtime rather than built from scratch, so as not to be left behind
in terms of the JDK. The optimisations should also preserve the original RMI semantics as

far as possible.



Chapter 3

The Veneer virtual Java Virtual
Machine

This chapter presents the Veneer virtual Java Virtual Machine (vJVM), on which the RMI
optimisations are built. Veneer provides a flexible framework for the programmatic modifi-
cation of Java programs at run-time. It sits between the application and a standard JVM,
intercepting the control flow of the application. The user of the framework can write simple
interpreters called executors that execute a representation of the method body (known as a
plan), deviating from the normal course of execution if necessary.

Some knowledge of low-level Java programming is assumed for this chapter. An overview
of this subject is given in Appendix A.

Work that makes use of Veneer in the context of dynamic instrumentation has been
presented at the Workshop on Performance Analysis and Distributed Computing (PADC
2002) in the paper ‘Dynamic instrumentation for Java using a virtual JVM’ [97], and at
the 19th Annual UK Performance Engineering Workshop (UKPEW ’03) [14] in the paper
‘Search Strategies for Java Bottleneck Location by Dynamic Instrumentation’. The second

paper has been published as a journal paper in IEE Proceedings — Software.

3.1 Motivation

Optimisations found in mainstream compilers such as GCC are usually of the static variety,
where a block of code is replaced by another that performs better but produces equivalent
results in all possible cases. Examples of such optimisations are strength reduction and
common sub-expression elimination, which are thoroughly explored in the standard compiler
texts [2, 68]. However, many modern optimisation techniques are dynamic, in that they
require some form of runtime support.

The RMI optimisations that are covered later in Chapter 4 are inherently dynamic in

several respects:

e A runtime check needs to be made to determine whether a call is truly remote

e The calls that are delayed and the points at which they are forced depend on the

runtime path taken through a program

39



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 40

if (x) then
delayedA = true;
else
delayedA = false;
A;
if (y) then
delayedB = true;
else
delayedB = false;
B;
C;

if (delayedA) then
A

if (delayedB) then
B;

D;
Figure 3.1: Rewriting a program to delay block A if z is true and block B if y is true

e Code sections containing adjacent remote calls are replaced on-the-fly for better per-

formance

These optimisations require the embedding of control logic into the original program. The
initial attempt at this used the static program rewriting approach, which is covered in the
next section. However, the difficulties in implementing this eventually led to the virtual
JVM approach, which is covered in detail in the rest of this chapter, starting from Section
3.2.

3.1.1 The static program rewriting approach

The first attempt to implement the RMI optimisations was based on the obvious approach
of static program rewriting, where a program is used to rewrite the binary of the application
program offline. The dynamic optimisations are incorporated into the application program,
so that the optimisations will take effect every time the application binary is executed.
Since the concept of delaying remote calls is central to the RMI optimisations, this
problem was tackled first. Consider the following program composed of four code blocks:

b
b

s

O Q W =

s

The actual contents of the blocks are not important here. Now suppose the program is to
be modified so that A is conditionally delayed based on the value of some variable z, and
B is similarly delayed based on some variable y, with both conditionals set elsewhere in the
program. There is a force point (i.e. a point at which any remaining delayed blocks must
be executed) between blocks C and D. The resulting code should look something like that
in Figure 3.1.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 41

if (x) then
delayedA = true;
else
delayedA = false;
A;
if (y) then
delayedB = true;
else
delayedB = false;
B;
C;

// Conditional force
if (shouldForce()) then
if (delayedA) then
delayedA = false
A
if (delayedB) then
delayedB = false
B;

// Unconditional force
if (delayedA) then

Aj
if (delayedB) then

B;

Figure 3.2: Rewriting a program with conditional force points

The delaying of blocks A and B is implemented by placing guards around them so that
they only execute if z and y respectively are false, and a flag is set indicating whether or
not the block was delayed. At the points where the delayed blocks are to be executed, the
corresponding flag is tested, and if true, the block is executed. This mechanism is simple to
implement, but becomes increasingly complicated as the targeted program becomes more

complex.

3.1.1.1 Conditional force points

The program shown in Figure 3.1 has a force point between C' and D that always causes
any remaining delayed blocks to be executed. Now consider what would happen if that force
point was conditional on the result of some function shouldForce that cannot be computed
statically. A new unconditional force point is also added after block D to force any calls that
have passed block C. The program will now look like that shown in Figure 3.2. The main
difference is that the flags noting the delayed status of the blocks need to be reset when
the conditional force occurs, since failing to do so would result in the delayed blocks being
executed twice when the second force point is reached. The flags do not need to be reset at
the unconditional force point because it is implicitly known that A and B have been forced

beyond that point.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 42

The slight increase in complexity in itself is not a cause for concern. However, consider a
program that contains z delayable blocks and y force points. At each force point, the code
must be able to execute every possible block that may still be delayed at that point. In
general, this means that for every block B that may be delayed, a force point F' must be

capable of executing it provided that:

e F'is reachable from B

e The path from B to F is not dominated by an unconditional force point (i.e. it is not

guaranteed that an unconditional force point was hit before reaching F)

This requires some extra program analysis. In the worst case, every force point must be able
to execute every delayed block. Assuming each delayed block is of size bs, this could lead to
the size of the program increasing by = x y x bs, not including the additional if statements
and flag updates.

A simplification is to forgo the reachability analysis and simply make all force points
capable of executing all possible delayed blocks, regardless of whether or not it is possible
for a particular block to be delayed at that point. If this is done, then the flags must
be updated at the unconditional force points too, since the implicit knowledge of possible
remaining delayed blocks is no longer used. This will obviously result in the maximum

possible size increase for the program.

3.1.1.2 Branches

Branches present an additional problem if force points lie within the branches. For example,

consider the following program:

A

if (cond) then
B;

else
C;

D;

Suppose that block A is to be delayed, and an unconditional force point is placed after
block B but not block C. At the point just before block D, it is ambiguous as to whether
or not block A was forced to execute. In essence, the unconditional force point has become
conditional by being part of a branch, although the conditional is now part of the original
program rather than being introduced. This means that the force point must also update
the flag indicating the status of block A.

3.1.1.3 Loops

Loops present a far greater problem in that the same block may be encountered and delayed

many times before being forced to execute.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 43

while (cond) do
if (delayA()) then
queue.add(’A’);
else
A
if (delayB()) then
queue.add(’B’);
else
B;

// Force delayed blocks
for id in queue do
case (id) of
A% A,
’B’: B;
queue.flush();

Cs
Figure 3.3: Rewriting a program to delay blocks contained in loops

Counsider the following program:

while (cond) do
A
B;

Cs

Suppose that blocks A and B are conditionally delayed, and a force point is placed
just before block C. Since the number of times that a loop executes is not always known
beforehand, the number of delayed blocks is potentially unbound. Furthermore, it is not
guaranteed that the same blocks will be delayed on each iteration. Instead of individual
flag variables, a dynamic data structure such as a queue is needed to store the sequence of
delayed blocks.

The code required to deal with the example program is shown in Figure 3.3. The queue
is used to store the identity of a block as it is delayed. When the force point is encountered,
the entire queue is processed by executing the block associated with each identity in turn.

3.1.1.4 State

In general, a block of code B acts on a set of data D. However, D might change between
the point at which B was delayed and the point at which it is eventually executed. D
must therefore be preserved along with the indicator that B has been delayed, and used in

conjunction with B when it is finally executed.

3.1.1.5 Factoring out code blocks

It is generally undesirable to fully inline the blocks at each force point since that can drasti-
cally increase the size of programs. An alternative is to factor out the blocks into units that



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 44

may be called from multiple points. Java has support for this in the form of methods and
subroutines.

If code is factored into a separate method, then local variables used by the block need
to be passed into the method, and the variables defined by the block need to be copied
back into the caller (since Java passes arguments by value! and does not support taking the
address of local variables). However, the method call and the copying of variables to and
fro incurs a certain amount of overhead.

The alternative is to place the code into a subroutine. This is much faster, but subroutines
have numerous restrictions. Subroutines cannot be called recursively, and the operand stack
must be at the same level for every subroutine call. Also, variables used by the subroutine
must also be located at the same point in the operand stack or local variable slots for every
subroutine call.

The method approach was ultimately used since it offers better flexibility, although at

the expense of some performance.

3.1.2 The virtual JVM approach

By inspecting Figures 3.1-3.3, it can be seen that the programs incorporating the block
delaying are considerably more complex compared to the original program, introducing new
control flow and data structures.

It has proven frustrating to write and debug the program transformation code due to
the extra level of indirection involved (since code is being written to generate other code,
rather than being written directly). Turnaround time is long, and even simple errors might
not be caught until the transformation is actually applied to a test program (which will also
have to be re-compiled on the next iteration). Debugging information is usually destroyed
or invalidated during transformation, severely limiting the usefulness of tools such as jdb.

It is also very easy to modify bytecode such that the JVM verifier would no longer accept
it. The standard verifier is rather unhelpful with regard to debugging, since it prints out
vague error messages such as ‘incompatible argument to function’ without any additional
details such as the exact location of the error or the type of incompatible argument was
being provided. The only information provided is the class and method in which the error
occurs. The verifier error messages also appear to be undocumented. This situation can
be improved somewhat by using the standalone JustIce bytecode verifier (included with the
BCEL distribution), which provides more detailed error descriptions and error locations.
However, this verifier often generates false negatives, sometimes rejecting even code that
was generated directly by the standard javac compiler. This is due to differences in the
interpretation of the virtual machine specification [54] by the creators of JustIce and javac.

The virtual JVM approach was initially developed to address these problems.

3.1.2.1 A new approach

Much of the complexity of the program rewriting approach is due to the need to ‘wrap’
control code around the existing code, of which there are innumerable variations. The

IThis applies equally to object references, since the reference is passed by value, while the object remains
in the heap.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 45

while (currentBlock) do
if (shouldForce(currentBlock)) then
for block in queue do
block.execute();
queue.flush(Q);

if (shouldDelay(currentBlock)) then

queue.add (currentBlock) ;

currentBlock = getNextBlock(currentBlock);
else

currentBlock = currentBlock.execute();

Figure 3.4: Conditionally delaying and forcing code using the virtual JVM approach

solution proposed is to effectively turn the situation around, and wrap the existing code
around the control code instead.

The virtual JVM approach arose out of the ideas developed in the static rewriting ap-
proach. The refactoring of code blocks into separate methods (Section 3.1.1.5) means that
portions of the original method can be executed at will outside of the method body itself.
This means that it is possible to reproduce the effect of a method by first storing the control
flow information between blocks, and then writing a method that calls the method blocks
sequentially, using the saved control flow information to decide which block to execute next.

This approach has several advantages:

e It is now possible to write the delaying and forcing mechanism directly in Java, as
opposed to writing code that interleaves it with existing code, which considerably

simplifies and accelerates the development process.
o It permits source-level debugging using the standard tools.

e It is easy to modify the behaviour of a block by generating a new version of it, and
redirecting all control-flow to and from the original block to the new block.

The equivalent of the conditional delaying and forcing mechanisms demonstrated in Sections
3.1.1.1-3.1.1.3 using the virtual JVM approach is shown in Figure 3.4. The code is fairly
straightforward. On every iteration of the main loop, a check is made to determine whether
delayed blocks should be forced before the current block is handled. If so, then every delayed
block in the queue is executed in sequence, and the queue is then flushed. The current block
is then processed by checking whether it should be delayed. If so, then the current block is
placed on the delayed block queue, otherwise it is executed immediately. The next iteration
proceeds with the successor of the current block.

Unlike the previous examples, this code is generic, and is applicable to any program. It

is identical in terms of functionality, but is also marginally less efficient because:

e Tests are being performed for every block, even when the result is known statically.

e Control-flow between blocks is explicitly handled, rather than relying on the normal

flow of execution to advance from one block to another.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 46

3.1.2.2 Veneer

The dynamic optimisation framework presented in this chapter is an evolution of the static
program rewriting approach, which offers greater flexibility both for developers implementing
optimisations on it and for users running applications on it.

Although considerable effort has been expended in developing this tool, it was a once-off
effort that has paid off by making it very easy to experiment with dynamic optimisations,
especially those involving some form of code-motion. The optimisation framework is referred
to as a ‘virtual virtual machine’ because it outwardly behaves like a virtual machine, yet
performs most of its work by delegating to the virtual machine that it is running on itself.
It has been named ‘Veneer’, since it interposes a thin, programmer-friendly layer between

the developer and the underlying JVM.

3.2 Overview

Veneer can be used as a drop-in substitute for a standard JVM, and is transparent from
the perspective of the end user. When an application is first presented to the optimisation
framework, it is analysed to determine the points at which execution needs to be intercepted
in order to produce the required effect according to a user-defined runtime policy. Each
method that contains at least one interception point is fragmented around these points.
These methods are referred to as intercepted methods.

Fragmentation produces a number of data structures, which are illustrated in Figure 3.5.
The method body is broken up into smaller callable methods called method blocks. A data
structure known as an execution plan is built up that represents the control-flow graph of
the original method, with the generated fragments linked to the nodes within this graph.
Any additional data that can be calculated statically (such as variable liveness information)
is added at this stage as metadata. All plans associated with methods in the same class are
gathered together into a structure known as a plan-set.

The original body of an intercepted method is removed completely, and replaced with
a stub that passes control to a user-defined ezecutor. Executors are effectively simple in-
terpreters written in Java. An executor can execute a method by traversing the execution
plan, executing the code associated with each node that it encounters. Local variables are
encapsulated in a state object that is passed between blocks.

The power of an executor lies in the fact that it can deviate from the standard behaviour.
For example, it may access the local variables via the state object, inspect and modify code
belonging to the method, communicate with other executor instances, modify the control
flow of the method etc.

3.3 Veneer structures

Veneer operates using many different types of objects, which have been briefly introduced

in Section 3.2. This section explores these structures in greater depth.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE

Method f

Method g

Class C

int i;
String s;

3
Class C

int i;
String s;

VJVM
Class loader

Runtime
policy

47

PlansetC

Hash: 23958798709823423
Block 0 -, N
Uses: x Plan f _ PI f
if (x) an Locals: Kk, x, y ang
return 0; T T
else ~_
return 1; @ o
Block 1 Ueeslon ’/ @@
y=k; Defines: y “/ e
0.f(x); Live: x, y v
Calls:

Figure 3.5: Data structures used by Veneer — the Veneer custom class loader accepts an
application class and a runtime policy, and produces a plan-set for the class and a new class
containing stubs which are used in place of the original methods. The plan-set is cached
onto persistent storage. Each intercepted method is associated with a plan, which in turn
is composed of code blocks. Each structure contains related metadata.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 48

H O] HE

Fragment 0: Uses: {3} Defs {5, 6, 9, 10}
r2 = ri[i]
r3 = ril]
4 = r1[2]
r5 = r1[3]

[~

return [7]

Figure 3.6: Visualisation of a Jimple plan fragmented for RMI optimisations — this rep-
resents a fragmented plan for the vector arithmetic example used in Section 4.8.2. Yellow
blocks represent starting blocks, grey blocks represent finishing blocks and red blocks indi-
cate exception handlers. Other blocks are coloured blue.

3.3.1 Plan-sets

A plan-set is a collection of plans that represent methods belonging to the same class. Plan-
sets are used mainly to store metadata that concern entire classes. In particular, it stores a
cryptographic hash of the processed class file that is used to detect changes in the original

code.

3.3.2 Execution plans

The two main types of execution plan currently available are Jimple [90] plans and bytecode
plans. Jimple plans represent the method body in the Jimple intermediate representation
as generated by the Soot [88] framework (see Section A.3.1 for more details), while bytecode
plans represent the method in bytecode form using classes from the BCEL library (see
Section A.3.2). At present, the Jimple representation is much more mature compared to
the bytecode version. The type of plan representation is determined by the fragmentation
policy. The plan type also determines the types of executor that may be used to execute the
plan — some may be generic, while others are specific to a particular representation. The
RMI optimisations are specific to the Jimple representation.

Regardless of the representation, plans consist of a graph representing the method body,
and metadata regarding the method. The arcs of the graph denote control-flow between the
nodes, while the nodes themselves are executable code-blocks. A visualisation of a Jimple
plan using a tool based on OpenJGraph [72] is shown in Figure 3.6.

Plans can be modified at runtime — modifying the arcs between blocks effectively changes
the method control flow, and modifying the blocks effectively modifies the program code that

will be executed.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 49

3.3.3 Code blocks

Code blocks are encapsulated sections of code that may be executed at any time by the
executor. They can have only one entry point, though they can have multiple exit points.
Code blocks fall into two main categories — parameterised blocks and fragments.

Parameterised blocks usually represent single statements, such as a call to a method, an
if statement, or an assignment statement, and are usually interpreted. The behaviour of
these blocks may be modified at run-time by adjusting their parameters.

Fragments are fixed sections of code. These usually represent sections of code that the
executor writer is not interested in modifying at run-time. Fragments may contain internal
control flow (e.g. loops), provided that the scope of these statements lies entirely within the
fragment itself. The code for fragments is executed directly by the underlying JVM, and so

can run at full-speed.

3.3.4 Method state

The method state is used to hold the local variables used by a method between executions of
the various blocks in a plan. The contents of a method state may be inspected and modified
at any time.

The type of the state used by a method depends on the type of plan used to represent
the method during execution. A Jimple state is manipulated as an array of objects, with
one slot for each Jimple variable, while a bytecode state is manipulated as a stack and array
pair to represent the operand stack and the local-variable slots of a Java stack frame. Both
state types are derived from the State class and internally store the method state as an

array of objects, with different sets of access methods for each state type.

3.3.5 Executors

A developer may specify how the execution of an intercepted method should proceed by
writing a simple interpreter known as an executor. Developers are presented with a sim-
plified execution model, and within the boundaries of this execution model and the Java
environment, are free to do anything.

An executor is built by extending the abstract class Executor. The relevant parts of
this class from the point of view of the developer are shown in Figure 3.7. The main task of
the developer is to implement the abstract execute method.

When control reaches the execute method, various attributes of the base Executor class

will have been initialised to their starting values. These may be retrieved with:

e getCurrentPlan — returns the plan representing the body of the method

e getCurrentBlock — returns the current block, which is initialised to the entry-point

to the plan.

e getCurrentState — returns the current method state, which is initialised with the

starting state (i.e. with the value of this and the arguments supplied to the method).

To make progress in executing the method, the execute method of the current block should

be called, passing in the executor as an argument so that it can retrieve any information



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 50

public abstract class Executor {
// To be implemented in derived classes
public abstract void execute() throws Exception;

// Accessor methods

public Plan getCurrentPlan();
public Object getCurrentState();
public Block getCurrentBlock();

// Sets the current block to the i’th
// successor of the current block
public void gotoNextBlock(int 1i);

// Goto the exception handler for the exception e
public void gotoExceptionHandler (ExecuteException e);

// Returns true if the method has finished
public final boolean isFinished();

// Single-stepping support

public final void setSingleStepping();

public final void clearSingleStepping();
public final boolean getSingleSteppingState();

// Locking support
public final boolean lockWasReleased();

Figure 3.7: The executor base class

needed to execute the block. This will execute the code represented by that block. The
execute method, if successful, updates the value of the current block to the next block due
to be executed by calling gotoNextBlock on the executor.

Between block executions, the executor can be programmed to do anything permissible
by the Java environment. It also has full access to the Veneer runtime, and can introspect

into any of its data structures. For example, it could:

e Inspect and perhaps modify the current state, which would have the effect of examining
and modifying the local variables and intermediate results of the method as it is

running.

e Set the current block to another block, which will have much the same effect as a goto

statement would.

e Modify the current plan, which effectively changes the method implementation. This
change takes effect immediately, and is seen by all executors that are in the process of

executing the same plan.

3.3.5.1 Exceptions

If an exception is thrown by the fragmented program code, then an instance of Execute-

Exception is thrown from the block, which is a wrapper for the exception that is actually



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 51

public class BasicExecutor extends Executor {
public int execute() throws Exception {
while (!(isFinished() || lockWasReleased())) {
try {
// Execute the current block
getCurrentBlock () .execute(this);
} catch (ExecuteException e) {
// Pass control to exception handler
gotoExceptionHandler (e);

// Propagate exception if no handler
if (isFinished())
throw e.getException();

return next;

Figure 3.8: Structure of a basic executor that executes a plan without any changes

thrown. In this case, the next block to be executed should be set to the corresponding
handler for the exception by calling gotoExceptionHandler. If there is a handler, the next
call to getCurrentBlock should return it, otherwise the method is marked as being finished,
and the wrapped exception should be thrown to be propagated by the method stub later.
An example of a generic executor that executes a method body without performing any

other tasks is shown in Figure 3.8.

3.3.5.2 Threading

Since executors are called in place of the method represented by the execution plan, they
run in the same thread as the original method — i.e. in the same thread as the caller.
However, executors are strictly single-threaded objects in the sense that at most one thread
can use any given instance of an executor to execute an intercepted method at any point in
time. This is enforced by using a new instance? of the required executor type to execute the
method plan every time a method stub is invoked.

The single-threaded model does not prevent the executor from interacting with objects
that are accessed by other threads, or from spawning new threads itself to perform tasks in
the background. However, it is essential to avoid synchronising on objects that are visible
from the application program, since this may introduce new timing relationships that were
not present in the original program.

3.3.6 Stubs

When a method is intercepted by Veneer, the original body of the method is removed
completely. It is replaced by a stub that performs the following tasks in order:

1. Packs the formal parameters into a method state object.

2At least conceptually — in practice, executors are pooled for efficiency



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 52

2. Fetches a suitable executor for the method from the active policy .
3. Fetches the execution plan for the method.
4. Calls the executor, passing in the plan and the method state.

5. Propagates any thrown exceptions, or return the return value if none were thrown.

Stubs serve as entry-points into Veneer — by calling the stub, the body of the method that

has been replaced by the stub is executed by the selected executor.

3.3.7 The runtime policy

The actions performed by the Veneer framework are determined by an active policy selected

by the user. A policy is composed of three types of sub-policy. These are:

e The interception policy — this is responsible for determining which classes and meth-
ods are intercepted, and what method variants should be generated in the stub for an

intercepted method.

e The fragmentation policy — this dictates how fragmentation occurs within the method
(see Section 3.4.3). For example, it determines where parameterised blocks and frag-
ments should occur, the type of plan to generate, metadata to attach to the blocks

etc.

e The executor policy — this selects the type of executor used to run a particular plan.

3.4 Veneer runtime behaviour

This section presents the aspects of Veneer that lead to the generation of the plans and
method stubs. These are presented in the order in which they are encountered from startup.

3.4.1 The bootstrapper

The bootstrapper is a simple program that takes the name of a class as its argument. It
then instantiates an instance of the custom class loader VJVMClassLoader, and uses that
class loader to load the named class. The main method on the new application class is then
called via the reflection API.

3.4.2 The custom class loader

The custom class loader VJVMClassLoader is a sub-class of URLClassLoader that attempts
to emulate the outward behaviour of the system class loader as far as possible.

When requested to load a class, the custom class loader reads the bytecode using the
BCEL [26] library. It then determines whether the class, then each method within the class,
should be intercepted using the interception policy. Unintercepted classes and methods are
left unchanged by the custom class loader.

If a method is to be intercepted, the original body of the method is removed completely,

replacing it with a stub that will execute one of several code variants, as determined by



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 53

public long f(Object a, int x) throws AnException {
VJVMRuntime runtime = VJVMRuntime.getRuntime();

if (runtime.getVariant(<methodID>) == 0) {
MethodPlan plan = runtime.getPlan(<methodID>) ;
Executor executor = runtime.getExecutor(plan);
State state = plan.newState();

// Initialise state
state.setThis(this);
state.addParameter(a);
state.addParameterInt (x) ;

// Call executor

try {
executor.execute(plan, state);

} catch (AnException e) {
throw e;

} catch (Exception e) {
executor.handleUncaughtException(e);

}

// Return return-value
return state.getReturnLong();
} else {
<0Original method body>
}

Figure 3.9: Example showing the Java equivalent of a method stub containing two variants

the runtime policy. An example of a stub is shown in Figure 3.9. This stub contains two
variants — variant 0 passes the responsibility of executing the method to an executor, while
variant 1 executes the original method body in-situ.

After the stubs have been generated, a new plan-set is built to hold the plans correspond-
ing to the current class. For each intercepted method, a new plan is generated as described
in Section 3.4.3 and inserted into the plan-set.

The fragmentation process generates new classes that contain fragments of code from
the original methods. These classes are merged into the class with mangled method names
to avoid name clashes. This is done so that the code fragments can access methods and
data with private and protected visibility without having to resort to setting everything to
public.

Once all the methods have been processed, a final callback is made to the active policy,
providing an opportunity for any policy-specific modifications to be incorporated into the
bytecode. Finally, the bytecode for the class, which can contain both unintercepted methods
and method stubs, is loaded into the JVM using the defineClass method.

When an intercepted method is executed, the stub will pass control of the program to
the executor specified by the active policy. The executor has full control at the entry and
exit of the method, and at the points permitted by the active fragmentation scheme and

policy.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 54

[BootstrapClassLoader |

|ExtClassLoader

r 4

|AppClassLoader|  [VeneerSystemClassLoader|

[VeneerAppClassLoader]|

Figure 3.10: The Veneer class loader hierarchy

3.4.2.1 The Veneer class loader hierarchy

The class loaders used by the Veneer framework are arranged in a hierarchy as shown in
Figure 3.10. The default application class loader AppClassLoader is used only to load
in the Veneer system class loader, which bypasses it altogether and adopts the parent of
AppClassLoader as its parent. The system class loader is responsible for loading the data
structures used by the virtual JVM. It is also responsible for loading the Veneer application
class loader, which loads in the classes needed by the user application.

The Veneer application class loader is based on the ClassLoader class included in the
BCEL library. The original BCEL class loader uses the default AppClassLoader as its
parent. Unfortunately, the BCEL class loader is flawed in some respects. The main problem
is that it breaks the Java delegation model, with all the subsequent consequences (see Section
A.2.2). Tt never checks the parent class loader first, but rather, it attempts to identify
the class by name. If the class to be loaded is a system class (i.e. java.x), then it will
delegate to the parent class loader, otherwise it will always handle the class itself. This is
understandable, since the BCEL class loader loads classes from the same locations as the
parent class loaders, hence delegating to the parent would mean that no classes would ever
be intercepted.

This scheme manages to intercept application classes while preserving delegation by
bypassing the default AppClassLoader altogether, so that when the Veneer application
class loader delegates, classes normally handled by AppClassLoader will not be found. The
Veneer system class loader is responsible only for loading classes belonging to the Veneer

framework.

3.4.3 The fragmentation process

When it is determined that the execution of a method is to be intercepted by Veneer (see
Section 3.3.7), then the body of that method is transformed into a plan via a fragmentation
process. All plans for a particular class are gathered together into a plan-set.

The fragmentation process consists of several passes, executed in sequence:



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 35

3.4.3.1 Plan creation

A new plan for the method is created. A new parameterised block can be associated with
any statement within the method, as determined by the fragmentation policy. If no parame-
terised block is associated with a statement, then the statement is placed within a fragment.
Adjacent statements are placed within the same fragment, but a new fragment may be forced
by marking the beginning of the fragment with a Fragment block.

3.4.3.2 Plan correction

This ensures that the plan is valid, correcting it automatically if not. Currently, the following

corrections are implemented:

e If one block attempts to jump into the middle of another, then the destination block
is split into two at the target statement.

e Attempts to separate memory allocation and constructor calls will be ignored for

Jimple representations (see Section 3.6.3).

3.4.3.3 Control-flow determination

This pass determines the control-flow between blocks. This is done by searching through the
statements associated with each block for branch statements. For every branch instruction
found, the block that contains the destination statement is located and added onto a next-

block array associated with the current block. Some special cases are:

e Return statements are treated as branch statements that jump to a null block.
e Throw statements and method calls are not regarded as branches.

e Statements situated at the end of a block that can fall through to the next statement

are regarded as branches to the block containing the next statement.

3.4.3.4 Exception handler determination

This pass determines what exceptions are trapped within each block, and the current han-
dlers for those exceptions. The exception types and references to the blocks of the handlers
are stored with the block.

3.4.3.5 Local variable determination

This pass is applicable only for the Jimple representation, and determines the set of local
variables visible to the executor. This set consists of all locals defined and used within the
method, minus the set of intermediate locals.

Intermediate locals are locals that are defined and used only within a single fragment.
These can be found by processing each fragment in turn, extracting all locals defined and
used within it. Locals that appear outside of the fragment are removed, as are used locals
that are not dominated by a definition of the same local in the same fragment (since this

implies a loop-carried dependence that spans calls to that fragment).



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 56

3.4.3.6 Parameter determination

This pass fills in the parameters of the parameterised blocks. The information is extracted
from the statements associated with each block.

3.4.3.7 Fragment generation

This pass generates a fragment class with a single execute method containing the code for
a fragment. This method is called by its corresponding fragment block within the plan. The
fragment method begins with a prologue that ‘unpacks’ the current state from the State
object, so that the stack frame is set up into a form suitable for executing the next fragment.
The fragment code is then added to the method. Since the stack frame is set up by the
prologue, the original code may be copied almost verbatim. There are two main adjustments
that need to be made:

e Branches to statements outside of the current fragment are replaced by code that sets
a variable to the index of the next-block array corresponding to the destination block,

followed by a jump to the epilogue.

e In exception handlers, a statement that explicitly loads the thrown exception from the

method state is generated.

Finally, an epilogue is generated that reverses the effect of the prologue — it stores the

current state of the stack frame back into the State object.

3.4.3.8 Metadata generation

This pass provides the opportunity to tag the blocks with information that may be computed
statically at this point as block metadata. The information needed depends on the current
policy. Currently, information such as line numbers and variable definition, use and liveness

information are provided.

3.5 Optimisations

This section presents the various strategies that are used to reduce the impact of Veneer on

runtime performance.

3.5.1 Fragment merging

In the Jimple representation, all fragments for a method are grouped together into a single
‘execute’ method as shown in Figure 3.11. This is to optimise the case in which control-flow
does not need to be intercepted between fragments — control will only be regained by the
executor when a parameterised block or the end of the method is encountered. By using this
scheme, the overheads introduced by the executor and the prologue/epilogue are eliminated
by jumping from one fragment to another without leaving the fragment method.
Fragments are identified by a unique ID, which are stored by their corresponding block in
the plan. After the prologue, a loop is entered which fetches the ID of the current fragment
to be executed, then executes the corresponding code. After execution, the current block



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 57

public void execute(Executor executor) {
Plan plan = executor.getCurrentPlan();
Block currentBlock = executor.getCurrentBlock() ;
// Unpack locals...

do {
int nextBlockID, fragmentID =
((Fragment) currentBlock).getFragmentID();

switch (fragmentID) {
case O:
<Fragment 0>
<Set nextBlockID>
break;
case 1:
<Fragment 1>
<Set nextBlockID>
break; // etc...
}

executor.gotoNextBlock (nextBlockID) ;
currentBlock = executor.getCurrentBlock();
} while (!executor.getSingleStep() &&
currentBlock.getType() == Block.FRAGMENT) ;

// Pack locals...

Figure 3.11: A fragment method

is set to its successor. If the next block is a fragment, then another iteration of the loop is
performed using the new block, otherwise the epilogue is executed and the method returns.

The prologue needs to be changed to restore the state of all used variables in all the frag-
ments, and similarly the epilogue needs to store the state of all defined variables. Restoring
ounly the locals used by the starting block will not work since this might lead to variables
used in successor fragments remaining uninitialised if those variables were defined before the
first fragment. Even if this was not a problem, the bytecode verifier would reject such code,
since program paths would appear to exist that lead to the access of uninitialised variables.
A similar argument applies to the epilogue.

This slightly cumbersome scheme is needed in order to honour the control-flow as specified
by the plan, which may be changed at any time (including the period during which the
fragment is running). A single-stepping flag is also provided, which reverts the behaviour of

the execute method to its former behaviour of executing only one fragment at a time.

3.5.2 Plan-set caching

After a plan-set has been generated, it is cached onto persistent storage, along with a
checksum of the original class file. Veneer will pick up the cached copy the next time it tries
to load that class, provided that the checksum of the class matches the stored checksum. This
is much quicker than going through fragmentation on every run, which is highly expensive
in terms of both CPU time and memory.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 58

public class Clazz_foo_Shim implements Shim {
public Object invoke(Executor e) {
((Clazz) e.getCurrentState().getThis()).foo(e);
}

Figure 3.12: Example of a shim class that calls a method foo in a class Clazz.

3.5.3 Short-circuit return statements

When a return statement is embedded within a fragment block, the return value (if any)
is set in the State object and the fragment method returns immediately, without going
through the checks at the end of each fragment and the epilogue.

This is valid since a return instruction terminates a method, and so there is no need to
update the state of the method locals since they will not be used again. However, it may
interfere with executors that need to examine the state at the end of a method, since the

final state of the local variables is not written back into the State object in this case.

3.5.4 Embedded exception handlers

If all the instructions within a method that can throw a given type of exception are contained
within fragments, and at least the first statement of the exception handler is also within
a fragment, then the jump to the exception handler is handled directly using the standard
exception throwing mechanism rather than relying on the executor to catch the exception

and propagate it to the correct handler by calling gotoExceptionHandler.

3.5.5 Reducing reflection

Originally, when fragment blocks are executed, the fragment method containing the imple-
mentation of those blocks is called via reflection because the name of the fragment method
is mangled at load-time. However, invoking a method via reflection can be slower by several
orders of magnitude compared to the standard virtual dispatch mechanism.

The use of reflection in this case has been avoided by using shim classes. A shim class is
a simple class that implements the Shim interface, which declares a single method invoke.
An example of a shim class is shown in Figure 3.12.

After the plan-set for a class is loaded, a new shim class is generated for every method that
contains at least one fragment block, with the invoke method of the shim class containing
a call to the fragment method containing the fragment implementations. An instance of the
newly generated shim class is created via reflection, then stored in all the fragment blocks
of the plan. This shim class instance is subsequently used to invoke the fragment method.

This scheme allows methods whose names are unknown until runtime to be called using

generic, statically compiled classes with minimal overhead.

3.5.6 Executor and state pooling

The HotSpot FAQs [42] recommend against the usage of object pooling due to the adoption

of generational garbage collection [93]. Nevertheless, considerably better performance can



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 59

be obtained by pooling and reusing certain objects used in Veneer, especially executors and
method state objects.

3.5.7 Mutable value types

Value types such as int or float must be wrapped in a value wrapper before being stored
in the method state, since the state only stores reference types. Value wrappers such as
java.lang.Integer are immutable, in order to provide value-like semantics such as thread-
safety. However, this means that the only way to ‘change’ the value of a wrapped value is to
create a new instance of the value wrapper and change the reference to the original wrapper
so that it refers to the new instance instead.

However, since storing values into the state is a common operation, this can become very
expensive as wrappers are constantly being created and garbage-collected as the variable they
represent is updated. To combat this, a new set of wrappers have been created. Unlike the
native wrappers, the values that they wrap can be changed, so that they can be reused over
and over again. The value semantic issues that led to the immutability of the native wrappers
are not an issue since these wrappers are only used under strictly-controlled conditions within
Veneer.

3.6 Limitations

Since Veneer relies heavily on the underlying Java virtual machine, it is subject to the
restrictions imposed by the JVM. The consequences of these restrictions are detailed in this

section.

3.6.1 The standard Java library

Veneer cannot intercept classes that lie within the standard Java class library (i.e. classes
with names beginning with java.), since the defineClass method in ClassLoader explicitly
forbids this. This is partly to ensure consistency, but also for security reasons — if it was
possible to redefine the standard library at will, then the security checks embedded within
its classes may be subverted.

Fortunately, this is not as problematic as it may seem. Although Veneer cannot intercept
the actual methods of the standard Java libraries, it can intercept calls to the methods in

the standard library, which should suffice in most cases.

3.6.2 Intercepting constructors

The Java specification demands that the first action of a constructor must be to call a con-
structor of the parent class, or an alternative constructor in the same class. This means
that Veneer is unable to intercept this first constructor call, although it can intercept ev-
erything that follows. In practice, this is not a problem, since the other constructors can be

intercepted in a similar fashion if necessary.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 60

3.6.3 Allocating new objects

In the Java language, whenever a class is instantiated, memory is allocated for the new
object and a constructor is called, all in one statement. At the bytecode level, memory
allocation and the call to the constructor are two distinct steps.

Problems occur if a method is to be fragmented between a memory allocation instruction
(either a new or newarray instruction) and the corresponding constructor call (an invokespecial
instruction), since the verifier will not permit uninitialised objects to be passed outside of
the method.

A naive solution might be to simply ignore the effect of the new instruction altogether,
and perform the operation just before the invokespecial instruction. However, this will fail
when copies of the reference to the uninitialised object are made. For example, a common

idiom in bytecode is:

new C
dup

invokespecial C()

This code first allocates memory for a new instance of class C, leaving a reference on
the operand stack. The next instruction duplicates the reference on the operand stack.
The constructor is then called on the duplicate reference, removing it from the stack in the
process. The original reference, which now points to an initialised object, is left on the stack
ready to be used.

If the effect of the new instruction is ignored, then the dup instruction will not work
properly, since it will have no reference to duplicate. Although it is easy enough to fix in
this particular case, there can be any number of copies made of the uninitialised object (both
on the operand stack and in local variables) between the new and invokespecial instructions.

In the Soot back-end, the problem is avoided simply by forbidding breaks between mem-
ory allocations and constructor calls. If the user requests such break, it will be ignored.

In the BCEL back-end, when a new instruction is encountered, an instance of a place-
holder object UninitialisedObject is placed onto the stack, which is associated with a
unique object ID. This object will get copied and passed around by the program code. This
is safe because in a verified program, the code must not manipulate the referenced object
in any way until it has been initialised. Storage in local variable slots is also safe since the
slots are untyped.

When the invokespecial instruction is encountered, an instance of the class is allocated
and initialised in one step. Since a copy of the reference to the UninitialisedObject must
have been at the top of the stack when the invokespecial is executed, the ID of the object
can be retrieved. Veneer can then search through the stack and variable slots, and replace
all instances of UninitialisedObject with the same object ID with the reference to the
newly allocated object. Since the number of slots and the stack size are usually very low,

this operation is fast.

3.6.4 Obfuscated code

Veneer is unable to deal with obfuscated code. This is due to the common practice of

obfuscators to mangle the names of fields, classes, and methods to names that are illegal in



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 61

the Java language, but are nevertheless blindly accepted by the JVM. However, they interact
badly with Soot, BCEL and the Veneer custom class loader.

3.6.5 User-defined class loaders

In order to intercept a class, the class must be defined by the Veneer custom class loader.
However, if a class loader is defined by the intercepted application and the new class loader
looks somewhere outside of the initial class path for the bytecode, then the custom class
loader will fail to find the new class and the new class loader will load an normal version of
the class.

One way around this might be to intercept the new class loader as it is loaded, changing
it such that all calls to defineClass are directed to the version in the customised class

loader. This will ensure that the loaded class is modified.

3.7 Evaluation

3.7.1 Test setup

Veneer has been evaluated with six benchmark programs. Three of the benchmarks are from
the SPECjvm98 suite. These benchmarks have been run as standalone applications rather
than as applets as required by the SPECjvm98 benchmark rules, and so these results are
not directly comparable to other published SPECjvm98 results.

The other benchmarks in SPECjvm98 have not been used for various reasons:

e _222 mpegaudio is obfuscated, and will not work properly with Veneer

e _205_raytrace and _227_mtrt do not function properly when executed as standalone
applications

e The remaining benchmarks do not work properly under Veneer. This may be due to

remaining bugs in the fragmentation process.
Veneer was also tested on three other benchmarks:

e Linpack — an old benchmark commonly used to measure floating-point performance
e Tak — a synthetic benchmark used to measure the speed of recursive method calls

e RouteFinder — an application that finds the optimal route between two stations in a
railway network using graph algorithms, given constraints imposed on the route (such

as disability access at the stations).
The Veneer policies tested were:

e Extensive fragmentation — every method within each application class is fragmented
at branches, method calls, returns, exception block boundaries, exception handlers
and synchronisation blocks. Branches are placed into parameterised blocks only if
they occur after the end of a fragment, while the other types are always placed into

parameterised blocks.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 62

Time taken HotSpot HotSpot Extensive Extensive Single
(s) (int.) (single-step) fragment

201 compress | 12.36+0.082 | 144.73+0.058 | 526.61+1.4 622.74£2.7 | 122.59+0.21

209 db 21.96£0.0029 | 76.53+0.023 | 108.284+0.34 | 136.38+£0.28 | 25.184+0.014

_ 213 javac 9.82+0.018 39.15+0.017 | 231.09£0.38 | 266.10+1.1 | 87.47+0.29

Linpack 0.20£0.0039 | 0.25£0.0059 1.64+0.020 1.60£0.015 | 1.56+0.0030
RouteFinder 25.37£0.016 | 365.36+£0.098 | 286.80+4.0 299.38+2.7 | 86.69+0.34
Tak 1.26+0.0032 | 11.76+0.0052 | 110.27£0.073 | 116.724+0.24 | 35.62+0.085

Table 3.1: Times for the six benchmark programs under the different test configurations —
the mean time is given in seconds with a 95% confidence interval.

e Extensive fragmentation with single-stepping — the same as extensive fragmentation,
but fragments always return after being called, rather than proceeding directly to the

next block if it is also a fragment.

e Single fragment — the original method body is encapsulated within one large fragment
in every method of every application class, such that the executor is only entered at

the beginning and end of each method.

All policies are running under the standard executor (similar to that shown in Figure 3.8),
which does nothing apart from executing the blocks of the method in sequence.

The tests were run on an Athlon XP 1800+ PC, running on a Linux system with version
2.4.21 of the kernel. The JVM used was Sun HotSpot client JVM 1.4.2 01. The performance
of HotSpot running in purely interpretive mode (using the -Xint flag) was also tested. The
recorded time was obtained using the standard Linux time command, and therefore includes
the startup time for the virtual machine.

Each test was repeated ten times, and the mean time taken with a confidence interval of
95%. For each test configuration using Veneer, an extra test run was added at the beginning
in order to generate the execution plans for the program, which are retrieved from the disk
cache in subsequent runs. The additional time taken by this first run in comparison to the
cached runs was also noted. The first run is not factored into the calculation of the mean

execution time.

3.7.2 Analysis

As can be seen in Table 3.1, running Veneer without any optimisations implemented in the
executor always results in a slowdown. This is inevitable since Veneer must analyse each
class to check for intercepted methods and regenerate the method stubs at class load time.
At runtime, there is the overhead of the method stub, executor, fragment prologue etc. that
is incurred on every intercepted method call. The JIT compiler of the underlying JVM will
also not be able to perform as well since fragmenting the method bodies has the effect of
introducing extra barriers to the code optimiser.

The table of slowdowns (see Table 3.2) shows that there is a large range of slowdown
factors from 1.15 to 92.34, although the slowdowns for any particular benchmark are roughly
of the same order of magnitude. This is still fairly good when compared with the typical three
orders of magnitude slowdown reported by the JavalnJava project [87], which implements a

full Java interpreter running on a JVM.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 63

Relative execution HotSpot | HotSpot | Extensive Extensive Single
times (HotSpot=1.0) (int.) (single-step) | fragment
_201_compress 1.00 11.71 42.60 50.38 9.92
209 _db 1.00 3.48 4.93 6.21 1.15

~ 213 javac 1.00 3.99 23.53 27.10 8.91
Linpack 1.00 1.25 8.11 7.94 7.74
RouteFinder 1.00 14.40 11.30 11.80 3.42
Tak 1.00 9.31 87.23 92.34 28.18

Table 3.2: Normalised execution times for the six benchmark programs under the different
test configurations relative to time taken by HotSpot

Extra time taken | Extensive Single
for first runs (s) fragment
_ 201 _compress 30.62 22.16
_209_db 15.68 16.54

~ 213 javac 123.00 105.67
Linpack 11.15 11.10
RouteFinder 36.55 26.57
Tak 2.32 8.74

Table 3.3: Extra time taken by first-time runs in addition to the mean runtime shown in
Table 3.1

At the other end of the spectrum from JavalnJava is the HotSpot JVM running in
purely interpretive mode, which is representative of a well-optimised native interpreter.
Veneer manages to perform faster than HotSpot in half the test cases when running with
the single fragment policy, but only once when using the extensive policy with RouteFinder.
This shows that the strategy of delegating fragments of code to the underlying JVM can
result in better performance compared to a purely interpretive approach at least some of
the time, despite the overheads of having to go through the method stub and executor on
every intercepted method.

The time taken by the first run of each new policy with each new benchmark (see Table
3.3) takes considerably longer to complete in order to generate the execution plans for all
the methods in the application classes. The additional time taken by the first run over the

other runs is approximately proportional to the size of the application.

3.7.2.1 Effect of the policy type

The two policy types represent two extremes — the extensive policy fragments frequently at
every basic block boundary, while the single fragment policy avoids method fragmentation.
Typical usage patterns will likely fragment at a level between these two policies. For example,
the executor for the RMI optimiser only fragments methods that may contain RMI calls,
and even then the fragmentation occurs mainly around potential RMI call sites.

Note that the measured times do not represent a lower or upper bound on the achievable
execution times. Since every method in every application class is being intercepted, it is
possible to do much better by intercepting fewer classes and methods, especially those that

are frequently executed. However, it is also possible to do much worse by fragmenting after



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 64

No. blocks called No. blocks called | No. executors

(extensive) | (extensive, single-step) called

201 _compress 1,131,003,435 1,312,122,761 225,926,071
209 _db 209,053,605 283,909,528 1,484,131

_ 213 javac (¥*) 206,625,894 241,333,622 55,543,198
Linpack 21,257 26,405 10,620
RouteFinder 804,487,222 842,740,542 113,013,770
Tak 222,632,016 238,535,019 63,609,001

Table 3.4: The total number of times that a block is entered from the executor for the two
variants of the extensive fragmentation scheme, and the number of times that an executor
is entered during the course of a program. For the single fragment scheme, the number of
blocks entered is equal to the number of times the executor is entered. (*) The _213_javac
benchmark has a non-deterministic element that can cause the numbers to vary by a very
small amount (<0.003%).

every instruction in every method.

The performance impact of extensive fragmentation is clearly visible as the slowdown is
typically around 3 or 4 times slower than the single fragment policy. The main exception is
the Linpack benchmark, which hardly shows any variation between policies. This is probably
because Linpack completes so quickly that most of the time is spent in the initialisation
of Veneer. The effect of fragment single-stepping is also visible, resulting in a significant
slowdown in all but Linpack (which is unreliable due to the startup time).

The number of times that executors are called and blocks are entered in the benchmark
programs are shown in Table 3.4. A massive increase in the number of blocks executed is
evident when going from single-fragment fragmentation to extensive fragmentation, and a
lesser increase when single-stepping is enabled. Comparing this table with Table 3.1, the
number of blocks entered appears to have an approximate correlation with the time taken
to execute a program. The main exception is 209 db, which enters over a hundred times
more blocks in the extensive policy compared to the single fragment policy, yet is only

around four times slower.

3.7.2.2 Call overhead

The Tak benchmark, which was specifically designed to test the speed of procedure calls in
a programming language by executing 63,609 recursive calls per iteration, is a pathological
case that shows the worst slowdown of all the benchmarks. Also notable is that even when
the entire body of the Tak method is placed within a single fragment, the program slows
down by a factor of over 28.

This suggests that Veneer has a relatively high method call overhead, since minimal
interpretive overhead should be occurring in that scenario. This is due to the overhead
of the extra code that is executed between the method stub and the code blocks, which,

although heavily optimised, is still large compared to the native dispatch mechanism.

3.7.2.3 Effect of the Veneer optimisations

For purposes of comparison, results for the same set of tests running under an older version

of Veneer without the optimisations detailed in Sections 3.5.3—3.5.7 are presented in Tables



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 65
Time taken HotSpot | HotSpot | Extensive Extensive Single
(s) (int.) (single-step) | fragment
_201_compress 12.30 145.38 1190.96 1453.34 483.03
209 _db 22.96 77.69 182.38 255.48 35.57
213 _javac 10.92 40.76 381.30 433.45 150.22
Linpack 0.36 0.41 2.04 2.06 2.01
RouteFinder 25.78 329.24 1092.08 1116.06 859.26
Tak 1.42 12.06 617.67 633.81 469.99

Table 3.5: Times for the six benchmark programs under the different test configurations
running on an old version of Veneer prior to the optimisations described in Sections 3.5.3—

3.5.7
Relative execution HotSpot | HotSpot | Extensive Extensive Single
times (HotSpot=1.0) (int.) (single-step) | fragment
201 _compress 1.00 11.82 96.83 118.16 39.27
209 _db 1.00 3.38 7.94 11.13 1.55
213 _javac 1.00 3.73 34.92 39.69 13.76
Linpack 1.00 1.14 5.67 5.72 5.58
RouteFinder 1.00 12.77 42.36 43.29 33.33
Tak 1.00 8.49 434.98 446.35 330.98

Table 3.6: Slowdowns for the six benchmark programs under the different test configurations
running on an old version of Veneer prior to the optimisations described in Sections 3.5.3—
3.5.7

3.5 and 3.6.

In this set of results, Tak could exhibit a slow down by a factor as large as 446.35, which
in the newer set of results was 92.34, representing an improvement by a factor of nearly 5.
The best improvement of the newer version over the older version was also found in Tak
with the single-fragment policy, where the newer version is over 13 times faster than the old

one.

3.8 Alternative approaches to runtime code modification

in Java

The challenges of developing a dynamic optimisation framework on the Java platform are
very different from those of developing for conventional architectures like PA-RISC (Dynamo
[9]) and IA-32 (DynamoRIO [15], Mojo [18]). On the whole, the Java platform is not very
amenable to runtime optimisation at a level above that of the virtual machine. The main
problem lies in the fact that Java bytecode is far more structured than machine code for real
microprocessors, reflecting the structure of the Java language instead. Although this makes
it considerably simpler to understand, it is also far more restricted in what it can do.

One of the main tasks required of a dynamic optimisation framework is to provide a
ability to replace code on-the-fly. Veneer performs this task by introducing an extra layer
of indirection, directing control-flow to a dynamic data structure that can be modified at
runtime. Alternative ways of doing this have been considered, but have been rejected due

to their numerous drawbacks. These are covered in the remainder of this section.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 66

3.8.1 Class loaders

As discussed in Section A.2; classes defined by different class loaders effectively form a
different class name-space. It is therefore possible to load multiple versions of the same class
simultaneously [52]. Unfortunately, major problems will be encountered if one tries to use

this to substitute one version of a class for another.

3.8.1.1 Accessibility

One problem with this approach is how to access the new version of the class. For example,
suppose that an existing class ¢; defined by class loader C'L; is to be replaced with a new
class ¢ defined by a new class loader C'Lo, which are used by methods in a class C'. In order
to preserve the delegation model, CL; and C Ly must be cousins of each other (i.e. they can
share a common ancestor, but must not have a direct ancestor-descendant relationship).
The access problem occurs because when C' was loaded, it also loads all classes that it is
dependent on. If ¢ was also a dependency class, and was resolved to c;, then all references
to ¢ in C will always refer to c1, even after cs is loaded. This makes it impossible for cs to

act as a drop-in replacement for ¢, since:

e If the expression new c() appears in C, then it will always be an instance of ¢; that

is generated
e Calls to static methods of ¢ will be directed to ¢;

o If there are any variables or fields with static type ¢, then it will be impossible to assign
instances cs to it since that would be a type-error. This will also make it impossible

to invoke methods of ¢; via those variables and fields

The type-assignment problem may be circumvented by making co a descendant of ¢;, but

this also has its flaws:

e If ¢; is final, then co may not extend it
e If any of the methods of ¢; are final, then co cannot override that method

® ¢ has no access to any of the private methods and fields of ¢;

3.8.1.2 Class replacement

In order for the changes to take effect, all instances of ¢; must be replaced with instances
of co. This is a non-trivial task, since references to ¢; may be hidden within other objects
and within other threads.

Another problem is how the state of an old ¢; instance is to be transferred over to a new
co instance, since some portions of the state of ¢; may be private. This may be overcome
using reflective access to the state, provided that the relevant permissions are granted by
the security manager.

Even assuming that a substitution was possible, any methods that are invoked on c¢;
before the substitution will continue to run to completion — i.e. the effect of the change is

not spontaneous.



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 67

3.8.2 HotSwap

Another way of performing the task is to use the recently introduced HotSwap feature of
the Java Platform Debugger Architecture (JPDA) [43]. This facility allows a debugger to
change class definitions at runtime.

One problem with this scheme is that the changes do not affect methods that were running
at the time the changes were made. This makes it unsuitable for optimising long-running
loops or methods (such as main), which often have the greatest potential for speedup.

Curiously, the designers of the JPDA appear to try to compensate for this by pro-
viding the ability to roll-back the caller stack frame using the popFrames method in the
ThreadReference class. However, popFrames is not as useful as it may seem, since any
fields modified or I/O operations performed by the method will not be reverted by this
method, such that the initial state encountered by the modified method will be different
from that encountered by the original. Furthermore, any changes previously made to the
formal parameters will be visible when the method is re-entered.

Another problem is that this facility is only available via the JPDA, meaning that the
application must be run under debugging mode. Normally, this means that the program
must be run in interpretive mode. However, as of Java 1.4.0, there is support for ‘full-speed
debugging’, which permits programs to run under the JIT whilst being debugged. However,
performing debugging operations on a method such as single-stepping or watching variables

will still cause the JVM to fall back to interpretive mode.

3.8.3 Implementation at the virtual machine level

Adding an additional execution layer will inevitably lead to extra overheads. One obvious
alternative to reduce this overhead is to implement Veneer at the JVM level.

Platforms such as Java that run programs on virtual machines are particularly amenable
to dynamic optimisation, since the virtual machine has full control over how the program
is executed. Virtual machines that run in an interpretive mode are especially suited for
this task, since the interpreter has the opportunity to affect the course of execution before,
during and after every instruction, inspecting the current state of the execution environment
to determine what actions to take if necessary. The code to carry out the optimisations may
also be written both directly and generically, becoming part of the interpreter rather than
the executed program, which helps with the speed and ease of the development process.
This means that interpreters can deal with situations as they arise, whereas precompiled
solutions must take all possible outcomes into account in advance.

At the other end of the spectrum are virtual machines that rely on Just-In-Time com-
pilation to compile bytecode into native code for execution. Since the virtual machine will
lose control of execution while the generated native code is being executed, any dynamic
optimisations needed must be incorporated directly into the native code. This means that
the JIT compiler must take on the same role as the static program rewriter discussed in
Section 3.1.1. However, since JIT compilers usually work on-demand, the JIT compiler may
have more context information to work with than an external rewriter if the program has
been running for some time before the code section was invoked.

There are two main problems with modifying an existing virtual machine. Modern virtual

machines for full-scale languages such as Java are large, complex programs, and the task of



CHAPTER 3. THE VENEER VIRTUAL JAVA VIRTUAL MACHINE 68

becoming acquainted with their often undocumented internal workings and modifying them
is a major task. Modifications made to a virtual machine will also be specific to that one

virtual machine, and are unlikely to be portable to others.

3.9 Other uses of Veneer

The Veneer virtual JVM framework has recently been used outside of the RMI optimisation
context for which it was originally designed. The Java Utility for Dynamic Instrumentation
(JUDI) [97] tool uses the Veneer virtual JVM to provide a means of deploying instruments
into a program at runtime by means of a GUL JUDI works by fragmenting all methods
of a program at basic block boundaries. Instruments, in the form of Veneer blocks, can be
inserted into the fragmented methods at runtime, and can be removed when instrumentation
is no longer necessary. Performance results using JUDI on a fairly old version of Veneer show
it to be comparable in performance to using the hprof tool, being faster in some programs,
and slower in others.

The Java bottleneck locator toolkit (JBolt) [14] is built on top of JUDI, offering a Java
equivalent of the Paradyn [66] performance tool, which can automatically find and zoom-in

on bottlenecks in a program.

3.10 Conclusion

The Veneer virtual JVM provides a versatile environment for experimenting with runtime
code optimisation, especially optimisations involving code motion, at the expense of some
runtime performance. The cost depends heavily on the runtime policy used — in general, a
program will run more slowly when intercepted methods are often called and block bound-
aries are frequently reached. The runtime impact can therefore be minimised by careful
placement of the interception points.

It should be possible to eventually reduce the runtime overhead down to a reasonable
amount, so that even a small amount of speedup resulting from optimisations built on top
of Veneer can overcome this performance penalty. Since the penalty is strictly in terms of
the number of instructions executed for a given operation, the slowdown should reduce with

time as CPU speeds increase.



Chapter 4
Optimising Java RMI

The details of the new RMI optimisations are presented in this chapter. These optimisa-
tions are referred to as the Delayed Evaluation Self Optimising Remote Method Invocation
(DESORMI) optimisations.

Some knowledge of RMI programming is assumed for this chapter. A brief introduction
to this subject may be found in Appendix B. This chapter mainly explores the practical
side of RMI optimisation. A more theoretical view is taken in Chapter 5.

Work covered in this chapter has been presented at the 10th Workshop on Compilers
for Parallel Computing (CPC 2003) in the paper ‘Automated Optimisation of Distributed
Java Programs across Network Boundaries’ [95] and at the Middleware 2003 conference in

the paper ‘Optimising Java RMI Programs by Communication Restructuring’ [96].

4.1 Modelling performance

In this section, a simple mathematical model is presented for reasoning about the perfor-
mance of remote method calls.

4.1.1 Assumptions

This model deals with performance in terms of the typical time required for a series of
successful calls to remote methods. One-time costs such as object activation and obtaining
a remote reference from a registry are ignored, since these are assumed to be amortised over
the lifetime of the program. Events such as distributed garbage collection are also assumed
not to occur, since they are by nature infrequent and unpredictable events.

These assumptions are not detrimental to the usefulness of the model, since none of
these events are affected by the RMI optimisations. Since the model is used to reason about
how the RMI optimisations affect the cost of RMI calls, modelling them would simply add

unnecessary complexity.

4.1.2 Parameters

The following steps occur for a successful remote invocation to a standard remote object:

1. The arguments of the method call are serialised into a data-stream

69



CHAPTER 4. OPTIMISING JAVA RMI 70

2. The serialised arguments, along with the identity of the method being called, are sent

to the remote server
3. The server deserialises the arguments

4. The server uses the method identity to call the correct method, passing in the deseri-

alised arguments
5. The return value of the method is serialised
6. The serialised return value is sent to the server
7. The client deserialises the return value

A remote method that throws an exception is also regarded as a successful call — the thrown
exception is treated like a return value. Unexpected exceptions, such as those due to network
failure, are not covered in this cost model since they are inherently unpredictable.

The costs of a RMI call can be divided into three categories:

e Constant (1) — this is overhead that is incurred on every RMI call, and is independent

of the method being called or the supplied data. It is due to:

— Network latency
— Stub overhead

e Per byte (b) — this is overhead that is dependent on the size of data transferred
between client and server. This is due to:

— Serialisation and deserialisation

— Network communication (limited by bandwidth)

e Computation time (c¢) — this is the time taken by the remote method to actually do

the work requested by the client.

4.1.3 Cost model

Using this model, the time required to perform a single remote call, where the amount of
data transmitted is s bytes, is:
t=Il+s-b+c (4.1)

For n calls, where the quantity of data and computation time for the ith call are denoted

by s; and ¢; respectively, the total time is given by:

n—1

=0

This model can be simplified by defining § and ¢ as the mean values of s; and ¢; over

the n calls respectively, so that the final cost model is:

t=n-(+35-b+7) (4.3)

This cost model will be elaborated upon as the RMI optimisations are discussed in terms

of their effect on the cost equation.



CHAPTER 4. OPTIMISING JAVA RMI 71

A Remote
+f£(): int
? 1 T
B
1
1
B Impl
+f(): int

Figure 4.1: Example of a class hierarchy that provides an interface leading to a remote call
without implementing Remote — the interface A does not extend Remote, but calling £ on
it will result in a remote call nevertheless.

4.1.4 Limitations

This cost model is oversimplified in many ways. In particular, it ignores the packet nature
of most computer networks, which leads to a step-like increase in time as the quantity of
data to be transported increases, rather than the linear relationship used in the model.
Nevertheless, this simple model is adequate for the purposes of analysing the effect of
the RMI optimisations, since the relative effect of each parameter on the overall time can
easily be inferred from the form of the equation — the absolute time is not important in this
context. It can also be argued that if the quantity of data transported is large compared to
the packet size, then a continuous progression is an adequate approximation of a stepped

progression.

4.2 Initialisation

This section deals with the events that happen when the client and server start running

under Veneer, and how the client obtains a remote proxy from the server.

4.2.1 Client startup

The client runs under a Veneer policy that only intercepts the execution of methods that
may make remote calls, fragmenting around calls that have been statically determined to be
potentially remote.

Calls are deemed to be potentially remote if they are invoked via an interface, and have
RemoteException or one of its super-classes on the throw list. A run-time check is later
used to ensure that a potential remote call is actually remote. Note that it is not sufficient
just to check that the receiver of the call implements java.rmi.Remote since the object
could be invoked directly instead of via RMI, and some remote calls may be missed if calls
are made to a non-remote interface that acts as the superclass of a remote interface — for

example, see Figure 4.1.



CHAPTER 4. OPTIMISING JAVA RMI 72

Under the control of the Veneer framework using this policy, runtime behaviour is un-
changed until the first remote call is encountered.

4.2.2 Server startup

The same Veneer policy that is used on the client also runs a remote proxy server on startup,
which first registers itself in a naming service via JNDI [48]. This proxy keeps track of all
remote objects present on the virtual JVM by inserting a small callback method into the
constructors of all remote classes at load time (any concrete implementation of an interface
that extends the Remote interface is considered a remote object class). When the remote
class is instantiated, this callback registers the remote object in the Veneer runtime, and

associates the remote object with an ID that is unique for that Veneer instance.

4.2.3 Proxy/object resolution

Clients obtain handles to proxies via JNDI. When a client first encounters a new remote stub,
it broadcasts it to all known proxies. The proxy that handles the remote object denoted
by the stub will identify itself, returning the ID associated with the corresponding remote
object. Remote plans containing calls on that stub will subsequently be sent to the identified
proxy. Stub to proxy/object ID mappings are cached on the client for speed.

If none of the proxies claim to handle the new stub, then it is assumed that the remote
object resides on a server that does not support the DESORMI optimisations. In this case,
a fall-back mode is entered where all calls on the new stub are treated like local code, which
is executed immediately when encountered.

Although RMI stubs contain the IP address and port number of the destination server
and a unique object ID as part of their internal state, the stub to proxy/object ID resolution

has been handled manually for two main reasons:

1. This data is stored in an implementation-dependent class (for example, in the Sun
JDK, this information is stored in sun.rmi.transport.LiveRef) with no public access

methods

2. RMI/IIOP and EJB implementations use different mechanisms for identifying the tar-
get of a remote call (for example, RMI/IIOP uses CORBA-style Interoperable Object
References). By manually handling the remote target resolution, it is not necessary to
reimplement the code to find an appropriate remote proxy for every transport mech-
anism as long as the stubs support the standard equality and hash code tests.

4.3 Call aggregation

Delaying calls to form call aggregates is the core technique upon which this project is based.
It is an important optimisation in its own right, and furthermore can also open up further

optimisation opportunities.



CHAPTER 4. OPTIMISING JAVA RMI 73

Server
No call

\“\ ~'77  aggregation
&~ T N With call

I ' aggregation

Client |~"=*='= E,
I
&« T :

Figure 4.2: Example of call aggregation
Counsider the following code fragment:

void m(RemoteObject r, int a) {
r.f(a);
int y = r.g(x);

int x

int z = r.h(y);
System.out.println(z);
}

This program fragment incurs three remote method calls, with six data transfers. How-

ever, for this example, it is possible to do better:

e Since all three calls are to the same remote object, they can be aggregated into a single
large call, such that the number of times that call overhead is incurred is reduced to

one (see Figure 4.2).

e 1 is returned as the result of the call to f from the remote server, but is subsequently
passed back to it during the next call. The same occurs with the variable y. If the
values of z and y were retained by the remote object between remote method calls,

then the number of communications could be reduced from six to four.

e The variables z and y are unused by the client except as arguments to remote calls on
the remote object from which they originated. z and y may therefore be considered
as dead variables from the client’s point of view, and there is no need for their value
to be passed back to the client at all, thereby further reducing the total number of

remote transactions down to just two messages with payloads of size int.

4.3.1 Relation to distributed program design

Call aggregation may be considered as an automatic application of several concepts described
in Section 2.2.1:

e The command object pattern — the client now sends an object containing multiple
commands for the server, so that multiple remote operations can be performed during

the course of a single remote call.

e The value object pattern — all data defined and used by the remote calls are transferred

to and from the client in a single step.



CHAPTER 4. OPTIMISING JAVA RMI 74

e Session state — data generated from an earlier remote call in a set of aggregated calls
is retained on the server to be used by later calls if necessary, which can effectively
make a stateless interface behave like a stateful one while the aggregated calls are

being executed.

4.3.2 Effect on the cost model

To recap, the original cost model for n calls was:

torig=n-(l+35-b+7¢) (4.4)

The effect of aggregating all calls together without any further optimisations is to reduce
the call overhead of n calls that of just one call. However, the amount of data transferred
per call increases by a constant amount since the identity of the called method and the
metadata now need to be transferred as part of the data payload. This is denoted by a

constant o.

taggr =1+n-((3+0)-b+7) (4.5)

The effect of sharing data and dropping of dead return values is modelled by first splitting
the quantity of data returned by each call into two components — the data being passed to
the method (sin), and the data passed back (sout).

The effect of sharing data between calls depends on the relationships between the calls.
If no data is shared between calls, then there is no improvement at all. At the other extreme,
if all the data is shared between all the calls, then the quantity of data is reduced by a factor
of n. This is modelled by a sharing factor s, which represents the average proportion of
‘fresh’ data carried by each call. Low values of s denote high levels of sharing. s is defined

as:

total quantity of data transferred

S =
total quantity of data used from call arguments

For the calls where the return value is dropped, sout does not contribute to the amount of
data transferred across the network. This is represented by a factor r, which is the weighted

average of the proportion of calls that return a live value.

> live; - sout;

Yisout;

where:

s 1 if call i returns a live value
me; =
‘ otherwise

The values of s and r are bounded by:

0 <s< 1

0 <r< 1



CHAPTER 4. OPTIMISING JAVA RMI 75

Bringing all these factors together, the total cost is now:

tnew:l‘i‘n((S%—FTW—f—O)b—i—E)

The optimisations pay off if:

torig — tnew > 0

n- (I+ (sin+sout) -b+¢)— (I+n-((s-sin+r-sout+0)-b+¢)) > 0
n-l4+n-b-(sin+sout) — (I+n-b-(s-sin+r-sout +o0)) > 0
(n—1)-l4n-b-((1—s) -sin+(L—r)-sout —o) > 0

n;lé (1—s)-sin+(1—r)-sout—o0 > 0

This inequality predicts that the optimisation will be more effective if:

o [ is large — this usually occurs on a slow network with high latency. The effect of the
optimisation is greater in such situations because the time saved by reducing the total

number of remote calls made is proportionately greater.

e b is small — this usually represents a high bandwidth network. The higher the band-

width, the smaller the time needed to transfer the extra data represented by o.

e s is small and sin is large — this occurs when there is a high degree of data sharing
and a large quantity of data would originally have been transferred. This leads to
better performance due to a larger reduction in the amount of data that needs to be

sent.

e 7 is small and sout is large — this occurs when most of the return values are dead
and a large quantity of data would originally have been returned. Again, this leads to
a better result because of the greater reduction in the quantity of data that needs to

be returned.

e ¢ is small — o represents the per-call overhead of the optimisation. Obviously, the
lower the overhead, the better the performance.

e n is large — as n increases, ”T_l — 1. This reflects the time saved by avoiding

n — 1 crossings of the network increases, but at the same time, the time taken by the

overhead o increases proportionately.

If the effects of the data optimisations are ignored (i.e. if s = r = 1) and the inequality
is rearranged to express n in terms of the other variables, the following inequality can be

derived:

n—1 1

C- = 0
" b o >
n-l—n-b-o > 1
l
"7 T

The inequality establishes a lower bound for the number of calls that must be aggregated

for the optimisation to pay off. As the time to transport the extra data b- o approaches the



CHAPTER 4. OPTIMISING JAVA RMI 76

time needed to make an extra remote call [, more calls must be aggregated for the saving
in call latency to overcome the overhead of the optimisation. If b - o is greater than [, then
aggregation is not worthwhile since it would be cheaper to make the calls separately in the

first place.

4.3.3 Client-side implementation

If the executor encounters a confirmed remote call during the course of execution, then it
places the call within a queue and proceeds to the next instruction. Sequences of adjacent
calls to the same remote object are grouped together into remote clusters, which are a type
of execution plan that may only contain remote calls to the same remote object. Metadata,
such as the set of live variables after each call, is stored as part of the remote cluster.

Calls to other remote objects will not force execution of the delayed calls, but will result
in the start of a new remote cluster. The exception to this rule occurs if the target of the
call is defined by a previously delayed call, which leads to a control dependency since the
object that the call is invoked on is not known until the delayed calls have been executed.

This issue is resolved later in Section 4.4 with the introduction of server forwarding.

4.3.3.1 Local code

When a non-remote block is encountered with delayed calls remaining in the queue, a decision
has to be made regarding whether or not to force execution of the calls. The decision is
made conservatively — calls are forced unless it can be proven that it is safe to continue
without forcing the calls. These conditions are covered in more detail in Section 4.6.

When a remote call is delayed across local code, that remote call marks the end of the
current remote cluster, and subsequent calls are placed in a new cluster even if those calls
are targeted at the same remote object. However, consecutive remote clusters targeted at
the same remote object are grouped into remote bundles. Remote bundles are another type
of execution plan that can contain either remote clusters or other remote bundles. Remote
clusters and remote bundles are both types of remote plan, and either type may be processed
by the server.

When executing local code in the presence of delayed remote calls, there may be anti-
dependencies between the local code and the delayed calls. Anti-dependencies occur when
variables used by the delayed calls are modified by the local code. This is guarded against
by saving the state necessary to execute the current remote cluster just before the local code
executes, as described in the next section.

In theory, it is sufficient to copy just the variables that may be touched by the local
code and use the state from previous clusters for variables that are unmodified, but due
to possible aliasing issues, all variables that are needed to execute the cluster are copied
conservatively. However, as discussed later in Section 4.6.2.1, even this is not sufficient to

deal with all possible cases due to callbacks.

4.3.3.2 Saving delayed call state

The variables required to execute a remote cluster are saved by placing them into an array,
then serialising the array of objects into an array of bytes that is associated with the remote

cluster. The variables need to be serialised in one step to preserve sharing (see Section 4.6.6).



CHAPTER 4. OPTIMISING JAVA RMI 7

This serialised state is sent along with the remote cluster when it is sent to the server to be
executed later on.

The set of variables that need to be saved are defined as follows. A remote cluster consists
of calls fi, fo,... fm. Each call f; uses the variables in the set use; in its argument list, and
assigns to at most one variable, which is contained in the set def;. The set of saved variables
saved is defined as follows:

xr € saved < Hi-(wEusei/\Vj-xEdefj@j>i)

In other words, only variables that are used in the argument lists of the delayed calls
that are not defined by earlier calls are saved, to avoid sending values that will never be

used.

4.3.3.3 Forcing execution

Remote calls are generally delayed for as long as possible to maximise the number of calls
aggregated. Forcing of delayed calls is generally done only when it is necessary to preserve
the original semantics of the application. These conditions are covered later in Section 4.6.

When execution is forced, the state required to execute the last remote cluster is first
saved, if it has not been saved already. The queue of delayed remote plans is then traversed,
with remote plans being sent one-by-one to the corresponding remote proxy on the server-side
via standard RMI invocation to be executed. The proxy call may either return successfully
or throw an exception.

If the call returns successfully, then the variables defined by the plan that are still live
are copied back into the locals set of the executing method. If an exception was thrown,
then the executor goes through the normal process of finding a handler for the exception
within the method (the location of the thrower is part of the information contained in the

exception), and propagating it up the call chain if one is not found.

4.3.3.4 Method exit

When the executor reaches the end of a method, all pending calls are forced to execute
immediately. This is done since the current method may have been called from an uninter-
cepted method, which would proceed after the call returns, oblivious to the fact that the
callee has not finished completely. If the delayed remote calls have visible side-effects, then
this can lead to events occurring in a different order, changing the program semantics.
Ways to overcome the need for forcing at the end of a method are discussed as future

work in Section 6.2.8.

4.3.4 Server-side implementation

Remote plans sent to the proxy are executed by a remote executor, which simply executes
the calls one-by-one. Remote calls in remote clusters are executed in sequence, while the
contents of remote bundles are recursively traversed in order.

Remote calls are made by invoking the methods on the remote object directly rather

than via another RMI invocation for better performance. However, care must be taken due



CHAPTER 4. OPTIMISING JAVA RMI 78

to the semantic differences between local and RMI calls (see Section 4.6.6).

After every remote method m executed, the set defs is updated with the variable that
m assigns to, if any. However, before m can be executed, the arguments for m must be
supplied to it. The remote executor uses the following algorithm to locate a value for a call

argument x:

1. If € defs, the value from defs is used.

2. If z is in the saved state for the current cluster, the value of x from the saved state is

used.

3. This step should never occur in the current implementation since partial saved states
are not currently used. Nevertheless, if 2 cannot be found in the saved state for the
current cluster, then the saved states for previous clusters are searched in reverse order.

The first cluster with a state that contains x is used as the source for x.

When finished, the proxy returns a subset of defs back to the client. This subset return is
defined by:
return = defs N liveg frer(Miast)

In other words, only defined values that are live on the client after the last remote call
is executed (my.st) need to be sent back to the client. This liveness information is part of
the metadata supplied with the remote plans.

4.3.5 Example

Cousider the following fragment of code:

x = r.f(w); // Remote calls to a remote
y = r.g(x,w); // object r
it++; // Intervening local code

z = r.h(y); // Another remote call to r

System.out.println(z + i);

This code is somewhat contrived, but demonstrates most of the essential features. This will
be fragmented by Veneer at each statement. When the executor running this code reaches
the first remote call, it attempts to establish a connection with the Veneer instance that is
responsible for handling r. If successful, this results in a remote reference to a server-side
proxy for r. If not, it is assumed that the DESORMI is not supported by the server and
remote calls are executed normally using the original stub. This type of execution proceeds
as shown in Figure 4.3.

If a reference to a server-side proxy is found, then the call to r.f is delayed by placing
it into a remote cluster. The value of the argument w is stored in the cluster. Metadata

concerning the delayed call is also stored — this consists of the identity of the client-side



CHAPTER 4. OPTIMISING JAVA RMI 79

|
Client i Server
i
Client ! r
|
i X= r:f(w) i
|
X
----- Tm——m - —
y = r.q(x,w) |
y
GF----- -‘* —————— -
| I
- \ :
> Dt |
< ! |
z =r.h(y) :
|
z
I

Figure 4.3: Sequence of events without call aggregation

variables used and defined by the call, and the subset of defined variables that are live (i.e.
will be used later on by the client). This is illustrated in Figure 4.4(a). The executor will
then skip to the successor of the call.

The next remote call r.g is delayed in a similar fashion, and is placed into the same re-
mote cluster as the previous call since it makes the call on the same remote object. However,
the values of the arguments x and w are not stored this time, because x is defined by the
previous call and w has already been stored as part of delaying r.f. This can be determined
on-the-fly by inspecting the metadata associated with the remote cluster before adding r.g.
After the new call is added, the set of live variables is updated by removing x because it is
not used after r.g. This is shown in Figure 4.4(b).

The next instruction i++ is local code. The executor must now decide whether the two
delayed calls should be executed before the local code can execute. In this case, this is not
necessary since the instruction does not need anything defined by the remote calls, cannot
throw an exception, and is invisible to any call-backs and exception-handlers that may occur
(assuming that i is local and exceptions result in the method immediately exiting). The
instruction may therefore be executed without the remote calls executing.

The next instruction is a remote call to r.h, which is delayed. Although the call is also
to the remote object r, it is placed in a separate remote cluster from the previous two calls
due to the intervening local code. Again, y does not need to be stored in the cluster since
it is defined by another remote call. Also, z is dead after this call, so it is removed from the
list of live variables. This is illustrated in Figure 4.4(c).

The last instruction is a local statement that uses the variable z defined by the remote

call r.h. However, the value of this variable is not yet available, since it is defined by a



CHAPTER 4. OPTIMISING JAVA RMI

80

Uses:r, w
Defs: x
Live: x

x = r.f(w) Uses: r, w, X
Defs: x, y
Live:y
y =rg(x,w)

(a) After first remote call

(b) After second remote call

Uses:r,w, X,y
Defs: x,y, z
Live: z

X = r.f(w) Uses:r, w, x
Defs: x, y
Live:y
y = r.g(x,w)
z=rh Uses:r,y
\—(y)‘ Defs: z
Live: z

(c) After third remote call

(d) Prior to remote execution

Figure 4.4: Remote plans during the call aggregation example



CHAPTER 4. OPTIMISING JAVA RMI 81

|
. |
Client | Server
i
Client Queue ! Proxy r
|
: x = r.f(w) : } | |
' | : : :
y=rgkxw 1 ! : !
_% | | |
| | | |
| | | |
— | | | |
> e | : !
<4 | | | |
z=rhy) | | | |
4 000N | | |
force() ! ! | |
N | I ]
execute(plan,w) | :
| N |
1 x=rfw)
| | |
| y=rgew) |
B E—
| z=rhly) 1
R
z .
A u |
z | I I
| | |
D T | : :
| | | |
- I \ I I
> System.out.printin(z-+i) | |
L& I | |
| | | |
| | | |
| | | |
|
|

Figure 4.5: Sequence of events with call aggregation

remote call that has not yet been executed. This forces the execution of the delayed calls.

The two remote clusters are first gathered together into a remote bundle since they
share the same destination. The metadata for the remote bundle is computed by merging
the metadata of its constituents. This is shown in Figure 4.4(d).

The remote bundle is sent to the server-side proxy that is responsible for handling the
remote object r using the remote reference handled earlier. The proxy makes the remote
calls on behalf of the client, extracting the stored value of w to execute the first and second
calls, and routing the results of prior calls to later calls where necessary. Finally, when all
the calls are executed, only the live variables (in this case, z) are returned to the client. All
decisions made by the proxy can be done efficiently at run-time by performing set operations
on the supplied metadata. On the client-side, the returned value of z is loaded into the local
variable z, and the local print statement can proceed.

The overall sequence of events is shown in Figure 4.5.

4.3.6 Implementation optimisations

Several low-level improvements have been made to the implementation that are covered in

this section.



CHAPTER 4. OPTIMISING JAVA RMI 82

4.3.6.1 Transportation of plans

Remote plans must be serialised at the client end before being transported across the network
and deserialised on the server. However, due to serialisation being a generalised process,
normal serialisation usually results in a byte-stream that includes a considerable amount of
extra data.

For example, if an instance of a class is serialised, then the Java runtime will iterate
through the class hierarchy of the instance, serialising at every level. At each level of
serialisation, the name and version identifier of the class will be placed on the byte-stream,
as well as a string that provides the deserialising JVM with a location from which to load
the class if it is not already present. Every instance field contained within the class is then
serialised in the same manner.

Since the exact types of the transmitted plans and blocks are known, this results in a
lot of unnecessary network traffic when transmitting serialised plans over the network. To
combat this, several optimisations have been performed.

The classes are made externalisable rather than serialisable. Externalisable classes are
similar to serialisable classes in that they can be transformed to and from byte-streams, but

the implementation details differ in two main details:

e Externalisable classes must implement two methods readExternal and writeExternal,
which are called when the object is externalised. In serialisation, the runtime must
search for and call the optional readObject and writeObject methods, and seri-
alise the instance fields one-by-one if the methods do not exist. Externalisation is
faster because the readExternal and writeExternal methods are called via the
Externalizable interface rather than via reflection, which is used for calling the
read/write methods in standard serialisation. The automatic serialisation of instance

fields (again via reflection) does not occur in externalisation.

e Externalisable classes do not recursively serialise their base classes. This means that
the extra class information due to base classes will no longer be present. However,
this does means that the readExternal and writeExternal classes must also be

responsible for state that is inherited from a superclass.

However, externalisation will still result in class metadata being written to the byte-stream.
Most of this is avoided by having the plans inline the byte-streams of their constituent
blocks as much as possible. This is done by manually calling the writeExternal methods
of the blocks rather than passing the block to the writeObject method of the ObjectOutput
passed in as a parameter to the writeExternal method. This will write the contents of the
block to the plan byte-stream without introducing a new class header.

This scheme means that the task of identifying the type of block being serialised must
be handled manually, so that it can be reconstructed later. This is done using a single byte
that is placed just before the block data. This byte corresponds to the value returned by
calling getType on a block.

4.3.6.2 Resolving methods

The remote-call blocks of the plan need to record the identity of the method that they

represent. This information was initially conveyed as a string representing the signature of



CHAPTER 4. OPTIMISING JAVA RMI 83

the method — i.e. its name, return type, and the types of its arguments.

Unfortunately, this scheme is inefficient, since fully qualified Java class names tend to be
long in length, and transmitting them causes a significant increase in network traffic. This
has been replaced with an adaptation of the protocol used in the JRMP protocol — the
least-significant 64 bits of the SHA-1 hash of the signature string are used as the method
identifier instead. These hashes are computed only once and are stored along with a handle

to the corresponding method in a lookup-table on both client and server for efficiency.

4.4 Server forwarding

Server forwarding takes advantage of the fact that servers typically reside on fast connections,
while the client-server connection can often be orders of magnitude slower. Consider this
sequence of calls:

r1.£0;
r2.£0;
r3.f(x,y);

o]
1]

The first two methods invoked on 7! and r2 are returning objects that are subsequently
used as arguments to a method on another remote object 3. In this situation, the client
is acting as a router for messages between r1, r2 and r3. It would be better for r1 and r2
to communicate with r3 directly, such that no constraints are set as to which path is taken
between the two servers. Also, if  or y are dead, then they need not be returned to the
client.

Forwarding is also necessary for efficient aggregation of factory patterns. e.g.

©
]

r.newObject();
a.fQ;

Without forwarding in place, a force is needed after the call to newObject because a is used
as the receiver for the next remote call — without knowing the value of a, it is not known
where to send the remote plan, or what object to invoke f on.

4.4.1 Effect on the cost model

The original cost model for n calls to a single server was:

torig=n-({+35-b+7) (4.6)

This can be extended to cover a set of calls to two different servers A and B. The per-call
and per-byte cost from the client to server A are denoted by l.4 and b.4 respectively, and
the costs from client to server B by l.p and b.p have an expression like the following;:

torig:m'(ch +g'bcA +a)+n(ch +§'ch +@)

When server forwarding is introduced, the network connection between A and B is utilised
to transfer data. The per-byte and per-call overhead of this connection is denoted by lap

and bsp. Some of the data required by server B originates from the client, and some of the



CHAPTER 4. OPTIMISING JAVA RMI 84

data returned by server B is needed by the client. This data is now sent to server B via
server A, instead of directly to server B. The proportion of the total data sent to server B
that is of this type is denoted by f, where 0 < f < 1. It is assumed that all the information
sent between client and server B via server A is ‘piggy-backed’ on top of calls to server A, so
no extra latency is incurred between the client and server A. A certain amount of overhead
o is also incurred with each call to a server. The cost for forwarded calls becomes:

tforwarding :m(ZCA+(ﬂ+0)bcA+a>+n(ZAB+f§bcA+(§+O>bAB +@)

Forwarding pays off if:

torig — tforwarding > 0

(m-(lea+ 54 -bea+2a) +n- (g + 55 - bep +€B))
—(m-(lea+ (3Fa+0)-beat+ca)+n-(lap+f-55-bea+ (55 +0)-bap+¢B)) > 0
n-(le+3-be)—(m-0-beat+n-(lap+f-55-bea+ (Be+0) bap)) > 0

n-((lep =laB) + 355 - (bep —baB) —0-bap) —(m-o+n-f-38) bea > 0

As expected, the effectiveness of the optimisation depends mainly on the speed difference
between the connection joining the client and server B, and that joining server A and server
B, as expressed in terms of the per-byte cost b and per-call cost I. The greater the difference,
the better the speedup that will be achieved. The optimisation overhead o and the cost of
server A relaying data to and from server B have negative effects on the speedup, and might
even lead to an overall slowdown.

Minimising the overhead o and arranging for as little data to be forwarded as possible
between the client and server B via server A (i.e. reducing f) can help reduce the impact.

4.4.2 Implementation

Server forwarding is implemented on top of call aggregation in a preprocessing step just be-
fore execution on the remote proxies, by permitting remote plans that operate on different
remote objects to be grouped together into the same remote bundle. Remote bundles are
always sent to the remote proxy that handles the first remote cluster to be encountered dur-
ing an in-order traversal of the tree rooted in that bundle. When a remote proxy encounters
a plan that is handled by another remote proxy, it will forward the nested plan onto that
proxy automatically.

The following heuristics are used to decide when to group plans with differing destinations
together:

e Plans that are delivered to the same remote proxy should be grouped together
e Plans that are data dependent on one another should be grouped together

The aim is to achieve these goals while preserving the relative ordering of the calls. First,
a graph is built from the plans in the remote queue, with an arc between nodes that have

a data-dependence or share a remote proxy. Then the plans contained in the remote queue



CHAPTER 4. OPTIMISING JAVA RMI 85

are processed in sequence, starting from the second plan. At this stage, the queue should
only contain clusters and bundles that contain clusters targeting the same remote object.
The current enclosing bundle, which is initially unset, is tracked throughout. The algorithm

is as follows:
e If there is an arc from the current plan to the previous plan

1. Create a new remote bundle

2. Add the previous and current plans into it

w

. Change all next-block pointers pointing to the previous plan to point to the

remote bundle instead

4. Set the current enclosing bundle to point to the new remote bundle
e Else

— If there is a current enclosing bundle and there are arcs between the current plan

and the other plans in the current enclosing bundle

* Add the current plan to the current enclosing bundle, adjusting next-block

pointers as required
— Else

* Set the current enclosing bundle to its parent (i.e. the bundle that encloses

the current enclosing bundle) and repeat

The algorithm currently gives equal priority to arcs due to co-location and those due to
data-dependencies. It is possible to prioritise one type of arc by processing all instances of

that type first when traversing through the plan hierarchy, followed by the other type.

4.4.3 Example

Consider the following client code:

=rl1.fQ);

=r2.f0;

r3.f(w,x);
=rd.f(w);
System.out.println(y+z);

N < X =
1]

r1 and r2 are hosted on the same JVM. The four remote calls are encountered and delayed
on the client side, then forced to execute before the print statement, with variables y and z
remaining live. Each call would reside in a separate remote cluster since they call different
remote objects. The server forwarding algorithm restructures the remote plan as shown in
Figure 4.6.

Figures 4.7 and 4.8 show the communication pattern before and after the application of
the server forwarding algorithm. Without forwarding, the client is responsible for receiving
the values of w and z from the first two calls, and forwarding them to the next two calls.
With server forwarding in place, the source of variables w and x is responsible for forwarding
the values instead. Also, since w and z are not used elsewhere in the client, they do not

need to be returned to the client.



CHAPTER 4. OPTIMISING JAVA RMI 86

w=rl.f()
.
N
AR
v U
. ' w=rl.£() x = r2.£()
VN
x = r2.£() ' : N A 5
H v
\

<
)
o
< Y e
b
B
¥
‘
<
)
.
3
'm
=
I3

z = r4.f(w)

©

Bundlel
Bundle2

1 2 3
W= rl.f() |—+| x = r2.£0) |—>| y = r3.f(w,x) |

z = r4.f(w)

Figure 4.6: Implementation of call forwarding: a) Arcs are placed between the calls to r1-r3,
r2-r3 and r1-r4 (due to data dependence), and r1-r2 (due to co-location), b) Current cluster
is the call to r2 — a bundle is generated to enclose rl1 and r2 due to the r1-r2 arc, ¢) Current
cluster is the call to r3 — a bundle is generated to enclose r2 and r3 due to the r2-r3 arc,
d) Current cluster is the call to r4 — no arc to r2 or r3, so the parent bundle is checked,
where an arc to rl is found, and so r4 is added to the bundle containing r1.



CHAPTER 4. OPTIMISING JAVA RMI 87

| | |
. | | |
Client ! Server 1 . Server2 | Server3
| | |
Client ! r1 r2 ! r3 ! r4

| | |

! w = r1.£() ! ! l ! l |

1 | | | | | | |

T | | | | |

w I_I | I | I |

N SO . : | : | |

[ x =r2.f() I [ I ‘ I

I | | I | I |

t T | | | |

| X | | | | 1

| | | | | |

GF——---- +————— it [ I [ I

! Loy=r3fwx) | ! ! | !

I t | | |

| | y | | U | |

G----- do—mm- A - d----—- | !

| : z= rd f(w) | : | :

| | | | | | N

| ! |z | | | J_|

oo i aaet EEEEER

| | | | | | |

~ 1 : | 1 | : |

> System.out.printin(y+2) | | i | i

— | ' I | : | :
| | |

Figure 4.7: Sequence of events without call forwarding

4.5 Plan caching
These optimisations incur a substantial overhead due to factors such as:

e Overhead of the Veneer runtime
e Maintenance of dependence information for delayed calls
e Preprocessing for server-forwarding

e Transmission of remote plans and metadata

The overhead can be reduced by caching plans on both server and client sides. Instead
of building up remote plans by delaying calls as they are encountered, the remote calls
are replaced with the remote plans built up by delaying those calls previously. When the
executor encounters these, it can simply place the remote plan directly onto the remote
queue with minimal overhead.

This can only be done for clusters of remote adjacent calls, and not for remote bundles
because the same sequence of remote calls might not occur next time. For example, consider
Figure 4.9. During the first iteration, r.f, r.g and r.h will be aggregated, but it would not
be valid to replace r.f with the resulting remote bundle because the next iteration would
result in r.f, r.g and r.i being aggregated. However, it is safe to replace r.f and r.g with a
remote cluster since these always occur together.

The fact that the server has seen the plan before can also be used to implement a form of
data compression. The server can keep a cached copy of the plans that it receives, returning
an identifier associated with the cached plan to the client. The client from that point can

simply use the identifier to refer to the plan, rather than sending the entire plan every time.



88

CHAPTER 4. OPTIMISING JAVA RMI

| |
| |
! | | I ! | |
W | | I W | |
, | | o | .r
! ! ! ! A,N+bc_E_\_Q.5m.EQm>w m
| ! _ “ | ! i
! i I I | b -
, | | | , i
! | “ | I | 'k
| | | - oo -
I [ . 4 -
! | 1 ! | | !
| | I | | | |
! | | ! | | !
I , | | , | | !
! i ; : | ; ; [
| | W | _oi J21SN ov,wSooxo | | W
W | | | x vt | S
| I I 1 I I N
| | ! | 1 ! | | S~o !
| | W | 1 W | I N W
| ] ] 1 ] ]
I | ! I | ! I I |
| ! | ! R S — e S - |
| | ! | ! | I | !
i | W | W | | W
| ! | L emyei=A | _ _ |
| ! | ! N | ! ! |
I | W | | W S | !
I | | | "« T
| | ! | I ! | : !
| | ! | 1 ! | !
| | ! | I ! | !
I | ! I | ! I |
| I o | ,
| ! | ! _ | ! |
I | ! I | ! I !
I | ! | | ! | ) !
| | ! | I ! | | !
| ! | ! _ | ! _ _ W
! ! | ! ! | “ ! _ (181pung)ainoexe
| | ! | I ! | | I ! i
| ! | ! _ | ! _ “ | T G N
” L . _ o N |
I | I | | I (M)y =2
| | ! | i ! | | i ! N
| L . | | o D omreisa
| | W | l W | | I W N—————————
| o o | L D
| | | ~
| | ! | i ! i i i ! b= m
| | |
b EAXOIg | ci ZAXOig | Zi T TAXOIg | EiElre) INETTe)
i i i
€ lonIeg m 2 laneg m | JOAIBS m waln
I I I

Figure 4.8: Sequence of events with call forwarding



CHAPTER 4. OPTIMISING JAVA RMI 89

for (int i = 0; i < 1000; i++) {

r.f0;

r.gO;

if (1 % 2 ==0)
x =r.h(Q);

else

x =r.i0;
System.out.println(x);

Figure 4.9: Example of a loop that results in a different remote plan on every iteration

An alternative view of this optimisation is that session fagades (see Section 2.2.1) are
being built on-the-fly, customised for each client. The identifier of the cached plan becomes

the effective ‘method name’ of the dynamically constructed session facade.

4.5.1 Effect on the cost model

Unlike the other optimisations, caching does not change the communication structure in any
way. Caching drastically reduces the amount of data that need to be transferred in order to
convey an execution plan to the server in runs after the first run by replacing the full plan
description with a simple number instead. This reduces the optimisation overhead that is
denoted by o in Sections 4.3.2 and 4.4.1, leading to a better chance of achieving a speedup
if there was none before, or a larger speedup to that previously attained.

4.5.2 Client-side implementation

On the client side, a list of newly constructed call clusters is maintained. After the plans are
executed, the clusters are incorporated into the method plan, such that for each cluster, all
paths leading to the first call in the cluster are re-routed to the cluster, and the successor
of the cluster set to the successor of the last call in the cluster. The embedded remote clus-
ters are delayed similarly to remote calls when encountered, though without the processing
required to construct the plan.

After a plan is executed, a list of cache IDs is returned by the server proxy. Cache IDs
associated with call clusters are assigned directly to the embedded remote clusters. The
cache IDs belonging to remote bundles are stored in a global cache, which associates a cache
pattern with a cache ID. The cache pattern is generated by traversing the remote bundle
in pre-order, building up a string containing the cache IDs of the plans encountered during
traversal.

The cache IDs for all plans are stored as a hash-map from remote server to the cache
ID for that server. In all plans, a handle to the last remote server used and the cache ID
associated with that server are retained. If the plan is invoked again on the same server,
the cache ID can be reused to avoid a hash-map lookup.

When the plans have been grouped and are about to be sent to the server, the cache IDs
are sent in preference to the entire plan whenever possible using the following algorithm,

starting at the root of the tree:

e If the plan is an embedded cluster, the associated cache ID from the embedded cluster



CHAPTER 4. OPTIMISING JAVA RMI 90

is used directly:

— If the cache ID is found, then that is used in place of the cluster

— If there is no cache ID, then the entire cluster must be sent
e If the plan is a bundle:

1. Compute the cache pattern of the bundle
2. Lookup the cache ID in the global cache

— If a cache ID is found, then it is used in place of the bundle

— If no cache ID is found, then the algorithm is recursively applied for each plan in

the bundle. The resulting remote bundle is then sent.

4.5.3 Server-side implementation

On the server side, the remote proxy maintains a cache of encountered plans, indexed by an
integer identifier. If a remote plan containing uncached entities is executed, the uncached
items are cached and an array of cache IDs for the overall plan is returned to the client.
Since the remote plan forms a tree structure known by both the server and client during the
call, cache IDs are returned to the client as a flat array of integers by performing a pre-order
traversal of the remote plan, returning the cache IDs as the nodes are encountered. The

client uses this information to allocate the correct IDs to the correct clusters.

4.5.4 Example

Consider the first four iterations of the code in Figure 4.9. Without caching, execution
proceeds as shown in Figure 4.10. During each iteration, the plans shown in Figure 4.12
are built up before being forced to execute by the print statement. The entire plan is sent
across the network every time the remote calls are forced to execute.

With plan caching in place, execution proceeds as shown in Figure 4.11. The first
iteration behaves similarly in that the entire plan must be sent to the server. However,
when the aggregated call returns, it returns a sequence of cache IDs, which are applied to
the elements of the sent plan as shown in Figure 4.12. These IDs are now associated with
these remote clusters and bundles on the client side, and can be used in place of the plan.

During the next iteration, a new remote bundle is built up since the third delayed call
differs from the previous bundle. However, the first cluster inside the bundle is identical, and
so its ID (which is 1) may be sent in place of the full description of the cluster. When the
aggregated remote call ends, it returns more IDs for the bundle, which are again associated
with the sent bundle. Note that the ID for the first cluster in the bundle is skipped since
the cluster is already cached on both client and server.

On the third iteration, the remote bundle constructed is identical to that of the first.
The client identifies this by matching the IDs of the sub-plans contained within the bundle
(which are 1 and 2) and searching for cached bundles with the same pattern of cache IDs.
Once this is done, the ID for the bundle (which is 0) is sent to the server in place of the
whole bundle. No cache IDs are returned since there are no newly cached items.



91

CHAPTER 4. OPTIMISING JAVA RMI

= —_
2 =< |8 _lo|=s
< = |o |~ = |o | %
()] - g 1 = = 1
¥p) x x
P
M |||||||||||||||| T T T e F T T T e
o I I
o _ S :
() 9]
ie] ! ie] !
c | c |
3 I 3 I
— T —/ -x—t == <
o) I tad D | =
3 _ s 3 ) =
g | £ g | £
] | Q ) | Q
g | 5 | 5
3 V] 3 v} 3
[ Il o —— - _ O __ ___ __
9 7 ) Y )
- 5
! 17 ! 17
— I > . I >
-— = = | = | n |~ = f] | n
< |3 |= |8 x | el |= |8 x |
(O] o o I ° | o o I 5 |
= I 2 I
< | I . I
@) ! !
= | |
@ L-- T T A = T T v Y-
O
(1 1
2‘0 suoneJal| g‘| suoness|

Figure 4.10: Sequence of events without caching



92

CHAPTER 4. OPTIMISING JAVA RMI

LS e v T
— d\V//
o = RS
S = |lc |< 230
oru = |o | - T &5
= o 1 Q O o
SN—
w < -8
x| H_ H_ H_
m |||||||||||||||| _+ ||||||||||||||||||||| T S o
— | S | | |
m I > | I |
= I = | ~ I P~ |
© —_— © o (<)
I — 12 I A [
5 Q, I 5 < Q | Q |
\\\\\\\\\\\\\\\\\\\\\\\ Q-4 ————————-"~= \\\\\\\\)\\\\\\\\\\\‘b\wS\_\\\\\\\\\.ﬂ\\\\\\\\\\‘m\ \_\\\\\\\\\\\\\m N AT ===
=% P = 2™, ; > <
Q = | e Q | Ko % | % |
=] < | £ S | X £ 4 I X |
8 I c S | c o I o l
= I = % | = I |
3] | Q [} | Q. | |
o = =
: ¥ 3 ¥ 3 ¥ :
S 1T~ A __uuu.m. ||||||||| T AT AT T
! [0} | 0] I [
! v o~ ! v~ I~ !
— | > = | > = = ) !
- ~ 5 = | (R =g = [ n c|E|T T =T !
C j= = d [0] | 3 s [0] | = o Q |5 A Q |
= o | - o < [} o x Q = o < [J] o x
(0] = N I = | o 1 = | a I = (7 Il = |
— o @ o @ o @ o
—_— 9% — | = X w— | = = w— I3 > w— |
C | 5] | ) (s |
- | | I |
= | | | |
(@ —— I I \4 T 4||| I N\ T 4||| I /*\Ill I /_\lll
Ol
0 uoljesay | uoneJa)| ZUoONeIdY| o < € UONEIdY
EE5%
SETD
Q&3S g

Figure 4.11: Sequence of events with caching



CHAPTER 4. OPTIMISING JAVA RMI 93

2 4
x =r.h() X =r.i()
(a) Remote plan (b) Remote plan
during iterations 0 during iterations 1
and 2 and 3

Figure 4.12: Remote plans built during the caching example — the cache ID associated with
a remote plan is indicated by a number in the corner.

The fourth iteration behaves in a similar fashion. The constructed remote bundle is
found to have the same cache ID pattern as the bundle with ID 3, and so the ID is sent in
place of the full bundle description. Again, no new cache IDs are returned.

4.6 Maintaining the original program semantics

The DESORMI optimisations affect the semantics of the program in several respects. The
main problem is that executing local code with remote calls still pending is to modify the
order in which code is executed in a program. Obviously, this could have the effect of
changing the overall effect of the program.

This type of problem is solved by forcing the execution of delayed calls before any in-
correct reordering can occur. This is analogous to serialising execution in multi-threaded
programs. However, as is the case with serialising threads, there is a trade-off between too
much and too little forcing. If calls are forced too often, then performance suffers because of
the increased number of remote calls made and the limited call context gathered by the run-
time system. However, this is balanced by the need for correctness — delayed calls must be
forced before the client executes any local code that expects the calls to have been invoked.

One point to note is that remote calls are never reordered with respect to each other.
When remote calls are forced, all pending calls are forced immediately, and are executed in
order. This means that any reordering problems that occur are always due to the interaction
between local and remote code. Since server forwarding and plan caching do not change the
order in which application code executes, they do not suffer from this type of problem.

This section deals with the specific problems that may arise, and how they may be dealt
with. However, note that it always possible to forgo these solutions, in which case the
semantics of an optimised program may differ from an unoptimised version, but this can
be acceptable as long as the programmer is aware of the differences and takes them into

account.



CHAPTER 4. OPTIMISING JAVA RMI 94

4.6.1 Direct data dependencies

The most obvious condition that necessitates the forcing of calls is when a variable that
holds the result of a remote call is used by local code. For example:

x =r.f()
System.out.println(x);

This case is very easy to detect, since all one needs to do is compute the intersection of the
variable define set of the delayed remote calls with the variable use set of the local code.
If the result is not the empty set, then a force is required due to data dependence on the
return value of a remote call.

This is sufficient even when dealing with object types, because the return value of a
remote call is the result of deserialising the byte-stream from the server. This guarantees
that for a remote call of the form y = r.f(x), two key properties must hold after the remote

call is made!:

1. y is the only reference to the root of the returned object.

2. There are no other references to objects that are reachable via y.

The second condition implies that in order to access substructures of the object referenced
by y, y itself must be used first. Therefore, to detect uses of the object referenced by y, it
is sufficient just to check for uses of .

This scheme is too conservative in some ways, in that it does not handle aliasing effi-
ciently, since assigning y to another variable constitutes a ‘usage’ of y, resulting in a force.

Ways in which this may be improved are discussed in Section 6.2.9.

4.6.2 Callbacks

When using Java RMI, it is perfectly acceptable for a client to act as a remote server, and
vice-versa. This creates the possibility for a callback mechanism, where a call by the client
to the server will result in the server calling the client back. This can lead to many possible

consistency problems.

4.6.2.1 Problems caused by callbacks

Problems that arise from callbacks can be classified into those resulting from hidden data
dependencies, and those from hidden data anti-dependencies.

Data dependencies can arise due to the side-effects of a remote call, which will necessitate
a force if local code is dependent on these side-effects. Consider the example in Figure 4.13.
In this scenario, the server has managed to obtain a stub that points to the remote object
cRObj residing on the client. When the client calls £ on the server, the server makes use
of the stub to call the method change0Obj on the object cRObj on the client, which has the
effect of modifying the object referenced by a. Since RMI calls are synchronous, when g is

called, the value of a must have been changed. This causes a problem when aggregating

't 4s possible for a programmer to invalidate these properties by passing a reference from within the
object to some external static field or method during deserialisation, but is not considered here since this
would be an abuse of the serialisation protocol.



CHAPTER 4. OPTIMISING JAVA RMI 95

// On server:
public class ServerRObj implements ServerInterface {
ClientInterface clientRef;

public void £() {
clientRef.changeObj();
}

public void g(SomelObject obj) {
// Do something with obj
}
}

// On client:
public class ClientRObj implements ClientInterface {
private SomeObject obj;

public A(SomeObject obj) {
this.obj = obj;
}

public void changeObj() {
obj.change();
}
}

public class Main {
public static void main(String[] args) {
SomeObject a = new SomeQObject();
ClientRObj cRObj = new RObj(a);

// Export cRObj and get a stub sRObj
// from the server...

sRObj.fQ);

sRObj.g(a);

Figure 4.13: Example of code leading to a callback

calls, since if the two calls are aggregated together, then the value of a that is sent to the
server and subsequently operated on by g will be that of the unchanged object, which is
incorrect.

Anti-dependencies occur when local code overwrites data that is required by previous
remote calls, preventing previous remote calls from being reordered to occur after the local
code. This has been dealt with to an extent in Section 4.3.3.1 by saving the values supplied
as arguments to previous remote calls, but this is sufficient only if the saved values represent
all of the local state that was changed by the local code.

A more insidious problem occurs if a callback is made by a remote call that is reordered
with respect to the local code. If the callback (which was originally executed before the
local code) uses data that is later defined by the local code, then the callback made by
the relocated remote call will pick up the values that have been overwritten by the local



CHAPTER 4. OPTIMISING JAVA RMI 96

code. This is more problematic compared to direct anti-dependencies since it is not always
possible to make a copy of local objects. By contrast, variables that are involved in direct
anti-dependencies can always be copied since they must be serialisable in order to be passed
as arguments in remote calls originally.

The effects of a remote call can be observed by local code only if:

e The client and the server code run on the same JVM

e The remote code makes a callback to a remote method situated on the client, which

modifies some data on the client

In the first scenario, it is generally not worth performing call aggregation at all, since there is
no network communication is taking place. Such RMI calls should execute almost as quickly
as calling them directly, except for the added overhead of serialisation and reflection. Any
gain made by aggregating calls in this scenario is very unlikely to overcome the cost of call
aggregation.

There are several methods of coping with the second scenario. Obviously, if the client
does not export any remote methods, then callbacks cannot occur. However, if callbacks
can occur, and local code is encountered with delayed remote calls pending, then it must
be decided whether it is legal to delay the remote calls across the local code. There are two

main circumstances in which this possible:

e The remote calls do not make callbacks

e The set of data defined by the callback does not intersect with the set of data used by
the intervening local code

4.6.2.2 Detecting remote methods that make callbacks

One possible way of coping with callbacks is to try and detect in advance whether a re-
mote method invocation can make a callback at all. If it can, then it can be ensured that
execution is forced immediately after the remote call. The detection can be performed by
the Veneer instance operating on the server, and the information conveyed to the Veneer
instance running the client, where it can be cached for later use.

When examining the body of a remote method, it should be conservatively assumed that
any remote call made by the remote method will result in a callback because it is not always
possible to know the identity of the callback target in advance, and even if it were possible,
there is always the possibility that that remote method will eventually result in a callback
back to the client.

It is easy to determine if there are potential remote calls within the body of the remote
call, since such method bodies will be fragmented under the RMI optimisation policy. How-
ever, many method bodies will also call other methods in turn, so every possible method
that may be reached from the remote method must be considered. This can be done by
applying analyses such as class hierarchy analysis [27] and variable type analysis [86] to each
method invocation in the body of the remote method to find the possible receivers of the
call, and recursively applying the analysis to the body of each new receiver found until a
fixed-point is reached.



CHAPTER 4. OPTIMISING JAVA RMI 97

There are two problems with this approach. Firstly, the number of reachable methods
can be very large. This means that the search to find remote calls can become costly, and the
risk of false negatives increases with the number of methods searched due to the inaccuracies
of the analysis accumulating. However, there are a number of shortcuts available. If the
classes are available offline, then this information may be computed statically and looked

up at runtime as metadata. The search tree may also be pruned by noting that:

e The search can stop as soon as any reachable remote call is found — it is not necessary

to search the remaining methods that may be called.

e The reachability property is transitive (i.e. if f may call ¢ and g may reach h, then f
may reach h). Therefore, if it is already known that g may lead to a remote call, and
f may call g, then f may lead to a remote call, and the search can stop.

The other problem is that analyses such as class hierarchy analysis assume that the entire
class structure of the program is known. This is not necessarily true in Java, since Java
programs can load in new classes at run-time. This problem is compounded in a distributed
environment, since servers and clients can dynamically download new class definitions from
each other.

Most Java classes are ‘open-ended’, in that they can be inherited by other classes and
have their methods overridden. This means that one cannot in general be confident of
accurately determining all the possible targets of a method call, which may lead to remote
invocations being missed.

For example, consider a remote method that contains a call to a method f. Assume that
analysis determines that the receivers of this call are the implementations of f in classes C
and D, neither of which lead to a remote call. The client therefore proceeds to delay the
remote call across the local code, safe in the knowledge that the remote call cannot make a
callback. However, when the remote code is actually executed, it turns out that the receiver
for f is actually class F, which was newly loaded after the class analysis was performed. If
E.f performs a remote call, then there is the risk of an unexpected callback occurring.

However, there are cases in which it is possible to precisely identify the receiver of a

method call, even in the presence of dynamic loading. These occur when:
e The called method is static
e The called method is private
e For a virtual call on a variable z, the static type of z is final

e For a virtual call of the form z.f(), f is implemented in the static type of z, and f is
final

It is therefore possible to guarantee that no callbacks will occur in a remote method provided
that all method calls made in the body of the remote method and in all the methods reachable

from the remote method fall into one of these four cases.

4.6.2.3 Finding the define-use set of callbacks

An alternative approach is to consider the set of data in the current method that may be

accessed by remotely accessible methods on the client side. If the callbacks cannot access



CHAPTER 4. OPTIMISING JAVA RMI 98

any of the data that will be used or defined in the local code that is to be delayed across,
then it should be safe to continue delaying remote calls regardless of whether a callback
occurs.

However, there are several barriers to using this approach. One problem is that the effects
of all methods reachable from all callback methods must be taken into account, leading to
the problem of accurately determining all reachable methods as discussed in Section 4.6.2.2.

Even assuming that it is possible to accurately find all remotely reachable methods,
there remains the problem of how to determine whether the effects of the callbacks interfere
with the delaying of remote calls. One way might be to use a points-to analysis such as
that provided by Spark [50] to find the sets of objects that are accessed by the client and
callback code, and test for an intersection. However, given the nature of pointer analyses,
this two-pronged approach is unlikely to work for several reasons.

A points-to analysis builds up graphs that describe the objects that variables may point
to, with the accuracy of the analysis measured by the size of the point-to sets — the more
refined the points-to sets are, the more accurate the analysis is considered. The degree of
accuracy depends on the context information available to the analysis. If such information
is lacking, then a variable may point to anything that is of a compatible type. While even
this may be enough for some limited scenarios, the general case requires more information
to achieve better accuracy.

One important source of information is the effect of method calls on the points-to graph
of the caller (often provided in the form of partial-transfer functions [94]), and this will
likely be the main stumbling point of current points-to analyses with regard to the callback
problem since remote calls are terminated on the client side with a call to the network I/0O
libraries on the client. The link between the remote call on the client to the remote method
on the server, and from the remote call in the remote method back to the callback method
on the client, is therefore missing. This means that context information is missing for both
the caller and the callback method. The caller is missing information on the effect of the
remote call on the points-to graph, while the callback is missing information on the context

in which it was called.

4.6.2.4 Escape analysis

An approach related to points-to analysis that is being considered for implementation is
escape analysis [19, 92, 80]. Callbacks by definition must run in a separate thread to the
client code, since the client thread will be blocked for the duration of the remote call that
led to the callback. This means that in order for a callback to be able to influence the
course of execution of the original caller, the data accessed by the caller must be accessible
from another thread. If accessed data never escapes from the confines of the current thread,
then the effects of the callback cannot be noticed by the caller, making it safe to proceed

regardless of whether a callback occurs, otherwise a force must occur.

4.6.2.5 Compensating for callbacks

It might be able to compensate for the effects of callbacks on the arguments of remote
calls by using the fragmentation framework to intercept operations that may result in an

inconsistency when executing a group of aggregated calls. The following protocol is proposed



CHAPTER 4. OPTIMISING JAVA RMI 99

as a solution.

Consider a client ¢. Suppose it aggregates a number of remote calls together and sends
the resulting plan p to the server r. The set of objects used within the plan is denoted Oy seq-
Now suppose the server r makes a callback to a method callback on ¢ while executing the
nth remote call f,, either directly or indirectly.

Since c¢ is under the jurisdiction of the fragmentation framework, it is possible to detect
that a remote method has been called while ¢ is still executing a remote call, although it
cannot determine if the call was part of a call-chain originating from c itself. It must be
conservatively assumed that it is.

If this occurs, the callback method is run to completion, but just before it returns, the
executor sends a message to r that includes the updated value of all objects in Oyseq that
may have been modified by m (in the most conservative case, this can be all of Oyseq). When
r receives this message, it uses the received values to update the corresponding objects in
all calls after f,.

An illustration of this protocol is shown in Figure 4.14.

4.6.2.6 Ignoring callbacks

A case can be made for ignoring the effects of callbacks by noting that between unsynchro-
nised threads, there is no guarantee as to when variables by one thread will be visible to
another thread (this is covered in more detail in Section 4.6.5). The caller and the callback
cannot be synchronised on the same lock either, since this will result in a deadlock.
Unfortunately, this argument fails in practice since synchronisation blocks will always
occur during the path from the caller to the remote callee back to the callback, in the I/O
libraries if nowhere else. The end of a synchronisation block has the effect of committing

variables to the shared memory, and so the effects of a callback will always be visible.

4.6.3 1I/0 ordering

If it is permitted for remote calls to be delayed across local code that performs I/0, then

inconsistencies may occur. For example, consider the following code:

remoteWindow.println("A"); // Remote call
System.out.println("B"); // Local call

If the user can observe both the output of remoteWindow and the local console, then ‘A’
should appear in the remote window before 'B’ does in the local console. However, if the
remote call was to be delayed across the local call, then the reverse would occur.

This is solved by forcing all delayed remote calls to execute before any local I/O occurs,
which has the effect of creating a form of synchronisation barrier that prohibits the reordering
of local and remote I/O. Since remote calls are never reordered relative to each other, any
I/O performed by remote calls will always occur in the original order.

This scheme may be overly conservative in some situations, since the relative orderings
of I/O might not be observable or important. However, since I/O is by its very nature
external, it is generally not possible to determine whether the relative order of I/O between

two processes is observable in some way simply by examining the application program.



CHAPTER 4. OPTIMISING JAVA RMI 100

|
|
|
|
i
c Queue ! Proxy r
|
LN | | :
1 AN} } | 1
rg() x=x0] | | 1 |
[ . | | |
: execute:(plan,x) } :
| | |
| y=rf)
|
c.callbjack()
| y
| oo .
| rg(x) [x =x0] |
| - ———p
y |
R |
y } I |
) St N ! 1 |
1 | | I 1
1 | ! I [
1 | } I 1
|
(a) Without parameter updating
|
|
|
|
i
c Queue } Proxy r
|
boooy=ri) 1 : i
| ' | : |
r.g(x) [x = x0] | ! I |
a N | 1
i execute:(plan,x) i i
| y=rf)
|
c.callback()
update(x,x1) |
1
|
—————————— e GREEEE S EEEEEE R
| y
| [ rgx=x1] |
: T
y“ |
- ittt T |
y } :
—————————— T | |
1 i
|
|

(b) With parameter updating

Figure 4.14: Compensating for callbacks — in the original course of events as depicted in
(a), r is unaware of the modification to x caused by the callback, and proceeds to execute g
with the old value of x. An extra step is needed as shown in (b) — the instance of Veneer on
the client side must send an updated copy of x to r after the callback method has finished
executing.



CHAPTER 4. OPTIMISING JAVA RMI 101

This leads to the problem of determining whether a block of code will perform any I/0.
Since I/O requests ultimately end with native code being called, and the effect of native
calls cannot be determined from the perspective of the Java runtime anyway, all native calls
made via the Java Native Interface [51] must lead to an immediate force. However, the
problem of determining which methods are called (covered in Section 4.6.2.2) within the
code will arise.

The simplest solution is to make any method call within the local code block lead to a
force. However, this is a very conservative approach, and will result in many unnecessary
forces. A compromise might be to special-case certain common method calls that are known
to be safe, such as string operations. In Section 6.2.4, alternative ways of dealing with this

problem are discuss.

4.6.4 Exceptions

Consider the following code:

a=0;

try {
r.ftQ;
a=1;

} catch (Exception e) {
System.out.println(a);

Now assume that the call to r.f leads to an exception being thrown. The exception handler
should print 0, since the code that sets a to 1 has not been reached before the exception.
However, if the remote call is delayed so that it executes after assigning 1 to a, and then it
throws an exception, 1 will be printed instead.

This is due to the rearrangement of the code leading to code that should not have been
executed actually executing. There is always the possibility of this problem arising when
working with Java RMI, since remote calls can always fail due to network problems, and
most Java statements are capable of resulting in an exception anyway.

Two approaches to this problem have been considered. The first is to analyse the effects
of the local code. If it can be determined that the effect of the code is invisible from the point
after the exception handler is reached, then it will be safe to delay across the code. This
can be determined by performing a liveness test on the define set of the code block. If any
of the defined variables are live during or after any of the exception handlers, then remote
execution should be forced immediately. If there is no exception handler, the call-stack will
be unwound if an exception is thrown, and so all local variables in the current method can
be considered dead. This approach to optimising in the presence of precise exceptions was
also used in [40].

Another approach is to think of the incorrect execution of the local code as a form of
speculative execution. Correct speculative execution requires the ability to undo operations
in case of incorrect execution, which is not provided by Java. Nevertheless, it should be
possible to undo simple operations such as assigning new values to variables by keeping
hold of the old values, and ‘unrolling’ when it is discovered that the code should not have



CHAPTER 4. OPTIMISING JAVA RMI 102

been executed. Undoable operations must be thread-safe, either by ensuring that processed
data does not escape from the current thread, or by protecting the code with a lock. This
is necessary since another thread could otherwise observe the result of incorrect execution

before the unrolling takes place.

4.6.5 Multi-threading

Since threads are an inherent part of the Java platform, optimisations must respect the
interactions between instructions executed in separate threads of a multi-threaded program.

This section considers the interactions that can occur between threads.

4.6.5.1 Synchronised code

Consider two blocks of code By and Bs in threads t; and ¢5 respectively. If By and By both
synchronise on the same lock, then the overall execution order is guaranteed to be either
By — By or Bo — By, with no interleaving of instructions from the two code blocks.

The Veneer policy fragments around the monitorenter and monitorexit instructions that
form the boundaries of synchronised code blocks at the bytecode level. When one of these
instructions is encountered, any delayed calls are forced to execute before the lock is acquired
or released.

If By executes first, then by the time Bs has the opportunity to acquire the lock and
execute, B; must have finished executing completely since forcing must occur before the lock
previously acquired by Bj is released. Since the order in which instructions are executed
within B; is irrelevant to B2 as long as the end result is the same, this case presents no
problem in terms of correctness provided that the execution of Bj is correct. The same
situation applies if Bs is executed first.

Remote calls are forced before synchronised blocks in case any of the delayed remote
calls assume that the lock has not been acquired. For example, suppose that a remote call
r that occurs before By makes a callback that synchronises on the same lock as By. If r is
delayed so that it is executed within Bi, then a deadlock will occur since By holds the lock

required to execute r, yet r must be completed before B exits.

4.6.5.2 Unsynchronised code

Consider two blocks of code A and B in threads ¢; and to respectively. If A and B do
not synchronise on the same lock, then the instructions in A and B may be interleaved.
Any interleaving between A and B is permissible provided that the relative ordering of
instructions within a single thread remains the same.

Suppose that a; and b; are remote calls occurring in blocks A and B respectively, and

the original instruction interleaving was:

a17b17a27b27a37b3

If the call aggregation optimisation is applied, then the resulting instruction interleaving on

the client will effectively be:

(a1,a2,a3), (b1,ba,b3) or (bi,be,b3),(a1,a2,as)



CHAPTER 4. OPTIMISING JAVA RMI 103

Use

Working
memory

Execgﬁon
engine

Assign Write

Figure 4.15: Memory actions in the Java memory model

Either of these are valid interleavings, since there is no requirement that the instructions
from A and B must be interleaved. However, when the calls are actually executed on the
server, the execution of the method bodies may well become interleaved again. Again, this
is acceptable, since the ordering of calls from A and B relative to calls in the same block
will remain the same.

However, when remote calls are delayed across local code, the relative ordering of the
local and remote code will change. Since the delaying of remote calls across local code is
prohibited if there is any possibility of I/O occurring in the local code, the only way in which
another thread can observe this reordering is by the effect of the instructions on data. For
example, if a remote call assigns to a variable z followed by local code that assigns to y in
the original ordering, then the assignment to z will occur after the assignment to y in the
reordered code.

Fortunately, the Java memory model [38, 54] permits this type of reordering to occur.
Conceptually, each thread has a private working memory that acts as a buffer between the
executing engine that executes the instructions in the thread and the main memory shared
by all threads (see Figure 4.15). When a value is generated by an instruction, it is assigned
to the working memory, and later written back to main memory in a two-phase commit
operation where the working memory stores the variable and the main memory writes it.

In the absence of any synchronisation, there is a non-deterministic period of time between
the assign, store and write operations. Although there are certain constraints regarding the
relative ordering of memory actions for a single variable, there are no such constraints
between actions on different variables. This means that even if variable a is assigned before
variable b, it is possible that b will be stored and/or written before a.

Another potential problem might occur if the result of a remote call is assigned to a vari-
able z, and subsequent local code also assigns to . The first assignment never occurs when
the call aggregation optimisation is performed, since z is dead at the point where the remote
call originally occurred. The memory model does not help here, since assignments to a single
variable must be totally ordered. However, since it is possible for the observing thread to
miss the first assignment in the original ordering if both assignments were performed before
the observing thread regains control, this is still acceptable.



CHAPTER 4. OPTIMISING JAVA RMI 104

4.6.5.3 Waits and notifications

There are other forms of synchronisation that can be performed in addition to those provided

by the synchronized keyword in Java2. For example, consider the following code:

// T1:

A
o.wait();
B;

// T2:

C;
o.notifyAl1();
D;

Suppose that thread t; executes A and then blocks on the object 0. Another thread to
executes C and awakens thread ¢; by issuing a notification on o. Thread ¢; then proceeds
to execute B.

This leads to a dependency between the threads — by the time #; executes B, thread t,
must have finished executing all of C in order to reach the notification that awakens ¢;. A
problem occurs if C' contains a remote call r which is delayed across the notification, since
this results in r being reordered with respect to B. This can be resolved by forcing remote
calls to execute before notifications, which preserves the relative ordering of the call and the

code following the wait statement.

4.6.5.4 Joins

Another form of synchronisation is the join construct, where one thread waits for another
thread to die before continuing. This case requires no special handling since threads generally
die when their main method finishes. Since delayed remote calls are forced when the end
of a method is reached (see Section 4.3.3.4), all remote calls issued by the dead thread are
guaranteed to have been executed by the time the waiting thread continues execution.
This mechanism does not work if the thread is forcibly stopped using the stop method.
Since this method has been deprecated for a long time, no effort has been made to cope
with this. However, one possible way of ensuring that all delayed remote calls are forced is
to add a new protocol whereby the caller of the stop method must first send a message to
the currently active executor in the thread to be terminated. That executor must force any
pending remote calls as soon as possible, send an acknowledgement, then block indefinitely.

Once the acknowledgement has arrived, the thread may be terminated.

4.6.6 Difference between local and remote semantics

A local call and a remote call differ in the way that they pass objects as parameters. Lo-
cal calls receive their parameters by reference, whereas remote calls receive them by copy.

Consider the following code fragment, where r is a remote object:

2Synchronised objects are based on Hoare’s monitor model.



CHAPTER 4. OPTIMISING JAVA RMI 105

(a) Without ag- (b) With aggre-
gregated calls gated calls

Figure 4.16: Differences in structure sharing

a
b

r.f(x);
r.g(x);

Using reference semantics, this would be equivalent to:

x’ = x.clone();
a=r.f(x’);

x> = x.clone();
b

=r.g(x’”);

Note that any changes made to ' by f are not propagated to x or z”’, and similarly the
effects of g on z’ are not propagated to = (see Figure 4.16(a)). However, by aggregating

calls, the original code is transformed to:

x’ = x.clone();
a=r.f(x’);
b

=r.g(x’);

Now, although the effects of f and ¢ on 2’ still do not affect z, the effect of f on z’ will
affect the functioning of ¢ (see Figure 4.16(b)). It is therefore only safe to aggregate the two
calls without copying the parameter if f does not change the value of its parameter.
However, copying is problematic in Java because not all objects implement the Cloneable
interface that signals that it is acceptable to use clone on the object, and of those that do, the
default implementation only performs a shallow copy of the object. Unfortunately, neither
shallow nor deep copying will provide the correct semantics when dealing with multiple RMI

calls with multiple arguments. For example, consider the following code:
X.a = y;
r.f(x, y);
r.g(x, y);

Suppose these two calls are aggregated and sent to the remote server. The server receives
one copy of  and y. The arguments received by f are denoted as z’ and %', and those



CHAPTER 4. OPTIMISING JAVA RMI 106

(a) Desired result

(b) With shallow copying (c) With deep copying

Figure 4.17: Copying data structures used as arguments to RMI calls — (a) The desired
result, (b) The result of shallow copying, (c) The result of deep copying

received by g as =" and y”. If copies of x and y are made, then the following properties
should hold for the copies (see Figure 4.17(a)):

 # 2 (4.7)
y # Yy (4.8)
?a # 2'a (4.9)
2a = o (4.10)
2a = 4y (4.11)

If z and y are shallow-copied, then equations 4.9, 4.10 and 4.11 will not hold since z’.a
and z”.a both refer to the same object as the original y, and neither will be equal to 4’ or
y" (see Figure 4.17(b)).

If a deep-copy is made of z, then equations 4.10 and 4.11 would no longer hold, since

2’.a would no longer refer to the same object as y', and similarly for 2”.a and y” (see Figure
4.17(c)).

4.6.6.1 Local RMI calls

The easiest solution to this problem is to first transport the plan over to the server, and
then call the methods within the server via the RMI mechanism. Although making RMI

calls to an object on the same host as the client is much faster since there is no need to cross



CHAPTER 4. OPTIMISING JAVA RMI 107

an external network, the time required for serialising and deserialising arguments remains

unchanged, which can cause considerable slowdown.

4.6.6.2 Copying using serialisation

Another way to properly copy parameters is by copying the subset of the state used by the
call into an array, serialising the array, then deserialising it again. The values in the new
copy of the array may then be used freely by a method without any risk of destroying the
original values. Although this still involves an extra serialise-deserialise cycle, it is more
efficient than using local RMI calls on the server side since the call no longer has to go
through the stub and skeleton.

An alternative that has been tried is to repeatedly deserialise the saved state that was
supplied as part of the current remote cluster before every remote call. However, when
benchmarked, this generally performed worse since state that was not used in the current
remote call was also being deserialised. The excess could not be used in subsequent calls
either, since it may contain references to state that was used and perhaps modified.

4.6.6.3 Avoiding parameter copying

A parameter to a remote method call need not be copied if any of the following are true:

e The parameter is a value type (which is always passed by copy)
e The parameter is immutable
e All objects reachable via the argument are dead after the call

e The method is guaranteed not to modify the parameter

Checks for a subset of the first three conditions are currently implemented. Value types and
common object types that are known to be immutable (such as instances of String or the
value wrapper types such as Integer) are identified as being safe to use without copying.

The notion of ‘flat-types’ is introduced, which are types that do not contain any refer-
ences. These include common types such as arrays of primitive types such as int. If only
flat-types are used as arguments for the current and subsequent calls, then if an argument
is dead and is not aliased by any other argument (which can be done simply by checking if
any of the other arguments also reference it), then it is safe to avoid copying the argument.
A more generalised approach would to use balloon types [3] or ownership types [21] to prove
that no aliases to the internal structures of an object can exist.

4.7 Current status of the DESORMI optimisations

Call aggregation, server forwarding and plan caching have all been implemented as a set of
policies, executors and extra support classes on top of the Veneer framework. They are fully
functional, capable of optimising both adjacent and non-adjacent remote calls, but some of
the measures needed to maintain semantic correctness have yet to be fully implemented.

Currently implemented are:



CHAPTER 4. OPTIMISING JAVA RMI 108

e Copying of remote parameters by serialising-deserialising to obtain copy-by-value se-

mantics

e Variables that may be overwritten by intervening local code are preserialised before

the local code is entered

e Method calls occurring in local code between remote clusters conservatively forces

execution in all cases
The following are currently incomplete:

e Conservative callback detection has been implemented by noting when a remotely
accessible method is called while executing a remote plan, but no corrective action is

taken.

e Egcape analysis has not yet been implemented to detect the possibility of callbacks
interacting with local code when delaying remote methods across intervening local
code. This is mainly due to the late arrival of pointer-analysis facilities in the Soot

framework.

e Variable liveness and exception handler information is available from the Veneer run-
time, but is not yet used to check the validity of executing local code in the presence

of exceptions.

4.8 FEvaluation

It has proven surprisingly difficult to find examples of substantial RMI applications in gen-
eral, and even more difficult to find ones that stand to benefit from the DESORMI optimi-
sations. The problem with most examples is that they are structured to focus all remote
communication into a small number of remote calls per server, leaving little opportunity
for any aggregation to occur. This is understandable since it is keeping with the concepts
described in Section 2.2.1 for performance, but leaves little to work with.

An example of an unsuitable benchmark is the KaRMI test suite, which contains a few
tests that measure the speed at which objects can be sent to a remote server, effectively test-
ing the performance of the serialisation protocol rather than the performance of the program
structure. It also contains implementations of a successive over-relaxation (SOR) algorithm
and the Salishan problems, which initially seemed more promising, but are examples of
parallel algorithms. The main communication patterns involved are data scatter/gather
(where data is divided up and different sections sent to different servers for processing, and
the processed data is returned to the client and reassembled) and border exchanges (which
occur when data from a data fragment assigned to one server is needed to process the data
on another server), which offered little that DESORMI could work with since there are no

aggregation or forwarding opportunities.

4.8.1 Test procedure

The DESORMI optimisations have been tested with two main examples. The first example

is vector arithmetic, which is a simple synthetic benchmark that illustrates the potential of



CHAPTER 4. OPTIMISING JAVA RMI 109

the optimisations. The second example is a Multi User Domain application, which represents
an example of a non-trivial program found in the wild that is naively written and so may
benefit from the DESORMI optimisations.

The tests were performed using the Linux version of the Sun JDK version 1.4.1 01 over

two network types:

e A private Fast Ethernet network with no other traffic (ping time is 0.1 ms, measured
bandwidth is 10.03 MB/s)

e Over the Internet via a slow symmetric DSL connection (ping time is 98 ms, measured
bandwidth is 10.7 KB/s).

The client machine in all tests was an Athlon XP 1800+ based PC. The server machines were
all Intel Pentium-IIT based PC machines, but unfortunately vary slightly in configuration,
with clock speeds in the range of 500-700 MHz. The exact configurations used are given
with the test descriptions. All machines were lightly loaded during the tests.

The client runs on the Sun HotSpot JVM in client mode, which is restarted with each
trial. Servers run Sun HotSpot in server mode, and are not reset between trials. For each
test, several dry runs are made to give the server the opportunity to ‘warm up’ before any
measurements are made.

For each set of parameters with each test, 3 trials of 1000 iterations were performed,
and the mean time per call taken as the result. Since the number of samples is large, the
confidence interval is small and is not shown to avoid clutter on the graphs. The times were

measured by recording the value of the time-stamp counter of the CPU.

4.8.2 Vector arithmetic — call aggregation

The DESORMI optimisations have been evaluated a simple synthetic benchmark in which
the server object provides a single method takes two equal-sized arrays of type double,
adds them together, and returns the resulting array. In order to test aggregation, the client

application executes a sequence of remote calls of the form:

r.add(v0, v1);
tmp2 = r.add(tmpl, v2);
result = r.add(tmp2, v3);

tmpl

This benchmark makes it possible to easily observe the effects of varying the size of the data,

the number of calls aggregated and various parameters of the framework.

4.8.2.1 Test configuration

The tests include a baseline configuration with no aggregation occurring, and configurations
containing from 2-5 aggregated calls. For each configuration, the vector size is varied from 1
to 1024 doubles, doubling the vector size at every step. Both Ethernet and DSL connections
have been tested.

The results before and after applying the framework on the benchmark program are
shown. Results for a ‘hand-optimised’ version of the tests (where manually aggregated

methods are provided on the server) are provided for comparison purposes.



CHAPTER 4. OPTIMISING JAVA RMI 110

The server used with the Ethernet connection was a 650MHz Pentium-III PC, while the
server used with the DSL connection was a dual-processor 700MHz Pentium-III PC.

4.8.2.2 Results

As can be seen in the results in Figures 4.18-4.22, the optimisations generally result in an
overall speedup whenever any aggregation occurs. The exceptions occur when an Ethernet
connection is used, with two aggregated calls and argument size of less than 400 bytes. This
is due to overhead.

In the baseline case with no aggregation occurring, a slowdown will occur due to the
same overhead being occurred but without any compensating speedup from call aggregation.
This is easily observable in the Ethernet test, but is not evident in the DSL test due to the
overhead being orders of magnitude smaller compared to the communication times.

If the results of the hand-optimised versions are compared against those for the auto-
matically optimised versions on the Ethernet network, there is a discrepancy of about 0.5
ms per call, which is mainly due to interpretive overhead from the Veneer virtual JVM and
the call-delaying/plan-building mechanism. However, this overhead remains constant, and
is therefore all but invisible when operating across the Internet via DSL, since it has much

greater latencies and is subject to variations that could easily eclipse the 0.5 ms overhead.

4.8.3 Vector arithmetic — server forwarding

The vector arithmetic server is also used to test server forwarding. The following remote

calls are executed on the client:

temp = rl.add(vl, v2);
result = r2.add(temp, v3);

In this configuration, temp is forwarded directly from ri1 to r2 without ever reaching the
client. v3 is sent from the client to r1, and then forwarded to r2. result is conveyed back

to the client via ri1.

4.8.3.1 Test configuration

The tests consist of varying the size of the vector, changing the type of network connecting
the server and the client, disabling plan caching, and forcing server-side variable copying to
occur (even though it is not needed in this case since the arguments are not reused).

The pair of servers used when testing with an Ethernet client-server connection were a
650MHz Pentium-III machine and a 700MHz Pentium-IIT machine, while the servers used
when testing the DSL client-server connection were a 500MHz Pentium-III machine and
a dual-processor 700MHz Pentium-III machine. The faster machine was targeted as the
forwarding server in both cases. The connection between servers is always a Fast Ethernet

connection.

4.8.3.2 Results

As can be seen in Figure 4.23, server forwarding provides a large performance boost when
the client and servers are connected over the Internet using a DSL line, but causes significant

slow-down when the hosts are connected via Fast Ethernet.



CHAPTER 4. OPTIMISING JAVA RMI

5| —— Unopt'imised ' ' '_
fffff <~ Optimised
83
g
o 2
£ |
ol |
O 1 1 1 1 1
0 200 400 600 800 1000
Data size (sizeof(double))
(a) Ethernet
3000 . — . :
—+—— Unoptimised
2500 L R O pt|m|sed
m
£ 2000 .
8
]
o
[} i
£ 1000
|_
500 .
O 1 1 1 1 1

0 200 400 600 800 1000
Data size (sizeof(double))

(b) ADSL

Figure 4.18: Results for the vector arithmetic example with no call aggregation

111



CHAPTER 4. OPTIMISING JAVA RMI 112

—— Unoptimised
35 — x—- Optimised
,,,,,, =~ Hand optimised

Time per call (ms)
N

O 1 1 1 1 1
0 200 400 600 800 1000

Data size (sizeof(double))

(a) Ethernet

3000 - . ' '
—— Unoptimised
_— =— Optimised

- 2500 r *-- Hand optimised
£ 2000 |
§ A
© 1500 |
(]
o
: ]
2 1000
|_

500 |

0 200 400 600 800 1000
Data size (sizeof(double))

(b) ADSL

Figure 4.19: Results for the vector arithmetic example with two calls aggregated



CHAPTER 4. OPTIMISING JAVA RMI 113

—— Unoptimised
35 — x—- Optimised
,,,,,, =~ Hand optimised

Time per call (ms)
N

0 200 400 600 800 1000
Data size (sizeof(double))

(a) Ethernet

3000 . —— ' '
—— Unoptimised
_— =— Optimised
- 2500 r *-- Hand optimised
£ 2000 1
8
°© 1500 :
()
o
i ]
£ 1000
|_
500 |
O S | ) L 1 L

0 200 400 600 800 1000
Data size (sizeof(double))

(b) ADSL

Figure 4.20: Results for the vector arithmetic example with three calls aggregated



CHAPTER 4. OPTIMISING JAVA RMI 114

—— Unoptimised
35 — x—- Optimised
,,,,,, =~ Hand optimised

Time per call (ms)
N

O 1 1 1 1 1
0 200 400 600 800 1000

Data size (sizeof(double))

(a) Ethernet

3000 - . ' '
—— Unoptimised
_— =— Optimised

- 2500 r *-- Hand optimised
£ 2000 1
El
© 1500 ]
(]
o
: ]
2 1000
|_

500 |

0 200 400 600 800 1000
Data size (sizeof(double))

(b) ADSL

Figure 4.21: Results for the vector arithmetic example with four calls aggregated



CHAPTER 4. OPTIMISING JAVA RMI 115

—— Unoptimised
35 — x—- Optimised
,,,,,, =~ Hand optimised

Time per call (ms)
N

O Tg{ 1 1 1 1 1
0 200 400 600 800 1000
Data size (sizeof(double))

(a) Ethernet

3000

—— Unobtimised

_— =— Optimised
2500 r *-- Hand optimised

N
o
o
o

Time per call (ms)
|_\
a1
o
o

O *‘ngi’ I I
0 200 400 600 800 1000
Data size (sizeof(double))

(b) ADSL

Figure 4.22: Results for the vector arithmetic example with five calls aggregated



CHAPTER 4. OPTIMISING JAVA RMI 116

Server forwarding enables the two servers (which are connected via a fast Ethernet con-
nection) to communicate directly with one another rather than via the client. In the case
where a DSL connection is used by the client to connect to the servers, there is a large
increase in performance since the intermediate variable temp is no longer being passed back
and forth along the slow ADSL connection, and is instead passed over the fast server-to-
server Ethernet connection. Since temp is never passed back to the client, there is also an
overall saving in the amount of data transferred.

However, when all the hosts are connected via Ethernet, there is little gain since the
low latencies mean that server-to-server communications via the client are only marginally
slower than a direct connection. Since the amount of runtime overhead remains unchanged,
the overall result is a slow-down.

The overhead is greater than that of call-aggregation due to the preprocessing required to
compute the overall communication pattern, and the fact that the plans are ‘piggy-backed’
on top of one another, resulting in more plan data being transferred overall. The variables
v3 and result, which are not used by r1, must also be forwarded between the client and r2
via rl.

The effect of plan caching and value copying on the server side may also be seen in the
graphs. Forcing value copying results in a constant slowdown of about 2 milliseconds that
is independent of the network type since it is purely processing overhead. This is highly
significant with the Ethernet connection, but is negligible with the DSL connection due to
the magnitude of the times involved.

Disabling plan caching results in a substantial performance hit with both network types
since the remote plans and the associated metadata must be sent in full on every iteration,
increasing the quantity of data that must be sent with both network types.

4.8.4 Multi-User Domain

The Multi-User Domain (MUD) example [32] is a more realistic example that contains call
aggregation possibilities. The main candidate for optimisation occurs in the 1look method of
the MudClient class (shown in Figure 4.24), which retrieves a description of the room and
its contents.

This benchmark has 7 aggregated calls with a modest payload — around 100 bytes of
textual information in total. There is also an instance of forwarding occurring between the

calls to the getServer and getMudName.

4.8.4.1 Test configuration

A test harness has been written to call this routine repeatedly, recording the average time
per call. Caching and server-side parameter copying have been enabled. Note that the
parameters are not actually copied in practice due to the structure of the code, but checking
that it is unnecessary still requires some runtime overhead.

The server used with the Ethernet connection was a 650MHz Pentium-I11 PC with 256Mb
of RAM, while the server used with the DSL connection was a dual-processor 700MHz
Pentium-IIT PC.



CHAPTER 4. OPTIMISING JAVA RMI

18 ‘ ‘
—— No forwarding
16 = Forwarding with forced copying " |
""" *- Forwarding with no caching.-—
14 ¢ = Forwarding .= ]
- s ¥ ///,./—”’/
9 10} ,
g 8¢ e ]
(]
E 6
|_
4
2
0 1 1 1 1 1
0 100 200 300 400 500
Data size (sizeof(double))
(a) Ethernet
4000

—— No forward‘ing
3500 F - Forwarding with forced copying
""" == Forwarding with no caching

3000 | = Forwarding |

2500
2000

1500

Time per set (ms)

1000

500

0 100 200 300 400 500
Data size (sizeof(double))

(b) DSL

117

Figure 4.23: Graph of results for the forwarding optimisation of the vector arithmetic ex-
ample — the impact of turning caching off and forcing server-side variable duplication to
occur has been shown on these graphs. Forwarding leads to a general slowdown when using
an Ethernet connection, but a decent level of speedup is achieved with the DSL connection.

String mudname = p.getServer() .getMudName() ;
String placename = p.getPlaceName() ;

String description = p.getDescription();
Vector things = p.getThings();

Vector names = p.getNames();

Vector exits = p.getExits();

Figure 4.24: Code for the look method of the MUD example



CHAPTER 4. OPTIMISING JAVA RMI 118

Time taken to execute Without With Speedup
look (ms) optimisation | optimisation
Ethernet 5.4 5.8 0.93
DSL 759.6 164.9 4.61

Table 4.1: Results for the aggregation optimisation applied to the MUD example

| Factor | Ethernet | DSL |
Remote methods 0.62% | 0.06%
Uncached RMI communication 0.78% | 0.35%
Cached RMI communication 60.51% | 97.92%

Client-side overhead 20.60% | 0.91%
Server-side overhead 15.21% | 0.61%
Argument copying overhead 2.29% | 0.15%

Table 4.2: Percentage breakdown of the time spent executing 1000 iterations of the look
method in the MUD example

4.8.4.2 Results

As can be seen in Table 4.1, the MUD example shows a slight slowdown when operating
with an Ethernet network, but a large speedup with operating over the Internet.

The MUD application has been profiled to show a breakdown of the time taken to execute
the look method in Table 4.2. As can be seen, the majority of the time in both cases is
spent in client-server communication. However, on the Ethernet network, the additional
overheads on the client and server side are responsible for about a third of the overall time,
while the proportion of time due to overheads is insignificant by comparison when using
DSL (since the overhead remains constant while the communication times have increased).
If the overheads are minimised, then it should be possible to achieve a speedup of up to

approximately 40% when operating on an Ethernet network.

4.9 Security

Distributed programs running under the DESORMI optimisations are both performing more
work behind-the-scenes and are more intimately tied together than for standard RMI. This
leads to a potentially more fragile environment with extra vulnerabilities. In this section,
scenarios are considered in which normal operation is disrupted, either naturally or mali-
ciously, and ways in which they might be resolved. Note that only security issues which
occur with the DESORMI optimisations and not in standard RMI are considered here, since

the goal is not to secure the RMI programming model.

4.9.1 Aggregation vulnerabilities

During call aggregation, a simple program is essentially uploaded from the client onto the
server and executed by the server. Whenever this type of situation occurs, the question
arises as to whether it is safe to execute this script. There are several approaches to tackle

this problem.



CHAPTER 4. OPTIMISING JAVA RMI 119

e Signing — The code to be executed on the remote host is signed using a digital signa-
ture, which is used by the host that executes the program to confirm that the program

does indeed originate from the claimed source and that it has not been tampered with.

This approach by itself ensures that the program reaches the destination from the
source intact, but it does not make any guarantees whatsoever regarding how safe it
is to execute this program. In essence, the signer is saying, “Trust me, it is safe to
run this program”. However, even disregarding the issue of malicious programs such
as trojans, spyware and viruses, even benevolent signers can make mistakes — they

may have dangerous bugs in their programs, or may accidentally pass on a virus.

e Verification — The code for the downloaded program is examined by a program known
as a verifier, which attempts to confirm that the program has no dangerous or illegal

effects before the program is executed.

In general, in order for this approach to work, the program must be supplied in a form
that is either very simple or was designed to be amenable to verification. For example,
in Java bytecode, there is the restriction that the height of the operand stack must be
a constant at every instruction for all possible executions of a program. This can be

confirmed by performing a dataflow analysis on the program.

However, there are many hurdles to verification, some of which are very common
indeed. For example, pointers and references pose problems for verifiers — it is often
impossible to tell whether they will be null at a particular point in the code. Java

handles this by inserting run-time checks into the compiled code.

e Sand-boxing — Sand-boxing is the practice of running programs in a restricted en-
vironment, so that a malicious program will be restricted in the amount and type
of damage they can do. Java applets are particularly well-known for this (although
this can now be applied to all Java applications in general). Also, services running on
Unix-like systems are often executed in a chroot jail, so that an attacker who manages

to obtain a command line will not be able to access other directories of the system.

In its present form, the plans can only make calls to local methods on the current host, or
call remote methods on another host. The result is an impromptu sandbox of sorts, since
the ‘downloaded program’ is severely limited in what it can do. Nevertheless, there are some

vulnerabilities that may be exploited.

4.9.1.1 Object ID spoofing

In both the original and optimised cases, every remote object residing on a server is asso-
ciated with an ID, which is part of the state within client-side stubs. When a remote call
is made, this ID is also sent in order for the server to determine which object should be
invoked.

This leads to a potential vulnerability where a client may access objects that it does not
have a stub for by tampering with the object ID. In standard RMI, this means that one is
effectively granting global access to an object as soon as it is exported, although encrypted
tunnels and authentication at the application level may be used to restrict access.

The situation is similar when DESORMI is used, but the object IDs are allocated at the

construction time of the remote object rather than at export time. This means that one



CHAPTER 4. OPTIMISING JAVA RMI 120

may be able to gain access to objects that have not been exported yet if explicit exportation
is used.

This can easily be corrected by removing the callbacks to the Veneer runtime from
constructors that do not derive from UnicastRemoteObject (which automatically exports
objects at construction time). Instead, the Veneer policy can be modified to look for calls
to the export method of UnicastRemoteObject in application code instead, and insert the

registration callback just before these calls.

4.9.1.2 Denial-of-service attacks

A denial-of-service (DoS) attack is an attack where a server is bombarded with a constant
stream of requests such that so many of the server resources (usually CPU time and network
bandwidth) are tied up in fulfilling these requests that it leaves little remaining for legiti-
mate requests, effectively dragging the server to a standstill. A distributed denial-of-service
(DDoS) attack is a DOS attack involving multiple hosts bombarding the same server simul-
taneously, which is more effective since it is much easier to thoroughly saturate the available
bandwidth of the server.

Standard RMI has no provisions against DoS attacks. One can mount a DDoS attack
by getting many clients to sit in an infinite loop and make RMI calls as fast as possible.
The effectiveness of an attack is determined by the number of calls that can be made per
unit time — the higher the number, the more effective the attack. The maximum call rate
is limited by the resources available to the server, since as the resources become exhausted,
no more calls can be serviced, at which point the goal of the attacker has been achieved.

The problem is likely to become worse under aggregated RMI, since aggregating calls
enables one to effectively make more RMI calls in less time while using fewer network
resources. This means that an attacker will find it easier to reach the CPU saturation level
using less network bandwidth (i.e. using fewer clients and/or with slower connections).

If plans are allowed to contain loop structures (see Section 6.2.14.1), then it will become
even easier to saturate the server CPU, since the plans will now be able to operate inde-
pendently of the client that produced them. This means that just one client may be able to
bring a server to a halt by repeatedly sending plans that sit in an tight infinite loop, making

calls to the server object as fast as possible.

4.9.2 Call interception

When the server forwarding optimisation is enabled, one server takes on the responsibility
of handling a remote call to another server on behalf of the client. Since this responsibility

was not present before, it can lead to new man-in-the-middle type vulnerabilities.

4.9.2.1 Argument interception

Consider this naively written program, which illustrates a scenario where a client buys an

item from a vendor and instructs the bank to pay the vendor:

receipt = vendor.buy(item) ;

bank.pay(receipt, accountDetails);



CHAPTER 4. OPTIMISING JAVA RMI 121

Without forwarding, accountDetails is never seen by the vendor. However, with forwarding
in place, the vendor is responsible for forwarding accountDetailsin addition to the receipt
object generated by the vendor itself. This means that the contents of accountDetails
becomes visible to the machine that the vendor object resides on. A malicious vendor can
therefore steal the account details of the customer, or alter the account details before passing
it to the bank.

It may also seem possible for the vendor to charge more than the agreed amount by
tampering with the contents of the receipt. However, the current code simply accepts the
receipt blindly, and so would fall for this regardless of whether forwarding was present or
not. If there was code to inspect the receipt before passing it onto the bank, then the vendor
would no longer be responsible for forwarding the request to the bank because the inspection
would result in the forcing of the remote call.

The best way around this is to make use of cryptography [81]. The client should negotiate
with all servers that it will communicate with directly to obtain a session key using one of the
many key-exchange protocols. All data that does not originate from the forwarding server
should be encrypted using this session key. In addition to the raw data, the encrypted data
should also include:

e A secure hash of the data, in order to detect possible tampering with the encrypted
data by the forwarding server.

o A time-stamp, to prevent the forwarding server from mounting replay attacks by

recording and later replaying a portion of encrypted data.

However, this may mean that the forwarding server must carry more data, since if any of
the data in the encrypted set is also used by the forwarding server, a separate unencrypted

copy must be supplied to it.

4.9.2.2 Repudiation

When forwarding is performed, the client expects the forwarding server to pass on the
requested call onto the destination server exactly as requested, and no more or less. In the
simple example given, the client has no way of telling whether the vendor will forward the
request for payment just once — it may not forward it at all, do it multiple times, or forward
it but deny the result to the client.

The simplest way of avoiding this problem is to have the target server send a direct
acknowledgement to the original client that it has been called. This can be done as soon as
the remote method has been called, and so can run in parallel with the processing of the
remote method body. This idea is revisited in Section 6.2.7 with regard to the performance

issues of server forwarding.

4.10 Alternative Platforms

There has been some success in adapting the DESORMI optimisations to other RMI-related

technologies, which are covered briefly in this section.



CHAPTER 4. OPTIMISING JAVA RMI 122

4.10.1 RMI/IIOP

The optimisation framework has been successfully modified to cope with RMI under the IIOP
protocol. The main modification is to change the runtime check for remote stubs to recognise
RMI/IIOP stubs as well, since stubs in RMI/IIOP inherit from javax.rmi.CORBA.Stub
rather than of java.rmi.server.RemoteStub. There was no need to change the server-side
code, since RMI/TIOP servers also inherit from java.rmi.Remote.

RMI/IIOP clients receive their stubs by normal means (usually via COS naming ser-
vices). Calls to these stubs are intercepted, resolved and eventually sent to the server by
the underlying Veneer framework in the same way as calls via standard RMI/JRMP (see
Section 4.2.3). Veneer always uses RMI/JRMP to communicate with the remote proxy re-
gardless of the protocol used by the stubs themselves, effectively transforming RMI/IIOP
communications into RMI/JRMP.

4.10.2 Enterprise JavaBeans

A basic form of the optimisations under the JBoss server [85] has been implemented. The
use of interceptors to implement functionality in JBoss leads to several problems. In order
to obtain the correct behaviour for a given remote call, all the interceptors in the relevant
chain must be called, on both the client and the server side. This means that the current
scheme of identifying the target of a remote call and calling it on the server side via Veneer
will not work, since this would miss all the interceptors. In any case, Veneer is currently
unable to run the JBoss server due to the extensive use of custom class loaders by JBoss.

The following scheme is used instead. On the server side, a Java Management Extension
(JMX) [74] bean is deployed onto the JBoss server, which listens to requests from Veneer
instances. When a client receives a JBoss dynamic proxy, it attempts to discover its origi-
nating server via the usual protocol, and establishes a connection to the custom JMX bean
running on. Calls on the dynamic proxies are intercepted in the usual manner.

When the delayed calls are forced, the dynamic proxy is sent, along with the remote
plan, to the JMX bean. The bean then invokes the methods via the supplied dynamic proxy
to perform the calls. This is actually fairly efficient, since JBoss provides a special invoker

for local calls that bypasses the RMI communication.

4.10.2.1 Possible improvements

There are many improvements that can be made on this scheme. One simple improvement
is to cache dynamic proxies on the JMX bean and later refer to it using a short ID rather
than being transported every time.

The transactional and security features of JBoss will not work properly with this scheme
since the client-side interceptors are being executed within JBoss, and will therefore pick
up the wrong contexts. A better solution might be to replace the invoker interceptor with
one that places the Invocation object (see Section B.3.3.2) into the State object sent with
the remote plans. The JMX bean can then send the Invocation object to the server-side
interceptor stream. However, if the client-side interceptors perform actions as the result is
returning, then these will be missed.

Another limitation is that remote calls made by beans running on JBoss are not affected
by the DESORMI optimisations, since they do not run under Veneer. It is hoped that



CHAPTER 4. OPTIMISING JAVA RMI 123

Veneer will eventually be developed to the point where it can cope with JBoss and apply

the optimisation to the beans loaded by JBoss at runtime.

4.11 Conclusion

Three RMI optimisations have been successfully implemented on top of the Veneer virtual
JVM, working on the principle of restructuring distributed programs at runtime for an
optimal communication pattern. The evaluation shows that these optimisations can be
effective, but the cost of the Veneer virtual machine is a concern when working with fast
networks. Further development of Veneer should minimise this.

Various problems have been discovered that result from the automatic restructuring.
Workarounds for some problems have already been implemented, while potential solutions

for the remaining problems have been investigated.



Chapter 5

Correctness of call aggregation

In order for a program optimisation to be useful, it must be correct. There are various
notions of what ‘correctness’ means with regard to program optimisations. A good starting

point is the following definition, which is given in [8]:

A transformation is legal if, for all semantically correct executions of the
original program, the original and the transformed programs perform equiva-
lent operations for identical executions. All permutations of semi-commutative

operations are considered equivalent.

In other words, if the same input is provided to both the original and optimised versions of
a program, and if non-deterministic functions like time or random return the same results
at equivalent points within the program, then the outputs of the two programs should be
identical. Small variations due to operations that should be commutative in theory but are
not in practice (such as floating-point arithmetic) are permissible.

This chapter presents a preliminary attempt at developing a formal model on which
to prove that the DESORMI code transformations preserve the semantics of the program
according to this definition. The behaviour of call aggregation is explained in terms of this
model, showing that aggregated calls have equivalent behaviour to unaggregated calls under
most circumstances. It is also explained why differing behaviour may occur, and how these

may be compensated for.

5.1 General approach

Owing to the complexity of the Java language and runtime environment, a full semantic
model for Java programs has not been attempted. Instead, global traces of the entire system
of communicating clients and servers are considered instead.

When a program is executed, it executes a sequence of instructions. This sequence is
known as a trace, which is denote by 7. 7 is made up of instructions ig, %1 ...7,. Each
instruction can read and write to a global state 3. The effect of running the instructions in
a trace 7 on a state ¥ is denoted by 7 (%).

Now consider a program transformation A which transforms the trace of a program from
T to A(T). Given an identical starting state Yo, two traces can be deemed to be equivalent
if:

124



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 125

T (%0)[out] = (A(T)) (Xo)[out]

where the subscript operator [out] selects the subset of the state that represents the

output of the program.

5.2 Concepts of the logical framework

In this section, the concepts that constitute the logical framework are introduced. These

are used to reason about the equivalence of programs before and after transformation.

5.2.1 Global state

The global state of the system is denoted as 3. X is a vector that contains many variables.
A variable is represented by its position within X, and its value. The value of a variable
at position z is denoted as X[z]. The values of variable sets may also be referred to in this
manner.

State is unstructured in this framework, so that every element of a compound data type
is explicitly represented by a separate variable. For example, an array with five elements
would be represented by six variables in the framework — one variable for the reference to

the entire array, and one for each element of the array.

5.2.2 Traces

A trace 7 is composed of a series of instructions, such that the effect of executing a trace is
to apply the initial state to the composition of the component instructions. For example:

T=[f,9.h] = Zapter = T(Zpefore)

f39; M(Bvesore)
heg- f(Epefore)
h(g(f(Zvefore)))

A semicolon is used to denote reverse composition for convenience. An operator < is
used to denote the ordering of instructions in a trace. In the previous example, the ordering
f < g < h holds. The immediate predecessor and successor of an instruction i are denoted

pred(i) and succ(i) respectively.

5.2.3 Instructions

The basic unit of computation is an instruction, which is a function of type ¥ — X. The
global state before the execution of an instruction ¢ is marked by a subscript (for example,
3;), although this is sometimes omitted when it is obvious what the state applies to.

There are only two types of instruction. A local instruction represents a block of opera-
tions of an arbitrary size. Execution of an instruction is modelled by applying the instruction
to the state, such that:



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 126

2succ(i) = Z(Ez)

A remote instruction is a special type of instruction that does not perform any compu-
tation in itself, but rather triggers the execution of other instructions. Remote functions are
denoted by an overscore — for example, f. These will be covered later in Section 5.2.4.

Instructions have data definition and use properties, which for an instruction i are de-
noted by def (i) and wuse(i). These properties denote sets of indices into the global state,
such that the subset of the global state that represents the values of variables read by an
instruction ¢ can be denoted by X[use(i)]. Similarly, the values written by the instruction
can be denoted X[def (i)].

Two invariants hold with regard to the def and use properties:

i(3) — i(X)[def (1)] = X — X[def (i)] (5.1)

i(Zluse(@)])[def (1)) = i(%)[def (4)] (5.2)

Equation 5.1 states that only the subset of the global state in def; will be modified by 4,
while Equation 5.2 states that only the subset of the state in use; is necessary to compute
the function.

Instructions are referentially transparent — given the same values for variables in the use
set, the subsequent values of variables in the defined set will be the same. This is expressed

with the following;:

Vi€ T V1, By - Shfuse(i)] = Safuse(i)] = i(S1)[def (1)] = i(S2)[def (3)] (5.3)

A function reaches is defined that is true if a variable v, starting from the point after
instruction 4, can reach a subsequent instruction j without being modified:
reaches,(i,j) <= Vk €T i <k <j= v ¢ def (k) (5.4)
Provided that no other intervening instruction defines the variable v, the value of v
between its definition and any subsequent instruction will be identical.
reaches, (i, j) = Yguce(i) [v] = j[v] (5.5)

The definition and use properties can also be defined for any list of instructions £, where:

def (€)= | def (D)

€L

def (€)= | def (D)

el



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 127

5.2.4 Remote calls

A remote instruction f is associated with at least one other instruction that represents the
events that are initiated by a remote call. These instructions, known as remote actions, are
indicated by underlining. For example, if f leads to the instructions g and h being executed,
then those instructions are denoted by g; h. The association between a remote instruction
and the instructions that result from applying it is represented by the () operator, so for the

current example:

(f)=gh

5.2.5 Remote actions

Instructions that result from executing remote instructions do not operate directly on the
subset of the state accessed by the remote function, but on copies generated by the mar-

shalling process.

5.2.5.1 Marshalling

Marshalling is modelled by two pseudo-instructions copyto and copyfrom. Note that these
instructions are not inverses of the other.

Applying copytoy to the state X has the effect of copying the portion of the state ref-
erenced by use(f) to a subset of use (<T>) The copying effect of the copyto instruction is

represented by a set of relations L The following equations hold for copytoy.

def (copytof) Nuse (copytof) = 0
use (copytof) = use(f)
def (copyt07> C  wuse Q)
x EN Yy = I Euse (copytof) Ay € def (copytoﬂ

AX[z] = Xy
Vi € T-def (copytof) Nuse(i) #0 = i= <7

The meanings of the first four equations are straightforward. The last equation states
that the variables that copyto copies into are unique, and can only be referenced by the
associated remote action. This simulates the effect of binding the formal parameters of a
call to the actual parameters.

Similarly, copyfromy copies a subset of the state referenced by def ((f)) to def (f) using

the relation i, with the following equations holding;:



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 128

def (copyfmm7> Nuse (copyfmm7> = 0
use (copyfromz) < def ((F))
def (copyfrom?> = def(f)
s iy — zecuse (copyfroms) Ay € def (copyfroms)

AE[z] = E[y]
Vi € T-use (copyfmmf) Ndef(i) #0 = i=(f)

The relations — and — for the marshalling operations in a trace 7 are contained in a
set denoted as p(7).

5.2.5.2 Remote transformation

A transformation can now be introduced to model the effects resulting from a remote call.
A transformation ¢, is defined for a trace that replaces each remote call with the remote

effect using the following mapping:

— 67‘ —
[ copytoy; (f); copyfrom (5.6)

For convenience, shortened notations are introduced for the two marshalling instructions,

so that Equation 5.6 can be written more simply as:

72 o(f)o (5.7)

The relationship between the two in terms of their def-use set is:

N

use (7)
def (7)

e (o1

def (o@o)

N

The effect of applying d,- to a trace containing remote instructions is to add the immediate
effects of the remote actions associated with those instructions into the trace, so that one
can reason about the definitions and uses of the callee as well as the caller. Simply put, each
application of J,. reveals more of the ‘global picture’.

The initial trace that contains only the instructions executed on a single client is referred
to as 7°. Every time 6, is applied to 77, the result is denoted as 77!, This repeated
application may be necessary since remote actions themselves may be remote instructions.

There are some relationships that can be defined between any 7™ and 7" 1:

def(T"*) 2 def(T™)
use(T"™) D wuse(T™)

In any terminating program, there will reach a point at which 77! = 7" where there



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 129

are no remote instructions remaining in the trace. If there is no such point, then there must
exist a sequence of remote instructions that form an infinite loop. The trace where every
remote instruction has been replaced is referred to as 7°°, regardless of whether there is a

termination point or not.

5.2.6 Input and output

Input and output operations are abstracted as accesses to the global state. An input opera-
tion is defined as a read from the variable set input, while an output operation is a write to
a variable in the set output. Two predicates isinputop(i) and isoutputop(i) can be defined

which are true only if an instruction 4 performs input and output respectively by:

isinputop(i) <= use(i) Ninput # ()

isoutputop(i) <= def (i) N output # 0

5.2.7 Exceptions

Exceptions are also modelled as a form of dataflow. The throwing block T defines some
exception variable e, which is subsequently used by the exception handler H. This effectively

creates a relationship between 7" and H of the following form:

T < HAeedef(T)Nuse(H)

5.3 Correctness of clustered call aggregation

Counsider a cluster of remote calls R* which consists of a number of remote instructions
71,T2...T; in sequence. Under standard RMI, the effect of executing the cluster are as
follows:

|

<

ol
—~
g
~

,R’Zrig(z) - _1;_2; 3Tk
RZ:;;(Z) = 5T ( Zrig(z)) = .20; .@O; oo .@O (2)

In its basic form, the effects of executing aggregated calls can be expressed as follows:

RZggr(E):daggT (Rgmg(x)) = m(z)
Ritgor(2) = 0 (Rilgq (D)) = o(rimaron) o (%)

To reason about the relationship between the original and aggregated forms, the remote
action corresponding to the aggregate remote call is expressed in terms of the original remote

actions as follows:

(T13725 5 T) = Q(T1) > <A (T2) Dy . .5 A (T) >




CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 130

5.3.1 Adapter operators

The < and > operators denote adapter operators. In the unaggregated scenario, a remote
action receives part of its use set from a private location in the global state that was written to
by the preceding copyto operation. After the remote action is executed, the result is written
into another private location, where it is picked up by the following copyfrom instruction.
The private locations used by each remote action are disjoint.

In order to express the semantics of the aggregated case in terms of the remote actions
executed in the unaggregated version, the private locations of the remote actions must be
filled correctly prior to executing the action itself. However, the initial copyto operation at
the beginning of the cluster is insufficient to perform this task, since some of the values used
by an action may have been generated by a previous action that places the values in its own
private space.

To solve this problem, another private space .S is introduced, which is accessible by the
copying and adaptor instructions only. The copyto instruction at the beginning of the cluster
copies values from the client space to S, and the operator < copies the values needed by the
next remote action from S to the private space of the action. The operator > performs the
complementary function of copying values defined in the private space of the remote action
back to .S, and the final copyfrom instruction copies from S back to the client space.

Note that this corresponds to the passing of arguments by copy. The consequences of
copy-by-reference are dealt with later in Section 5.4.2.

Similarly to the copyto and copyfrom instructions, the < and > operators have the opera-
tors — and — respectively associated with them, which define the relationship between the
variables used by the remote action and the variables in private space S. These relations

are also part of the set p(R). For the expression <(7;)>, the following equations hold:

Hhy = xeS/\yEuse<@>/\E[x]:E[y] (5.8)
ey = xedef(@)/\yeS/\E[x]:E[y] (5.9)

The relationship between the relations in p(Rorig) and p(Raggr) is as follows:

(x N y) € p(Rorig) <=3t €S- {x —t,t y} C p(Raggr) (5.10)
(w - y) € p(Rorig) <= Tt e S - {x Z t,t =y C p(Raggr) (5.11)
{x — 5T — t} C p(Raggr) \ {S — x,t— x} C p(Raggr) = s = (5'12)

Equation 5.12 essentially states that there is a one-to-one mapping between variables in
the client space and those in S. By combining Equations 5.10 and 5.12, the following can
be derived:

{x N Y, T EN z} C p(Rorig) <= Tt e S- {x —t,t A y,t EX z} C p(Raggr) (5.13)

Similarly, by combining Equations 5.11 and 5.12:



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 131

{x - 2,y Eh z} C p(Rorig) <= Tt €S- {x Z t,y <5 t,t— z} C p(Raggr) (5.14)

The effect on the def-use sets of the remote cluster are as follows:

def (Raggr) € def (Rorig)

Vr € (def (Raggr) — def (Rorig)) -z € S (5.15)
use(Raggr) € use(Rorig)
)

Vo € (use(Raggr) — use(Rorig)) - € S

5.3.2 The isolation property of deserialised variables

When only remote calls exist within a code sequence, the following property holds for all

calls in the cluster:

Vx-ylx €p(R) = V§€R~7<§:>x¢use<@oo) (5.16)

This property states that if some value of the variable x was set as a result of a copyback
operation, then x cannot be used directly by any following remote action, regardless of the
number of times §,- is applied. This models the isolation property discussed in Section 4.6.1
that ensures that the variable that receives the result of a deserialisation contains the only
reference to the copied object.

Note that it is still possible for a remote action (g) to get access to the value of = (but
not to the variable itself) indirectly via a copyto operation that copies x into a variable that
is accessible from the remote action. It is also possible that the remote action that generated
x stored a copy which is accessible to (g).

5.3.3 Approach to proof

In order to show the transformation to be correct, it must be proven that RZ;C; and Ry

are equivalent such that:

Roty [def (RoF0)] = Ridon [def (Ro52)]

orig orig aggr orig

The following approach is taken:

1. Show that the values used from the global state by any remote action in R,y are
the same as the corresponding remote action in Rggqr. If this is true, then by the
referential transparency property (Equation 5.3), the values defined by the remote
action will be identical in both cases.

2. Given that the individual calls generate the same values as before, show that the state
at the end of R4y, is identical to the state at the end of R,y minus the variables in
S.



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 132

5.3.4 Showing that values used by remote actions are correct

Consider an arbitrary remote action e(7;)o € Ryrig, and the equivalent remote action

AT)> € Raggr, which are the responses to the remote instruction 7;. Since (7;) refers

to the same set of remote actions in both cases, they share the same set of variable defines
and uses.
Now consider the use set of (77). For a given variable x in this set, there are three possible

conditions under which the value of  may have been defined:

1. An instruction preceding the remote cluster set the value of =

2. A previous remote action generated the value of z and copied it into client space using

a copyfrom operation

3. A previous remote action directly set the value of x without an intermediate copyfrom

operation

There are also two methods by which the value of  may be received by (77):

1. A copyto operation copies the value of x into the variable set used by (77)

2. (7;) directly uses & without an intervening copyto operation

The use set of (77) is divided into mutually exclusive subsets, with the classification of a

variable depending on the combination of circumstances in which the variable is defined and

used. The subsets are as follows:

1. use;nternal ((TT>) — consists of variables that are copied by the copyto operation im-
mediately preceding the remote action, with values originating from previous remote
actions in the cluster that were copied by copyfrom operations.

2. USCepternal ((TT>) — consists of variables that are copied by the copyto operation
immediately preceding the remote action, with values originating from instructions

preceding the remote cluster.

3. usegirect ( (7“7)) — consists of variables that are directly accessed by the remote action
without an intervening copyto operation, with values that may originate from direct
assignment by previous remote actions or from instructions preceding the remote clus-

ter.

4. useindirect (@) — consists of variables that are copied by the copyto operation im-
mediately preceding the remote action, with values originating from previous remote

actions in the cluster via direct assignment.

The remaining potential case, where variables are directly accessed by the remote action with
values originating from previous remote actions that were copied by copyfrom operations, is
an invalid case since it invalidates the isolation property stated in Section 5.3.2.

Each subset is now covered separately, to ensure that the values in each set are identical

in both the original and aggregated cases.



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 133

(a) Original

K\ (/ Server

reaches

Client

(b) Aggregated

Figure 5.1: Dataflow of internal values in a remote cluster

5.3.4.1 Internal values

Consider a variable x € use;nternal ((ﬁ)) . In order for it to be in this set, x must be internal
t0 Rorig- This property is defined for a variable x used by a remote action with the following

definition:

internalorig(i,r) <= x € use (@) A 3@ € Rorig @ =< <€>

AJv € def <<E>) -Jdw € use (7,) . (v Ez w, W AN I) C p(Rorig)

Areaches,, (o@o, o@o)

The path taken by the value of x is shown in Figure 5.1(a). The original source of the
value for « is therefore v, which is defined by (h). It is copied into the client space variable
w, which is later copied to z. From the definition of copyto and copyfrom, X[v] = L[w] and
Y[w] = Z[x]. The reaches condition furthermore ensures that X[v] = X[w] = X[z].

Extending this further to the aggregated case by applying Equations 5.10 and 5.11, the

following can be derived:



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 134

internalgggr(i,x) <= 1z € use ( 1 ) 6 Raggr <E> =< <€>

/\3v€def< ) 3t65'<vﬁ/t/\ti\x>gp(7€aggr)

Areaches( <1< > <E>>)

The aggregated scenario is shown in Figure 5.1(b).

The reaches condition must now be proven to hold. This is done using a proof by con-
tradiction, by considering the implications if the reaches term in internalygq- was actually
false.

Firstly, consider Equation 5.11. Whenever a — relation is generated, a — relation must
be generated at the same time. This means that when v 2w was generated in internalgggr,

the following relation must also have been generated at the same time:

Jowze P(Raggr)

Since w is in the private space S, only the > adaptor instructions can possibly overwrite

w. The following must then be true for some instruction k:

a(h)> <k < (i) > A3y -y L w e p(Raggr)

By applying Equation 5.14 to the relations that exist in p(Rqggr) given that the reaches

condition is false, the following must then hold:

(v h 2,y L z) C p(Rorig)

This would mean that in the original, the value returned by (h) and stored in z will have
been overwritten by the value returned by k. However, since the last term in the definition
of internaloriy explicitly states that the value should at least reach (i), this cannot be the
case. Therefore, if the reaches condition is true in internalorig, then_it must also be true
for internalyggr -

v is immediately copied by the adaptor into the variable w. By Equation 5.9, X[v] = 3[w].
It is now known that w reaches <1< >> without being overwritten. Combining this with
Equation 5.8, the expression ¥[v] = Xw] = X[z] can be derived. This proves that (i)
receives the same values from the set of internal variables in both the original and aggrega@

cases.

5.3.4.2 External values

Consider a variable z € usecpiernal (@) In order to be in this set, x must be external
to Rorig- The definition of an external variable is complementary to that of an internal

variable, and is defined for a variable x used by a remote action as:



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 135

Server

(a) Original

Server

Client

(b) Aggregated

Figure 5.2: Dataflow of external values in a remote cluster

external(i,z) <= x € use (@) A 3w € use (1) -w KA
Areaches,, (pred(Rom-g), @)

This case is illustrated in Figure 5.2(a). In this case, ¥(w) = X(z).
Extending this further to the aggregated case:

external(i,r) <= xeuse(<g>)/\Eleuse(g)'EtGS'wét/\tj\x

Areaches,, (pred(RaggT), <1<§>>>

This is shown in Figure 5.2(b). To show that the reaches condition is true, again consider
the situation assuming that the reaches condition was false. There must be some instruction

k where:

k=< <<{> >AJy -y Eite p(Raggr)

However, the introduction of the extra — relation has effectively transformed external (i, x)
into internal(i, z), since x now originates from k. Since it cannot be the case that an exter-
nal variable will map back into an internal variable in the unaggregated case, the reaches
condition must be true instead.

Given that the reaches condition is true, then by the definition of the —~ operator,

3(w) = X(t) = (), hence the value received by (7) remains the same in both cases.



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 136

reaches Server

Client

Server

Client

(b) Aggregated

Figure 5.3: Dataflow of direct values in a remote cluster

5.3.4.3 Direct values

A variable z € usegirect (@) must satisfy the following property in the unaggregated

version:

direct(i,z) <= 3h -z € def (h) Nuse (@) A reachesy (h,@)

This is illustrated in Figure 5.3(a). This means that z must be directly defined by some
instruction h that is either a previous remote action, or by an instruction outside of the
remote cluster. Since there are is no marshalling involved, this expression does not change
under aggregation (see Figure 5.3(b)).

From Equation 5.15, any new variable definitions that are made during the transition
to aggregated calls are to variables in the private space S, which a remote action cannot
access directly. From the definition of reaches (Equation 5.4), it can be determined that
the property reaches,(h,1) must still hold after the transformation, since x ¢ S, therefore
any new definitions that appear in R,44- cannot affect z. By Equation 5.5, ¥ (z) = X(z)

(2

in both cases.

5.3.4.4 Indirect values

An indirect variable x € use;pdirect (@) is defined by the following condition:



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 137

(a) Original

Server

reaches

<1>‘y‘®
reaches

Client

(b) Aggregated

Figure 5.4: Dataflow of indirect values in a remote cluster

indirect(i,x) <= x € use (@) A3h -y € def (@OO> A (y KN x) € p(Rorig)
Areaches, (@, o@o)

This situation is shown in Figure 5.4(a). The remote action <E> directly defines a variable
y on the client without using a copyfrom instruction, and the value of y is later copied into
z by a copyto instruction used by (7).

Unlike the previous cases, this ‘case is not handled correctly. Consider what happens if
the value of x was originally set by some instruction f that occurs before the remote cluster.

In the original case:

Af - f <h Ay € def(f) A <y 5N a:) € p(Rorig) N —Teaches, (f, o@o)

The value of y defined by f does not reach 0<Z>o because it is directly overwritten by

<E> which lies between f and i. However, in the aggregated form, this is transformed to:

Af - f<hAycdef(fynFeS- (y—\mt;\x) C p(Raggr)

Areachesy(f, Raggr) N reaches; (copyto, <1<g>l>)

This is illustrated in Figure 5.4(b). In this case, the value of x received by <Z> comes



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 138

from f rather than from h, despite h coming after f. This is because there is no relation of
the form s E, y in the copyfrom operation of h, hence the application of Equation 5.11 will
not result in the generation of an equivalent s L t relation in the aggregated version that
will overwrite the old value of t.

This problem showed up during the practical implementation of the RMI optimisation

as a problem caused by callbacks (see Section 4.6.2).

5.3.5 Showing that values that reach the end of the cluster are

correct

There are two ways in which variables may be defined by remote actions in a remote cluster

— by direct assignment or by a copyfrom instruction.

5.3.5.1 Direct values

It is easy to show that directly defined variables that reach the end of the cluster in the
original case will also reach the end in the aggregated case using the same argument as that
in Section 5.3.4.3 — i.e. the only extra definitions in the aggregated case are to variables
in 5, and since S does not exist in the original case, there cannot be any new definitions
that interfere with a variable that reaches the end in the original case from reaching it in
the aggregated case.

5.3.5.2 Copied values

By the end of Roig, the k copyfrom values will have defined various values in client space,
some of which may have overwritten previous ones. Consider a variable v that is defined at

the end of Rorig. This should satisfy the following expression:

Ju € def (@) LA reaches, (0@0, SUCC(Rorig))

From the definition of the — (Equation 5.9), ¥(u) = X(v). Moving to the aggregated
version, the variable v would need to satisfy the following expression instead:

Ju € def (@) X z t ANt — v Areaches; (4@9, copyfmm)

Again, the reaches condition is proven to hold by contradiction. Assume that the reaches

condition was false — i.e. that there exists an instruction <E> such that:

<@l> =< <1<E>l> =< copyfrom A Is € def (<E>) -5 L t

If this condition is true, then using Equation 5.14:

(u - v, s s v) € p(Rorig)

This would mean that the reaches condition for the original should not hold, since v
would have been overwritten during the execution of h. Since it does hold in the original,
one can conclude that the reaches condition is true for the aggregate case. Therefore, using
the definitions of — and —:



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 139

5.3.6 Conclusion

It is now shown that for any n, R”F! defines the same values as R}

aggr orig s long as no indirect

variables occur.

It is now possible to show that remote aggregation is correct under certain conditions

0

by a form of induction. Starting from R,

where there are no remote actions, it can now

be shown that R/, is valid provided there are no indirect variables in R}, ;,. By applying
1

the same line of reasoning to every remote cluster that occurs in R,

Rzggr is correct, again provided that no indirect variables exist at any point. This process

can be continued indefinitely to show that the entire computation R

it can shown that

oo
aggr

Note that this is valid assuming that only remote clusters (i.e. sequences of adjacent

is correct.

remote calls that do not contain any local code) are aggregated, and that no indirect variables

occur at any stage.

5.4 Problems with aggregation of clusters

This section focuses on the problems that may occur with aggregating clusters. The issues
of callbacks (which manifest themselves as indirect variables in this theoretical framework)

and pass-by-reference semantics are covered.

5.4.1 Callbacks

A problem arises when the use set of a remote instruction directly coincides with the defi-
nition set of a previous remote action, without any intervening copy from instruction. This
problem has been encountered before during implementation, as covered in Section 4.6.2.
The solution is to add an extra update operation at the end of every remote action that
defines an indirect value in the aggregated case. The effect of this update operation is defined

by the following rule:

updater € Raggr = Yy € def (@) : <3% € Rorig* (Y = 2) € p(Ropig) A (y — 1) € p(RaggT)>
h
= (y = t) € p(Raggr)

This rule states that when an update operation occurs after (h), for every variable

directly defined by <E> that is later copied by a copyto instruction, the value of z will be
copied into the variable ¢ in the private space S. The variable ¢ is the same variable that z
is copied to by the copyto instruction in the aggregated case. This effectively makes indirect

variables behave like internal variables when aggregated.

5.4.2 Reference semantics problem

Arguments are passed to methods by reference for local method calls, which results in

problems as shown in Section 4.6.6. If pass-by-reference semantics for argument passing is



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 140

Server

<>y<1>
reaches

Figure 5.5: Effect of the update operation on indirect variables

Client

employed, then the following rule will always hold for all adaptor operators in the aggregated

case:

Vyedef(@)-xf\y = yLluz (5.17)

This rule means that all changes made to values copied from space S by a remote action
are guaranteed to be written back at the end of the remote action. This may cause some of
the assumptions made in Section 5.3 to be invalidated.

In particular, the main approach taken to prove that reaches properties hold in the
aggregated case is to ‘back-map’ every — relation back to the equivalent — relation in
the unaggregated scenario using Equation 5.11. However, this will not work with reference
semantics, since — relations may be introduced that do not have a corresponding — relation
in the unaggregated form.

Consider trying to prove reaches,(i,j) for some v € S. In addition to considering the
— relations due to Equation 5.11 for instructions between ¢ and j, those that are due to
Equation 5.17 must also be dealt with. Suppose an instruction k exists, where:

i<k =<jATw-v A wE p(Raggr) Aw € def (k) (5.18)

From Equation 5.17, the relation w £ v occurs as a result of the definition of w by k.
Mapping the — relation back to the — relation in the unaggregated cluster using Equa-
tion 5.10 (which remains valid since no rules generating new — relations are introduced by

pass-by-reference semantics):

i<k =<jATu-uwe p(Rorig) Aw € def (k) (5.19)

If this expression is true, then reaches, (i, 7) must be false in the aggregated case due to
the write-back assignment to v caused by the definition of w. However, this is not necessarily
the case for the unaggregated call since there is no rule forcing an equivalent w X u relation
to exist. This means that the proofs in Section 5.3 are only valid using reference semantics
if Equation 5.19 is always false wherever a reaches condition appears in an unaggregated

context.



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 141

5.5 Aggregating across local code
The conditions necessary for delaying remote calls across local code are:

1. The local code must not depend on any values from previous remote calls

2. The local code must not overwrite any values used by previous remote calls except

those passed as call parameters

3. The local code must not perform any I/O

In terms of the framework, for a block of local instructions £ following a remote cluster R",

these may be expressed as:

def (R*®) Nuse(L) =0
def (L) N (use(R*°) — use(R™)) =0

—isinputop(L) A —isoutputop(L)

Under these conditions, it is trivial to show that £ can execute unchanged since the first
condition ensures that there are no dependencies between the relocated remote call and L.
Since it is prohibited to delay across local code that performs I/O by the third condition,
all I/O operations are guaranteed to occur in the same order since any I/O performed by
the remote calls will be forced to come before the I/O performed by the local code.

The issue of hidden anti-dependencies due to callbacks is dealt with by the second condi-
tion. However, direct anti-dependencies must be dealt with. Direct anti-dependencies occur

when:

antidep(R, L) <= R < L ANuse(R) N def (L) # 0

These are corrected by a combination of precopying and variable renaming. Consider
two remote clusters R; and R separated by a local block £. When aggregated, R is moved
to after £, and a save operator (denoted as @) is left in its original place. A save operator
is also placed for R, even though it is not moved relative to £. Before the corresponding
remote action for R; is executed, a load operator (denoted as ©) is used to recover the state

saved by the corresponding save operator.

Zrig = R_laEaR_Q
'Rg;:; = 0<R_1>o; L; 0<R_2> o
Rish = oLos(o(R)e(R))o

The effect of the save operator is to make a copy of the relevant subset of the used state
as it existed before the execution of £. This copied state is conveyed to the server using the

copyto operator. Before the execution of each cluster:



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 142

use (save;) = wuse (copyto;)

use (copytor,,,.) = U def (save;)

The behaviour of the save operator is defined by the — relations, while that of the load

operator is defined by the — relations.

oy — S() =)
vy — S() =)

a—be porig(Ri> - {Q&C,C—\d,d&b} gpaggr(Raggr)

For an arbitrary cluster of calls R;, a variable a that was originally copied to a variable b
by a copyto instruction is instead copied to a variable ¢ while remaining in the client space.
When the remote calls are finally executed, ¢ is copied to a variable d in a private remote
space. Finally, when R; is about to be executed, d is copied into b to be used by R;.

Variables ¢ and d can only be accessed only by one pair of — and +— operators, and
so by the definition of the various relation types, it can be determined that ¥(a) = X(c) =
¥(d) = 3(b). Intuitively, one can see that the value of b that reaches R; will be the value
of a in its original position before the clusters were aggregated, regardless of whether a is

modified by local code later.

5.6 Evaluation

The approach presented in this chapter is very limited since it is not a true semantic model.
It deals only with data-flow between blocks of code, but not how the blocks themselves
use and modify the data, and so cannot be used to predict what a program will actually
do. It can only be used to reason about the equivalence of programs that undergo restruc-
turing transformations, where blocks of code are rearranged but not modified in terms of
functionality.

Nevertheless, the model is believed to be sufficient for showing the correctness of ag-
gregation applied to remote clusters, since remote call aggregation does not change the
functionality or the ordering of the called methods. Although the proof in Section 5.3 could
be better formulated and strengthened much further, the basic logic is sound.

Section 5.5 is much less convincing. There are conditions that are trivial to define in
this framework, but can be very difficult to determine in actual practice, implying a lack
of explanatory power. One example is the possibility of a callback occurring in a remote
call that is to be reordered with respect to local code that uses a value defined by the
callback. Numerous approaches to detecting this have been covered in Section 4.6.2, and
yet it only takes a short expression to express this in the logical framework, belying the
difficulty involved.

Another problem is that there is no real notion of control-flow in the framework, since it

dealing with traces. For example, the problem with executing code that should not have been



CHAPTER 5. CORRECTNESS OF CALL AGGREGATION 143

reached due to exceptions (see Section 4.6.4) does not occur in the framework because the
erroneously executed code simply does not exist in the original trace. All that occurs in the
framework when an exception is thrown is that the remote call that resulted in an exception
is prohibited from being delayed across the exception handler due to the dependency on the

thrown exception.

5.7 Related work

Considering the widespread degree to which optimising transformations in general are used
by compilers, there has been a surprising scarcity of work regarding formal semantic proofs
of their correctness, although the theoretical foundations of program analyses [70] used to
drive the transformations are well established. One recent attempt is described in [47],
which uses temporal logic to prove the correctness of classical optimisations such as dead
code elimination and constant folding. Another approach [49] uses an automatic theorem
prover to prove optimisations written as a set of rewrite rules on a domain-specific language
called Cobalt.

There does not appear to be any previous work that formalises the semantics of RMI,
although formalisations of various aspects of component models such as COM exist. One

example is [78], which focuses mainly on the interface aspect of COM components.

5.8 Conclusion

In this chapter, a logical framework has been developed on which the effects of the aggre-
gation of remote calls on the data-flow of a program can be modelled. By using a process
of simple logical deduction, it can be shown conceptually what happens to remote calls
when a RMI transformation is applied, and demonstrate that the results of such calls are
equivalent to unaggregated calls under most circumstances. The conditions under which the
optimisation leads to incorrect results are shown, and how one may compensate for these
cases. The various issues that arise are linked back to practical issues that arose during the

implementation process discussed in previous chapters.



Chapter 6

Conclusions

In this chapter, the contributions made by this thesis are summarised, and in light of the
various problems and weaknesses that have been discovered during the investigation, sugges-
tions are made for improvements on the current work and directions which future research

on this topic may take.

6.1 Summary

This thesis presents a new approach to automatically optimising distributed applications
written in Java. This approach is based on the concept of delayed evaluation, where remote
calls are not executed immediately, but are delayed for as long as possible. By delaying
multiple calls simultaneously, it is possible to build up knowledge of the wider context in
which remote calls are made. This enables a number of optimisations to be made when the
delayed calls are eventually forced to execute.

Call aggregation reduces the overall network latency incurred by sending all pending re-
mote calls to the server using a single network transaction. It also conserves bandwidth by
sharing data between calls and discarding unneeded results. Server forwarding uses knowl-
edge of the data dependencies between calls and the network topology to exploit connec-
tions between servers, which can be considerably faster than client-server connections. Plan
caching exploits implicit knowledge that clients and servers have of each other gained during
previous interactions to reduce the communication overhead of the RMI optimisations.

These optimisations require runtime support in order to perform the delaying of remote
calls and to efficiently compute the data dependencies between sections of code. This was
achieved by building Veneer, which offers an interpreter-like model of execution that can
easily be customised by modifying the interpretive code. Veneer performs well compared to
other interpreters built on top of Java virtual machines since most of the virtual machine
functions are delegated to the underlying virtual machine, with Veneer intervening only
where necessary to achieve the desired effect.

A prototype implementation of the new RMI optimisations was built on top of Veneer,
and evaluated using a selection of test applications. The experimental results show that the
optimisations are effective in speeding up RMI calls, with the effectiveness increasing as the
number of calls that are simultaneously delayed increases. However, the runtime overhead

of Veneer is a significant factor that limits the potential speedup when operating on fast

144



CHAPTER 6. CONCLUSIONS 145

networks.

A number of issues have been identified which may lead to differing program semantics
after the optimisations are applied. They arise mainly due to the reordering of remote code
with respect to code running on the client. These are resolved by strategically placing force
points in the client, which result in any delayed remote calls immediately executing, thereby
preserving the relative ordering of execution.

In order to verify the correctness of the RMI optimisations, a theoretical framework was
formulated on which to reason about the effect of the RMI transformations on the data
flow of distributed programs. By showing that the same data arrives to equivalent blocks
in the unoptimised and optimised versions of the program, it is proven that the aggregation
optimisations do indeed preserve the behaviour of the program under most circumstances.

The exceptions and the workarounds can also be explained in terms of the framework.

6.2 Future work

In this section, some ideas are presented for directions which future research and develop-
ment could take. These include topics such as further evaluation, optimising the existing
prototype, implementation on different platforms such as .NET, improvements and exten-
sions to the DESORMI approach, and integration with other schemes such as asynchronous

remote calls.

6.2.1 Further evaluation

There are many other tests that could be performed on the DESORMI framework. The
most obvious is to simply extend the suite of test examples, preferably including real-world
examples used in industry.

The experiments performed in Section 4.8 have concentrated on evaluating the effect of
the DESORMI optimisations with regard to client performance. However, relatively little
attention was paid to the performance of the server. An obvious experiment to try would be
to bombard an DESORMI-enabled server with requests from multiple clients to determine
how well it scales under increasing loads.

The DESORMI optimisations should have a two-fold effect on the server:

e It should decrease network utilisation — the total number of messages should be
reduced due to call aggregation, and the size of the messages should be reduced by the

data optimisations and plan caching.

e It should increase CPU utilisation — the server needs to perform various extra oper-

ations such as:

— Iterating through the remote plan
— Checking to see if argument copying is necessary, and copying if it is

— Storing and looking up plans in the cache

The outcome will almost certainly depend on the server configuration and the applications
being run, but nevertheless the results of such experiments should prove interesting and will

be more evidence regarding the viability of the approach detailed in this thesis.



CHAPTER 6. CONCLUSIONS 146

6.2.2 Improved early detection of RMI calls

Confirming that potential remote call sites are actually remote at runtime is not an expensive
operation, but it does incur a little runtime overhead. However, there are several ways in

which this overhead may be further reduced if necessary.

6.2.2.1 Using type-inference

One method of reducing the spurious detection of potential remote calls is to perform type
inferencing on the bytecode in an attempt to find out the possible runtime types of an
invoked object [33]. If the inferencing establishes that all possible types for the object are
classes that are not descended from java.rmi.RemoteStub, then the method call cannot
remote.

However, this approach is not as useful as it might appear. Stubs are generally loaded
at run-time from the server, and are never instantiated directly by the client. The result is
that static type-inferencing cannot possibly detect if an object is in fact a stub, but only
if it is definitely mot a stub. Dynamic class-loading can also make the problem harder by

extending the class hierarchy of the program at runtime.

6.2.2.2 Using data-flow analysis

Remote communication generally starts with a remote stub being fetched from a RMI reg-
istry. Since RMI registries always return references to remote stubs, it should be possible to
trace the path taken by this stub through the program and mark all invocations on this stub
as being definitely remote. However, since pointer analyses tend to indicate ‘may point to’
relationships rather than ‘must point to’ relationships between objects and references, the
scope for improvement might be limited since a reference must point to the stub returned

from the registry in order to be identified as definitely being remote.

6.2.2.3 Reducing runtime type-checking

The runtime test to check that a potential remote call site is actually remote does not
necessarily need to be done at every potential remote call site. If a subsequent call site
uses the same receiver, and the reference holding the receiver object is not changed in all
possible control paths between the first test and the call site, then it is safe to assume that

the remote status of the receiver has not changed since remote stubs are immutable.

6.2.3 Using high-level information

The DESORMI optimisations presented by this thesis are fully automatic and need no assis-
tance from the programmer. This means that the optimisations must operate conservatively,
favouring correctness over performance. This is particularly evident when dealing with local
code that separates remote calls, where there are a multitude of conditions that will lead to
remote execution being forced. However, there may be tremendous scope for improvement if
the programmer was allowed to give hints to the DESORMI optimiser as to how to proceed,
perhaps via program annotations. This allows the optimiser to make use of the high-level

knowledge possessed by the programmer regarding program behaviour.



CHAPTER 6. CONCLUSIONS 147

The simplest and most effective hint would be an annotation that marks local code as
being safe to reorder remote calls across, since this would simplify the operation of the
optimiser considerably. However, it may be difficult for the programmer to decide whether
or not this property is true for a block of local code. In lieu of this, there are many other
annotations that can help the optimiser to decide whether call aggregation is safe — for
example, annotations that state that certain force conditions cannot occur, or that calls to
certain methods in libraries will not perform any I/O or modify their arguments.

Note that current DESORMI optimiser already makes use of high-level information to
a limited degree. For example, the fact that some classes are immutable is used in Section
4.6.6.3 to avoid copying arguments to remote calls. However, this knowledge is hard-coded

into the optimiser, and is therefore inflexible.

6.2.4 Intermediate local method calls

At present, pending remote calls are always forced before any calls to other local methods
are made. This is a conservative means of ensuring that any I/O performed by the delayed
remote methods and the callee will appear to an outside observer to occur in the correct
order.

This restriction might be relaxed in several ways. Exceptions can be made for frequently
occurring special cases that are known to be free of I/O operations, such as calls to the
string-building methods. However, this only helps when direct calls to these methods are
made.

A more effective way might be to set up a Veneer policy that modifies all classes loaded
by the custom class loader to include a notification to the Veneer runtime in methods
that contain any direct calls to I/O methods. In this way, any call chain that leads to a
method containing I/O will result in the notification method being called just before any
I/0 is performed, which gives the executor the opportunity to force any pending calls before
returning from the notification method.

Yet another solution might be for the server to analyse the available remote methods and
conservatively determine the subset that is not capable of performing I/0O. This information
can be communicated as metadata from the server Veneer instance to the client instance.
If all delayed remote methods are known to be incapable of I/O at a point where local
I/O may occur, then it is safe to delay the remote methods across the local I/O operation.
Although the usefulness of this approach might be limited if the I/O detection is overly
conservative, it should at least be no worse than the current scheme of forcing whenever a

local I/O operation may occur.

6.2.5 Improved data reuse

In the current scheme, data used by delayed calls is preserialised when any local code is
encountered that has the possibility of changing any of that data. From that point onward,
all of the serialised data is considered ‘old’, and invalid for subsequent remote calls. This
means that subsequent remote calls must use a second independent set of data that is
collected from that point on. This conservative scheme is safe but inefficient, since it is
likely that only a small subset of the data will have been changed, resulting in the same

data being sent multiple times. One obvious solution is to use more precise data analysis



CHAPTER 6. CONCLUSIONS 148

techniques to better discern which subset of the data is being altered, and invalidate only
that subset instead of the entire set.

An alternative solution that has been considered is to seize control of the data serialisation
process. The idea is to serialise data as normal until an operation occurs that may invalidate
some of that data. At that point, the serialisation routine enters a ‘safe’ mode. In this mode,
when a request is made to serialise the contents of a variable, the data is transformed into a
sequence of bytes as usual, but instead of being appended onto the end of the byte stream,
it is compared with the previous serialisation of that variable byte-for-byte. If they match,
then the data for that variable has been left untouched, and a reference to the previous data
can be appended instead of the entire byte sequence for that variable. This variable can
also be marked as being ‘clean’, so that subsequent serialisations of the same variable do
not have to go through the search again until another invalidation point is encountered.

The performance of this scheme depends on the efficiency of the search. If the time taken
for the search is smaller than the time taken to transport the duplicated data in the original

scheme, then the scheme will pay off.

6.2.6 Using performance metrics to control forwarding

Currently, the behaviour of the server forwarding algorithm is controlled by a set of heuristics
that may not be valid in all cases. The assumption that server-server connections are always
much faster than client-server connections is especially dubious. This assumption is usually
true for present day enterprise systems, where companies typically rent servers in a well-
connected Internet hosting service provider, and the clients connect using a wide spectrum
of methods, from dial-up modems to DSL lines and beyond. However, this assumption is
not necessarily true when applied to peer-to-peer systems, where servers and clients often
connect using networks of equal speed.

An alternative to using heuristics is to measure the explicitly latency and bandwidth
of the connections between servers, and adjust the forwarding scheme accordingly to select
for the highest performing set of connections. This could be done using the cost model
developed in Section 4.4.1.

It can be difficult to calculate the data size due to polymorphism and dynamic data
structures. For example, if the method invoked on server A returned a vector, then the data
size is in general unpredictable in advance since the number of elements and the type of the

elements is unknown.

6.2.7 Direct data forwarding

Server forwarding can result in better performance due to the fact that it is generally faster
for two parties A and B to communicate directly rather than via an intermediary C. How-
ever, the current server forwarding scheme only partially accomplishes this. For example,

consider the test program in Section 4.8.3. For convenience, it is reproduced it here.

temp = rl.add(vl, v2);
result = r2.add(temp, v3);

Although server forwarding enables temp to be sent directly from server r1 to r2, the

variables v3 and result are both forced to pass through server r1. A speedup is still achieved



CHAPTER 6. CONCLUSIONS 149

when using DSL because the time required to forward v# and result over the Ethernet link
connecting the servers is so small compared to the cost of transferring temp back and forth
over the DSL link. A more efficient scheme might be for the client to send v8 to server r2

directly, and receive result directly back. This might be done as follows:

1. A session ID is generated for the current group of aggregated calls.

2. The client sends v1, v2, a reference to the remote proxy on r2 and the session ID to

r1, and simultaneously sends v% and the session ID to r2

3. r1 uses vl and v2 to compute temp. rl sends temp to r2 tagged with the session ID

and finishes.

4. r2 waits until it receives a copy of temp tagged with the current session ID. It then
uses the received value of temp in conjunction with v8 to compute result, which it

returns directly to the client.

5. The client may proceed when every remote call that results in a live value returns (in

this case, the client must wait for 72 to return, but not necessarily r1).

It might be possible to use one-way sends during the sends from the client to r1 and from r1!
to r2, since the sender does not need anything from the receiver. However, it is probably bet-
ter to use the standard RMI call-response communication pattern since the response can act
as an acknowledgement that the send has completed successfully. If this acknowledgement
is missing, then r2 can wait indefinitely for a value that never arrives.

Another major advantage of direct forwarding is that the issues covered in Section 4.9.2

disappear since r1 is no longer responsible for handling data intended for r2 or the client.

6.2.8 Interprocedural delayed RMI

In the present scheme, delayed calls are always forced before the method that made the calls
exits. There are two main reasons for this. Firstly, there is currently no guarantee that
there is an intercepted method further up the call chain, meaning that some RMI calls may
never be called if not forced at the end of the current method.

It is fairly easy to solve this problem by keeping track of the active executors in each
thread. Every time an executor is entered, a reference to it is pushed into a thread-local
stack, and every time it exits, it is popped off. By checking the executor stack of the current
thread, it is easy to determine if there is an intercepted method further up the call chain.

However, a more important problem occurs if the caller of the current method is not
an intercepted method. If it uses any data that was defined as a result of the delayed
remote calls, then it will incorrectly use the old values that were present before the calls
were executed, since it will be unaware of the need to force delayed calls.

A partial solution for this might be for an intercepted caller to scan program fragments
for local calls at runtime. If it can be determined that the callee is an intercepted method,
then a flag can be set that informs the executor of the callee that it is safe to leave unforced
remote calls in the remote queue since the caller will be aware of the possibility of delayed

calls remaining on the remote call queue on exit.



CHAPTER 6. CONCLUSIONS 150

6.2.9 Improved alias handling

One common operation encountered is to store the results of calls in an array. For example:

for (int 1 = 0; 1 < 100; i++) {
result[i] = r.f(i);

If r is a remote reference, then this code would lead to a force on every iteration, since the
assignment of the result of the remote call to the array result is considered a use of the
result. This prevents the aggregation of the 100 calls in the loop.

One way to combat this might be to make a special case for assignment statements, such
that the assignment does not cause a force. Instead, the assigned-to variable is added to the
set of variables defined by the remote call, so that subsequently reading from it will cause
remote execution to be forced. One caveat with this scheme is that it must be possible to
intercept all reads from result. In general, this means that result must not have escaped
from the current method.

6.2.10 Inter-thread delayed RMI

Currently, one delayed call queue is maintained for every thread of execution on the client.
It might be possible to reduce this to just one queue, with all threads sharing the same
queue. When this queue is flushed, this will cause the delayed calls of multiple threads to
be forced. This should be relatively safe, since the order in which calls are placed into the
shared queue reflects the order in which they would have occurred in the absence of the
DESORMI optimisations.

The effect on performance depends on a number of factors. A naive implementation that
executes calls strictly in the order in which they occur may actually reduce performance,
since remote call clusters that appear in one thread may be split up by unrelated remote
calls being interleaved with the calls of the cluster, thereby reducing the opportunities for
optimisation. A more intelligent implementation would take advantage of the flexibility
provided by the Java memory model to optimally reorder the calls that occur in a thread
relative to calls from other threads so that calls containing optimisation opportunities are
situated next to each other to allow optimisation to occur.

The performance may also be reduced if a simple scheme is adopted whereby one thread
forcing execution will cause the delayed calls from all other threads to be forced. For example,
consider a program with two threads. Thread A has few optimisation opportunities and
forces execution frequently, while thread B has many optimisation opportunities and rarely
forces. If forcing thread A also forces thread B, then thread B will be forced as frequently
as thread A, which may destroy optimisation opportunities in thread B.

A better solution would be to implement partial execution forcing, where a force initiated
by thread A will only force the remote calls delayed by thread A plus the calls from thread
B that may be profitably combined with calls from thread A. The remaining calls should

remain on the queue.



CHAPTER 6. CONCLUSIONS 151

6.2.11 Server plan code optimisation

When the server caches a plan, it builds up a ‘canned’ sequence of code that is customised for
the client that sent the plan. At present, this facility is used as a form of data compression,
to avoid sending plans that have been sent before in full form. However, on the server side,
these code sequences provide a good point to apply compiler optimisations.

At present, all remote plans (whether cached or not) are interpreted by the server side
executor, which substitutes the actual server object in place of the remote stub and executes
the call using reflection. However, on the server side, the exact identities of the remote call
receivers are known, and their bytecode implementations are accessible. It should therefore
be possible to safely inline the bodies of the methods into the plan, optimise it using standard
compiler techniques, and execute the result. This inlined plan can then be associated with
the cached plan for subsequent executions.

The degree of speedup will depend on the nature of the inlined methods — there may
be no noticeable speedup at all in some cases. Nevertheless, this should at least eliminate
the overhead of reflective dispatch in all cases.

However, there are potential problems. The difference between the pass-by-value se-
mantics of remote calls and the pass-by-reference semantics of local calls may necessitate
extra code being inserted between calls to compensate for this, adding an another layer of
complexity.

The cost of inlining and optimising the plans may also be a significant factor. If the
call sequence is only executed a few times, then the speedup gained by executing optimised
might not be worth the initial cost of optimisation. The decision to optimise should therefore
be based on a cost model balancing the costs and benefits of optimisation. A simple way
of achieving this might be to associate a counter with each plan that is incremented every
time the cached plan is used, and only perform the optimisation after a certain trip-count

has been passed.

6.2.12 Asynchronous delayed RMI

One obvious possibility for improving the performance of RMI is for the remote calls operate
in parallel with the client instead of the client blocking whenever remote calls are executed.
However, this involves executing remote calls as soon as possible for the best chance of
operating in parallel, and so is fundamentally at odds with the concept of call aggregation
which executes calls as late as possible. Parallel execution works best if the client can
continue working while the remote call is processing, while aggregation works best if the
client cannot.

A compromise can be made by having a ‘committer’ thread running alongside the main
application threads. The task of this committer thread is to periodically flush the contents
of the delayed call queues. Since the force occurs in the committer thread, the application
threads will remain unblocked, so that the application and the flushed server methods can
execute concurrently. If a force point has not yet been reached by the application, then
it should be safe for the delayed calls to be executed in parallel to the application since
by the definition of a force point, no code that is dependent on the delayed calls has been
encountered.

The behaviour of the system at previous force points will also change. Consider a point in



CHAPTER 6. CONCLUSIONS 152

the original scheme where execution must be forced. There will now be several possibilities
as to what will occur at this point in the new scheme:

e The calls have already been flushed by the committer thread, and the results have been
written back — in this case, the point is no longer a force point, since all dependencies
have been resolved at that point. However, this may later lead to new force points
where there were none before if there are still unforced calls on the queue, since these

calls would previously have been flushed at this point.

e The calls have already been flushed by the committer thread, but the results have
not been written back yet — in this case, the application thread must wait for the
results to be written back into the local variables. This can be done by using the usual
spinlock or wait-notify mechanisms. Once the write back has occurred, execution may
continue. New force points may still occur in this scenario, because new calls may

have been added to the stack since the committer thread was started.

e The calls have not yet been flushed by the committer thread, but the committer
thread is still active — if it could be ensured that the calls currently in the queue are
independent of the calls currently being forced by the committer thread, then in theory
it should be possible to flush the queue immediately, which may lead to two remote
plans from the same application executing concurrently on the server side. However,
this is highly unlikely to work in practice, since the calls may have side-effects on
the server side that later calls will depend on. In lieu of this, the application thread
must wait until the committer thread has finished, and then manually flush the queue.

There will be no new force points, since the queue will be empty at this point.

e The calls have not yet been flushed by the committer thread, and the committer thread
is inactive — the application thread should immediately try to flush the queue. The
flush method should be protected by a lock to prevent both threads from flushing at
the same time. It does not matter if the committer thread awakens and acquires the
lock just before the application thread does, since regardless of which thread ‘wins’,
the entire queue will be flushed — the ‘loser’ merely attempts to flush an empty queue.

In this case, no new force points are created.

The main variable in this scheme is how frequently calls are forced by the committer thread.
At one extreme is the situation with the current framework, where calls are forced only when
a dependency has arisen. The other extreme is for calls to be forced as soon as they are
placed on the queue, which makes the call operate in parallel with the client. Asynchronous
delayed RMI would make it possible to strike a balance between the two extremes, balancing
the factors as shown in Figure 6.1.

Experimentation is needed to determine an optimal value, and the best trade-off will
probably vary from application to application and from run to run. It might even be possible
to add instruments to the program to automatically adjust this on-the-fly in response to

usage patterns.



CHAPTER 6. CONCLUSIONS 153

Frequent Infrequent
forcing forcing
+ Lesslatency per force + Lower overal latency
+ More concurrent execution + Less datatransferred
+ More aggregation
- Higher overall latency + More optimisation opportunities
- More data transferred
- Less aggregation - Greater latency per force
- Less optimisation between calls - Less concurrent execution

Figure 6.1: Balancing factors in asynchronous delayed RMI

6.2.13 Delaying local code

Remote calls are currently delayed as they are encountered during the course of program
execution, and their execution is forced only when some local code is encountered that
necessitates it. The occurrence of these force points effectively limit the number of calls
that may be aggregated at any one time. One way in which this limit may be broken is by
speculatively aggregating remote calls beyond the force point.

This might be done by making the executor begin delaying blocks of local code rather
than remote calls when a force point is reached, adding any remote calls encountered to
the current remote queue. When no more local code can be delayed due to data or control
dependencies, the accumulated remote calls can be forced, followed by the delayed local
code.

This approach carries a number of risks. Most of the caveats that apply to delaying
remote calls also apply to delaying local code — for example, an exception might occur in
local code that was reordered relative to a remote call, meaning that the remote call should
not have been executed in the first place.

The dependence between data generated by local code and used by later remote calls
must be carefully taken into account when delaying local code, since this can lead to incorrect
data being supplied to the remote method if the relationship escapes detection. This is a
much harder problem compared to detecting data generated by remote calls, since there are
fewer restrictions on what data the local code may produce.

Another problem is the risk of I/O becoming reordered if the reason for a force was due
to I/0 in local code. Previously, any code that may lead to I/O resulted in a force, so that
any I/0 that might be performed by the remote methods would occur before the I/O of
local code. However, if the remote methods moved to before the local I/O instruction also
perform I/0, then the I/O will be performed in the wrong order. Remote I/O detection (see
Section 6.2.4) may help with this situation.

6.2.14 Code motion between hosts

The basic concept behind fragmentation is to split a program into pieces that may be
manipulated as first-order objects, which includes the ability to send those pieces to remote
hosts to be executed remotely. Currently, only limited use is made of this facility by sending

remote method calls to remote hosts. This could be extended to include sections of the



CHAPTER 6. CONCLUSIONS 154

client code that do not involve remote calls, so that portions of the client can be executed
on the server.

A similar situation occurs on the server side. Methods in remote objects are not frag-
mented unless they contain remote calls of their own, but there is no reason why they
cannot be fragmented as well, and the code fragments sent to the clients or other servers to
be executed.

6.2.14.1 Exporting loops

One application for moving code would be exporting entire loops from client to server. For
example, a loop may contain a loop condition that is dependent upon values defined by the
remote calls, thereby causing the delayed calls to be forced on every iteration of a loop.
Even if there is no such dependency, the resulting remote plan generated by the loop would
be directly proportional in size to the number of iterations taken in the loop, which seems
to be needlessly inefficient considering that it is the same group of calls being repeated over
and over again.

If the entire loop is exported across to the server, then the server can perform the loop
test locally without needing to return the results of each iteration back to the client. Instead,
the final result can be returned as the entire loop finishes, with intermediate results that are
dead at loop exit being discarded. There is also the advantage that loops will be supplied
in a much more compact form compared to the current one (where all loops are effectively
completely unrolled), thereby saving network bandwidth when transferring the remote plan.

A problem with this approach is when local objects are referred to within the plan body.
This data will also need to be moved to the server if the entire loop is exported. However,
not all of this data may be serialisable, and even if it is, the resulting byte-stream, which
represents the closure of the used data, may be very large. This is especially inefficient
considering that it is unlikely that all of the transferred data will be used.

One solution might be to perform a loop fission transformation on the loop [8], splitting
the loop into two independent loops. One loop would contain only remote calls, while the
other would only contain the local code. If this transformation cannot be done, then the old

scheme of forcing on every iteration can be used as backup.

6.2.14.2 Code fragments as mobile agents

If code motion of program fragments is taken to the extreme, then this would be a radical
departure from the conventional distributed programming model with two static programs
communicating with each other via strictly defined channels. Instead, programs consist of
a ‘sea’ of program fragments that may migrate across network boundaries to find the most
suitable host to be executed on. In some respects, this ties in with the concept of multi-agent
systems [31], which perform an overall task using a group of autonomous agents that may
migrate from host to host, interacting with their current host at each step.

6.2.15 Veneer performance optimisation

Despite the many optimisations performed on Veneer, it is still relatively slow if fragmented
methods are being entered often. There are many possibilities for improvement, a few of

which are listed here.



CHAPTER 6. CONCLUSIONS 155

6.2.15.1 Method-specific state

Much of the extra overhead caused by Veneer is due to the need to load and store the
intermediate state of methods. Although the overheads have been dramatically reduced by
pooling state and using reusable value wrappers, there remains substantial overhead, even if
the array containing the stored state is accessed directly rather than via accessor methods.

One way to reduce the overhead further might be to generate a new state class for every
method instead of having a generic state class for all methods. The method state can be
stored in fields rather than as elements in an array. This means that there is no need to
explicitly fill the state with default values when initialised, and method-specific code blocks
such as fragments can access the state by directly manipulating the fields of the state,
eliminating the need for type-casts.

The accessor methods can be retained so that generic block types such as method calls
can still refer to local variables by an index. These bodies of these methods will need to be
generated for every state class though, since the types and names of the fields will vary from

class to class.

6.2.15.2 Switchable fragmentation schemes

The act of breaking a method down into smaller blocks will always slow performance down
due to overhead incurred when dispatching to the blocks and restoring/saving local context,
and also because an optimising JIT compiler will no longer be able to optimise across the
fragmented blocks of code. One way of relieving these problems is to note that it is not
always necessary to intercept execution at various points.

For example, if it was discovered that a potential remote call site did not actually make
remote calls at runtime, then there is no need to intercept execution at that point as long
as the receiver of the call remains constant. In that case, two copies of the code can be
made — one that is fragmented into three blocks with the breaks occurring before and after
the potential remote call, and another that consists of a single block containing the same
code. Before entering these blocks, the executor can decide on which variant of the code to
execute. If the receiver of the call is known to be non-remote, then the single large block

can be chosen for better performance.

6.2.15.3 Low-level support

It might be possible to get substantially better performance if portability was sacrificed, and
support for fragmentation scheme was added directly into the underlying JVM. Some useful

additions might be:

o A way of saving and restoring the current method state to and from a form that can
be manipulated by the Veneer runtime, since the current method of doing this (by

accessing an array element-by-element, type-casting at every step) is slow.

o A way of dispatching directly to the executor when an intercepted method is called.
The current approach uses a stub that initialises the method state before dispatching
to the executor. If the JVM dispatches directly to the executor, the extra level of
indirection might be avoided, and if state saving/restoring is handled by the JVM,
then the JVM would also be the logical place to initialise the state.



CHAPTER 6. CONCLUSIONS 156

6.2.15.4 Specialisation

One of the reasons that slowdowns occur in Veneer is due to the multiple levels of indirection
that exist:

e A method stub calls an executor, with the executor type depending on the runtime

policy and the method plan

e The behaviour of an executor depends on the plan supplied to it, and the blocks within

the plan

Some of these indirections might be removed by a process of specialising these runtime

entities with respect to one another. For example:

e Specialising a stub on the runtime policy and method plan can result in a fixed executor
selection, enabling the executor to be inlined

e Specialising an executor with respect to a plan and its blocks results in a fully compiled

version of the plan as executed by that executor

In terms of actually implementing these specialisations, it seems unlikely that generalised
partial-evaluation systems like Tempo [23, 83] would be able to cope with specialising Veneer,
so another option is to move towards an explicit code-generation scheme.

For example, instead of the executor actually executing instructions between blocks, it
can generate a compiled version of those instructions instead, which can be automatically
inserted between the code blocks. However, this is a step back towards the static program
rewriting approach (see Section 3.1.1), with the inherent complexities of that approach.

6.2.16 .NET Remoting

Remoting is the .NET equivalent of RMI which provides a distributed object model for the
.NET framework. Although it shares much in common with RMI, there are also important

differences. For example:

e Objects are bound to explicitly stated port numbers — in RMI, this is hidden from
the developer since RMI can share ports between objects. This means that no boot-
strapping phase with a remote registry is needed with remoting, but the port number
does need to be known to the client.

e No remote interface is necessary — there is no need to define a separate interface to

declare the methods that may be remotely accessed.

e No stub compiler is necessary — the communication infrastructure is part of the
Common Language Runtime, with no need for external stubs and skeletons. Instead,

stubs are generated at runtime on demand.

e Custom sinks — custom sinks are very similar to JBoss interceptors (see Section
B.3.3.2), in that they permit a developer to process and perhaps modify the data that
is sent to and received from the server before and after a remote call is made.



CHAPTER 6. CONCLUSIONS 157

At the time of writing, a version of the call aggregation optimisation is already being de-
veloped for the Mono implementation of .NET. This implementation is called the Runtime
Remoting Optimiser (RROpt) [22], and is based on modifications to the Mono interpreter,
Mint.

Although RROpt operates at the level of the virtual machine, it suffers from high over-
heads because it does not perform any program analysis beforehand, so everything must be
performed at runtime while the program is running. The ability to avoid returning dead
return values from remote calls is missing due to the lack of data-flow analysis, and none
of the other DESORMI optimisations (i.e. server forwarding and plan caching) have been

implemented either.

6.2.17 Veneer using .NET

The .NET framework [77] provides several features that the Java platform lacks, which might

have proven very useful when developing the Veneer virtual JVM.

6.2.17.1 DPass by reference

References to objects are passed by value to methods in Java. This makes it possible to
perform operations on the referenced object that are visible outside of the method, but it
makes it impossible for a callee to change the actual parameters of a method call. This
has led to the use of ‘packing’ and ‘unpacking’ code in fragment methods, since directly
assigning to a reference variable will only update the local copy, and not the one passed in
by the caller!.

The .NET framework provides two mechanisms around this. The first is the ability to
take the address of variables which makes it possible to pass in a pointer to the variable
containing the reference to a method, enabling the callee to change the reference. However,
the use of pointers renders the code ‘unsafe’; since the verifier cannot no longer guarantee
the type-safety of the program in the presence of pointer manipulation.

The second method is by using reference parameter types. .NET supports passing pa-
rameters by reference in a similar way to C++, such that changing the parameter within
the method body will change the passed value in the caller too. Unlike the first method,
this is type-safe.

6.2.17.2 Interprocedural control flow

Java is severely restricted in terms of the options available for directing control flow. This
leads to problems when attempting to write an efficient interpreter, or interpreter-like pro-
grams.

Consider trying to write a direct-threaded interpreter, where every instruction imple-
mentation jumps directly to the implementation of the next instruction in line. Since this
kind of jump is not permissible in either Java or .NET, the closest alternative available is
a virtual call. However, there are only three ways in which execution can move from one
method to another — by calling a method, by returning, or by throwing an uncaught ex-

ception. If every instruction implementation calls its successor, then the stack will rapidly

INote that Java inner classes also use a similar mechanism when accessing their enclosing classes.



CHAPTER 6. CONCLUSIONS 158

overflow. The solution currently used is to return the ID of the successor and have the caller
call the successor, which incurs additional overhead.

However, MSIL [53] (Microsoft Intermediate Language — the .NET equivalent of Java
bytecode) provides the jmp instruction and the tail prefix that might be used to move from
instruction implementation to instruction implementation more efficiently.

jmp instantly transfers control from the current method to the specified method. The
stack frame of the current method is destroyed and replaced with that of the destination
method. The arguments of the new method are set to those of the old method.

The tail prefix is used in conjunction with one of the call family of instructions to
form a tail call. The tail call destroys the current stack frame, replaces it with that of the
destination, fills in the arguments, then transfers control to it.

The main differences between jmp instructions and tail.call instructions are:

e tail.calls can only occur before the method returns. jmps can occur anywhere in a
method.

e jmp is an unsafe instruction, and hence any code that contains it is unverifiable.

tail.call instructions are safe however.

e For jmp instructions, the destination method must have the same type signature as
the method that contains the jmp instruction. For tail.call instructions, the return

types of the caller and callee must be the same.

Both of these instructions provide an efficient means of transferring control directly from
one method to another without overflowing the stack. Unfortunately, neither of these in-
structions are directly accessible from the set of standard .NET languages (i.e. C#, J#,
Visual Basic .NET and C++ with Managed Extensions), so an implementation would have
to work directly with MSIL.

Note that there are some Java virtual machines that are capable of automatically opti-
mising tail-recursive method calls away (e.g. the IBM JVM), but there are others that do
not (e.g. the Sun HotSpot JVM). Since tail-call optimisation is not part of the standard
Java virtual machine specification, it would be unwise to rely upon this non-standard feature

for such an essential aspect of the virtual JVM.

6.3 Conclusion

This chapter concludes the thesis with a summary of the main points. Although the main
goals set out in Chapter 1 have been accomplished, much work remains to be done. The
concrete implementation of some of the semantic-preserving techniques needs to be com-
pleted, and further evaluation with full-scale applications in active use would be desirable.
There are also many ways in which the work can be improved and extended beyond the
scope covered by this thesis. A few of these improvements are discussed in this chapter as

future work.



Appendix A

Working with Java bytecode

This appendix introduces various aspects of working with Java at the bytecode level. First,
the internal structure of class files is presented. The process by which class files are loaded
by the Java runtime to become the classes used by Java programs is then covered. Finally,
tools are introduced that simplify the task of manipulating programs at this low level of

abstraction.

A.1 Class files

A class file is the binary representation of a single compiled class in a program. It is composed
of:

A header

A constant pool

Class information

Field definitions

Method definitions

o Attributes

The simple Java program in Figure A.1 is referred to in the next sections as an example.

A.1.1 Constant pool

The constant pool acts as a repository for symbolic information in the class file. The other
sections of the class file, and some entries within the constant pool itself, refer to constant
pool entries via the index. The constant pool for the example code is shown in Figure A.2.

For example, consider entry 3, which refers to the println method called by main. The
method exists within the class defined by entry 26, which refers to a class with the name in
entry 38. The signature of the method is given by entry 27. In the signature definition, the
name of the method is given by the string in entry 39, while the type signature is given by
the string in entry 40.

159



APPENDIX A. WORKING WITH JAVA BYTECODE 160

public class Example {
private static String name = "Example";

public static void main(Stringl] args) {
try {
for (int i = 1; i <= 10; i++)
System.out.println(i);
} catch (Exception e) {
System.out.println("Exception raised");

}

Figure A.1: A simple Java program

The multiple levels of indirection are there to remove redundancy in a similar manner
to that found in relational databases. This can clearly be seen in the definitions of the
references to System.out (entry 2) and System.err (entry 5), which share the same class
and type signature entries. However, this is for the sake of space-efficiency rather than for
correctness during updates, since class files are regenerated by compilers on updates anyway.

Some points to note are:

e Instance constructors have the name <init>
o (Class constructors have the name <clinit>

o Components of a package name are separated by forward-slashes, as opposed to the

dots used in the Java language

e Method type signatures are of the form:
" (<parameter types>) <return type>"

e Types are represented in a terse code. For example, V represents the type void, and

I represents the type int. References to classes are of the form [L<class name>;

A.1.2 Method definitions

Statements in method bodies are represented using Java bytecode, which is a compact
representation of Java code — the Java equivalent of machine-code.

The execution model is simple. When a method is called, a stack-frame is created which
contains an operand stack and a set of local variable slots. The operand stack is initially
empty, and the local variable slots are filled with the value of this (if the method is an
instance method), followed by the arguments supplied to the method. Instructions take
their operands from the operand stack, and push their results back onto it. There are also
load and store instructions that move data to and from the local variables.

Instructions are subject to various constraints. For example:

e The depth of the operand stack at each instruction must be constant for all possible

executions of the method.



APPENDIX A. WORKING WITH JAVA BYTECODE 161

1) CONSTANT_Methodref (class_index = 11, name_and_type_index = 23)
2)CONSTANT_Fieldref(class_index = 24, name_and_type_index = 25)
3)CONSTANT_Methodref (class_index = 26, name_and_type_index = 27)
4)CONSTANT_Class (name_index = 28)

5)CONSTANT _Fieldref(class_index = 24, name_and_type_index = 29)
6) CONSTANT_String(string_index = 30)

7) CONSTANT _Methodref (class_index = 26, name_and_type_index = 31)
8)CONSTANT_String(string_index = 32)
9)CONSTANT_Fieldref(class_index = 10, name_and_type_index = 33)
10) CONSTANT_Class (name_index = 32)

11)CONSTANT_Class (name_index = 34)

12) CONSTANT_Ut£8('"name")

13)CONSTANT_Utf8("Ljava/lang/String;")
14)CONSTANT_Ut£8("<init>")

15)CONSTANT_Ut£8("(OV")

16) CONSTANT_Ut£8("Code")

17) CONSTANT_Ut£8("LineNumberTable")

18)CONSTANT_Ut£8("main")

19) CONSTANT_Ut£8(" ([Ljava/lang/String;)V")

20) CONSTANT_Ut£8("<clinit>")
21)CONSTANT_Ut£8("SourceFile")

22) CONSTANT_Utf8("Example. java")
23) CONSTANT _NameAndType (name_index
24)CONSTANT_Class(name_index = 35)
25) CONSTANT _NameAndType (name_index = 36, signature_index = 37)
26) CONSTANT_Class(name_index = 38)

27) CONSTANT _NameAndType (name_index = 39, signature_index = 40)
28) CONSTANT_Ut£8("java/lang/Exception")

29) CONSTANT _NameAndType (name_index = 41, signature_index = 37)
30) CONSTANT_Utf8("Exception raised")

31)CONSTANT _NameAndType (name_index = 39, signature_index = 42)
32)CONSTANT_Ut£8("Example")

33)CONSTANT _NameAndType (name_index = 12, signature_index = 13)
34)CONSTANT_Ut£f8("java/lang/0Object")

35) CONSTANT_Ut£8("java/lang/System")

36) CONSTANT_Ut£8("out")
37)CONSTANT_Utf8("Ljava/io/PrintStream;")
38)CONSTANT_Utf8("java/io/PrintStream")
39)CONSTANT_Ut£8("println")

40) CONSTANT_Ut£8("(I)V")

41)CONSTANT_Utf8("err")

42) CONSTANT_Ut£8(" (Ljava/lang/String;)V")

14, signature_index = 15)

Figure A.2: The constant pool of the class file produced by compiling the Java program in
Figure A.1



APPENDIX A. WORKING WITH JAVA BYTECODE 162

Method void main(java.lang.Stringl[])
0 icomnst_1
istore_1
goto 15
getstatic #2 <Field java.io.PrintStream out>
iload_1
invokevirtual #3 <Method void println(int)>
12 iinc 1 1
15 iload_1
16 bipush 10
18 if_icmple 5
21 goto 36
24 astore_1
25 getstatic #5 <Field java.io.PrintStream err>
28 ldc #6 <String "Exception raised">
30 invokevirtual #7 <Method void println(java.lang.String)>
33 goto 36
36 return
Exception table:
from to target type
0 21 24 <Class java.lang.Exception>

© 0 U1 N -

Figure A.3: Disassembly of the class file produced by compiling the Java program in Figure
Al

e Local variable slots can be reused. This means than one can fill a local variable slot
with data of type a, then replace it with data of type b. However, it is not valid to
put data of type a into a slot and extract it as data of type b, even if the types are

convertible.

Class files that fail these constraints will be caught by the verifier, and most Java Virtual
Machines will refuse to run them by default. It is usually possible to override this behaviour
if necessary.

A disassembly of the compiled main method of the example program using javap results
in the output shown in Figure A.3. The numbers prefixed by a hash represent references to
the constant pool.

Exceptions are handled by a table, which associates the location of an exception handler
with a range of locations and the type of exception handled. If an exception of the specified
type or a descendant of the type is thrown within the range of an exception handler, then
control will be passed to the exception handler immediately. The operand stack is flushed,
and the thrown exception pushed onto it.

A.2 Class loaders

Class loaders [52] are objects that are responsible for loading the classes used in a Java
program. They are instances of classes that descend from java.lang.ClassLoader, which
may be extended and instantiated like any other class.

The main task of a class loader is to return a java.lang.Class object, given the name of
the class to be loaded. Class loaders can either defer the task to other class loaders, or they

can load the bytecode for the named class and pass it to one of the predefined defineClass



APPENDIX A. WORKING WITH JAVA BYTECODE 163

methods defined in ClassLoader in order to load the bytecode into the JVM. Once a class is
loaded, the class loader is called upon to recursively load all classes that are referenced from
the class that has just been loaded. Class loaders should therefore keep a cache of loaded
classes for efficiency.

The usual reason for creating new class loaders is to load bytecode from sources other
than those specified when the JVM was started — e.g. from the Internet, or bytecode
generated on-the-fly.

A.2.1 Class namespaces

In Java, a class is identified by two characteristics — its fully-qualified name, and the class
loader used to define it. A class named C defined by class loader C'L; is regarded as being
different from a class named C defined by another class loader C'Lsy, even if CL; and CLo
are structurally equal.

Note that the defining class loader of a class is not necessarily the same as the class loader
used to load the class. This is because class loaders may delegate to other class loaders —
the defining class loader is the class loader that ultimately calls the defineClass method
on the loaded bytecode.

A.2.2 The delegation model

With the exception of the bootstrap class loader, all class loaders must have a parent class
loader. The class loaders therefore form a tree that is rooted at the bootstrap class loader.

When a class loader is called upon to load a class, then under the delegation model, it
should first pass the request onto its parent class loader. The class loader should only define
the requested class itself if no ancestor class loader (since the parent class loader should in
turn try its parent first) can load the class.

This provides the property that for any class loader CL and for any class C, then:

defines(CL,C) = (A1)
Vel € ({CL} U{alancestor _of(a,CL)} U {d|ancestor_of(CL,d)}) -
defines(cl,C) = cl =CL

where

ancestor _of(a,CL) = parent_of(a,CL)V (A.2)
(parent _of(p, CL) A ancestor _of(a,p))

In other words, if one were to follow the class loader hierarchy from any point back to
the root class loader, there can be at most one class loader that defines any one given class.
The delegation model has numerous advantages. Consider an arbitrary class C. All
occurrences of C in any class will be compatible with occurrences of C' appearing in other

classes defined by class loaders further up the class loader hierarchy. This is vital if data



APPENDIX A. WORKING WITH JAVA BYTECODE 164

containing instances of C are to be exchanged between classes defined at various levels of
the class loader hierarchy.

Another problem that has been encountered is that it is impossible to load classes that
contain calls to native code via JNI more than once [1] since the native code cannot tell
the two class definitions apart. This makes it vital for classes containing native code to be

shared via delegation.

A.2.3 The base class loader hierarchy

When the Sun JVM is first started, three class loaders are present. The boot-strap class
loader is responsible for loading the class files for the standard Java library, which are stored
in rt.jar. The boot-strap class loader is not accessible to Java programs, and is the parent
class loader for all class loaders with the parent set to null.

The next class loader is the extensions class loader, which is descended from the boot-
strap class loader. In the HotSpot JVM, this is implemented by sun.misc.Launcher$Ext-
ClassLoader. This is responsible for loading the extension classes that reside in the ext
sub-directory of the JRE.

The last class loader is the system class loader, which in turn is descended from the exten-
sions class loader. This is implemented in the HotSpot JVM by sun.misc.Launcher$App-
ClassLoader. This is the class loader used by default to load application classes from the

classpath supplied by the user.

A.3 Tools for working with bytecode

Working with raw bytecode is unwieldy due to the numerous elements involved in building
a class file. Numerous tools have therefore been developed to ease the process of low-level

programming for the Java platform.

A.3.1 Soot

Soot [88, 89] is a framework developed by the Sable Research Group for the static optimisa-
tion of Java class files. It takes compiled class files as input, and outputs optimised versions
that are ready to be executed by a standard JVM.

In order to perform static optimisations, it is necessary to perform program analyses on
the class files. Java bytecode is awkward to analyse in its original form because it is based
on a stack architecture, with most instructions receiving implicit arguments from, and/or
leaving return values on, the operand stack. It would be necessary to keep track of the
possible contents of the operand stack at every instruction in order to analyse such code
properly.

The developers of Soot have opted to convert the bytecode into intermediate representa-
tions that are more amenable to analysis rather than analysing the bytecode directly. The
intermediate representations are Baf, Jimple and Grimp, and more recently, Shimple (an
SSA form of Jimple).

Baf is a low-level representation that maps directly onto the bytecode, while Grimp is
a form of Jimple that contains aggregated expressions. The main form that is used by this

thesis is the Jimple representation.



APPENDIX A. WORKING WITH JAVA BYTECODE 165

A.3.1.1 Jimple

Jimple [90] is an intermediate representation of bytecode that explicitly specifies all of its
arguments and return values. Variables stored on the operand stack and local variables
are treated orthogonally in Jimple, although stack variables are assigned names that are
prefixed with a $ symbol. Note that this is for the users benefit, and is not significant in the
eventual transformation back to bytecode.

Jimple instructions are simple — that is, each instruction may only perform one oper-
ation, much like bytecode instructions. The main difference between them, apart from the
explicitness of variable accesses, is that Jimple does not have to generate separate instruc-
tions to load variables and constants into other variables.

Jimple also separates the DU-UD webs [68] of variables, such that variables that belong
to different webs are always renamed, even if they are physically the same variable within the
bytecode. This provides many of the benefits associated with the Single Static Assignment
(SSA) [25] form of variables. The main differences occur in loops and branches, since Jimple

has no notion of using ¢-functions to merge variables.

A.3.1.2 Other facilities

Soot also provides many other code-analysis facilities, such as:

e A framework for dataflow analysis
e Static type inference

e Pointer analysis — the Spark [50] pointer analysis framework was recently introduced

in version 1.2.4 of Soot.

A.3.2 BCEL

The Byte Code Engineering Library, originally named the JavaClass library, is a set of Java
classes for programmatically creating and manipulating Java bytecode. Unlike Soot, it works
directly at the bytecode level rather than use intermediate representations. It provides a
thin layer of abstraction over the bytecode level, handling administrative details like the
addresses of instructions, the construction of the constant-pool, adjustment of the number
of local variable slots and maximum stack height etc.

The main advantage of BCEL over Soot is its high speed and low memory overhead, since
it provides a much thinner interface to the bytecode. This is also its greatest disadvantage,

since it lacks the rich set of analysis tools provided by Soot.



Appendix B

Writing distributed programs in

Java

This appendix covers the basics of programming with Java RMI, RMI-IIOP, and Enter-
prise JavaBeans. A closer look is taken at the JBoss server, which provides an unusual

implementation of Enterprise JavaBeans.

B.1 Java RMI

Remote Method Invocation is the native Java API for creating distributed programs. Unlike
CORBA, RMI was designed for use with the Java platform only. One major advantage of
this is that this eliminates the need for abstraction mechanisms within the protocol to deal
with architectural differences such as the endianess of the communicating hosts, making
for a cleaner and simpler programming interface when compared to CORBA!. RMI makes
extensive use of the principle of polymorphism from the Object-Oriented Programming
paradigm to make the calling of methods on remote objects nearly transparent from a
syntactic point of view.

Within programs using RMI, there need not be a distinct separation of roles in terms of
server and client — it is quite possible for two communicating programs to simultaneously
take on both roles with respect to each other. The terms ‘server’ and ‘client’ will henceforth
be referring to the role played by a program during a specific remote transaction. The ‘server’
will refer to the party that contains the remotely-accessible object, whilst the ‘client’ will
refer to the party that accesses that object from a potentially different host.

B.1.1 Programming with RMI

A programmer wishing to create an object with methods that may be accessed remotely must
first declare a remote interface, which specifies the remotely accessible methods. Object fields
and static methods cannot be accessed directly via RMI. By definition, a remote interface
must inherit from the Remote (directly or indirectly) interface, and all of its methods must

throw RemoteException or one of its super-classes in case a network error occurs.

Tt could be argued that platform-abstraction does take place when using RMI, but it is situated at the
level of the Java platform itself, rather than at the API level

166



APPENDIX B. WRITING DISTRIBUTED PROGRAMS IN JAVA 167

The actual implementation of the remote object must then implement the remote inter-
face just created, and also inherit from RemoteObject at some point. After the new class has
been compiled, a stub compiler is then used to produce a stub class for the remote object.
The generated stub inherits from the same remote interface as the object implementation.

In order for the new object to be remotely accessed, it must first be ezported. This can
be done explicitly by calling the exportObject methods of the UnicastRemoteObject or
Activatable classes, or implicitly by inheriting from one of these classes, which export the
object within the constructor.

When a client wishes to access a remote object, it must first obtain a stub that points to
that object, and invoke calls directed to the remote object on the stub instead. Stubs acts
as proxies, forwarding the method arguments onto the remote object along and relaying the
return value back from the server. This process is known as marshalling. The protocol that
the stub uses to communicate with the remote server is known as the Java Remote Method
Protocol (JRMP).

Parameters and return values of RMI calls are generally copied across using the seriali-
sation mechanism. The only exception is when one attempts to pass a remote object — in
this case, the reference to the actual remote object is replaced by a stub that is associated
with it.

Stub classes typically reside on the same host as the server. Clients obtain stubs to
remote objects in two ways — as the return value of another remote call, or via a name
registry. Name registries are simple remote servers that use a well-known stub and address.
Servers can associate stubs with a name on the registry using the bind methods of the
java.rmi.Naming class, while clients can fetch stubs by name using the lookup method.

RMI calls are synchronous — that is, when an RMI call is made by a client, it will wait
until a result is returned by the server before continuing execution. However, it is possible
to emulate the effect of asynchronous RMI calls by spawning off new threads to perform the
RMI call. The new thread will be suspended during the call, but the parent thread may

continue unimpeded.

B.1.2 Object serialisation

Object serialisation is the process by which Java objects are transformed into a stream
of bytes so that they may be stored on permanent storage, transported from machine to
machine etc. The byte stream may be reconstituted back into Java objects again at a later

time by the deserialisation process.

B.1.2.1 Automatic object serialisation

The easiest way of making a class support serialisation is to make the class implement the
java.io.Serializable interface. This interface is a marker interface, and contains no
method declarations. The code contained in the java.io.ObjectOutputStream class will
then be able to serialise the class by using runtime inspection.

When an object is serialised, serialisation takes place starting from the topmost class
Object, and proceeds down the class hierarchy. For every class in the hierarchy, the runtime
uses the reflection API to inspect the instance fields belonging to that class, and recursively

serialises them one after another. Deserialisation occurs in a similar fashion — by creating



APPENDIX B. WRITING DISTRIBUTED PROGRAMS IN JAVA 168

an instance of the serialised class then filling the fields in, starting from the topmost class
in the class hierarchy.

B.1.2.2 Controlling object serialisation

The simplest form of control that may be gained over the serialisation process is by declaring
fields as transient. Transient fields are not included in the automatic serialisation process,
and will be skipped over.

More control over the serialisation process can be gained by implementing writeObject
and readObject methods in the class to be serialised. These methods enable the imple-
menter of the class to control how instances of that class are serialised/deserialised by using
the stream that is supplied as an argument to these methods. If these methods are present
in a class, then they are called instead of performing automatic serialisation. Automatic
serialisation may still be performed by calling defaultWriteObject on the stream. Objects
are still serialised and deserialised recursively starting from the top of the class hierarchy.

Even more control can be gained over the process by making the classes implement the
Externalizable interface rather than the Serializable interface. The Externalizable
interface declares two methods writeExternal and readExternal which must be imple-
mented. These two methods perform a similar task to writeObject and readObject in
explicitly stating what to read or write to the I/O streams. The main difference is that
externalisable classes do not recursively traverse the class hierarchy. This means that the
writeExternal/readExternal methods are responsible for serialising the contents of parent

classes as well.

B.2 RMI-IIOP

Java Remote Method Invocation over the Internet Inter-ORB Protocol (Java RMI-IIOP)
is a variation of standard Java RMI (or more accurately, Java RMI-JRMP) that uses the
CORBA IIOP protocol to communicate between hosts rather than the Java-specific JRMP.
This is especially useful when dealing with legacy code because it allows Java clients/servers
written using the RMI programming model to interact with CORBA servers/clients that
may be written using other languages without needing to write or compile any IDL.

Minor changes are required in order to transform a program from using RMI-JRMP to
RMI-IIOP:

e Stubs must be generated with the -iiop flag

e Common Object Services Naming (COS Naming) services must be used in place of
the RMI registry

e javax.rmi.PortableRemoteObject is used in place of UnicastRemoteQObject.

e Remote interface type-casts must be replaced with the CORBA-compliant narrow
method of the PortableRemoteObject class.

There are some minor limitations on what can be done with RMI-IIOP compared to RMI-
JRMP due to the restrictions of the CORBA standard. These are detailed in the RMI-IIOP

specification.



APPENDIX B. WRITING DISTRIBUTED PROGRAMS IN JAVA 169

B.3 Enterprise JavaBeans

Enterprise JavaBeans (EJB) [65] forms a major part of the Java Enterprise Edition (J2EE)
specification, and is the standard for distributed component programming in Java. The
EJB programming model is similar in most respects to the RMI programming model, with
stricter discipline imposed and the addition of ‘value-added services’.

B.3.1 Beans

The remote server-side components in the EJB architecture are known as ‘beans’. Beans
are similar in many ways to RMI servers, in that they implement a set of methods that may
be called remotely via a remote interface. Since version 2.0 of the EJB specification, Beans
may also expose a set of methods via a local interface, which are methods that may be called
directly by other beans residing within the same container for efficiency.

Beans differ from RMI servers in two main respects. Firstly, a bean class is separated
from its remote and local interfaces, in that its class definition does not implement these
interfaces. This is because clients do not communicate directly with the beans, but with
the container that contains the beans. Bean classes must implement from the EntityBean,
the SessionBean or the MessageBean interfaces, depending on their type. These interfaces
declare callback methods, which are called by the container when a life-cycle change occurs
(e.g. if the beans are about to be stored to a hard disk).

Secondly, each EJB supports at least two remote interfaces — the normal interface for
invoking business methods on the EJB, which must extend the EJBObject interface, and
a ‘home’ interface, which must extend the EJBHome interface. The home interface is a
formalisation of the ‘factory pattern’ in that it permits remote clients to manipulate the life
cycle of EJBs in the remote server. Clients may use the home interface to request the EJB
container to create new instances of an EJB, or to find an existing EJB instance using some
key.

There are three main types of bean — entity beans, session beans and message beans.

B.3.1.1 Entity Beans

Entity beans are used to access data stored on the server, which is typically stored in the form
of a database. Entity beans are created or located via the home interface, using the primary
key(s) as an identifier. An entity bean represents a record in the underlying database, such
that calling get and set methods on the bean have the effect of retrieving and setting data

in the database. There are two main types of entity bean:

e Entity beans with Container Managed Persistence (CMP) have the container manage
the link with the underlying database. In the newer versions of EJB (version 2.0 and
above), all one has to do is to define abstract get<field> and set<field> methods in
the bean class, and define the data relationships in the XML descriptor for the bean.
The container will automatically generate bodies for the abstract access methods. It
is also possible to handle relationships between tables, such that one can access linked

entries in related tables via a single entity bean.

e Entity beans with Bean Managed Persistence (BMP) leave the task of managing the

connection to the underlying database to the creator of the entity bean.



APPENDIX B. WRITING DISTRIBUTED PROGRAMS IN JAVA 170

B.3.1.2 Session Beans

The methods provided by session beans are usually called upon to perform server-side tasks,
often on data provided by entity beans. Session beans are also sub-divided into two cate-

gories:

e Stateless session beans do not maintain a conversational state with the client. A
single instance of a stateless session bean may service requests from multiple clients,
and furthermore, a client accessing the bean multiple times might not even access
the same instance on every call. In other words, all instances of a particular class of
stateless session bean are interchangeable. There is nothing actually preventing one
from inserting instance fields into a stateless session bean, but these will be of limited

use since one cannot predict which bean instance will be called by which client.

e Stateful session beans maintain a conversational state with the client, such that each
client is serviced by a dedicated instance of the bean (conceptually at least). This
means that the effects of any remote calls on the bean will persist from call to call,
and such calls are guaranteed to be from the same client.

B.3.1.3 Message Beans

Message beans behave like stateless session beans in most respects, but its methods are
executed in response to messages sent via the Java Message Service (JMS) [67] rather than

RMI calls. It may also send messages in response.

B.3.2 Containers

Clients do not interact with beans directly, but with the container that contains the beans.
Containers are responsible for the added functionality provided by EJB over standard RMI.
Containers manage the life-cycle of beans by creating, destroying, and passivating them (i.e.
swapping them out onto persistent storage to free up memory), possibly in response to a
call to the home interface of a bean.

Containers also handle calls to business methods, and have full control over how they

are handled. For example:

e Calls to the accessor methods of entity beans with container-managed persistence
will be handled directly by the container, which will fetch the data directly from the
database. The call will not actually reach the bean instance.

e If a method of a stateless session bean is called, then the container tries to fetch a free
instance of the bean from a pool of beans. If none are available, then the container
instantiates a new one. The corresponding method on the bean is then called by the
container, and the result is passed back to the client. When finished, the bean instance

is returned to the bean pool.

B.3.3 JBoss

JBoss [85] is currently the most popular open-source implementation of the Java Enterprise
Edition (J2EE) specification, and includes support for Enterprise JavaBeans. The JBoss



APPENDIX B. WRITING DISTRIBUTED PROGRAMS IN JAVA 171

server is unusual in many ways. When a client requests a stub from JBoss, a dynamic proxy
is returned instead of a standard RMI stub.

B.3.3.1 Dynamic proxies

Dynamic proxies have been a part of the standard Java library since Java 1.3. Dynamic proxy
classes are generated at runtime in order to implement a Java interface. The constructor of
all dynamic proxies accept an object that implements the InvocationHandler interface as

an argument. The InvocationHandler interface is declared as follows:

public interface InvocationHandler {
public Object invoke(Object proxy, Method method, Object[] args)

throws Throwable;

When one of the methods implemented by the dynamic proxy class is called on an instance
of the proxy, the proxy delegates the call to the invoke method of the InvocationHandler
object supplied at construction time. The invoke method is supplied with a reference to
the proxy (since multiple proxies can share the same InvocationHandler), a Method object
identifying the method that was called, and an array of Objects representing the object.
The invoke method may then make a decision regarding what to do next based on the

supplied arguments.

B.3.3.2 Interceptors

All method calls made to JBoss dynamic proxies are passed through a chain of interceptors.
An interceptor is an object that provides some aspect of the added functionality of EJBs
over standard RMI. An interceptor accepts an instance of Invocation which contains the
Method object identifying the called method, the call arguments, and a hash-map containing
data generated by other interceptors. An interceptor may perform some action, possibly
modifying the Invocation object in the process, and then either call the next interceptor
in the chain, or return. Interceptors are able to perform actions when the next interceptor
in the chain returns if necessary.

For example, consider Figure B.1, which shows the standard configuration for handling
stateless session beans. When a method on the interface containing the business methods
of a stateless session bean is invoked, it is passed first to StatelessSessionInterceptor.
This interceptor checks the identity of the method called, and if it is a simple method
such as toString or equals, then the interceptor handles these calls and returns imme-
diately, without any remote communication occurring. If StatelessSessionInterceptor
cannot handle the call, then the next interceptors are called. SecurityInterceptor and
TransactionInterceptor associate the current security and transactional contexts with
the call. InvokerInterceptor is respounsible for sending the Invocation object across the
network to the server via RMI.

There is a similar chain of interceptors on the server-side, which ultimately leads to the
invocation of the implementation of the business method inside the session bean. The result
of the call filters back down the chain of interceptors to be delivered to the client.



APPENDIX B. WRITING DISTRIBUTED PROGRAMS IN JAVA 172

<jboss>
<invoker-proxy-bindings>

<invoker-proxy-binding>
<name>stateless-rmi-invoker</name>
<invoker-mbean>jboss:service=invoker,type=jrmp</invoker-mbean>
<proxy-factory>org. jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>
<client-interceptors>
<home>
<interceptor>org. jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org. jboss.proxy.Securitylnterceptor</interceptor>
<interceptor>org. jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org. jboss.invocation.InvokerInterceptor</interceptor>
</home>
<bean>
<interceptor>
org.jboss.proxy.ejb.StatelessSessionlnterceptor
</interceptor>
<interceptor>org. jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org. jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org. jboss.invocation.InvokerInterceptor</interceptor>
</bean>
</client-interceptors>
</proxy-factory-config>
</invoker-proxy-binding>

</invoker-proxy-bindings>
</jboss>

Figure B.1: A portion of the XML configuration file standardjboss.xml from JBoss 3.2.1
that describes the interceptors that should be applied for stateless session beans



APPENDIX B. WRITING DISTRIBUTED PROGRAMS IN JAVA 173

There are numerous advantages to using interceptors. It makes JBoss highly modular
and reconfigurable, and using dynamic proxies means that JBoss rarely needs to manually
generate new classes at runtime, which rival J2EE servers such as JOnAS must do every
time a new bean is deployed. However, JBoss does pays a price in terms of performance
[17] due to the extensive use of reflection throughout the application server, although this
is often overshadowed by network overheads.



Bibliography

1

2]

131

4]

5]

[6]

7]
8]

19]

[10]

[11]

Java bug parade — Java 1.2 class loader fails to load multi-
ple classloaders with native lib. Bug ID: 4225434. Available at
http://developer.java.sun.com/developer /bugParade/bugs/4225434. html.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, Inc., Reading, Mass., 1986.

Paulo Sérgio Almeida. Balloon types: Controlling sharing of state in data types. In
Mehmet Aksit and Satoshi Matsuoka, editors, Proceedings of the 11th FEuropean Con-
ference on Object-Oriented Programming, volume 1241 of Lecture Notes in Computer

Science, pages 32-59. Springer-Verlag, June 1997.

Bowen Alpern, Dick Attanasio, John J. Barton, Anthony Cocchi, Susan Flynn Hummel,
Derek Lieber, Mark Mergen, Ton Ngo, Janice Shepherd, and Stephen Smith. Imple-
menting Jalapéno in Java. In Proceedings of the 14th ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, pages 314-324.
ACM Press, November 1999.

Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and
Design Strategies. Prentice Hall, 2001.

K. Arnold and J. Gosling. The Java Programming Language — Second Edition.
Addison-Wesley, 1998.

The O’Reilly Java Authors. Java Enterprise Best Practices. O'Reilly, 2002.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for
high-performance computing. ACM Computing Surveys, 26(4):345-420, 1994.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent
dynamic optimization system. In Proceedings of the ACM SIGPLAN 00 Conference
on Programming Language Design and Implementation, pages 1-12, 2000.

Olav Beckmann and Paul H. J. Kelly. Efficient interprocedural data placement opti-
misation in a parallel library. In David O’Hallaron, editor, Languages, Compilers, and
Run-Time Systems for Scalable Computers, volume 1511 of Lecture Notes in Computer

Science, pages 123—138. Springer-Verlag, 1998.

Phillip Bogle and Barbara Liskov. Reducing cross domain call overhead using batched
futures. In Proceedings of the ninth annual Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 341-354. ACM Press, 1994.

174



BIBLIOGRAPHY 175

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the
past: Adding genericity to the Java programming language. In Proceedings of the 13th
ACM SIGPLAN conference on Object-Oriented Programming, Systems, Languages and
Applications, pages 183—200. ACM Press, October 1998.

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. GJ specification,
1998. At http://www.cis.unisa.edu.au/ "pizza/gj/Documents/.

Douglas J. Brear, Thibault Weise, Tim Wiffen, Kwok Cheung Yeung, Sarah A. M.
Bennett, and Paul H. J. Kelly. Search strategies for Java bottleneck location by dynamic
instrumentation. IEE Proceedings — Software, 150(04):235-241, August 2003.

D. Bruening, E. Duesterwald, and S. Amarasinghe. Design and implementation of a
dynamic optimization framework for windows. In Jth ACM Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-4), December 2000.

Derek L. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis,
Massachusetts Institute of Technology, 1999.

Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. Performance and scala-
bility of EJB applications. In Proceedings of the 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 246-261.
ACM Press, November 2002.

Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David Gillies. Mojo: A dynamic
optimization system. In Third ACM Workshop on Feedback-Directed and Dynamic
Optimization (FDDO-8), December 2000.

Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and
Samuel P. Midkiff. Escape analysis for Java. In Proceedings of the 14th ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications,
pages 1-19. ACM Press, November 1999.

R. Christ, S. L. Halter, K. Lynne, S. Meizer, S. J. Munroe, and M. Pasch. SanFrancisco
performance: A case study in performance of large-scale Java applications. IBM Systems
Journal, 39(1):4-20, 2000.

David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias
protection. In Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 48-64. ACM Press, Octo-
ber 1998.

Sam Clegg. Reducing network overheads of NET remoting through runtime call aggre-
gation. Master’s thesis, Imperial College of Science, Technology and Medicine, 2003.

Charles Consel, Luke Hornof, Francois Noél, Jacques Noyé, and Nicolae Volanschi.
A uniform approach for compile-time and run-time specialization. In Olivier Danvy,
Robert Gliick, and Peter Thiemann, editors, Partial Fvaluation International Semi-
nar, volume 1110 of Lecture Notes in Computer Science, pages 54—72. Springer-Verlag,
February 1996.



BIBLIOGRAPHY 176

[24]

[25]

|26]

27]

28]

[29]

[30]

[31]

|32]

[33]

|34]

[35]

|36]

[37]

Xerox Corporation. AspectJ programming guide. At http://www.eclipse.org/aspectj/.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and Systems, 13(4):451-490,
October 1991.

Markus  Dahm. Byte code engineering library manual. At
http://jakarta.apache.org/bcel /manual. html.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented pro-
grams using static class hierarchy analysis. In Walter G. Olthoff, editor, Proceedings
of the European Conference on Object-Oriented Programming, volume 952 of Lecture

Notes in Computer Science, pages 77—101. Springer-Verlag, August 1995.

Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Magaging web server performance
with AutoTune agents. IBM Systems Journal, 42(1):136-149, 2003.

John Eberhard and Anand Tripathi. Efficient object caching for distributed Java RMI
applications. In R. Guerraoui, editor, Proceedings of Middleware 2001, volume 2218 of
Lecture Notes in Computer Science, pages 15-35. Springer-Verlag, November 2001.

Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lindstrom. Flick: A flex-
ible, optimizing IDL compiler. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 44-56. ACM Press, June
1997.

Jacques Ferber. Multi-agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison Wesley, 1999.

David Flanagan. Java Ezamples in a Nutshell. O’Reilly UK, 2000.

E. Gagnon and L. Hendren. Intra-procedural inference of static types for Java bytecode.
Technical Report 1999-1, McGill University, March 1999.

Etienne Gagnon. A Portable Research Framework for the Execution of Java Bytecode.
PhD thesis, McGill University, Montreal, December 2002.

Rakesh Ghiya and Laurie J. Hendren. Putting pointer analysis to work. In Proceed-
ings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 121-133. ACM Press, January 1998.

Aniruddha S. Gokhale and Douglas C. Schmidt. Principles for optimizing CORBA
internet inter-ORB protocol performance. In 81th Hawaii International Conference on
System Sciences, VOL. 7, pages 376-385. IEEE Computer Society, January 1998.

M. Golm and J. Kleinoder. metaXa and the future of reflection. In Jean-Charles
Fabre and Shigeru Chiba, editors, Proceedings of Workshop on Reflective Programming
in C++ and Java. UTCCP Report 98-4, ISSN 1344-3135, Center for Computational
Physics, University of Tsukuba, Japan, October 1998.



BIBLIOGRAPHY 177

[38] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification —
Second Edition. Addison-Wesley, 2000.

[39] Object Management Group. The Common Object Request Broker Archi-
tecture:  Core specification. Version 3.0.2, December 2002. Available at
http://www.omg.org/technology /documents/formal/corba_iiop.htm.

[40] Manish Gupta, Jong-Deok Choi, and Michael Hind. Optimizing Java programs in the
presence of exceptions. In E. Bertino, editor, Proceedings of the 14th European Con-
ference on Object-Oriented Programming, volume 1850 of Lecture Notes in Computer

Science, pages 422—-446. Springer-Verlag, June 2000.

[41] M. Horstmann and M. Kirtland. = DCOM architecture, 1997.  Available at
http://msdn.microsoft.com/library /en-us/dndcom /html/msdn_dcomarch.asp.

[42] Frequently asked questions about the Java HotSpot virtual machine. Available at
http://java.sun.com/docs/hotspot /PerformanceFAQ.html.

[43] Java platform debugger architecture. At http://java.sun.com/j2se/1.4.2/docs/guide/jpda/.
[44] JProbe. Available at http://www.quest.com/jprobe/.

[45] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Aksit
and Satoshi Matsuoka, editors, Proceedings of the 11th European Conference on Object-
Oriented Programming, volume 1241 of Lecture Notes in Computer Science, pages 220—
242. Springer-Verlag, June 1997.

[46] Vijaykumar Krishnaswamy, Dan Walther, Sumeer Bhola, Ethendranath Bommaiah,
George Riley, Brad Topol, and Mustaque Ahamad. Efficient implementations of Java
remote method invocation (RMI). In Proceedings of the 4th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS’98), pages 19-36, 1998.

[47] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Frederiksen. Proving
correctness of compiler optimizations by temporal logic. In Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages, pages
283-294. ACM Press, January 2002.

[48] Rosanna Lee and Scott Seligman. JNDI Tutorial and Reference Guide (The Java Se-
ries). Addison Wesley, 2000.

[49] Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically proving the correct-
ness of compiler optimizations. In ACM SIGPLAN 20038 Conference on Programming
Language Design and Implementation (PLDI), pages 220-231. ACM Press, June 2003.

[50] Ondfej Lhoték and Laurie Hendren. Scaling Java points-to analysis using SPARK.
In Gorel Hedin, editor, 12th International Conference on Compiler Construction (CC
2003), volume 2622 of Lecture Notes in Computer Science, pages 153-169. Springer-
Verlag, April 2003.

[51] Sheng Liang. The Java Native Interface: Programmer’s Guide and Specification (The
Java Series). Addison Wesley, 1999.



BIBLIOGRAPHY 178

[52] Sheng Liang and Gilad Bracha. Dynamic class loading in the Java virtual machine. In
Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 36—44. ACM Press, October 1998.

[53] Serge Lidin. Inside Microsoft .NET IL Assembler. Microsoft Press International, 2002.

[54] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification — Second
Edition. Addison-Wesley, Reading, MA, USA, 1999.

[55] Barbara Liskov, Mark Day, and Liuba Shrira. Distributed object management in Thor.
In International Workshop on Distributed Object Management, pages 79-91. Morgan
Kaufmann, August 1992.

[56] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Proceedings of the SIGPLAN 1988
Conference on Programming Language Design and Implementation, pages 260—-267.
ACM Press, June 1988.

[57] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri Bal, Thilo Kielmann,
Ceriel Jacobs, and Rutger Hofman. Efficient Java RMI for parallel programming. ACM

Transactions on Programming Languages and Systems, pages 747-775, November 2001.

[58] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri E. Bal, and Aike Plaat.
An efficient implementation of Java’s Remote Method Invocation. In ACM Symposium
on Principles and Practice of Parallel Programming, pages 173-182. ACM Press, May
1999.

[59] Floyd Marinescu. EJB Design Patterns. John Wiley and Sons, 2002.

[60] Eduardo R. B. Marques. A study on the optimisation of Java RMI programs. Master’s
thesis, Imperial College of Science, Technology and Medicine, 1998.

[61] Scott McLean, James Naftel, and Kim Williams. Microsoft .NET Remoting. Microsoft
Press International, September 2002.

[62] Gary Meehan and Mike Joy. Compiling lazy functional programs to Java bytecode.
Software — Practice and Ezperience, 29(7):617-645, 1999.

[63] Sun Microsystems. RMI specification. Available at
http://java.sun.com/products/jdk /rmi/.

[64] Sun Microsystems. The Java HotSpot performance engine architecture. White paper,

April 1999. Available from http://java.sun.com/products/hotspot /whitepaper.html.

[65] Sun Microsystems. Enterprise JavaBeans specification 2.0 Final Release 2, August 2001.
Available from http://java.sun.com /products/ejb/docs.html.

[66] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth,
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. The
Paradyn parallel performance measurement tools. IEEE Computer, 28(11):38-46, 1995.

[67] Richard Monson-Haefel and David Chappell. Java Message Service. Addison Wesley,
2000.



BIBLIOGRAPHY 179

[68] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, San Francisco, California, 1997.

[69] Christian Nester, Michael Phillippsen, and Bernhard Haumacher. A more efficient RMI
for Java. In Proceedings of the ACM 1999 Conference on Java Grande, pages 152-159.
ACM Press, June 1999.

[70] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Anal-
ysis. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, December 1999.

[71] Alexandre Oliva and Luiz Eduardo Buzato. The implementation of Guarana on Java.
Technical Report I1C-98-32, University of Campinas, September 1998.

[72] OpenJGraph. Available at http://openjgraph.sourceforge.net/.
[73] Optimizeit. Available at http://www.borland.com/optimizeit, .
[74] J. Steven Perry. Java Management Extensions. O’Reilly, 2002.

[75] Michael Philippsen, Bernhard Haumacher, and Christian Nester. More efficient seri-
alization and RMI for Java. Concurrency: Practice and Experience, 12(7):495-518,
2000.

[76] Michael Philippsen and Matthias Zenger. JavaParty — transparent remote objects in
Java. Concurrency: Practice and Experience, 9(11):1225-1242, 1997.

[77] Jeff Prosise. Programming Microsoft .NET (core reference). Microsoft Press Interna-
tional, 2002.

[78] Riccardo Pucella. Towards a formalization for COM part I: The primitive calculus. In
17th Annual ACM Conference on Object-Oriented Programming, Systems, Languages
and Applications, pages 331-342. ACM Press, November 2002.

[79] Rajeev R. Raje, Joseph I. Williams, and Michael Boyles. Asynchronous Remote
Method Invocation (ARMI) mechanism for Java. Concurrency: Practice and Expe-
rience, 9(11):1207-1211, November 1997.

[80] Alexandru Salcianu and Martin C. Rinard. Pointer and escape analysis for multi-
threaded programs. In Proceedings of the 8th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 12-23. ACM Press, June 2001.

[81] Bruce Schueier. Applied Cryptography: Protocols, Algorithms and Source Code in C.
John Wiley & Sons Inc., 1995.

[82] Ulrik Schultz. Partial evaluation for class-based object-oriented languages. In O. Danvy
and A. Filinski, editors, Program as Data Objects: International Conference on the
Theory and Application of Cryptographic Techniques, volume 2053 of Lecture Notes in
Computer Science, pages 173-197. Springer-Verlag, May 2001.

[83] Ulrik Pagh Schultz, Julia L. Lawall, Charles Consel, and Gilles Muller. Towards auto-
matic specialization of Java programs. In R. Guerraoui, editor, Proceedings of the 13th
European Conference on Object-Oriented Programming (ECOOP’99), volume 1628 of
Lecture Notes in Computer Science, pages 367-390. Springer-Verlag, June 1999.



BIBLIOGRAPHY 180

[84]

|85]

|86]

|87]

|88]

[89]

[90]

[91]

[92]

[93]

94]

195]

Shamik Sharma, Anurag Acharya, and Joel Saltz. Deferred data-flow analysis. Technical
Report TRCS98-38, University of California, Santa Barbara, 30 1998.

Scott Stark, Marc Fleury, and The JBoss Group. JBoss Administration and Develop-
ment, Second Edition. Sams Publishing, 2002.

Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick
Lam, Etienne Gagnon, and Charles Godin. Practical virtual method call resolution
for Java. In Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages 264—280. ACM Press, 2000.

Antero Taivalsaari. Implementing a Java Virtual Machine in the Java programming

language. Technical Report TR-98-64, Sun Microsystems Laboratories, March 1998.

Raja Vallee-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a Java bytecode optimization framework. In Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative Research, pages
125-135. ACM Press, November 1999.

Raja Vallee-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. Optimizing java bytecode using the soot framework: Is it feasi-
ble? In D. A. Watt, editor, Proceedings of the 9th International Conference on Com-
piler Construction, volume 1781 of Lecture Notes in Computer Science, pages 18-34.
Springer-Verlag, March 2000.

Raja Vallee-Rai and Laurie Hendren. Jimple: Simplifying Java bytecode for analyses
and transformations. Technical Report 1998-4, McGill University, July 1998.

Ronald Veldema and Michael Philippsen. Compiler optimized remote method invo-
cation. In Proceedings of the 5th IEEE Conference on Cluster Computing, December
2003.

John Whaley and Martin Rinard. Compositional pointer and escape analysis for Java
programs. In Proceedings of the 14th Annual Conference on Object-Oriented Program-
ming Systems, Languages and Applications, volume 34 of ACM SIGPLAN Notices,
pages 187-206. ACM Press, November 1999.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves Bekkers and Jaques
Cohen, editors, Proceedings of the International Symposium/Workshop on Memory
Management, volume 637 of Lecture Notes in Computer Science, pages 1-42. Springer-
Verlag, September 1992.

Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer analysis for
C programs. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, pages 1-12. ACM Press, June 1995.

Kwok Cheung Yeung and Paul H. J. Kelly. Automated optimisation of distributed
Java programs across network boundaries. In 10th Workshop on Compilers for Parallel
Computers, CPC 2003, Amsterdam, The Netherlands, January 2003.



BIBLIOGRAPHY 181

[96] Kwok Cheung Yeung and Paul H. J. Kelly. Optimising Java RMI programs by commu-
nication restructuring. In Markus Endler and Douglas C. Schmidt, editors, Proceedings
of Middleware 2003, volume 2672 of Lecture Notes in Computer Science, pages 324-343.
Springer-Verlag, June 2003.

[97] Kwok Cheung Yeung, Paul H. J. Kelly, and Sarah Bennett. Dynamic instrumentation
for Java using a virtual JVM. In Workshop on Performance Analysis and Distributed
Computing, 2002.

[98] Quinton Y. Zondervan. Increasing cross-domain call batching using promises and
batched control structures. Master’s thesis, Massachusetts Institute of Technology,
1995.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


