
1

2

University of London

Imperial College of Science, Technology and Medicine

Department of Computing

Shared-Memory Multiprocessors

with Stable Performance

Sarah Anne Margaret Talbot

Submitted in partial ful�lment of the requirements for the degree of

Doctor of Philosophy in Engineering of the University of London and

the Diploma of Imperial College, March 1999

Abstract

The shared-memory programming model is attractive to programmers of parallel computers

because they are not required to control the placement and communication of application

data. Unfortunately, access to data is the root cause of performance problems on distributed

shared-memory multiprocessors. Severe performance degradation can occur when there are

many access requests competing for service at one or a few processing nodes. The request

messages must join a queue for service, thereby increasing the delay between the original issue

of a remote access request and the receipt of the data.

This thesis presents a new architectural mechanism for remote read requests which reduces

excessive queueing. The reduction in queueing comes from using intermediate nodes, called

proxies, to service read requests. By combining read requests for data at a proxy, only one

request has to be forwarded to the data's home node.

The use of proxies introduces overheads, primarily due to the extra messages which can arise

from sending read requests via a proxy, and the local storage space which a proxy uses to

retain data to satisfy later requests from its clients. The overheads can cause performance

degradation if proxies are used when they are not needed. To avoid such adverse e�ects,

several variants of the proxy technique are investigated: invoking proxies automatically when

excessive queueing occurs at run-time (reactive and adaptive proxies), not holding proxy data

copies, and using separate storage bu�ers for proxy data copies.

The di�erent implementations of the proxy technique are evaluated using execution-driven

simulations of eight benchmark applications. The results show that substantial performance

bene�ts can be obtained by using proxies for applications which have widely-shared data

structures, and using adaptive proxies in conjunction with separate proxy bu�ers can improve

the performance for all the benchmark applications.

3

4

Acknowledgements

I would like to thank my supervisor Paul Kelly for many things, most of all for being a

reliable source of challenging ideas. My second supervisor Tony Field also deserves thanks for

invaluable encouragement and comments on the initial draft of the \work" chapters in this

thesis.

The ALITE simulator is the creation of Ashley Saulsbury, and I am very grateful to him for

letting me use and modify it.

Wing To has not only been the ideal lodger, but he has also been an unfailing source of

enthusiasm (even when he was getting used to having a \real" job) and he provided useful

feedback on an earlier draft of this thesis. My sister Kathy and her husband Chris Long have

also done sterling work reviewing the draft thesis, and this was done in their precious time-o�,

i.e. when their twin babies (Maggie and Tom) were asleep.

My parents provided both moral support and a generous loan which helped me to go on

living in my \Barnes Hut". They deserve further plaudits for surviving the cost and trauma

of having at least one child at school or university for thirty-�ve years.

Ariel Burton and Olav Beckmann endured sharing an o�ce with me, and Ariel deserves extra

thanks for doing the Linux con�guration work on my \Lisa" computer. I would also like

to thank Madhu Bhabuta, Vishaka Nanayakkara, Zully Grant-Du�, and Gwenllian Grafton-

Robinson for their moral support, and the \lunch crowd" - including Justin Cormack, Anthony

Mayer, Steve Newhouse, and Dave Thornley - for daily entertainment.

Finally, Andrew Bennett deserves a medal for his constructive criticism and remarkable tol-

erance.

This work was supported by an EPSRC research studentship, and used simulation equipment

provided for the CRAMP project (GR/J99117).

5

6

to my parents: Bon and Peter Talbot

Contents

1 Introduction 21

1.1 Motivation . 22

1.1.1 Objectives . 23

1.2 Background . 23

1.2.1 Uniprocessor Architectures and Caches 23

1.2.2 Shared-Memory Parallel Architectures 24

1.3 The Approach of the Thesis . 25

1.4 Statement of Originality . 26

1.5 Overview of the Thesis . 27

2 Shared-Memory Multiprocessors 29

2.1 Implementing Shared-Memory . 30

2.1.1 Symmetric Multiprocessors . 30

2.1.2 Scalable Shared-Memory . 33

2.1.3 Interconnection Networks . 34

2.1.4 Non-Uniform Memory Access . 37

2.1.5 Cache-Coherent Non-Uniform Memory Access 38

2.1.6 Cache Only Memory Architecture . 41

2.1.7 Software Implementations . 43

2.1.8 Simple-COMA . 43

2.1.9 Consistency . 44

2.1.10 Node Controllers . 46

2.1.11 Summary of Scalable Shared-Memory 46

2.2 Performance Problems with Scalable Shared-Memory 47

2.2.1 Finite System Resources . 47

2.2.2 Data Locality . 48

2.2.3 Issues Related to the Cache Coherence Protocol 49

7

8 Contents

2.2.4 Algorithm Design . 51

2.3 Solutions to the Performance Problems . 52

2.3.1 Latency Hiding . 53

2.3.2 Latency Reduction . 56

2.3.3 Cache Coherence Policy Optimisations 59

2.3.4 Data Placement . 63

2.3.5 Algorithm Design . 66

2.4 Performance Trade-O�s in the SGI Origin2000 70

2.5 Conclusions . 72

3 Node Controller Contention 75

3.1 System Architecture . 75

3.1.1 Cache Coherence and Consistency . 77

3.1.2 Network Con�guration . 77

3.1.3 Page Placement Policy . 77

3.2 The Base Cache Coherence Protocol . 78

3.2.1 State Sets and Transitions . 79

3.2.2 Example Transactions . 81

3.3 Benchmark Applications . 83

3.3.1 Barnes . 83

3.3.2 CFD - Computational Fluid Dynamics 84

3.3.3 FFT - Fast Fourier Transform . 85

3.3.4 FMM - Fast Multipole Method . 86

3.3.5 GE - Gaussian Elimination . 86

3.3.6 Ocean . 86

3.3.7 Water-Nsq . 87

3.4 Experimental Design . 87

3.5 Bandwidth, Occupancy, and Contention . 91

3.5.1 The Causes of Queueing . 91

3.5.2 Widely-Shared Data . 95

3.6 An Analysis of Widely-Shared Data Accesses 97

3.6.1 Node Controller Occupancy . 98

3.6.2 Network . 99

3.6.3 Hit to Miss Interval . 99

3.6.4 Contention . 100

Contents 9

3.7 Conclusions . 102

4 The Basic Proxy Scheme 103

4.1 Proxies: an overview . 103

4.1.1 Proxies . 103

4.1.2 Potential Bene�ts and Costs of Proxying 104

4.2 Design Issues . 106

4.2.1 Selective Use of Proxying . 106

4.2.2 Choosing the Proxy . 107

4.2.3 Combining . 109

4.2.4 Caching the Proxy Data . 111

4.2.5 Adding Proxy Protocol Handlers . 111

4.3 Modi�cations to the Protocol and Architecture 112

4.4 Results . 114

4.4.1 Barnes . 117

4.4.2 CFD . 119

4.4.3 FFT . 119

4.4.4 FMM . 122

4.4.5 GE . 122

4.4.6 Ocean-Contig . 126

4.4.7 Ocean-Non-Contig . 126

4.4.8 Water-Nsq . 129

4.4.9 Summary of Results . 131

4.5 Conclusions . 132

5 Automatic Invocation of Proxies 133

5.1 Finite Bu�ers . 133

5.2 Reactive Proxies . 134

5.3 Adaptive Proxies . 137

5.4 Potential Bene�ts and Costs of Automatic Proxying 138

5.5 Design Issues . 139

5.5.1 Finite Bu�ers . 140

5.5.2 Handling Bounced Messages . 140

5.5.3 Adaptive Proxy Data . 140

5.6 Modi�cations to the Protocol and Architecture 141

5.7 Results . 142

10 Contents

5.7.1 Barnes . 145

5.7.2 CFD . 148

5.7.3 FFT . 149

5.7.4 FMM . 154

5.7.5 GE . 155

5.7.6 Ocean-Contig . 160

5.7.7 Ocean-Non-Contig . 164

5.7.8 Water-Nsq . 164

5.7.9 Summary of Results . 165

5.8 Conclusions . 171

6 Non-Caching Proxies 173

6.1 The Non-Caching Approach to Proxies . 173

6.1.1 Potential Bene�ts and Costs of Non-Caching Proxies 175

6.2 Design Issues . 176

6.2.1 Non-Caching Read Requests from Proxies 176

6.2.2 Reduction of SLC Con
icts . 178

6.3 Modi�cations to the Protocol and Architecture 179

6.4 Results . 180

6.4.1 Barnes . 183

6.4.2 CFD . 186

6.4.3 FFT . 186

6.4.4 FMM . 187

6.4.5 GE . 187

6.4.6 Ocean-Contig . 196

6.4.7 Ocean-Non-Contig . 197

6.4.8 Water-Nsq . 203

6.4.9 Summary of Results . 203

6.5 Conclusions . 206

7 Using a Separate Proxy Bu�er 209

7.1 The Proxy Bu�er . 209

7.1.1 Related Work . 210

7.1.2 Potential Bene�ts and Costs of a Separate Proxy Bu�er 211

7.2 Design Issues . 211

7.2.1 Using the Proxy Bu�er . 211

Contents 11

7.2.2 Managing the Proxy Bu�er . 212

7.3 Modi�cations to the Protocol and Architecture 213

7.4 Results . 215

7.4.1 Barnes . 219

7.4.2 CFD . 223

7.4.3 FFT . 223

7.4.4 FMM . 228

7.4.5 GE . 228

7.4.6 Ocean-Contig . 229

7.4.7 Ocean-Non-Contig . 237

7.4.8 Water-Nsq . 242

7.4.9 Summary of Results . 242

7.5 Conclusions . 243

8 Summary, Conclusions, and Further Work 245

8.1 Thesis Summary . 245

8.2 Conclusions . 247

8.3 Further Work . 249

A Uniprocessor Caches 253

B The ALITE Execution-Driven Simulator 257

B.1 Simulation of Computer Architectures . 257

B.1.1 Execution-Driven Simulation . 258

B.2 ALITE . 260

B.2.1 FLC . 260

B.2.2 Translation Look-Aside Bu�er . 260

B.2.3 Second Level Cache . 262

B.2.4 Memory . 262

C The Cache Coherence Protocol 263

C.1 Protocol States . 264

C.2 Message Categories . 267

C.2.1 Read Messages . 268

C.2.2 Write Messages . 268

C.2.3 Unhook Messages . 269

C.2.4 Proxy Messages . 270

12 Contents

C.2.5 Non-Caching Proxy Messages . 271

C.2.6 Proxy Bu�er Unhook Messages . 271

D Order Notation 273

List of Figures

1.1 A distributed shared-memory architecture . 25

2.1 The programmer's view of shared-memory multiprocessors 30

2.2 A bus-based symmetric multiprocessor (SMP) 31

2.3 An example of invalidation-based multiprocessor cache coherence (from [89]) 32

2.4 Examples of network topologies . 35

2.5 Distributed shared-memory . 37

2.6 Examples of directory structures . 39

2.7 Sun's S3.mp prototype system . 40

2.8 KSR-1 architecture . 42

2.9 An example of sequential consistency . 45

2.10 Randomised shared-memory [52] . 65

2.11 LogP based abstract system used in [57], adapted from [25] 68

2.12 An SGI Origin2000 with 16 nodes (32 processors) 71

3.1 The system architecture . 76

3.2 Example of a distributed sharing list . 79

3.3 DRAM state transitions . 80

3.4 SLC state transitions . 80

3.5 Client read miss, home is invalid . 82

3.6 Client C2 read miss, home is valid . 82

3.7 Client C2 unhook . 82

3.8 Client C3 write miss . 82

3.9 Message
ow diagram notation . 83

3.10 Structure of the CFD application . 85

3.11 Occupancy of an example client read request at the home node 90

3.12 Performance speedup with di�erent network bandwidths 92

13

14 List of Figures

3.13 Maximum individual node mean queueing cycles with di�erent network band-
widths . 92

3.14 Execution time pro�les with di�erent network bandwidths (64 nodes) 93

3.15 Mean queueing cycles for incoming messages (64 nodes) 94

3.16 Overall transaction latency for an example of three simultaneous requests ar-
riving at a home node . 95

3.17 Invalidation pro�les for Barnes, FFT, and Ocean-Contig (data from [121]) . . 96

4.1 Contention is reduced by routing loads via a proxy 104

4.2 A simple proxy read request . 105

4.3 The proxy is di�erent for successive data lines 108

4.4 Example partition of nodes into proxy clusters, P=10 and NPC=4 108

4.5 Combining of proxy requests . 109

4.6 Read request when proxy has the data . 110

4.7 Memory model for a cc-NUMA node with basic proxies 113

4.8 Extra node controller state transitions for client node actions 113

4.9 Performance speedup graphs . 116

4.10 Barnes . 118

4.11 CFD . 120

4.12 FFT . 121

4.13 FMM . 123

4.14 GE . 124

4.15 Ocean-Contig . 127

4.16 Ocean-Non-Contig . 128

4.17 Water-Nsq . 130

4.18 Individual incoming take-hole and proxy-read-request message totals for
Water-Nsq, with NPC=3 . 131

5.1 The problem of starvation with bounded input queues 134

5.2 Bounced read requests are retried via proxies 135

5.3 Memory model for a cc-NUMA node with �nite message bu�ers 142

5.4 Barnes: changes (relative to no proxies case) 146

5.5 Barnes: execution time pro�les . 146

5.6 Barnes: message ratios . 147

5.7 Barnes: message category pro�les . 147

5.8 CFD: changes (relative to no proxies case) . 150

List of Figures 15

5.9 CFD: execution time pro�les . 150

5.10 CFD: message ratios . 151

5.11 CFD: message category pro�les . 151

5.12 FFT: changes (relative to no proxies case) . 152

5.13 FFT: execution time pro�les . 152

5.14 FFT: message ratios . 153

5.15 FFT: message category pro�les . 153

5.16 FMM: changes (relative to no proxies case) 156

5.17 FMM: execution time pro�les . 156

5.18 FMM: message ratios . 157

5.19 FMM: message category pro�les . 157

5.20 GE: changes (relative to no proxies case) . 158

5.21 GE: execution time pro�les . 158

5.22 GE: message ratios . 159

5.23 GE: message category pro�les . 159

5.24 Ocean-Contig: changes (relative to no proxies case) 162

5.25 Ocean-Contig: execution time pro�les . 162

5.26 Ocean-Contig: message ratios . 163

5.27 Ocean-Contig: message category pro�les . 163

5.28 Ocean-Non-Contig: changes (relative to no proxies case) 166

5.29 Ocean-Non-Contig: execution time pro�les . 166

5.30 Ocean-Non-Contig: message ratios . 167

5.31 Ocean-Non-Contig: message category pro�les 167

5.32 Water-Nsq: changes (relative to no proxies case) 168

5.33 Water-Nsq: execution time pro�les . 168

5.34 Water-Nsq: message ratios . 169

5.35 Water-Nsq: message category pro�les . 169

6.1 A non-caching proxied read request . 175

6.2 Actions required to handle a non-caching proxied read request 177

6.3 Example ordering of sharing list when the proxy's CPU also needs the data line179

6.4 Extra node controller state transitions for non-caching proxies 179

6.5 Memory model for a cc-NUMA node with non-caching proxies 180

6.6 Barnes: changes (relative to no proxies case) 184

16 List of Figures

6.7 Barnes: execution time pro�les . 184

6.8 Barnes: message ratios . 185

6.9 Barnes: message category pro�les . 185

6.10 CFD: changes (relative to no proxies case) . 188

6.11 CFD: execution time pro�les . 188

6.12 CFD: message ratios . 189

6.13 CFD: message category pro�les . 189

6.14 FFT: changes (relative to no proxies case) . 190

6.15 FFT: execution time pro�les . 190

6.16 FFT: message ratios . 191

6.17 FFT: message category pro�les . 191

6.18 FMM: changes (relative to no proxies case) 192

6.19 FMM: execution time pro�les . 192

6.20 FMM: message ratios . 193

6.21 FMM: message category pro�les . 193

6.22 GE: changes (relative to no proxies case) . 194

6.23 GE: execution time pro�les . 194

6.24 GE: message ratios . 195

6.25 GE: message category pro�les . 195

6.26 Ocean-Contig: changes (relative to no proxies case) 198

6.27 Ocean-Contig: execution time pro�les . 198

6.28 Ocean-Contig: message ratios . 199

6.29 Ocean-Contig: message category pro�les . 199

6.30 Ocean-Non-Contig: changes (relative to no proxies case) 200

6.31 Ocean-Non-Contig: execution time pro�les . 200

6.32 Ocean-Non-Contig: message ratios . 201

6.33 Ocean-Non-Contig: message category pro�les 201

6.34 Ocean-Non-Contig mean queueing cycles . 202

6.35 Water-Nsq: changes (relative to no proxies case) 204

6.36 Water-Nsq: execution time pro�les . 204

6.37 Water-Nsq: message ratios . 205

6.38 Water-Nsq: message category pro�les . 205

7.1 Extra node controller state transitions for home node actions 214

List of Figures 17

7.2 Extra node controller state transitions for client node actions 214

7.3 Memory model for a cc-NUMA node with a separate proxy bu�er 215

7.4 Barnes: changes (relative to no proxies case) 220

7.5 Barnes: execution time pro�les . 220

7.6 Barnes: message ratios . 221

7.7 Barnes: message category pro�les . 221

7.8 Barnes mean queueing cycles . 222

7.9 CFD: changes (relative to no proxies case) . 224

7.10 CFD: execution time pro�les . 224

7.11 CFD: message ratios . 225

7.12 CFD: message category pro�les . 225

7.13 FFT: changes (relative to no proxies case) . 226

7.14 FFT: execution time pro�les . 226

7.15 FFT: message ratios . 227

7.16 FFT: message category pro�les . 227

7.17 FMM: changes (relative to no proxies case) 230

7.18 FMM: execution time pro�les . 230

7.19 FMM: message ratios . 231

7.20 FMM: message category pro�les . 231

7.21 GE: changes (relative to no proxies case) . 232

7.22 GE: execution time pro�les . 232

7.23 GE: message ratios . 233

7.24 GE: message category pro�les . 233

7.25 Ocean-Contig: changes (relative to no proxies case) 234

7.26 Ocean-Contig: execution time pro�les . 234

7.27 Ocean-Contig: message ratios . 235

7.28 Ocean-Contig: message category pro�les . 235

7.29 Ocean-Contig mean queueing cycles . 236

7.30 Ocean-Non-Contig: changes (relative to no proxies case) 238

7.31 Ocean-Non-Contig: execution time pro�les . 238

7.32 Ocean-Non-Contig: message ratios . 239

7.33 Ocean-Non-Contig: message category pro�les 239

7.34 Water-Nsq: changes (relative to no proxies case) 240

18 List of Figures

7.35 Water-Nsq: execution time pro�les . 240

7.36 Water-Nsq: message ratios . 241

7.37 Water-Nsq: message category pro�les . 241

A.1 Address partitioning for a cache search . 255

A.2 An implementation of a four-way set-associative cache with N sets [128] . . . 255

B.1 Example of a four processor execution-driven simulation 259

C.1 Node controller state transitions for home node actions 265

C.2 Node controller state transitions for client node actions 266

List of Tables

3.1 Benchmark applications . 84

3.2 Details of the simulated architecture . 89

3.3 Latencies of the most important node actions 89

4.1 Benchmark problem sizes, and data marked for basic proxies 114

4.2 Benchmark relative speedups for 64 processing nodes 115

5.1 Benchmark problem sizes, and data marked for basic proxies 142

5.2 Benchmark relative speedups for 64 processing nodes 143

6.1 Benchmark problem sizes, and data marked for basic proxies 181

6.2 Benchmark relative speedups for non-caching proxies (64 nodes) 182

6.3 Benchmark relative speedups for SLC caching proxies (64 nodes) 182

7.1 Benchmark problem sizes, and data marked for basic proxies 216

7.2 Benchmark relative speedups with a separate proxy bu�er (64 nodes) 216

7.3 Benchmark relative speedups for SLC caching proxies (64 nodes) 217

7.4 Benchmark relative speedups for non-caching proxies (64 nodes) 217

8.1 Benchmark relative speedups for adaptive proxies with a separate proxy bu�er
(extracted from Table 7.2) . 249

B.1 Latencies of the node actions . 261

19

20 List of Tables

Chapter 1

Introduction

The current economics of computing make it viable in cost terms to connect many powerful

microprocessors together to solve a problem in parallel [128]. Parallel computing, however,

su�ers from the problem that the performance of applications is often disappointing or unpre-

dictable. The same application can have dramatically di�erent run times on di�erent parallel

architectures, and even the same application with di�erent problem sizes can show seemingly

unpredictable variations in performance on the same multiprocessor [24]. This anomalous

behaviour has led potential users to be suspicious of parallel computing, despite their need

to run ever larger and more sophisticated applications. An additional problem with par-

allel computing is portability, and the related issue of separating the application from the

underlying architecture. For portability, users wish to be able to write applications which

are machine independent. Unfortunately, many of the approaches to addressing the perfor-

mance problems of parallel architectures involve tailoring algorithms or inserting application

program directives, both of which compromise program portability [78].

The shared-memory programming model is attractive to users of parallel computers, because

it spares them the worry of controlling the placement of application data [89]. This model

is inherently portable because the code is not tailored to a particular implementation, but

it comes with the cost of the extra access time that is needed to retrieve data which is held

at a remote location. Access to data, the placement of which is not under the control of

the application programmer, is the root cause of the performance anomalies which occur on

these architectures. In distributed shared-memory (DSM) designs, where the shared data is

distributed around the processing nodes which make up the system, severe problems can occur

when there are many remote access requests competing for service at one or a few processing

nodes [22]. The request messages have to join a queue for service, and this increases the

time it takes from the original issue of a remote access request to receiving the data, i.e. it

increases the latency of the response.

21

22 Chapter 1. Introduction

1.1 Motivation

The performance that can be achieved by a particular program running on a speci�c com-

puter is the result of many interrelated factors. The contributing factors include the program

code, the algorithm it is based on, the problem instance being solved, the high-level language

the program is written in, the level of human e�ort used to optimise the program's perfor-

mance, the compiler's ability to optimise the program, the operating system, the computer's

architecture, and the hardware characteristics. As a result it is a complicated matter to track

down the cause of performance problems, given that there are so many levels at which the

problems can occur.

With parallel computers it becomes even harder to identify the cause of performance problems,

and it has proved di�cult to provide high-level programming and portability of applications.

This is in contrast to the uniprocessor market where, despite the wide range of systems that

exist, there are some basic requirements that users have come to expect, and which they also

want to apply to multiprocessors [78]:

Programming Familiarity: programs can be written in familiar languages or an easy to

understand variant.

Performance Stability: the performance of applications must be stable, i.e. from one run

to the next the performance of the same program should not show a wide variation.

Some variation is inevitable, but the variance should be at the same level as is seen on

current uniprocessors.

Performance Portability: it must be easy to move code from one system to another, and

the performance of these programs must remain stable.

The shared-memory parallel programming model, where the programmer does not have to

manage the \low-level" movement of data in the multiprocessor, might seem to support these

requirements. However in practice it has proved necessary to write applications which exploit

the speci�c architecture in use [24]. This need for performance tuning can only be avoided if

the architecture is changed to reduce the architectural bottlenecks that lead to performance

problems. The aim should be to provide the user with stable and portable performance.

This will not necessarily be the best performance that could be achieved on a particular

multiprocessor, and programmers will still be able to �ne-tune applications, but such tuning

would be done by choice rather than being essential. Once stable and portable performance is

achieved, it becomes possible for the shared-memory parallel programming model to achieve

the \programmability" requirements outlined above.

1.2. Background 23

1.1.1 Objectives

This thesis is motivated by the need to provide architectural mechanisms to reduce the re-

quirement for performance tuning of applications. The speci�c questions which have to be

addressed include:

1. What are the causes of the performance anomalies observed for applications running on

distributed shared-memory multiprocessors?

2. Have any of these causes been neglected by the research to date?

3. Can an architectural technique be found to alleviate such a performance problem?

4. Can this technique be designed to minimise its side-e�ects on existing performance-

enhancing techniques such as caching?

1.2 Background

The work reported in this thesis builds on an existing body of knowledge which is introduced

brie
y here. A more comprehensive discussion of shared-memory parallel architectures, and

the performance problems associated with them, is left until Chapter 2.

1.2.1 Uniprocessor Architectures and Caches

There are three basic components in the uniprocessor system model: a central processing

unit (CPU) which does the work, a memory which stores instructions and data, and an

input/output (I/O) system which moves information into and out of the system [54]. The

process of executing a program involves the CPU retrieving instructions from the memory,

fetching any data that it requires, performing an operation, and writing the results to the

memory. The execution time of a program is critically dependent on the rate at which

instructions and data can be fetched from and written to the memory. Unfortunately, while

processor speeds have increased at around 50% a year over the last two decades, main memory

speeds have grown at a much slower rate. As a result, the ability to execute instructions and

process data far outstrips the rate at which main memory can provide them.

To rectify this mismatch, many computers now include caches: small, fast memories which are

physically close to the CPU and which provide the instructions and data needed at a rate more

in line with the CPU's demands [44]. Caches work by automatically retaining information

that the CPU has recently used or generated. Memory references made by programs tend

24 Chapter 1. Introduction

not to be to randomly distributed addresses, rather the accesses are usually clustered in time

and space [118]. The slower main memory is only accessed when the cache does not contain

the necessary information or when that memory has to be updated (i.e. when a data line is

\evicted" from the cache). Caches can dramatically reduce the average time it takes for the

CPU to obtain the information it requires.

1.2.2 Shared-Memory Parallel Architectures

In the taxonomy of all possible computer types proposed by Flynn [36], the Multiple Instruc-

tion Multiple Data (MIMD) category covers many of the multiprocessors in use today. In

MIMD systems, each processor fetches its own instructions and operates on its own data, with

the processors often being o�-the-shelf microprocessors [54]. For the MIMD architecture, an

additional distinction can be made based on the programming model. In the message-passing

model, the memory space is partitioned between processors. This means that the programmer

has to arrange explicitly for data transfer between nodes if the nodes are to work together

on a single problem, where each node contains a processor and some memory. In the shared-

memory model, all processing elements can access the same address space, which may be

physically realised as a central memory, or can be distributed among the processors in the

same way as message-passing systems. An important di�erence between the message-passing

and shared-memory approaches is the level of e�ort required from the programmer. Con-

trolling the transfer of data in the message-passing model adds to the programming e�ort

and can be error-prone. In contrast, the shared-memory model relieves the programmer from

managing the data, but may reduce the programmer's ability to maximise the performance

of an application on a particular multiprocessor.

Shared-memory can be implemented in a structure similar to the architectures supporting

message-passing, i.e. a number of nodes connected by a network, with each node containing a

processor and memory. This distributed shared-memory (DSM) structure can work well when

the vast majority of accesses are to the local memory, but repeated access to a remote item

will always entail the delay of traversing the interconnection network. Many shared-memory

systems use caches, to reduce communication and to provide processors with the information

they need as fast as is practicable. It is then possible that more than one processor will

have a cache copy of the same data line. In cache-coherent non-uniform memory access (cc-

NUMA) systems, the system ensures that if the value of one copy is changed, then all other

copies re
ect that change. However, keeping multiple cache copies of a data line \coherent"

introduces a new source of delay. For example, in Figure 1.1, suppose that Processors 1, 2

and 3 all hold a copy of variable A in their caches. If Processor 1 updates variable A, what

1.3. The Approach of the Thesis 25

+ cache + cache
processor 1 processor 2

interconnection network

+ cache
processor 3

I/OI/Omemory
shared I/Omemory memory

+ cache
processor P

I/Omemory
shared shared shared

Figure 1.1: A distributed shared-memory architecture

should happen to the other cache copies? Solutions include invalidating or updating all other

copies, or hybrid schemes which swap between update and invalidation [89].

In addition to the overheads of maintaining cache coherence, the example architecture shown

in Figure 1.1 can su�er from three problems: memory contention, communication contention

and latency time [123]. Memory contention occurs because a memory module can only handle

one request at a time, so several concurrent requests from di�erent processors will be serialised.

Communication contention happens because contention for individual links in the network can

occur even if requests are directed to di�erent memory modules. In addition, multiprocessors

with a large number of processors tend to have complex interconnection networks, so the

latency for such networks (i.e. the time a memory request takes to travel across the network)

can be very long.

These problems all conspire to increase memory access times, and hence they slow down the

overall execution time of tasks running on the processors. The challenge is to minimise the

causes of contention, i.e. to keep data in the local cache whenever possible and to avoid using

the network. Unfortunately, it is often not apparent which parts of a program are causing

excessive contention, and forcing the programmer to tune a program to avoid contention on

a particular multiprocessor can limit the portability of the application.

1.3 The Approach of the Thesis

This thesis explores the performance anomalies in distributed shared-memory (DSM) sys-

tems. The current state of DSM is examined by a wide-ranging survey of the research and

commercial literature. The cache coherence policy extensions proposed in this thesis are

then evaluated using execution-driven simulations of eight application programs running on

a cc-NUMA system. Simulation provides a cost-e�ective way of evaluating the viability of

architectural changes before moving on to the expensive task of implementing a system in

26 Chapter 1. Introduction

hardware. In addition, simulation allows for monitoring many aspects of system behaviour,

such as queue lengths and message tra�c, without disturbing the execution of the application

programs. Execution-driven simulation is used because it allows the study of the e�ects on

individual program behaviour of changing the memory system (see Appendix B for further

information on the simulation of computer systems).

1.4 Statement of Originality

The original contributions of this thesis are:

� An analysis of the causes of queueing for access to widely-shared data. This gives an

insight into the e�ect on such queueing of varying one or more of the architectural

parameters of a cc-NUMA system.

� The basic proxy protocol, which uses existing techniques (including the combining of

read requests and two-phase random routing) in a novel way to reduce the number

of read requests queueing for access to widely-shared data. Read requests for widely-

shared data are sent via proxy nodes, where combining is used to reduce the number of

read requests sent on to the home node.

� The reactive and adaptive proxy schemes, which invoke the proxy protocol automatically

in response to run-time queueing. The reactive scheme only re-routes the message

which triggers the proxy processing, whereas the adaptive scheme will proxy all further

read requests destined for the congested home node until the adaptive proxying period

expires.

� An investigation into two alternatives to holding proxy data copies in the local cache at

proxy nodes. These alternatives are not to hold proxy copies at all, or to use a separate

bu�er for proxy copies. The non-caching approach reduces the storage requirements for

proxying, at the cost of a reduction in combining. The separate proxy bu�er approach

keeps the level of combining high, and avoids cache pollution from proxy copies.

The basic proxy scheme described in Chapter 4 was presented at Euro-Par 96 [13]. Preliminary

results for the reactive proxy scheme described in Chapter 5 were presented at Euro-Par

98 [130]. A study of the interaction between di�erent page placement and proxy policies was

presented at the Twelfth Annual International Symposium on High Performance Computing

Systems and Applications (HPCS'98) [131].

1.5. Overview of the Thesis 27

1.5 Overview of the Thesis

In Chapter 2, important background material is introduced describing existing shared-memory

implementations, cache coherence protocols, and the performance problems associated with

using distributed shared-memory. The solutions which have been proposed to deal with the

performance problems are examined, and an example is given of how some of these solutions

are used together.

Chapter 3 presents the distributed shared-memory architecture used in this thesis. Simulation

results, for eight application programs, are then used to demonstrate the problem of queueing

bottlenecks in the cc-NUMA system. Finally, analysis shows how queueing for read access to

widely-shared data is a�ected by varying the architectural parameters.

The access bottleneck that can arise at the home node for widely-shared data is addressed in

Chapter 4 with the introduction of basic proxies. The basic proxy protocol distributes read

requests for widely-shared data to intermediary nodes known as proxies: if the proxy node

has the data it is sent to the requesting client, otherwise the proxy combines read requests for

the same data line and sends one read request on to the home node (i.e. the node where the

data is held in memory). When the data line is sent to the proxy node, the proxy forwards

the data on to all the waiting clients.

The basic proxy technique has some shortcomings, the most signi�cant of which are the

requirement that the programmer identi�es the widely-shared data structures, and the use

of local cache to hold copies of proxy data. Chapter 5 investigates two automatic forms of

proxying - reactive and adaptive - which are triggered when a queueing bottleneck is detected

at run-time. The problem of cache pollution is tackled in Chapter 6 by not caching the proxy

data, and in Chapter 7 by using a separate proxy bu�er at each node to hold copies of proxy

data.

Finally, Chapter 8 summarises the work presented in this thesis, draws conclusions, and

suggests the direction of further work.

In addition to the main body of the thesis, the appendices contain further details on uniproces-

sor caches, the ALITE execution-driven simulator, the implementation of the cache coherence

protocol, and the order notation.

28 Chapter 1. Introduction

Chapter 2

Shared-Memory Multiprocessors

The shared-memory programming model has the advantage of being more straightforward

to use when compared to the message-passing approach [89]. In a shared-memory system,

there is no need for the application programmer to control the movement of data. Memory

is accessible to all processors and communication between the processors is through shared

variables. The access to shared-memory data is managed by the hardware and requires no

intervention by the operating system. However the scalability of a multiprocessor is a�ected

by how well the system manages the increasing speed mismatch between fast processors and

the latency of retrieving remote data. Data has to be fetched and returned to memory, and

a processor may have to remain idle during such transfers.

This chapter examines the current state of shared-memory multiprocessor technology, the

performance problems associated with these systems, and various solutions which have been

proposed to remedy the performance problems. The �rst section surveys the range of shared-

memory multiprocessors, starting with the small-scale symmetric multiprocessors. The use

of caching in these multiprocessors introduces the issue of managing multiple copies of the

same data item. To scale multiprocessors beyond tens of processors it is necessary to employ

more advanced interconnection networks, and to distribute the shared memory. An overview

is given of some architectural approaches to distributed shared memory, including cache

coherent non-uniform memory access (cc-NUMA), cache-only memory architecture (COMA),

and virtual distributed shared-memory. This thesis focuses on cc-NUMA multiprocessors,

and in that context further consideration is given to using distributed directories in the cache

coherence protocol, the issues raised by keeping data copies consistent, and the use of node

controllers to manage all accesses to a node's portion of the distributed shared-memory.

Scalable shared-memory multiprocessors have failed to make much commercial impact, partly

because of their cost, but also because of the performance problems that have been observed

29

30 Chapter 2. Shared-Memory Multiprocessors

on such systems. The second section of this chapter examines the various causes of the per-

formance problems found on cc-NUMA systems. These include system resource bottlenecks

(such as network bandwidth and node controller service rate), data locality, the overheads

incurred by the cache coherence protocol, and the suitability of the application programs.

The third section of this chapter examines the wide range of solutions which have been

proposed to deal with the performance problems. The section gives a
avour of the many

varied and overlapping schemes which have been employed in commercial systems or which

have been evaluated by research projects. The solutions surveyed include hiding the latency

of accessing data, reducing that latency, optimising the cache coherence protocol, managing

the placement of data, and improving the design of application programs. The design trade-

o�s which have to be made in practice between performance enhancing techniques (and their

costs) are then illustrated by examining the architecture of the Silicon Graphics Origin2000

multiprocessor [85].

2.1 Implementing Shared-Memory

Figure 2.1 depicts the memory model for shared-memory programmers. The processing for

an application is split between a collection of processes running on di�erent processors, all of

which can access the shared data. In practice, the shared-memory programming model is sup-

ported by a wide range of hardware and software implementations. This section examines that

range: from the small-scale symmetric multiprocessors (SMPs) where a number of processors

share centralised memory, to large-scale distributed shared-memory (DSM) systems.

2.1.1 Symmetric Multiprocessors

A popular architectural approach for shared-memory systems with a small number of pro-

cessors is a single shared memory with multiple processors connected by a bus [53]. This

approach is illustrated in Figure 2.2. These systems are often referred to as symmetric mul-

tiprocessors because they are an example of systems where all the processors have an equal

shared memory

processor 2 processor Pprocessor 1

Figure 2.1: The programmer's view of shared-memory multiprocessors

2.1. Implementing Shared-Memory 31

one or more
levels of cache

one or more
levels of cache

one or more
levels of cache

I/O
subsystemshared memory

processor 1 processor 2 processor P

Figure 2.2: A bus-based symmetric multiprocessor (SMP)

relationship with the central shared-memory. In practice the shared-memory is usually split

into a number of separate banks, to reduce contention when accessing memory. This uniform

memory access (UMA) architecture was typi�ed in the 1980's by commercial systems such as

the Sequent Symmetry [93]. The SMP approach is found today in many systems, including

the Silicon Graphics Challenge Series [54].

In order to reduce the latency of accessing data items in memory, SMPs usually employ some

form of caching. This involves keeping copies of recently-used data in a small but fast storage

area associated with each processor. Caching has been used for a long time in uniprocessor

systems to exploit data locality (see Appendix A), and is equally useful in shared-memory

multiprocessors where access to memory usually entails greater latency than in uniprocessors.

Unfortunately the use of caches in multiprocessors introduces a new problem: cache coherence.

Copies of the same data item may be held in more than one processor's cache, and if the value

of the data item is changed then some action must be taken to ensure that the stale copies are

updated or deleted. The sequence of operations in Figure 2.3 illustrates the write-invalidate

approach to keeping the data item \A" coherent by removing the out-of-date copies. The

example shows how (a) two processors P2 and P3 load in copies of data item A, but when

(b) processor P1 stores a new value in data item A all the other copies of A are invalidated,

including the value in memory. Processor P1 can go on changing the value of its copy of A,

as shown in (c), but the value will not be copied back to the memory until it is evicted from

P1's cache or (d) another processor such as P3 loads in data item A.

An alternative to write-invalidate is to update all the copies of a data item when it is changed,

i.e. write-update. The performance di�erences between the write-invalidate and write-update

protocols arise because [54]:

1. A sequence of writes to the same data line, with no intervening read, requires multiple

32 Chapter 2. Shared-Memory Multiprocessors

cache

P3

cache

P1

cache

(A=1) (A=1) (A=1)

P2

LOAD A LOAD A

(a)

cache

P3

cache

P1

cache

(A=1) (A=1) (A=1)

P2

(b)

cache

P3

cache

P1

cache

(A=3) (A=3)

P2

LOAD A

(d)

cache

P3

cache

P1

cache

P2

(c)

(A=2)

STORE #2,A

STORE #3,A

(A=3) (A=3)

memory
shared

memory
shared

memory

memory
shared

shared

Figure 2.3: An example of invalidation-based multiprocessor cache coherence (from [89])

updates in the update protocol, but only one initial set of invalidations in the invalidate

protocol.

2. The delay between writing to a data item in one processor and reading the data item

in another processor can be less in the write-update scheme. If the reader already has

a copy of the data line, the modi�ed data item is automatically updated in the reader's

cache. Under the write-invalidate scheme the reader's copy is invalidated, and the later

read will stall until a fresh copy of the data line can be obtained.

The di�erence in performance between the two approaches therefore depends on both the

access patterns of individual applications, and the available interconnection bandwidth. In

general write-invalidate has been preferred because it has lower bandwidth requirements,

i.e. it leads to fewer messages because a processor does not have to keep sending long update

messages to other processors when it makes a number of changes to the same data line. There

is recent work on adaptive protocols which use both write-update and write-invalidate, e.g. by

Anderson and Karlin [7], and Raynaud et al. [108]. Designing an adaptive protocol which

swaps between write-update and write-invalidate at the \correct" time is complicated: the

subject is discussed further in Section 2.3.3 of this thesis.

The coherence protocols on bus-based SMPs are implemented by broadcasting transactions

on the bus. The cache controllers for each processor snoop on the bus, i.e. they \eavesdrop"

for any transactions a�ecting data in their cache [44]. In the example shown in Figure 2.3(b),

processor P1 will only have to issue one invalidation message to the memory on the bus;

2.1. Implementing Shared-Memory 33

the cache controllers for processors P2 and P3 will be snooping on the bus and will pick

up the invalidation for their copies of data item A. Using a bus interconnection also has

the advantage that only one message can be on the bus at a time, so the order in which

transactions are observed is the same for all the nodes. The foundations for the current

bus-based coherence protocols were set out in the 1980's, and a useful comparison of such

protocols is given by Archibald and Baer [9]. The Illinois protocol is an example of a bus-

based invalidation protocol [103]. This is often referred to as the MESI protocol, because of

its four cache line states: Modi�ed, Exclusive-Clean, Shared, and Invalid. An example of an

update-based protocol is the protocol used in the Digital Equipment Corporation's Fire
y

workstation [133].

2.1.2 Scalable Shared-Memory

The scalability of a parallel system is a measure of its capacity to reduce the execution time of

an application as the number of processors working on the task is increased [79]. In practice,

the scalability of an architecture is determined by its ability to exploit the inherent parallelism

in application programs, by how e�ective the load balancing is between processors, and how

much delay is incurred because of the communication costs for data transfer and protocol

handling.

The SMP systems are restricted from scaling beyond a few tens of processors by both the bus

bandwidth and the bottleneck which can occur when accessing the memory. Using the fastest

available bus technology or splitting the memory into a number of separate banks can extend

the number of processors to around 30 to 40, but the cost \per processor" of these systems

is signi�cantly higher. An example of a high-end bus-based SMP is the SGI Challenge XL

which can support up to 36 processors [54].

Over the years there have been a number of research and commercial projects to implement

the shared-memory model on multiprocessors which aim to scale to hundreds of processors and

beyond. Such systems, although di�erent in their design details, all start with a more
exible

interconnect than a bus. For example, the Sun Microsystems' Enterprise 10000 Server (the

Star�re) still uses address buses (four) for snooping, but has a 16�16 crossbar interconnect for
data transfer [23]. This results in an SMP which can scale to up to 64 processors, i.e. sixteen

processing nodes with four processors per node.

34 Chapter 2. Shared-Memory Multiprocessors

2.1.3 Interconnection Networks

The choice of interconnection network is critical to the performance of scalable shared-memory

systems. The network has to cope with at least two message lengths (i.e. with or without

a data line payload), and the message tra�c will depend on both the coherency protocol

and the individual application programs. This subsection gives an overview of the networks

applicable to large-scale systems, and it introduces the design trade-o�s that have to be made

between cost, latency, and bandwidth.

An interconnection network is characterised by four factors:

Topology: the layout of the interconnection network. Figure 2.4 illustrates some common

topologies used for networks. Indirect networks concentrate the switches together, leav-

ing the processing nodes at the edges of the network, e.g. the butter
y, binary tree,

crossbar, and fat tree networks. Direct networks distribute the routing switches with

the processing nodes, e.g. the 2D torus, and hypercubes1. The indirect approach aims

to optimise uniform message tra�c, whereas direct networks tend to be better at sup-

porting nearest neighbour communication [89].

Routing Algorithm: the method used to choose the path from one node to another. This

can be adaptive to avoid faulty or congested switches, or can use approaches such as

two-phase random routing [137]. However using such dynamic routing implies that

messages sent between the same two points can arrive out of order. In addition, there

is a choice between receiving all of a message at an intermediate network node before

forwarding it on to the next node (store-and-forward) or starting to pass on the contents

of a message while it is still arriving (cut-through routing schemes) [79].

Flow Control: the method used to regulate tra�c in network, i.e. arbitrating between mes-

sages competing for the same resource. The performance of interconnection networks

can be improved by organising the bu�ers associated with each network channel into

several lanes or virtual channels rather than having a single �rst-in-�rst-out (FIFO)

queue [27]. Using virtual channel
ow control allows other messages to pass blocked

messages.

Switching Technique: this determines the way in which the data in a message traverses

the route. Circuit-switched communication will �rst establish a connection between two

1Most direct network topologies have been built with k-ary n-cubes or are isomorphic to them, where n =

dimension, k = radix, P = kn = number of nodes. A k-ary n-cube has k nodes in each dimension, each node

can be labelled by an n digit number of radix (base) k, and each node is connected to every node which has

a label which di�ers in only one digit by one. A k-ary n-cube can be constructed by connecting together k

k-ary (n� 1)-cubes together in a ring. For example rings are k-ary 1-cubes, a 2D torus is a k-ary 2-cube, and

hypercubes are 2-ary n-cubes [28].

2.1. Implementing Shared-Memory 35

(c) Binary tree(b) Butterfly(a) Ring (4-ary 1-cube)

= processing node

= switch

(e) 2D torus (wrap-around mesh) of 16 nodes(4-ary 2-cube)

(d) 2D mesh (grid) of 16 nodes

(f) 2D hypercube (g) 3D hypercube (h) 4D hypercube
(2-ary 2-cube) (2-ary 3-cube) (2-ary 4-cube)

(0,0) (0,1)

(1,0) (1,1)

(j) 16 node fat tree with fan-out of 4
(i) 4x4 crossbar

Figure 2.4: Examples of network topologies

36 Chapter 2. Shared-Memory Multiprocessors

nodes, and then use the already established connection to give lower latency for subse-

quent messages. In contrast, packet-switching establishes a route for each message sent

and so it yields a lower startup overhead per communication. Packet-switching is more

appropriate for shared-memory systems, where messages are short and communication

patterns are very dynamic [54].

An ideal, scalable network would have [89]:

� a low cost which grows linearly with the number of processors. The cost is determined

by the number of switches and connections between the switches. In addition, faster

switches and/or connections will be more expensive.

� minimal latency that is independent of P (the number of processors). Given the physical

limitations on the number of connections coming into and going out of a switch (i.e. the

fan-in and fan-out limitations), the best that can be achieved is to limit the latency

growth to O(logP) (see Appendix D for the de�nition of the \order" notation used in

this thesis). If the fan-in and fan-out are bounded by some constant, then the latency

will grow as a function of logP where the base of the logarithm is equal to the fan-in

and fan-out constraint. The only way to remove the dependence on logP is to have

unbounded fan-in and fan-out, which is not achievable in practice [128].

� bandwidth that grows linearly with P . If communication is uniformly distributed then

half of all the message tra�c will pass across any partition of the network into two

equal parts. The bisection bandwidth is the minimum bandwidth required across any

of these partitions [79]. To achieve linear scaling of the bandwidth, the bisection band-

width must grow linearly with the number of processors. In practice many algorithms

result in non-uniform distribution of messages, with nearest neighbour communication

often dominating [89]. As a result many networks are designed to have better local

communication bandwidth than bisection bandwidth.

The Massachusetts Institute of Technology's M-Machine provides an example of how virtual

channels and a throttling mechanism can be used to ensure that transactions complete in

the presence of �nite network resources [35]. Two network priorities are provided, one each

for requests and replies. Messages are routed in dimension order (the network is a 3D mesh)

using up to four virtual channels. In order to prevent a processor from injecting messages into

the network at a rate that is higher than they can be consumed, the M-Machine implements

a return-to-sender throttling protocol. When a message is sent, bu�er space is reserved in

case the message is returned. If no bu�er space is available then no additional messages can

be sent: threads attempting to initiate a transaction will stall. When the message reaches its

2.1. Implementing Shared-Memory 37

interconnection network

I/O

processor
+ cache

processor
+ cache

processor
+ cache processor

+ cache

I/O

processor
+ cache

I/O

processor
+ cache

I/O

I/O

I/Omemory

memory

memory

memory

memory

memory
shared

shared

shared

shared

shared

shared

Figure 2.5: Distributed shared-memory

destination, a reply is sent indicating whether the destination was able to handle the message.

If the message was consumed, the reply instructs the source processor to release the reserved

bu�er space. Otherwise, the reply contains the contents of the original message, which are

copied into the bu�er and sent again later.

2.1.4 Non-Uniform Memory Access

The trend in scalable shared-memory systems has been to distribute the physical memory

(dynamic random-access memory - DRAM) among the processing nodes2 as illustrated in

Figure 2.5. This introduces non-uniform memory access (NUMA) because a processor at a

given node will be able to access data in its local portion of the shared-memory in less time

that it will take to access data held in memory at another node.

Early attempts at producing a scalable shared-memory multiprocessor using the NUMA ap-

proach included a number of systems which did not support cache coherence, e.g. the Cm* [38],

the BBN Butter
y [86], the NYU Ultracomputer [45], and the IBM RP3 [104]. The lack of

cache coherence complicated the programming model for these systems. For example, the

Cm* was a cluster-based multiprocessor with a distributed memory and non-uniform access

time, so the absence of caches and a long remote access latency made data placement critical.

The RP3 and the Ultracomputer both included facilities in the network to combine references

to the same data line in order to reduce the average latency of remote data access. The BBN

2The UMA model is still used in some approaches such as PRAM simulations, e.g. the Saarbr�ucken SB-

PRAM [37] and the Tera MTA [5], where many overlapping processing threads are run on each CPU with the

aim of masking the latency of accessing memory. Further information is given on these architectures in the

discussion of multi-threading in Section 2.3.1 of this thesis.

38 Chapter 2. Shared-Memory Multiprocessors

Butter
y, introduced in 1981, was named for the \butter
y" multi-stage switching network

around which it was built. An extra path was provided from the processors to memory by

pairing up each processor with one of the memory modules, so each processor had a \favoured"

memory unit. The processor could access this memory directly without going through the

switch. Up to 256 CPUs, each with local memory, could be connected to allow every CPU

access to every other CPUs memory, albeit with a substantially greater latency than for its

own, a ratio of roughly 15:1. A current example of a non-cache-coherent NUMA system is

the Cray T3E [114].

Given that the non-caching approaches require programmer intervention for accessing re-

mote data, and typically experience long latency for such remote data accesses, a number of

caching approaches to distributed shared-memory have been explored in the last two decades.

Broadly speaking these fall into two categories: cache-coherent non-uniform memory access

(cc-NUMA) and cache only memory architecture (COMA).

2.1.5 Cache-Coherent Non-Uniform Memory Access

In a NUMA architecture, every memory line has a �xed mapping from its address to the

memory at one node (its home node) [89]. The data is allocated to memory in pages, each

of which contains a number of data lines. For cache-coherent non-uniform memory access

(cc-NUMA) systems, data lines retrieved from memory are held in the local cache hierarchy,

and a cache coherence policy is used. This approach reduces the latency of accessing remote

data lines where temporal and spatial locality apply (as with all caching schemes - see Ap-

pendix A). However the cache coherence policy comes with the overheads of keeping track

of the cached copies, and the additional messages needed to enforce cache coherence. The

cc-NUMA architecture was �rst explored by research projects such as the Stanford DASH

system [88]. In the last four years a number of commercial systems have appeared which use

the cc-NUMA approach: these include the SGI Origin2000 [85], the HP/Convex Exemplar [1],

the Data General Aviion [29], and the Sequent NUMA-Q [92].

As was seen in Section 2.1.1, the cache coherence protocols used in SMPs rely on one-to-all

broadcasting and snooping on the bus. This approach is not scalable because it leads to the

network being
ooded by protocol messages and/or intolerable message latency. cc-NUMA

systems use directory-based protocols to keep track of the location of the cache copies of each

data line, so that the update or invalidate messages are only sent to the relevant processors.

Directory-based protocols explicitly maintain a list of processors which have a cached copy of

each data line, and they identify each line's current owner [91].

2.1. Implementing Shared-Memory 39

1 0 1 1 00

Directory

Cache 0

one bit vector
per memory line

 Bits = P

Cache 1 Cache 2 Cache 3 Cache 5Cache 4

Cache 1 Cache 5Cache 4

Directory

2

Cache 2Cache 0 Cache 3

0m3 -02

Cache 1 Cache 5Cache 4

Directory one cache pointer per
memory and cache line

2

Cache 2Cache 0 Cache 3

03 -

Bits/pointer = log

Bits/pointer = log

P

P

proc

proc

proc

2

2

per cache line
memory line and two
one cache pointer per

(b) Singly-linked list directory structure

(a) Bit vector directory structure

(c) Doubly-linked list directory structure

Figure 2.6: Examples of directory structures

It would be impractical to hold a large centralised directory in a scalable multiprocessor,

because access to it would be a serious bottleneck. Therefore directory-based protocols are

generally implemented by distributing the directory information in association with the data

lines in memory. Figure 2.6 shows three di�erent examples of distributed directory structures:

bit vector, singly-linked list, and doubly-linked list.

In a full bit vector directory, a centralised version of which was �rst proposed by Censier and

Feautrier [21], a bit vector with one bit per processor is associated with each data line in

40 Chapter 2. Shared-Memory Multiprocessors

memory. Each bit indicates whether that data line is currently cached by the corresponding

processor. When data line copies have to be invalidated, messages are sent to all the processors

whose bit is set on. This scheme requires the lowest level of coherence messages because the

sharers are all known to the home node. The main drawback to the scheme is that the storage

required to hold the bit vectors increases with �(P 2) (see Appendix D for the order notation

de�nitions). In addition, if a data line is widely-shared, then invalidations will tie up the

home node as it sends invalidation messages to all the sharers. The bit vector approach

proved e�ective for the Stanford DASH prototype, where the modest number of processing

nodes (sixteen) meant that the directory size was not a problem [88]. Coarse vectors are a

more scalable form of bit vectors in which a bit represents more than one node: this approach

is used in the SGI Origin2000 [85].

An alternative to the bit vector approach is to hold the directory information as linked lists.

These lists occupy less space than bit vectors, although there is a trade-o� when implementing

the list between more pointers for faster maintenance of the list (e.g. the doubly-linked lists

used, for example, in the HP/Convex Exemplar [1]) versus fewer pointers to save on storage

space (e.g. as for singly-linked lists).

Sun's Scalable Shared-memory MultiProcessor (S3.mp) is a research prototype based on

cache-coherent distributed shared-memory which uses singly-linked sharing lists to support

a distributed directory [102]. Figure 2.7 shows the generic S3.mp components: each node

is essentially equivalent to a workstation with one or more processors, memory, and I/O.

The two components speci�cally designed for the S3.mp are the interconnect controller (IC)

and the memory controller (MC). The MC processes requests for data from both the local

processors and remote processors, and it is able to handle two simultaneous transactions

by having two protocol engines: one for local data (LPE), and one for remote data (RPE).

The S3.mp cache coherence protocol has roughly 30 stable or transient cache states and 20

memory states: these states represent branches in the microprogram implementation of the

protocol. The number of states is far more than is typically needed for protocols using a bit

IC MC MEM

P1 Pn I/O

IC MC MEM

P1 Pn I/O

Passive, Point-to-Point Interconnect Fabric

Figure 2.7: Sun's S3.mp prototype system

2.1. Implementing Shared-Memory 41

vector to represent the sharing list. This is because additional states are needed to represent

the transient states which occur as the distributed sharing list is being amended [106].

A study by the FLASH team at Stanford, of four di�erent distributed-directory protocols,

found that there was no one protocol that would always give the best performance [51]. The

bit-vector approach tended to get the best performance up to the point at which it became

\coarse" (at 48 processors in their study). For larger-scale systems, the distributed doubly-

linked list approach of the Scalable Coherent Interface (SCI) protocol3 gave it an advantage

for the applications which had not been carefully tuned to avoid contention when accessing

the directory data at home nodes.

2.1.6 Cache Only Memory Architecture

In contrast to the home page approach of cc-NUMA designs, a cache only memory architecture

(COMA) uses the distributed memory as another level of cache. This memory level of cache

is often referred to as the attraction memory (AM). In the COMA approach, data lines are

replicated and migrated at the memory level as well as in the cache hierarchy. Data lines

will move (for write misses) or be copied (for read misses) to the nodes which use them. The

ability of data to migrate means that the location of a memory address is decoupled from its

physical address, unlike in cc-NUMA where the physical address indicates the home node. A

COMA system needs additional hardware to �nd the current location of a required data line.

It is also essential that the AM replacement policy ensures that it does not evict a line when

it is the only remaining instance of that data line in memory.

The advantage of using COMA over cc-NUMA is that data is automatically copied or moved

to the AM at the node(s) where it is being used. This dynamic re-balancing of the data

allows COMA systems to run applications that do not map well to cc-NUMA architectures,

e.g. applications which have a per-node working set larger than the size of each node's cache,

and applications with dynamic data access patterns in which data cannot be e�ectively stat-

ically partitioned across the physical memory. Unfortunately, COMA's
exibility requires

non-standard memory system hardware, i.e. it is not supported by commodity microproces-

sors. This introduces a price-performance tradeo�, i.e. more sophisticated hardware leads to

better performance but at a higher cost and with longer development times [24].

The Data Di�usion Machine (DDM) uses a COMA approach, i.e. data migrates around the

system according to its use. There are two main \variants" of the DDM: at the Swedish

3SCI is an ANSI/IEEE standard which de�nes a hardware-based approach to scalable shared-memory

multiprocessors in terms of the physical network interfaces, a packet-based point-to-point communication

protocol, and a cache coherence protocol for distributed shared-memory systems [41].

42 Chapter 2. Shared-Memory Multiprocessors

RD

SE:0node

node

node

RD

SE:0node

node

node

RD

SE:0node

node

node

RD RD

RD

SE:1

Figure 2.8: KSR-1 architecture

Institute of Computer Science (SICS), and at Bristol University. The original DDM papers

envisaged a system with a hierarchical tree-shaped interconnect built of buses, with the pro-

cessing nodes at the leaves of the tree, and higher levels of the hierarchy holding directory

information for their sub-trees [50]. A hierarchical network is employed to ensure that all data

can be accessed in a time bounded by O(logP). The hierarchy also supports the combining of

requests. If a directory node receives a read request for a data line which another processing

node is requesting, the later request is added to a list of nodes waiting for the data line.

When the reply is received by the directory node, it sends the data line on to all the waiting

processing nodes. The DDM hierarchy needs high connectivity and with large systems the

wiring would be too complex to be practicable. However, by collapsing the hierarchy into a

fat tree (an example of a fat tree was shown earlier in Figure 2.4(j)), it appears that it would

be possible to support large-scale systems up to 4096 processing nodes [99].

The Kendall Square Research KSR-1 was the �rst commercially available COMA system [140].

Nodes in the system were connected together by rings. A small system with up to 32 nodes

was connected in one ring (a selection engine, termed an SE:0). For larger con�gurations, a

higher level ring (the SE:1) was used to connect together up to 34 SE:0's, forming a two level

hierarchy of rings, as shown in Figure 2.8. In the larger con�gurations, each SE:0 ring included

at least one ring directory (RD) cell, which supported the routing between the SE:0 and the

SE:1 rings. Each node in the system had a processor with a 512 Kbyte local �rst level cache,

and a 32 Mbyte attraction memory which was the node's share of the overall ALLCACHE. The

KSR-1 su�ered from variable performance, because the architecture required programmers to

be careful about the allocation to processors of processes sharing the same data. The ordering

of writing and reading processes on the same SE:0 a�ected performance, as did having some

or all of the reading processes located on a separate SE:0 to the writing process [140].

2.1. Implementing Shared-Memory 43

2.1.7 Software Implementations

This thesis focuses on hardware implementations of scalable shared-memory. However it

should be noted that there are also systems where the shared-memory model is implemented

in software on distributed processing nodes. The distributed systems can be message-passing

parallel processors or networks of workstations. Ivy is an early example of such a distributed

virtual shared-memory (DVSM) system, where the shared-memory is implemented using soft-

ware on a message-passing distributed-memory architecture [90]. A memory manager on each

node implements the mapping between the physical local memory and the shared virtual mem-

ory address space, and keeps the address space consistent. The memory manager treats its

local memory as a large cache (of pages rather than lines) for the shared virtual address space.

A problem with DVSM systems such as Ivy and Munin [14] is that by using software to im-

plement shared-memory on a message-passing architecture, they place a processing overhead

on the processor at each node which slows down the actual application. To reduce these

overheads, the systems usually transfer data between nodes in page size units. This reduces

the number of messages, and so lowers the overall message startup costs. However it means

that the unit of data coherence has to be at the page level (i.e. much larger than at data line

size) or additional mechanisms such as page-merging are needed to provide more �ne-grained

coherence.

An active area of research is into how individual workstations or personal computers (PCs)

can be connected together to form a cost-e�ective scalable shared-memory system. Such a

network of workstations (NOW) or \pile of PCs" is attractive as an inexpensive platform for

solving large-scale problems which have a high computation to communication ratio. These

systems are becoming more feasible given the emergence of low-latency switch-based local

area networks. However supporting a true shared physical address space in the presence of

unreliable nodes and networks is still an open research area. The workstations also have

to be con�gured to support the shared-memory model, and this is usually done in software

running on each CPU (or on one CPU within each node in cluster-based systems). Research

in this area includes the Berkeley NOW [8], the Princeton SHRIMP [18], and the Beowulf

project [126].

2.1.8 Simple-COMA

A comparison by Stenstr�om et al. between cc-NUMA and COMA architectures observed

that a cc-NUMA system with page migration or replication is similar to COMA but with

page-sized blocks in memory [125]. The simple-COMA (S-COMA) architecture, proposed by

Saulsbury et al. , is an amalgam of COMA and DVSM which reduces the hardware and soft-

44 Chapter 2. Shared-Memory Multiprocessors

ware overheads associated with those approaches [112]. It addresses the page locality problems

associated with straightforward cc-NUMA implementations by providing page replication and

migration in the attraction memory. The design uses software to handle page allocation and

hardware to handle coherence at the data line level. The result is a hybrid software and

hardware COMA system which can be built using standard components. It should be noted

that S-COMA has the drawback that allocating memory in page-sized units (as opposed to

the COMA approach which allocates in line-sized units) can lead to wasted space where an

application's access pattern does not display enough spatial locality [24].

To illustrate the workings of S-COMA, consider what happens on a read miss. The virtual

address is translated to a physical address by the memory management unit. If the data line

is present and valid in the local memory then the data is supplied to the caches and processor.

Otherwise, if a page fault occurs (i.e. the page containing the data does not currently have

space allocated for it) then space for the new page is allocated by the operating system in the

local memory, although none of the data for the page is loaded in. If the allocation requires

an existing page to be replaced, then any data in local cache that belong to the evicted page

must also be evicted. All the data lines on the new page are set to invalid. If the data line

matching the read miss is invalid (which it will be if a new page has had to be allocated)

then the physical address is translated to a global identi�er, and a read request is sent to the

appropriate remote node. The remote node supplies the valid data line, which is then loaded

into the appropriate page in local memory. The transaction is completed by loading the data

to the local caches and processor.

2.1.9 Consistency

The need for coherent data was discussed in Section 2.1.1, where cache coherence policies were

introduced to ensure that all copies of a data item hold the same value. In practice it takes

time for the cache coherence policy to either invalidate or update a data item, and during that

time the copies can be inconsistent. One way of ensuring that the consistency issue is dealt

with in a predictable way is to enforce Lamport's guidelines for sequential consistency [82].

Lamport starts with the situation on uniprocessors where operations may be rearranged by

a compiler (or at run-time) to improve the execution time, but the program is still correct

if the result is the same as that obtained when the operations are executed in the order

speci�ed by the program. He points out that rearranging the order of operations running

on multiprocessors can cause problems because of the sharing of data between processors.

As a result, the correctness of programs can only be guaranteed if the operations on each

individual processor are executed in the order speci�ed by the program. A sequentially

2.1. Implementing Shared-Memory 45

The sequential orderings are: A runs critical()

B runs critical()

(2) A1, B1, A2, B2

(3) A1, B1, B2, A2

(4) B1, B2, A1, A2

(5) B1, A1, B2, A2

(6) B1, A1, A2, B2

neither runs critical()

neither runs critical()

neither runs critical()

neither runs critical()

(1) A1, A2, B1, B2

x = 1 ; y = 1 ;B1:

if (x == 0) critical();B2:if (y == 0) critical () ;

A1:

A2:

/* all processors start with x = y = 0 */

/* in process A */ /* in process B */

Figure 2.9: An example of sequential consistency

consistent multiprocessor is one in which \the result of any execution is the same as if the

operations of all the processors were executed in some sequential order, and the operations

of each individual processor appear in this sequence in the order speci�ed by its program".

Figure 2.9 illustrates the sequential orderings where two processes A and B are executing

on separate CPUs of a multiprocessor. In the example there are six possible sequentially

consistent orderings of the statements A1, A2, B1, and B2. Four of the sequential orderings

lead to neither process entering the critical function, whereas of the remaining orderings one

only lets in A, and the other only lets in B. Without the ordering imposed by sequential

consistency, e.g. if operation B2 executed before B1, it is possible that both processors would

run the critical process.

The important thing about sequential consistency is that it enforces an ordering of accesses

to shared data. Lamport recognised this and gave two requirements for sequential consis-

tency [82]:

1. Each processor should issue memory requests in the order speci�ed by its program.

2. Memory requests from all processors issued to a particular memory module should be

serviced from a single �rst-in-�rst-out (FIFO) queue. This requirement can safely be

\softened" to only require that all requests to the same memory item must be serviced

in the order which they appear in the queue.

Sequential consistency does not preclude compiler or runtime optimisations which re-order

46 Chapter 2. Shared-Memory Multiprocessors

the instruction sequence for individual processors, but it does restrict these optimisations by

imposing an ordering on shared-memory accesses. As a result the performance may su�er as

the price of ensuring the correct execution of the application, because processors may have

to stall while they wait for data to become available. Alternative approaches to consistency

will be discussed in Section 2.3.3.

2.1.10 Node Controllers

A feature common to many scalable shared-memory designs, including the Stanford DASH

[88], the Sun S3.mp [102], and the HP/Convex Exemplar [1], is a separate \controller" which

manages access to the local memory. This controller is known by many names including

memory controller, coherence controller, and hub; in this thesis it will be referred to as the

node controller.

Using a separate node controller to handle all accesses to memory, whether from the local

CPUs or those on remote nodes, allows commodity microprocessors to be used for the local

CPUs, and leaves the local CPUs free to run the application code. The node controller is

responsible for accessing the local memory, maintaining the directory information, handling

all access requests from remote and local CPUs, and enforcing the cache coherence protocol.

The protocol processing can be implemented in hardware on the node controller to obtain

the best performance, as for example is done in the SGI Origin2000 [85]. Alternatively there

can be facilities for programming the node controller which enable software correction of

protocol errors, and allow extra functions to be added to the protocol. This approach is

popular because of the
exibility it o�ers, and examples include the Sequent NUMA-Q [92],

the Stanford FLASH project [81], and the Wisconsin Typhoon project [110].

Using a separate node controller does have some disadvantages. All accesses to the local

memory by CPUs have to go via the node controller, which may already be occupied with

processing a message received from a remote node. The local CPU's request may have to

wait for service: the length of this delay depends on the node controller's architecture, and

the design tradeo�s are discussed further in Section 2.3.2 of this thesis. In addition, there is

the cost of dedicating a processor to act as node controller.

2.1.11 Summary of Scalable Shared-Memory

This section has demonstrated that a wide range of architectural designs have been proposed

over the last two decades with the aim of providing scalable shared-memory. However it should

be noted that there is a convergence towards systems which are made up of a collection of

2.2. Performance Problems with Scalable Shared-Memory 47

essentially complete computers, each consisting of one or more microprocessors with private

caches, and a large node memory managed by a node controller. The nodes are connected

together by a robust communication network. This convergence is driven by the increase in

microprocessor performance and memory capacity, and the very high cost of developing new

processor technology. The high development costs for microprocessors can be o�set against

the extremely large market for commodity uniprocessors, whereas the cost of developing

custom processors for large scale systems is becoming prohibitive given the long development

time and the relatively small market.

2.2 Performance Problems with Scalable Shared-Memory

Although shared-memory systems are now enjoying commercial success, particularly the

smaller SMP designs, the larger scale systems have a much smaller market. This is in part due

to their cost, but it is also because of the performance problems that have been observed on

these systems. The problems are not only caused by the system architecture, both in terms

of non-uniform data access times and the various bottlenecks in the system, but are also the

result of application design. Even more worrying for potential users of such systems is the

di�erent performance that the same program can obtain on di�erent systems, and seemingly

inexplicable variations in performance for the same application running on the same system.

This section examines the various causes of the performance problems found in cc-NUMA

systems. The investigation covers the e�ects of:

� Finite system resources, e.g. network bandwidth and node controller service rate.

� Data locality, including page placement.

� The cache coherence protocol, e.g. the overheads of protocol messages and cache line

con
icts.

� Algorithm design.

This catalogue of problems will be used in Section 2.3 as the framework for introducing the

various solutions which have been proposed to alleviate the performance problems.

2.2.1 Finite System Resources

Multiprocessor performance may be limited by the same resource constraints which occur in

uniprocessors, e.g. bu�er sizes, memory access latency, and processor speeds. However for

48 Chapter 2. Shared-Memory Multiprocessors

shared-memory multiprocessors there are additional performance limitations arising from the

interconnection network and node controllers.

Communication latency is the sum of the time to prepare a message for transmission and the

time taken by the message to traverse the network to its destination [79]. Many factors a�ect

the communication latency of a network, such as its topology and bandwidth. The network is a

�xed performance resource that must bear a heavier load with each additional device placed

on it. At some point the network becomes overloaded and adding more processing nodes

provides no additional systems performance, or can even reduce the total throughput. The

problems can occur because of congestion at intermediate switches on the route a message

takes through the network (i.e. \hot spots") [105], or, as noted by Holt et al., because of

end-point contention where the node controller at the destination cannot service incoming

messages fast enough to prevent a queue building up [57]. Occupancy is the time for which

the node controller is tied-up performing one action and cannot perform another.

2.2.2 Data Locality

The programmer using a shared-memory system may view the memory as a centralised re-

source which is equally accessible to all processors. In practice, for distributed shared-memory

architectures such as cc-NUMA, the memory is distributed among the processing nodes. Ac-

cess to data held on remote memory will incur a greater latency than access to local memory,

with typical ratios of between 2:1 and 14:1 on current cc-NUMA systems [60]. The use of

caches aims to avoid the remote access latency by holding copies of data lines close to proces-

sors which have recently accessed the data. In addition, techniques such as tightly integrating

processors and local memory may minimise the data miss latency [111]. However the initial

placement of data can have the decisive e�ect on the overall performance of an application. In

cc-NUMA multiprocessors, shared data is partitioned into virtual memory pages. Each page

of shared data is then physically allocated to a node by the operating system when it handles

the page fault associated with the �rst access to data on that page. The default policy for

choosing this \home" node is usually based on the �rst node to touch a page.

First-touch allocates the page to the node which �rst accesses it, and this strategy aims to

achieve data locality. It is important to distinguish between na��ve �rst-touch and �rst-touch-

after-initialisation policies. A na��ve policy will allocate pages on a �rst-touch basis from the

start of program execution. This is a problem for applications where one process initialises

everything before parallel processing commences: all the pages end up on the same node (with

over
ow to its neighbours). It is preferable to employ a �rst-touch-after-initialisation policy,

where shared memory pages are only permanently allocated to nodes once parallel processing

has commenced.

2.2. Performance Problems with Scalable Shared-Memory 49

A drawback of cc-NUMA is that each node has a relatively small second level cache (SLC).

If a processor is accessing a large data structure from a remote home node (i.e. the structure

is too large to �t into the SLC) then it has to keep accessing that home node to pick up data

that has been evicted from the local cache. In contrast, the COMA approach would copy

such a data structure into local memory, but there are then the overheads of keeping track of

the data to ensure that at least one memory copy always exists and where to �nd it.

2.2.3 Issues Related to the Cache Coherence Protocol

A cache coherence protocol is essential for cc-NUMA systems to ensure that copies of data

lines are up-to-date, but achieving this entails a number of overheads which can degrade the

performance of the multiprocessor. These overheads include the messages needed to imple-

ment the protocol, con
icting access to cache lines, and how sharing patterns in applications

are handled.

Protocol Overheads

Protocol overheads are the additional memory and messages which are required to support

the coherence protocol. The memory overhead is the space needed to hold the directory

information. The message overhead comes from controlling access to the directory informa-

tion. Protocols which distribute the sharing list among the sharing nodes have to be carefully

de�ned to ensure that the sharing list remains coherent when more than one node needs to

update the list. For example, in SCI the following basic operations are de�ned for modifying

a sharing list [41]:

(a) a node may join the list, becoming the head;

(b) a node in the list may delete itself from the list by serially communicating with its

upstream and downstream neighbours, informing each in turn of its new neighbour

(i.e. unhooking);

(c) a head node may purge (i.e. invalidate) all the other elements of the list (one at a time)

to become a single element list.

To obtain a local copy of a data line, a node executes operation (a). It receives a copy of

the data either from the home node's memory or from the previous head of the sharing list.

If a node wishes to modify the line, it must �rst perform operations (b) and (a) if it is not

at the head of the sharing list; once it is at the head of the list it performs operation (c).

SCI carefully de�nes these operations to permit arbitrary concurrency in their execution.

50 Chapter 2. Shared-Memory Multiprocessors

In contrast, on the Sun S3.mp prototype, transactions which modify the sharing list are

serialised by the use of a lock maintained in the directory entry at the home node [101]. This

ensures that only one modi�cation to a distributed sharing list is being made at a time, but

this conservative approach comes at the cost of delaying some transactions which could have

safely been applied.

Multiprocessor Cache Line Sharing

There are caching problems similar to those found in uniprocessors, for example cache line

con
icts, and lack of locality (see Appendix A). However there are additional problems arising

in multiprocessors because there can be more than one processing node with a cached copy

of a data line. There are three types of cache line sharing:

1. Active sharing: this is where a data item is accessed by more than one processor

during the execution of a program. Contention can occur where one processor updates

the data item: all other cached copies of the item have to be updated or invalidated, and

this introduces delays. In addition, where many processors share the same data line,

there can be contention problems when obtaining the data line from the home node;

this problem with widely-shared data is examined in more detail below.

2. False sharing: this is where processors share a line without sharing data items within

the line, i.e. the line contains a number of items, none of which is used by more than

one processor [136]. The problem occurs with writes to an item in a shared line: all

cached copies of that data line have to be updated or invalidated, although the other

processors never use the data item which was changed. False sharing results in more

updates/invalidations being sent than are needed by the parallel application and its data

sharing requirements. In addition, with an invalidation-based protocol, false sharing

introduces further cache miss latency for the data line which has to be obtained again

after invalidation.

3. Passive sharing: this occurs where shared data still remains in a processor's cache

even though no objects on the line will be accessed by that processor again [34]. Since

a write by another processor to any item in that line will require all other copies of the

line to be updated or invalidated, it is desirable that the redundant data line is ejected

from the cache after its last use.

The extent to which these sharing problems a�ect the performance depends on the memory

access characteristics of the individual application programs and the shared-memory architec-

ture. Cache line size is particularly relevant: larger cache lines would allow many data items

2.2. Performance Problems with Scalable Shared-Memory 51

to be held in each cache line, which could be helpful if an application has locality of access.

However, the larger line size can lead to contention for lines, especially if false sharing plays a

signi�cant role in the behaviour of an application. Agarwal and Gupta studied the in
uence

of cache line size on performance for a four processor bus-based system, and found that false

sharing had a signi�cant impact when line sizes greater than 64 bytes were used (because the

number of transactions and invalidations increased signi�cantly) [4]. A more recent study by

Torrellas et al. showed that poor spatial locality in the data and false sharing both caused

variations in the miss rate of shared data as the cache line size was changed [136].

Widely-Shared Data

The types of access to data which occur in shared-memory applications have an e�ect on

performance, and various protocols have been suggested to tackle the di�erent types of access

patterns: for example by Bennett et al. in Munin [14], and by Weber and Gupta [142].

Widely-shared data, where many (and often all) processors require a copy of the same data

item, has tended to be ignored because such data usually forms a very small part of the overall

shared-data used by an application. This was the case with Munin which characterised the

main types of sharing for data objects to drive the use of appropriate protocols. The Munin

categories included write-mostly, producer-consumer, and read-mostly. They identi�ed the

Gaussian Elimination (GE) benchmark as write-mostly because of the high level of writes

by all processors to the matrix. However GE is known to widely-share the current pivot row

data in each iteration, and the categorisation as write-mostly masked the bottleneck producer-

consumer behaviour on the pivot row which occurs once in every iteration. Kaxiras et al. have

demonstrated experimentally that a signi�cant performance degradation can occur in each

iteration of GE when a great many processors need to simultaneously access the pivot row's

data items [69]. As the number of nodes in the system is increased, the bottleneck caused

by widely-shared data becomes worse: requests for the same data line made simultaneously

by more nodes will increase the contention at the home node. This bottleneck leads to

performance problems which are not only connected with the number of nodes in the system,

but also with the rate at which a node controller can deal with incoming messages, and with

the network bandwidth.

2.2.4 Algorithm Design

The shared-memory programming model may relieve the programmer from managing data

placement, but there is still some onus on the programmer to write a \parallel" program rather

than being totally oblivious to the problems that can occur. For example, an application

52 Chapter 2. Shared-Memory Multiprocessors

where much of the work is done by one processor, leaving the other processors idle for most

of the time, cannot be expected to achieve a good overall parallel speedup. Load balancing

is complicated because in many parallel architectures it is di�cult to predict the size of

the subtasks assigned to various processors, and so it is not possible to divide the program

statically among the processors and be able to guarantee that the processors will all have the

same workload [79]. This can result in some processors being idle for part of the time, and

this idle time is an overhead which can increase the overall execution time of the application.

The problems in algorithm design lead to the question of what is the \best" model of the

parallel environment for programmers to use when designing parallel algorithms? The answer

is the one that leads to both good performance and portability, but in practice these are

con
icting goals. Programs written under an incorrect or inaccurate model often perform

poorly, and their performance does not scale because of bottlenecks and poor utilisation of

hardware. For example a model which is too abstract will not consider the realities of there

being a hierarchy of memory access, and it will fail to capture the advantages of accessing local

rather than remote data [84]. The performance is generally better when the programming

model matches the underlying architecture, but architecture-speci�c applications have limited

portability [24]. There is confusion over how to relate a parallel algorithm, the programming

model which is used to implement it, and the architecture on which the program will run. To

add to the problem, there is a lack of standards, which limits the portability of even \good"

shared-memory applications [124].

2.3 Solutions to the Performance Problems

The performance problems with scalable shared-memory systems which were identi�ed in the

preceding section have been the spur for a wide range of research work. This has produced

a wealth of partial solutions, some of which can be used together, although others may work

against each other. This section covers the spectrum of the proposed solutions, although it

does not claim to be an exhaustive survey. The aim is to provide a
avour of the many varied

and overlapping schemes which are currently employed in commercial systems or which have

been proposed by research projects. The solutions include:

� Latency hiding: prefetching, data forwarding, access decoupling, and multi-threading.

� Latency reduction: sharing list representation, node controller optimisations, compile-

time analysis, victim caches, and cache bypassing.

� Coherence policy optimisations: message prediction, relaxed consistency models, and

combining accesses to widely-shared data.

2.3. Solutions to the Performance Problems 53

� Data placement: static data placement strategies (including randomisation and hash-

ing), and dynamic page placement.

� Algorithm design: abstract models, load balancing, and performance tuning.

2.3.1 Latency Hiding

Latency hiding schemes aim to conceal the latency of data access from the CPUs. The

latency hiding approaches include prefetching, data forwarding, access decoupling, and multi-

threading.

Prefetching and Data Forwarding

In prefetching schemes, data is retrieved from the memory hierarchy before a CPU needs

it [139]. The simplest form of prefetching is instruction scheduling, where the sequence of

instructions is re-arranged so that, for example, a load instruction is issued well in advance of

arithmetic instructions which use the data. Static instruction scheduling, where the compiler

rearranges the instruction order, was �rst used in the 1960's, and became popular when the use

of RISC (reduced instruction set computer) systems and pipelining became widespread [54].

Dynamic instruction scheduling, where the hardware rearranges the instruction execution

to reduce stalls at run-time, is found today in many microprocessors including the MIPS

R10000 [146]. It should be remembered that these instruction scheduling techniques, when

used in the microprocessors which are part of a multiprocessor, may compromise the sequential

consistency model (as outlined in Section 2.1.9 of this thesis) by altering the timing of load

and store operations when other processors are accessing the same data lines.

Some modern instruction sets, such as Hewlett Packard's PA-RISC [65], include a separate

fetch instruction which enables the compiler to implement data prefetching without having to

re-arrange the order of instructions. However it can be quite hard for a compiler to accurately

predict where to insert a \fetch" in the instruction stream. If a fetch is performed too late

then the data will not yet be in the cache when the CPU needs it. If the fetch is scheduled

too early then the data may be evicted from the cache before it is used, to make room for

a con
icting data line. In addition, using explicit fetch instructions increases the processing

load, although the aim is that this will be more than balanced by a reduction in stall time. An

alternative way of invoking fetch instructions is to allow the programmer to include prefetch

annotations, for example as was proposed for the Wisconsin CICO programming model [84].

Hardware-based prefetching techniques rely on speculation about future memory access pat-

terns based on previous access patterns. If the speculation is incorrect then super
uous data

54 Chapter 2. Shared-Memory Multiprocessors

will be brought into the cache. Such unnecessary prefetching can cause cache pollution, and

will consume memory and network bandwidth. An example of hardware-based prefetching

is the adaptive sequential prefetching proposed by Dahlgren et al. [26]. In this scheme the

number of data lines speculatively prefetched into second level cache is varied by an adaptive

mechanism. The adaptive mechanism uses an upper and lower threshold to decide whether

to increment or decrement (or leave untouched) the LookaheadCounter. However, there is no

indication that an upper limit is placed on the value of the LookaheadCounter. This suggests

that the reason why the adaptive scheme fared little better than their �xed scheme was at

least partly due to the counter getting to such a high value that it would take a long time to

adjust back down in response to a change in conditions which meant that prefetching was no

longer appropriate.

Data forwarding takes a di�erent approach to moving data into cache ready for local process-

ing. In this scheme a processor which modi�es data (a \producer") hides the latency of cache

misses from the users of this data (the \consumers") by sending the data to the consumers

before they request it. To use the strategy a processor needs to know which other nodes are

likely to need the data which it is modifying. The technique can be seen as the \complement"

of prefetching, and the two techniques can be used together [76].

Access Decoupling

A di�erent approach to latency hiding is access decoupling, where the responsibility for ob-

taining data is given to a separate instruction stream [119]. In a decoupled architecture,

responsibility for data access and data processing is split between two separate processors at

each node. The two processors, the access processor (A-processor) and the execution proces-

sor (X-processor) execute programs which have the same structure. The A-processor performs

all the operations related to transferring data to and from the memory hierarchy, whereas the

X-processor performs arithmetic operations on the data provided by the A-processor. The

two processors exchange data by means of queues. The access decoupling technique has been

investigated for a distributed virtual shared-memory (DVSM) architecture by the DELTA

project at the University of Manchester [141]. A di�erent approach was taken in the ACRI

system where an additional control processor at each node was responsible for dispatching

instructions and evaluating conditional branches ahead of the X and A processors [17].

Multi-Threading

Another strategy for latency hiding is multi-threading, where each CPU is given a number

of processing threads between which it can swap, with the aim of keeping the processor

2.3. Solutions to the Performance Problems 55

busy rather than having it stalled waiting for data. Swapping between processing threads

(aka. context switching) involves preserving the program counter and register values for each

thread, and may complicate the cache design. There are two main approaches to multi-

threading: blocked and interleaved. In the blocked approach one thread is executed until it

stalls waiting for data: at that point execution is switched to another thread. Alternatively,

in interleaved multi-threading, the system regularly switches between threads so that each

thread is steadily \moved forward". The choice of method depends on the tradeo�s between

the cost of context switching and the fairness of the scheme.

The Massachusetts Institute of Technology's Alewife system is a 32-node research prototype

which uses blocked multi-threading to switch between threads on synchronisation faults and

remote data accesses; this permits good single thread performance and requires less hardware

support than interleaved multi-threading [3]. The Communication and Memory Management

Unit (CMMU) implements most of the Alewife features, including ensuring that the cache re-

mains lockup-free. Multi-threading requires that a cache can cope with multiple cache misses

from di�erent threads, including resolving con
icts between multiple outstanding requests for

di�erent data lines which map to the same cache line [77].

The Tera Computer Corporation's Multi-Threaded Architecture (MTA) is a commercial sys-

tem4 which uses interleaved multi-threading [5]. The custom-built processors switch context

every cycle between up to 128 threads (called instruction streams). In addition, each in-

struction stream can have up to eight outstanding memory references before the stream has

to stall, which further increases the latency tolerance. The system supports fetch-and-add

instructions, although these are implemented at the memory modules rather than in the

network. The network connecting the processors to the memory modules has a 3D torus

topology. Messages are processed by a randomised routing scheme that may detour packages

if the output link in the correct direction is not working or is overloaded.

Gr�un and Hillebrand [47] have reported that both the Tera MTA and the Saarbr�ucken Parallel

Random Access Machine (SB-PRAM) [37] show very good performance on the Integer Sort

benchmark of the NAS parallel benchmark suite, completing the calculations in an order of

magnitude fewer CPU cycles than reported for general purpose message-passing or shared-

memory systems. It remains to be seen whether this reduction in cycles will translate into

faster performance or will be cost e�ective. In addition it appears from the work in [47] that

the multi-threading systems are getting good performance on the integer sort as much because

they have fetch-and-add combining operations as because of the latency hiding resulting from

multi-threading.

4At the time of writing, a four-processor system is being evaluated at the San Diego Supercomputer Center.

56 Chapter 2. Shared-Memory Multiprocessors

The argument for multi-threaded systems is that they place the burden of handling data access

latency �rmly on the architecture, and leave the application programmers free to concentrate

on creating algorithms which have su�cient parallelism and which balance the processing

load evenly across the available CPUs. The approach relies on there being su�cient execution

threads to mask the latency, and so such systems have to be heavily multiprogrammed or

applications must be heavily multi-threaded to achieve reasonable performance. The approach

also sacri�ces the tremendous cost bene�ts of using commodity microprocessors, facing head-

on the enormous e�ort of designing and manufacturing the non-standard high-performance

processors and the associated system software [24]. Given the relatively small market for

scalable shared-memory systems, it is questionable whether the multi-threaded multiprocessor

approach can survive.

2.3.2 Latency Reduction

The designers of cc-NUMA systems aim to keep the latency of retrieving data as short as

possible, but this inevitably involves tradeo�s which aim to keep the common case fast and

minimise costs. For example, the use of a bit vector in the directory to hold the sharing list

for a data line allows the home node to send invalidation messages to all sharers when a write

miss occurs for the line, but the bit vector is expensive in memory and is not scalable. The

alternative of using distributed sharing lists reduces the storage overheads, but can increase

the latency of write misses when there is a long list of sharers which has to be invalidated

node-by-node.

Caching in multiprocessors introduces the data con
ict patterns of active, false and passive

sharing. These latency-adverse e�ects can be alleviated by compile time and execution time

strategies. The techniques which can reduce the latency of cache misses include node controller

optimisations, compile-time analysis, victim caches, and cache bypassing.

Node Controller Optimisations

In many cc-NUMA multiprocessors, the node controller handles all access to memory. There-

fore it is not surprising that the node controller can become a performance bottleneck when

access requests from remote nodes and local CPUs coincide. The node controller's occupancy

can be reduced by implementing the controller's functions completely in hardware, although

this sacri�ces the
exibility o�ered by programmable node controllers [97]. It is also possible

to reduce the occupancy by providing separate hardwired coherence handlers for local and

remote data access requests; this was done in the Sun S3.mp prototype [101]. A di�erent

2.3. Solutions to the Performance Problems 57

approach is to improve the overall throughput of access requests by using pipelining and

multiple issue techniques; the SCI Cache Link Interface Controller (SCLIC) in the Sequent

NUMA-Q uses a three-stage pipeline and issues up to two instructions every cycle [92].

A signi�cant part of node controller occupancy is due to the latency of accessing directory

information, which is usually kept in memory. This latency can be reduced by caching di-

rectory information within the node controller, for example by using a fast directory cache

within a hardwired node controller [96]. The results presented by Michael et al. indicate that

communication-intensive applications can show a performance improvement of 40% or more

using a hardwired node controller with a 4-way associative directory cache, each cache line

containing between 4 and 8 directory entries. The optimum size for the directory cache was

found to vary depending on the application programs and problem sizes. However the study

showed that the optimum size for the directory cache grows sub-linearly with the problem

size. The results also indicate that using an o�-chip SRAM (static random access memory)

directory cache realises most of the performance bene�ts seen with a directory cache that is

on-chip with the node controller.

Compile-Time Analysis

Static analysis at compile-time can be used to transform the algorithm and/or the data layout

to reduce the run-time delays that result from data misses. For example, false sharing can

be reduced by grouping together data items that are only (or mainly) used by one processor

(\group & transpose"), and by ensuring that items do not share a data line if they are written

to by a number of processors (\pad & align") [59].

The SUIF (Stanford Universal Intermediate Format) parallelising compiler employs a number

of techniques that aim to improve the locality of data use for applications [48]. The compiler

tries to minimise the number and e�ect of cache misses by making the data accessed by each

processor contiguous in the shared address space, and by ensuring that processors reuse data

as quickly and as often as possible to improve the chance of the data still being held in cache.

Other recent work in the area of compile-time data transformations includes McKinley [95]

and Kandemir et al. [64].

Victim Caches

A problem with caches is that some data may be evicted only to be needed by the CPU

soon afterwards. Jouppi proposed the victim cache approach to address this problem, with

recently evicted lines being placed in the victim cache [63]. A victim cache is a small (2 to

58 Chapter 2. Shared-Memory Multiprocessors

15 entries) fully-associative cache into which is placed any line that is displaced from the

direct-mapped cache that it supports. A new line put into the victim cache uses the \least

recently used" (LRU) approach to choose which of the current victims it will replace. In the

case where a miss in the main cache hits in the victim cache, the contents of the two cache

lines are swapped, i.e. the victim goes into the main cache and the line it displaces swaps

into the victim cache. The victim cache alleviates the problem of con
ict misses in the cache

hierarchy.

Jouppi's work was on relatively small cache sizes. For larger caches (128 Kbytes and above)

the small size of the victim cache meant that it could get swamped, with the result that

the bene�t of using a victim cache was reduced. A more recent scheme, selective use of

victim caches, has been investigated by Stiliadis and Varma [127]. This scheme employs a

history of data line use to decide whether to use the victim cache for a particular data line.

In addition, interchanges of data lines between the main cache and the victim cache are

performed selectively, and incoming data lines destined for the FLC may instead be placed in

the victim cache if the prediction algorithm determines that they are unlikely to be accessed

in the future.

Victim caches have been studied in the context of uniprocessor memory hierarchies. For

multiprocessors, the use of victim caches could have latency penalties from having to check

for the presence of data lines in the victim cache when processing invalidation or update

requests generated by other nodes.

Cache Bypassing

One solution to the problem of passive sharing is to not put a data line into the cache hierarchy

if it is known to only be needed once. For example, Johnson and Hwu use an adaptive

policy to determine whether data should bypass cache [62]. Their work is on uniprocessor

cache hierarchies, and aims to minimise cache miss latency by reducing cache con
ict and

capacity misses. They target the cache pollution caused by infrequently-used data, i.e. data

which is read into cache and then not used again while it remains cached. They detect such

infrequently-used data by keeping track of the access patterns. The tracking is done at the

level of macroblocks, which are somewhere between a data line and page in length, because it

would give too large an overhead to track at data line level, and they �nd the results are still

good using this coarser tracking. A counter for each macroblock is incremented when data is

accessed, and decremented when a con
icting data line would like to evict the data from the

cache. Comparison of counters for con
icting data lines determines whether the new data

line replaces the resident data line or bypasses the cache.

2.3. Solutions to the Performance Problems 59

2.3.3 Cache Coherence Policy Optimisations

There are performance issues associated with cache coherence protocols because of the over-

heads of maintaining the multiple copies of a data line, and the network tra�c caused by the

additional messages. These can be partially addressed by techniques such as message pre-

diction, which aims to reduce the number of messages, and relaxed consistency, which aims

to allow a process to continue executing before, for example, its update transaction has been

seen by all the other processes. There is also the possibility of optimising the choice between

the write-update and write-invalidate strategies.

Message Prediction

A hardware approach to avoiding excessive invalidations is provided in the Cosmos coherence

message predictor which monitors access patterns and uses the information to accelerate

coherence protocols [98]. Predictors sit beside each directory and cache module to monitor

coherence activity and request appropriate actions. If, for example, a directory predictor

anticipates that a processor asking to \share" data line B will subsequently ask for data

line B to be \exclusive", the directory can respond to the \shared" request by providing

\exclusive" access to data line B. Cosmos is able to predict the source and type of the next

coherence message with an accuracy of between 62% and 93% for the results reported in the

paper, the high prediction accuracy being the result of detecting regular coherence message

patterns associated with speci�c data lines. Cosmos' lower prediction accuracy for the Barnes

application (between 62% and 69%) occurs because Barnes periodically rebuilds its principal

data structure [11, 144], thereby moving logical nodes with stable sharing patterns to di�erent

memory addresses, and this eludes Cosmos' sharing pattern detection.

Compile-time analysis can also be used to reduce the coherence policy overhead. For example,

Skeppstedt and Stenstr�om have proposed compiler algorithms which reduce the overhead of

transferring ownership of a data line [117]. The algorithms work by detecting a load miss

request followed by a write request for the same data line from the same processor. The initial

read is marked to provide a hint to the cache to obtain an exclusive rather than shared copy

of the data line.

Relaxed Consistency Models

The ordering of memory accesses imposed by sequential consistency ensures that a shared-

memory program will execute correctly [82]. However it disallows some hardware and compiler

optimisations that would change the ordering of shared-memory accesses. For this reason, a

60 Chapter 2. Shared-Memory Multiprocessors

number of relaxed consistency models have been proposed. These support the uniprocessor

consistency model for accesses made by a single processor but relax the ordering constraints

on how a processor's accesses are observed by other processors [2].

Relaxed consistency models weaken the ordering requirements to allow for more aggressive

optimisations; the aim being to reduce the cost of memory access by masking the latency of

write operations. Under the relaxed models, memory is only consistent at certain synchro-

nisation events, which allows the protocol to bu�er, merge, and pipeline write requests as

long as it respects the consistency constraints speci�ed in the model. As a result, a system

with relaxed consistency changes the programming model and so programmers have to take

into account that an update cannot be relied upon to be immediately visible to all other

processors. An example of a relaxed consistency model is the weak consistency described by

Dubois, Scheurich and Briggs [32]. In a weakly ordered system, coherence is only enforced at

synchronisation points (which are implemented via hardware-recognised synchronising vari-

ables). Between synchronisations no assumption can be made on the order in which stores

will be applied, except that the order of successive stores by a processor to the same address

is respected.

The release consistency model proposed by Gharachorloo et al. extends weak consistency [39,

40]. Each memory access is classi�ed as either an ordinary access, or an acquire, or a release.

A release indicates that the processor is completing an operation on which other processors

may depend: all of the releasing processor's writes must now be made visible to any processor

which performs a later acquire. An acquire indicates that the processor is beginning an

operation that may depend on some other processor: all other processors' writes must now

be made locally visible. An implementation, lazy release consistency, has been proposed

by Kontothanassis et al., in which write operations are overlapped with processing, and

invalidations are delayed until acquire operations [75]. The paper reported that the lazier

protocols degrade performance when implemented in hardware.

In the last decade there has been a considerable amount of work done on the performance

bene�ts that may accrue from using a more relaxed approach to consistency. However Hill

has recently argued that multiprocessors should support simple consistency models such as

sequential consistency because the more complicated models do not give a su�cient im-

provement in performance to justify exposing programmers to their complexity [56]. This

judgement is based on recent hardware optimisations which have reduced the performance

gap between various consistency models, and the lack of quantitative data on the bene�ts

of relaxed consistency models. The argument for sequential consistency is bolstered by the

results for database workloads presented by Ranganathan et al. [107]. They note that using

2.3. Solutions to the Performance Problems 61

the hardware techniques of prefetching and speculative loads enabled a sequential consistency

model to achieve performance which approaches that of the release consistency model with

the same hardware optimisations.

Support for Widely-Shared Data

A number of protocol enhancements have been suggested to tackle the performance problems

which can occur when there are many accesses to the same data item by di�erent processors.

In cc-NUMA multiprocessors the main bottleneck is access to the directory information at

the home node, but there may also be problems with congestion in the network, and delays

in updating distributed sharing lists. One tactic is to combine requests which a�ect the same

data line in the network, so that fewer requests go on to the home node. This approach

was used in the NYU Ultracomputer, where it applied to both read and write requests [45].

In that system, the combining was limited to requests which were concurrently held in an

intermediate input bu�er. Similar combining of requests is also performed in the network

hierarchy of the SICS DDM [50] and KSR-1 [140] COMA systems.

Another form of combining is the \eager combining" proposed by Bianchini and LeBlanc [16].

Accesses to \hot" data, i.e. data lines which have been marked as widely-shared by the

programmer, are treated di�erently by the cache coherence protocol. Each hot data line is

given a �xed number of server nodes. When a node makes a read request for a hot data line,

the request is sent to a server node (selected using the requesting node's identity and the

physical page number which contains the data line) rather than to the home node. If the

server has the data line it is sent to the client, otherwise the client is noted as waiting for

the data, and the server sends a read request to the home node. Subsequent requests from

other clients for the same data line are queued at the server until the data arrives from the

home node, at which point the server sends the data on to all the waiting clients. When a

write request is issued for a hot data line which is in the shared state, the home node sends

invalidation messages to all the server nodes for that data line, and the servers then pass the

invalidation on to their clients. When a hot data line has its state at the home node changed

from \modi�ed" to \shared", the home node sends the updated data line to all its server

nodes (this being the eager sharing which gives the protocol its name).

Eagerness is also used in the SESAME project where an eager sharing mechanism is provided

in the hardware to work in conjunction with compile-time analysis [143]. Each eager-sharing

interface uses a directory of the shared memory regions which contain shared variables to

decide whether to broadcast any updates made to its local memory to other nodes. As

with eager combining, the scheme relies on being given information about which data is

62 Chapter 2. Shared-Memory Multiprocessors

to be included in the eager sharing. Both the eager combining and eager sharing schemes

can be regarded as providing a hybrid update-invalidate coherence scheme for writes to the

marked data, because the underlying write-invalidate protocol is extended with a mechanism

to selectively broadcast updates for widely-shared data.

In the Scalable Coherent Interface standard (SCI), the cache coherence protocol uses dis-

tributed doubly-linked sharing lists to keep track of the sharers of each data line [41]. The

sharing lists are sequential structures, and so there is a problem with scalability for widely-

shared data, particularly if there are many updates, because the invalidation of the sharing

list is sequentialised. To address this problem, proposals have been made to modify the SCI

standard to cater for widely-shared data [68]. The initial scheme relied on \recursive dou-

bling" to impose a tree structure on top of the doubly-linked list used in SCI [61]. This proved

rather cumbersome and has e�ectively been replaced by the GLOW extensions to SCI which

use an explicit tree structure to hold the sharing list for widely-shared data [70].

The GLOW extensions to SCI intercept requests for widely-shared data by providing \agents"

at selected network switch nodes. The intercepted requests are used to build sharing trees

for these data items. The tree structure supports the combining of read requests, and allows

for faster invalidation/update on writes. The original proposal relied on static analysis by

the programmer or compiler to identify the widely-shared data. The more recent work on

dynamic GLOW has found that the best performance improvements are achieved by detecting

the program data access instructions which su�er long latency [69]. This instruction-based

prediction relies on some customisation of the CPUs to supply program counter information

along with data access requests.

Adaptive Write-Update and Write-Invalidate

In Section 2.1.1 of this thesis it was noted that neither the write-update nor the write-

invalidate approach is best for all situations. The optimum strategy depends partly on the

network characteristics and partly on the individual applications. Adaptive schemes in this

area aim to obtain a balance between update and invalidate by having update as the default

policy, and swapping to invalidate after more than x updates in a row, with x being modi�ed

dynamically to suit the application. Examples of such schemes include the distance-adaptive

update protocols of Raynaud et al. [108] and the adaptive hybrid protocols proposed by

Anderson and Karlin [7].

Anderson and Karlin describe two adaptive schemes - Random-Walk and Last-Three-Samples

- for swapping between write-update and write-invalidate. The work builds on algorithms

2.3. Solutions to the Performance Problems 63

introduced earlier by Karlin et al. for spin-locks [66], and uses the concept of \write runs"

proposed by Eggers and Katz [34] to drive the adaptive algorithms for the individual data

lines. A write run is a sequence of write references to a shared address by a single processor.

The run begins with the processor's �rst write to the address, is incremented by one for

each write by the processor, and ends with the �rst access (read or write) by any other

processor. The two adaptive schemes modify the threshold value, i.e. the length of the write

run at which write-update will swap to write-invalidate, on a line by line basis. This ensures

that data lines with consistently long write runs will have their threshold reduced to zero

(which favours write-invalidate), while those with consistently short write runs will have their

threshold increased to allow for active sharing (i.e. the balance tips in favour of write-update).

The Random-Walk protocol maintains a separate threshold Tb and counter Cb for each data

line, as well as an overall threshold invalidation ratio R. At the start of running an application,

the Tb and Cb for all the data lines are set to zero. During a write run the default policy

is write-update, but the Cb for the data line is decremented by 1 for each write, and when

it reaches zero write-invalidate is used instead for the rest of the write run. At the end of

each write run, the Tb for the data line is adjusted as follows: if the write run > R then Tb is

decremented by 1 (but will not go below zero), otherwise Tb in increased by 1 (but will not

go above R). The Cb for the data line is then set to the new Tb value.

The other protocol presented in the paper, Last-Three-Samples, di�ers only in how the Tb

value is adjusted at the end of each write run, aiming to use the last three write run lengths

together with probability distribution information to adjust the data line's threshold more

quickly than the �1 of Random-Walk. However the overheads of storing the last three write

run lengths for every data line, together with a static table of optimum thresholds at every

node, are not rewarded with further performance gains over Random-Walk.

Anderson and Karlin conclude that one needs to weigh the bene�t of using an adaptive

protocol to obtain performance equal to the better of write-update and write-invalidate,

against the additional complexity and hardware needed to implement the adaptive protocols.

They also note that the performance advantages of the adaptive protocols increased with the

number of processors and larger cache size [7].

2.3.4 Data Placement

The con
ict which can occur when several processors require access to the same data line,

i.e. access to widely-shared data, has been addressed in the preceding section. However

problems can also occur on cc-NUMA systems when several processors simultaneously require

64 Chapter 2. Shared-Memory Multiprocessors

access to di�erent data items that have the same home node. When these items are held on

the same page the con
ict problem is reminiscent of the false sharing of data on cache lines,

and the solutions are similar: e.g. separate the data items on to di�erent pages, or use a

smaller page size. Con
icts also occur where the data items are held on di�erent pages with

the same home node. This problem can occur when a �rst-touch page placement strategy is

used, i.e. where the �rst node which accesses data on a page becomes the home node. Such

inter-page con
icts can be addressed by using a di�erent static page allocation policy, or by

employing dynamic page placement.

Static Page Placement

A common alternative to the �rst-touch policy is to use a round-robin approach, where the

allocation routine cycles through the nodes allocating a page in turn to each node. This

approach gives a more even distribution of data across the system, and so reduces hot spots.

Unfortunately, this policy can lead to problems with applications which have been written

with locality in mind, since it is likely that few of the pages accessed by a node will have been

allocated to it. It is also possible that the policy could be still be vulnerable to \stride" access

patterns in the application program, leading to inter-page access con
icts at a home node.

As a result, �rst-touch is generally the default page placement policy, with round-robin being

available as an option for improving the performance of some applications. Swapping between

the strategies can solve performance problems on particular applications, but the performance

problems caused by static page placement may indicate the need for more
exible placement

policies.

The �rst-touch and round-robin policies are generally the only static policies provided in com-

mercial systems, for example the SGI Origin2000 [85], primarily because they are relatively

easy to implement. It should be noted, however, that there has been a considerable amount

of work on randomised shared-memory where data is allocated to memory in smaller units

than a page, e.g. at data line or even word size. Allocating data randomly to memory in

smaller units reduces \inter-unit" access con
icts, but at the same time removes data local-

ity. Examples of randomised shared-memory include the proposal by Hellwagner illustrated

in Figure 2.10 [52], and the SB-PRAM [71]. The SB-PRAM uses simple linear bijective hash

functions5 to distribute data to di�erent memory modules, and dynamic re-hashing to avoid

run-time stride access patterns. Techniques to combat stride access patterns are also used in

5A hash function takes a key as input and returns an integer within a prescribed range as the result. The

function is designed so that the integer values it produces are uniformly distributed throughout the range. A

bijective hashing function will only map one input key to a particular location in the target range, i.e. several

input addresses will not map to the same output address, and it ensures that every element in the function's

target range will be mapped on to by some element in the input domain.

2.3. Solutions to the Performance Problems 65

P1 P2 Pn

P1 P2 Pn

Interconnection network

logical view: global shared-memory Physical situation: distributed local memory

H(Aj)

Hashing H(Ai)

Figure 2.10: Randomised shared-memory [52]

systems that split the memory into banks to speed up access to data, for example the modulo

interleaving described by Hennessy and Patterson on page 436 of [54].

Dynamic Page Placement - Page Migration and Replication

Dynamic page migration is similar to the migration of data to attraction memory in COMA

systems, but involves moving whole pages rather than individual data lines. An early example

of a migration scheme is given by Scheurich and Dubois, whose adaptive algorithm uses a

principle of \geographic locality", i.e. it suits the quite common pattern in parallel algorithms

where a node shares data with its immediate neighbours (e.g. north, south, east and west

neighbours on a 2D grid) [113]. Another approach is to copy (i.e. replicate) complete pages

to remote nodes which have su�ered a data miss. Scheurich and Dubois made the important

point that the initial data partitioning, i.e. how the data is split into pages, is just as critical

as where these pages are then allocated [113]. Given that migration is page-based, poor

initial partitioning can defeat the best migration mechanism because two data structures on

the same page may be updated by di�erent processors.

The extensive experimental study of LaRowe and Schlatter Ellis focuses on the policies which

determine the physical placement of pages, including dynamic migration and replication [83].

The study �nds that there is no one policy that gives the best results for all the applications

they tested. They note that improving performance is a complex issue, where, for example,

the decision to migrate a page may overload the destination node, or occur too late to be

useful, or cause network contention if too many pages are migrated at once. Addressing

these problems leads to more complex dynamic page placement algorithms, and they can

never perfectly predict future use. There is a tradeo� between the problem of preventing

66 Chapter 2. Shared-Memory Multiprocessors

unwanted page migration and the desire to migrate pages as soon as possible. Even in their

small selection of benchmarks there are applications for which one is more important than

the other, suggesting that it may be di�cult to �nd a single best tradeo� point. LaRowe

and Schlatter Ellis observed the problem of initial partitioning, noted earlier by Scheurich

and Dubois, with their \�sh" application (�shes and sharks in a 2D ocean): none of their

dynamic paging policies were able to overcome the page level false sharing e�ect i.e. there

were many data structures on each page, and the dynamic policies all led to pages thrashing

between processors.

There is a large body of work dealing with dynamic page placement, mainly in the context of

distributed virtual shared-memory systems (DVSM), i.e. systems which implement shared-

memory in software, and which enhance the existing operating system paging functions to

include moving/copying pages between the distributed memories. Recent approaches to dy-

namic page management in DVSM systems include the Cashmere project at the University

of Rochester [74] and the TreadMarks project at Rice [6]; both systems use page replication.

Cashmere and TreadMarks are compared in [73], each implemented on a 32 processor DEC

Alpha cluster (8 nodes, 4 processors each). The main conclusion is that low-latency networks

make �ne-grain DVSM systems (e.g. Cashmere) more competitive with more coarse-grained

approaches (e.g. TreadMarks), although further hardware improvements will be needed before

systems such as Cashmere can consistently show superior performance.

2.3.5 Algorithm Design

Although there are various architectural strategies which can partially address the perfor-

mance problems of cc-NUMA multiprocessors, there still has to be some parallelism in the

user applications if the architecture is to have a chance of performing well. Programmers need

some guidance on how to write a \parallel" program, albeit one which is portable and not

tied to a speci�c implementation [124]. To this end, a number of abstract models have been

suggested, including the parallel random access machine (PRAM), the bulk synchronous par-

allel model (BSP), and the LogP model. In addition, the programmer needs to consider the

processing balance within an application. It may also be necessary to tune the performance

of an application to suit a speci�c multiprocessor, and the e�ects of such performance tuning

have to be considered.

2.3. Solutions to the Performance Problems 67

Abstract Models of Parallel Architectures

The question of how to guide algorithm designers without tying the resulting programs to a

particular system is a vexed issue. Too high a level of parallel programming model can result

in applications which ignore all communication delays or assume in�nite system resources. At

the other extreme are overly specialised models which are based on a particular system design,

for example a speci�c network topology. The Parallel Random Access Machine (PRAM) is

the most popular model for analysing parallel algorithms [67]. This model assumes that a

collection of processors compute synchronously in parallel, and can access any part of the

global shared-memory in unit time. The PRAM is not physically realisable as a scalable

system, although the SB-PRAM is an e�ort to get the same e�ect by hiding the memory

access latencies through multi-threading [37]. The PRAM model has proved useful for gross

classi�cation of algorithms, but in general it does not favour algorithms which are suited to

a cc-NUMA environment.

An alternative is the Bulk Synchronous Parallel (BSP) model which was originally proposed

by Valiant [138]. This model attempts to provide a bridge between theory and practice by

imposing restrictions on the programming model which represent the key performance bottle-

necks. A BSP computer consists of a set of memory-processor pairs, a global communications

network, and a mechanism for the e�cient barrier synchronisation of the processors. The

approach allows for latency to be hidden by running several jobs or \virtual processors" on

each physical processor (i.e. multi-threading). A job which accesses memory is de-scheduled

until the reply from the remote processor is received. This requires a minimum number of

ready-to-run processes, termed the \parallel slackness". Valiant proposes a programming

environment in which algorithms are designed for the PRAM model assuming an unlimited

number of processors, and are then implemented by simulating a number of PRAM processors

on each BSP processor (i.e. to exploit the parallel slackness).

The LogP model proposed by Culler et al. also aims to represent the key performance bot-

tlenecks, but without imposing a programming structure [25]. LogP attempts to capture the

performance bottlenecks with four parameters, which are illustrated in Figure 2.11:

L an upper bound on the latency, or delay, incurred in communicating a message containing

a word (or a small number of words) from its source module to its target module.

o the overhead, de�ned as the length of time that a processor is engaged in the transmission

or reception of each message; during this time, the processor cannot perform other

operations. Holt et al. use a slightly modi�ed LogP to model distributed shared-memory

systems where o is the occupancy su�ered by the node controller [57].

68 Chapter 2. Shared-Memory Multiprocessors

P M P M P M.. .

L (latency)

Interconnection network

g (gap)

limited capacity
(L/g to or from
a processor)

P (processors)

C C C

o = occupancy, the time during

 which a node controller is

 handling a particular request

 and cannot service any others

 that are waiting.

o o

M = memory (DRAM)
C = node controller

Figure 2.11: LogP based abstract system used in [57], adapted from [25]

g the gap, de�ned as the minimum time interval between consecutive message transmissions

or consecutive message receptions at a processor. The reciprocal of g corresponds to

the available per-processor communication bandwidth.

P the number of processor/memory modules. The model assumes unit time for local opera-

tions and calls it a cycle.

It is assumed that the network has a �nite capacity, such that at most [L/g] messages can

be in transit from any processor or to any processor at any time. If a processor attempts

to transmit a message that would exceed this limit, it stalls until the message can be sent

without exceeding the capacity limit. The LogP model avoids specifying the communica-

tion protocol or the programming style, and so is equally applicable to shared-memory and

message-passing multiprocessors. At the same time the four parameters provide enough in-

formation to highlight some performance bottlenecks in parallel algorithms [25].

The models discussed so far have not included any performance penalty for con
icting data

accesses. This has in part been addressed by Dwork et al. with a formal complexity model

which re
ects the fact that the performance of multiprocessor algorithms is heavily in
u-

enced by contention, i.e. the extent to which processes access the same location at the same

time [33]. The trade-o�s in their model capture the notion that one can reduce contention

when concurrency is high only by paying a cost when contention is low, and vice versa. In the

model, simultaneous accesses (resulting from cache misses) to a single memory location are

serialised. Only one operation succeeds at a time, and other pending operations must stall.

Their measure of contention is the worst case number of stalls that can occur. They freely

admit that the model, like all complexity models, represents an abstraction of real architec-

tures. For example, all memory accesses are serialised at the granularity of individual data

locations, whereas in practice serialisation occurs at coarser-grained levels of memory (e.g. at

data line and at page level).

There is as yet no consensus on the best parallel programming model, but the trend is towards

models which include some element of communication costs without tying the model down

2.3. Solutions to the Performance Problems 69

to a speci�c multiprocessor system. The aim is to guide the algorithm design so that the

resulting program can perform reasonably across a range of architectures.

Load Balancing

An important aspect of algorithm design is the time spent waiting at synchronisation events.

The simplest form of load balancing would be to ensure that every processor does the same

amount of work and is busy at the same time. In practice the amount of \work" done by a

processor also includes the latency of any data accesses, and this can vary from processor to

processor. Using models such as LogP can help the programmer to partition the processing

evenly between the available processors. However there are algorithms which are not amenable

to such static load balancing because the amount of processing depends on information which

is only available at run-time.

Dynamic partitioning techniques adapt to load imbalance at run-time. A semi-static example

of this can be found in the Barnes-Hut galaxy simulation where the work done in one phase

is used to assign stars to processors for the following phase [11]. A more dynamic approach

is to provide a task queue, from which idle processors take the next available task. The

task queue can be centralised (simple, but problems with contention) or distributed (more

complicated to control, but less contention). More sophisticated still are algorithms where idle

processors can \steal" work from overly busy processors, for example the Radiosity application

in Stanford University's Splash-2 benchmark suite [144]. Task stealing implies some form of

communication and can generate contention, so several interesting issues arise, e.g. how to

minimise stealing, which processor to steal work from, how many and which tasks to steal at

a time. A detailed survey of the techniques currently employed to achieve \partitioning for

performance", including task stealing, can be found in Section 3.1 of Culler et al. [24].

It should also be noted that research is being done into using hardware to speculatively

execute parts of applications which static analysis cannot guarantee has no data dependence

e�ects. This has the overhead of coping with \undoing" the work if a dependence is found.

However it has the bene�t that code which seems hard to parallelise can be run on nodes that

might otherwise be left idle, so it can be regarded as a form of load balancing. An example of

speculative parallelisation is the research currently being carried out by the IACOMA group

at Illinois [147].

70 Chapter 2. Shared-Memory Multiprocessors

Performance Tuning

There still remains the practical problem that when a speci�c program performs poorly on

a given architecture, the programmer needs some guidance on how to optimise the applica-

tion. The confusing interactions of the various types of sharing and locality, together with

the characteristics of the interconnection network and the coherence protocol, mean that a

programmer may have to make educated guesses on how to restructure the application.

The memory reference behaviour of an application, at the most basic level, depends on the

intrinsic nature of the application. However, the programmer still has considerable
exibility

in manipulating the algorithm, data structures, and program structure to change the memory

reference patterns in order to better exploit the memory hierarchy [94]. There has been a surge

of interest in recent years in developing tools to support application performance tuning. The

purpose of a performance debugging tool is to focus the user's attention on where a program is

spending its time and to give as much insight as possible into how to reduce the time spent in

performance bottlenecks. Many performance debuggers now exist, ranging along a spectrum

from summary-level, low-overhead tools to more detailed, high-overhead tools.

At one end of the spectrum, performance monitoring tools such as Gprof [46] and Mtool [42]

are intended to produce simple, high-level statistics with minimal overhead. At the other

extreme are tools like SHMAP [31], which provides a reference-by-reference animated picture

of program memory behaviour. In addition, tools such as MemSpy [94], SM-prof [20], and

Clarissa [129] provide a range of detail levels, i.e. starting with a summary, the user can then

focus on more detailed information.

LaRowe and Schlatter Ellis report that when �rst-touch page placement is used, the perfor-

mance is better for all tuned applications (i.e. those written with the underlying architecture

in mind) than for the untuned equivalents written for the UMA memory model where the

application programmer does not have to worry about data placement [83]. However they

emphasise that the tuned programs take longer to write and are less portable.

2.4 Performance Trade-O�s in the SGI Origin2000

The preceding section gave an overview of the many partial solutions which have been pro-

posed to address the performance problems in scalable shared-memory systems. In reality,

multiprocessors use some subset of the performance enhancing techniques, partly because of

manufacturing cost considerations, but also because while some techniques work well together,

others are not complementary. The SGI Origin2000 is a commercial cc-NUMA multiprocessor,

2.4. Performance Trade-O�s in the SGI Origin2000 71

R10000
MIPS

SLC

R10000
MIPS

SLC

DRAM Hub

I/O

Network Router

Processing Node

Figure 2.12: An SGI Origin2000 with 16 nodes (32 processors)

the design of which illustrates the practical trade-o�s between cost and performance [85].

The Origin2000 system is capable of scaling to 512 nodes connected by a hypercube-based

network. The topology is referred to as a \bristled" hypercube, because each network router

has two nodes attached to it. Figure 2.12 shows the topology of a sixteen node system. Each

node contains two MIPS R10000 processors (with integral FLC and o�-chip SLC), a node

controller connected to the network, a share of the overall DRAM, and an I/O interface. The

node controller, known as the \hub", handles all the SLC misses by the local processors, as

well as access to the local memory, and the processing of all incoming messages from remote

nodes.

An important design goal for the system was to keep the remote access latency reasonable in

comparison to local accesses, without slowing local accesses. A hypercube topology was used

to reduce the maximum number of hops between any two nodes. The local processors in a

node are connected by a bus to the hub, but there is no snooping between the two processors:

the loss of this opportunity for fast access to data in the other SLC was a deliberate design

decision taken to minimise the latency of accessing local memory and to simplify the cache

coherence protocol [85].

Data placement is important on the Origin2000 because of its hypercube topology, and so the

default page placement policy is �rst-touch to give some locality for data. The system also

provides round-robin and dynamic migration policies as options which can be turned on for

individual applications. The page migration facility has overheads in capturing and acting

on page usage information, and should therefore only be used when tuning the performance

72 Chapter 2. Shared-Memory Multiprocessors

of particular applications [60].

The dynamically scheduled MIPS R10000 microprocessors [146] allow independent memory

access instructions to issue out of program order, and multiple access requests can be out-

standing at any one time. However the processor ensures that the operations complete in

program order, and the writes are made visible to the memory system in program order. In

conjunction with the coherence protocol, which provides transaction atomicity (i.e. a trans-

action a�ecting a data line will be fully completed before any other transaction a�ecting that

data line can proceed), this satis�es the conditions for sequential consistency as discussed in

Section 2.1.9 of this thesis.

The invalidation-based cache coherence protocol is similar to the protocol used in the Stanford

DASH prototype system [88]. However the Origin2000 protocol has several enhancements

which are designed to reduce the size and number of messages, and it also has an improved

deadlock avoidance scheme [85]. A distributed bit vector directory is employed, and the 64-

bit vector scales by being used as a \coarse vector" when an application is running on more

than 64 nodes, i.e. with N nodes each bit will correspond to N=64 nodes. This coarse vector

approach can result in nodes receiving invalidations for data lines which are not held locally, so

the protocol has to handle such spurious invalidations, and the spurious invalidation messages

will increase the overall network tra�c.

Jiang and Singh have carried out a performance study [60] of the Origin2000 using applica-

tions from the Stanford Splash-2 benchmark suite [144]. Their study found that the FFT

application (with 1 million points) su�ered from large memory delays on a 32 processor sys-

tem. These delays were due to contention, and were unbalanced across the 32 processors.

They were able to get some improvements on the Origin2000 by using prefetching, or by

forcing only one CPU at each node to run the application, but the scalability was still quite

poor. They suggested that this contention problem on the Origin2000 was caused by two

processors sharing each hub controller. Their results also demonstrated that the contiguous

Ocean application needed a larger problem size than the Splash-2 default of 258 � 258 to

be scalable on the Origin2000, with scaling problems showing at only 32 processors. They

attributed this to the large (128 byte) line size and the memory access stall time.

2.5 Conclusions

This chapter has examined the current state of shared-memory architectures, the performance

problems associated with the approach, and various strategies which have been proposed to

deal with the performance problems. One thing that is clear from the survey is that a

2.5. Conclusions 73

solution proposed for one problem is often also useful for alleviating other problems. For

example, caching in the memory hierarchy was the inspiration for using directory caches

within the node controller. Another example was the widespread applicability of adaptive

algorithms, although commercial examples of adaptive strategies being used are rare because

of the overheads of capturing and acting upon the usage data. Such opportunities for re-using

a strategy in di�erent contexts was the prime motivation for the wide scope of the chapter. By

understanding the many proposals which have been put forward to improve the performance

of shared-memory systems, it is then possible to avoid any known pitfalls and to grasp how

some strategies could be used together in new ways.

This thesis is concerned with reducing the need to tune application programs, by providing

stable performance on cc-NUMA systems. Stable performance for scalable shared-memory

multiprocessors can only be achieved by addressing the architectural problems which lead to

long latency when accessing remote data. For example, it was shown in Section 2.2.3 that

access to widely-shared data has tended to be ignored by previous researchers because data

access patterns have been categorised by how often they are used rather than by the severity of

the performance problems that they can cause. Although, as discussed in Section 2.3.3, some

architectural proposals have been made to support widely-shared data, the node controller

contention caused by such data is still an open research area.

One thesis cannot hope to �nd a solution for all the performance woes which hamper the goal

of scalable shared-memory. However, by concentrating on a part of the cc-NUMA architecture

which is still causing problems despite all the research work and commercial implementations

of the last ten to �fteen years, the aim is to provide a novel solution to one of the main causes

of node controller contention.

74 Chapter 2. Shared-Memory Multiprocessors

Chapter 3

Node Controller Contention

Given that the node controller handles all accesses to the local memory at a node, it has the

potential to cause performance problems. It was seen in the previous chapter that although

node controllers represent an obvious bottleneck, and despite strenuous attempts to reduce

node controller occupancy in order to improve the throughput of requests, there are still

performance problems. An example of this is found on the SGI Origin2000 [60].

Contention at node controllers occurs when there is a burst of incoming messages, and can

be exacerbated by requests for service from local CPUs arising from local cache misses. To

examine the problem, this chapter gives an overview of the cc-NUMA architecture used to

evaluate contention, followed by details of the cache coherence protocol and eight benchmark

applications. These applications are then used to demonstrate, by means of simulation, the

performance anomalies which arise from node controller contention. Finally the causes of the

contention are discussed and analysed.

3.1 System Architecture

This section presents the representative cc-NUMA design which is simulated for this thesis.

The system is illustrated in Figure 3.1, and consists of a set of nodes connected by a network.

Each node contains a processor (CPU), with integral �rst level cache (FLC) and translation

look-aside bu�er (TLB), a large second-level cache (SLC), some local memory (dynamic ran-

dom access memory - DRAM), and a node controller. The processor, SLC, DRAM, and node

controller are interconnected by two decoupled buses. The node controller sends messages

to, and receives messages from, the network, and also handles all SLC misses from the local

CPU. The node con�guration is similar to a number of research and commercial systems,

including Stanford's FLASH [81], Sun's S3.mp prototype [102], and the SGI Origin2000 [85].

75

76 Chapter 3. Node Controller Contention

CPU

FLCTLBSLC

DRAM

CONTROLLER

NODE

SLC bus

MEM bus

CONTROLLER

NETWORK

NETWORK

Figure 3.1: The system architecture

The processor and the caches are attached to the SLC bus, whereas the DRAM and the node

controller are attached to the MEM bus. This decoupled bus arrangement allows the processor

to access the SLC at the same time as the node controller accesses the DRAM. This can be

expected to occur frequently because the FLC is small and write-through: many memory

references which cannot be satis�ed by the FLC will be satis�ed by the SLC. The decoupled

bus arrangement therefore reduces contention between the processor and the controller. The

contention for the buses and the node controller which will occur, because of the con
icting

demands from incoming messages and the local CPU, is simulated in detail.

A large direct-mapped cache is used for the SLC. Direct-mapped caches have more con
ict

misses due to their lack of associativity because any one data line will only map to one speci�c

cache line rather than the n choices of location found in an n-way associative cache. However

the performance of direct-mapped caches for hits is better than set-associative caches because

of the simpler hardware required to match the address with the cache location [63].

The assumption that all instruction accesses hit in the FLC has been made in order to focus

this study on the e�ects of data misses. The assumption is based on a \rule-of-thumb"

described by Hennessy and Patterson, viz. that application code has a very high level of

locality (90% of execution time uses only 10% of instruction code) so the instruction misses

are small in comparison to data misses [54]. This assumption holds true for the benchmarks

used in this thesis.

3.1. System Architecture 77

3.1.1 Cache Coherence and Consistency

The caches are kept coherent using an invalidation-based, distributed directory protocol. The

protocol is the Stanford distributed-directory protocol proposed by Thapar and Delagi [134],

and is similar to that used in the Sun S3.mp prototype [102]1. The caches that share a copy

of a data line are linked together in a list. The protocol is described in detail in Section 3.2.

The cc-NUMA architecture is modelled with sequential consistency (see Section 2.1.9). Se-

quential consistency does not accommodate some of the latency-hiding techniques which are

possible under more relaxed consistency models (see Section 2.3.3 of this thesis). However,

unlike the relaxed consistency models, sequential consistency does not require the application

programmer to mark the requests that have consistency implications; nor do barriers have

to be inserted just to ensure that consistency has been restored. In addition, recent stud-

ies suggest that advances in hardware have reduced the performance gap between sequential

consistency and the more relaxed models [107], which starts to tip the balance back in favour

of sequential consistency given its simpler programming model and coherence protocol [56].

3.1.2 Network Con�guration

The network is a contention-free full crossbar; therefore a given type of message will take

the same time to travel between any two nodes. This straightforward network topology was

chosen for two reasons: to have a clear notion of the e�ect of network delays on the overall

results, and to avoid tying the results to a speci�c network topology. This approach is also

taken by Culler et al. in the LogP model, and stems from there not yet being consensus on

the \best" network topology [25]. The networks of new commercial systems are typically

di�erent from their contemporaries and also from their predecessors. In addition, production

systems allow for network faults, and this means that the actual interconnect experienced by

an application may vary from run to run on the same machine.

3.1.3 Page Placement Policy

The page placement policy used in this work, �rst-touch-after-initialisation, was chosen after

an investigation into the e�ects of di�erent page placement policies [131]. The study also

examined the interaction of the page placement policy with the contention-reducing strategies

proposed in this thesis. It should be noted that the �rst-touch-after-initialisation policy does

not determine the home page for a node until parallel processing starts: in this way it avoids

1The di�erences between the Stanford distributed-directory protocol and that used in S3.mp are implemen-

tation details.

78 Chapter 3. Node Controller Contention

the shortcoming of na��ve �rst-touch policies, which can result in the node which initialises all

data structures becoming the only home node.

3.2 The Base Cache Coherence Protocol

The Stanford distributed-directory cache coherence protocol is based on invalidations, i.e. a

write to a data line may only proceed when all other cached copies of that data line have been

removed [134]. A distributed directory structure, implemented as a singly-linked distributed

sharing list, is used to keep track of the identity of the nodes which have cached a particular

data line. Each cached copy of the line has a pointer to the next node on the sharing list.

The address of a given data line uniquely determines the home node for that line, based on

the page which contains the data line. In the absence of any sharers the data line exists solely

in the memory associated with the home node. The home node's SLC may contain a copy of

a data line from the local memory, but this copy does not form part of the sharing list for

the data line.

The sharing lists are in the form of singly-linked lists. This has the advantage of requiring less

storage than other distributed sharing list implementations such as double linked lists or tree

structures. Singly-linked lists have the disadvantage that traversing the sharing list, which is

needed when one or all entries need to be removed from the list, takes time proportional to

the number of entries on the list. This overhead is generally a fair tradeo� when sharing lists

are short, given the saving in storage [135]. For long sharing lists the use of single linking can

add to the latency of invalidation (removing all entries from the sharing list) in comparison

to a tree-structure list, and also in comparison with a bit-vector approach (see Section 2.1.5

of this thesis). In addition, removing one entry from a long sharing list when a data line is

evicted from cache is more e�cient in doubly-linked lists. Although singly-linked lists have

these overheads, the linking policy has been chosen for this work because its lower storage

requirements generally outweigh the drawbacks.

A read miss to a data line by a remote processor will prompt the home node to send a copy

of the data line to the requesting processor, which will place the copy in its second-level

cache. In addition, the remote node is added to the distributed sharing list for the data line.

Subsequent readers will be added to the sharing list in a similar way, with new entries added

at the head of the sharing list. Figure 3.2 shows the situation when nodes j and k each have

a cached copy of a line whose home is at node i.

The home node:

� either holds a valid copy of the line (in SLC, DRAM, or both), or knows the identity of

3.2. The Base Cache Coherence Protocol 79

controller
node

SLC CPU

DRAM

Node j Node kNode i

controller
node

CPU

DRAM controller
node

CPU

DRAM

SLC SLC

NULL

Figure 3.2: Example of a distributed sharing list

the node which does (the current \owner"),

� has pre-allocated space in memory to which the �nal replacement of the line from cache

can take place, and

� holds directory information for the line (head and state of the sharing list) in DRAM.

3.2.1 State Sets and Transitions

The home maintains the state for all its data lines. There are four possible memory states

for each data line:

Home-Invalid: the data is not held at the home node, but the home knows the identity of

the owner of the data.

Home-Exclusive: the up-to-date data is held only at the home node, in the SLC and/or

DRAM.

Home-Shared: the data is held at the home node and at one or more clients, all copies

being consistent with the copy in DRAM.

Home-Locked: the sharing list is being updated. No other transactions are allowed to

traverse the sharing list until the list is unlocked. This is done to avoid either using an

out-of-date list pointer or having con
icting updates to the list pointers.

The state transitions for the DRAM directory entries are illustrated in Figure 3.3. A dis-

advantage with this state set is that, in the state Home-Exclusive, it is not possible to tell

from the directory entry's state whether there is a more up-to-date copy held in the home

node's SLC. This was a deliberate choice, because it saves the local processor (when it has

Home-Exclusive ownership of a line) from having to update the DRAM as well as the SLC

until the data line is evicted from the SLC. This choice is deliberately made at the expense

80 Chapter 3. Node Controller Contention

the "LOCKED" state is not
shown here because it is
a transitional state which
protects the sharing list
while entries are being

SHARED

EXCLUSIVE
HOME

removed.

remote write miss

(local or remote)
read miss

HOME

local write miss

remote
read miss

INVALID
HOME

remote
write
miss

local write miss

Figure 3.3: DRAM state transitions

of remote read requests. A similar state set is used for the same reason in other systems,

e.g. Sun's S3.mp prototype [102].

The second-level cache line states are:

Shared: There is more than one valid copy of the line.

Exclusive: This is the only valid cached copy.

Invalid: The line contains no usable information.

The state transitions for the SLC cache lines are shown in Figure 3.4.

SHARED

miss
write

INVALID

EXCLUSIVE

read hit

write hit

invalidate / unhook
write hit

read request
from another node

read miss

invalidate / unhook

Figure 3.4: SLC state transitions

The message types needed to support the protocol are described in Appendix C.2. Extra

message types were added to the ALITE simulator to handle the contention-reducing strate-

gies described in later chapters, and these are also included in the appendix. There are two

di�erent classes of message: short messages which contain only control information (e.g. for

3.2. The Base Cache Coherence Protocol 81

managing updates to a sharing list), and long messages which contain both control informa-

tion and a line of data.

3.2.2 Example Transactions

To illustrate how the protocol works, Figures 3.5, 3.6, 3.7, and 3.8 show four examples of

transactions: client read miss (home node invalid), client read miss (home node valid), client

unhook, and client write miss. The key to the examples is shown in Figure 3.9.

Client Read Miss, Home Node Invalid

If a client tries to read a data line that is currently owned by another node, the read-request

message will �nd the home node in state Home-Invalid. This prompts the forwarding of the

request to the owner (read-request-fwd). The owner node will then change the state of the

SLC line from Exclusive to Shared, and will send copies of the data line to both the client and

the home node. The arrival of the take-shared message at the client will change the cache

status from Invalid to Shared, and the home node's status will change from Home-Invalid to

Home-Shared. The sequence of messages and the changes to the sharing list are shown in

Figure 3.5.

Client Read Miss, Home Node Valid

The read-request message from the client will �nd the home node's state for the line to be

Home-Shared. The home node will add the client at the head of the sharing list, and will

send a take-shared message containing the data line to the client. The sequence of messages

and the changes to the sharing list are shown in Figure 3.6.

Client Unhook

If an SLC data line copy is evicted, following a miss on another location which maps to the

same cache line, the cached copy has to be \unhooked" from the sharing list. This is done by

sending a client-unhook-request message to the home node, which will lock the directory

entry. The unhook request is then forwarded along the sharing list until it reaches the entry

preceding the node which requested the unhook. The identi�er of this prior node is then

passed to the requesting node which removes itself from the list by sending back the identi�er

of its successor. This is used to update the list pointer to skip the unhooking node. Finally

a client-unhooked message is sent to the home node to prompt it to unlock the directory

entry for the data line. The operations are illustrated in Figure 3.7.

82 Chapter 3. Node Controller Contention

H

C O

O C

O

1. read-request

3. take-shared

4. take-shared-home

2. read-request-fwd

SHARING LIST

After:

Before: H

H

Figure 3.5: Client read miss, home is invalid

H

1. read-request

SHARING LIST

After:

Before:

2. take-shared

C1C2

C1

C2 C1

H

H

Figure 3.6: Client C2 read miss, home is valid

H

C3 C1C2

C3 C1

C2 C1

SHARING LIST

After:

Before:

2. client-unhook-forward

1. client-unhook-request

5. client-unhooked

3. client-unhook-req-ok

4. client-unhook-ptr

C3

H

H

Figure 3.7: Client C2 unhook

H

C1

C1

C3C4

C3C4

C3

SHARING LIST

After:

Before:

1. write-request2. invalidate

3. invalidate

6. exclusive-ack 5. take-exclusive

4. invalidate

H

H

Figure 3.8: Client C3 write miss

3.3. Benchmark Applications 83

Home Node: the node that contains the physical

memory corresponding to the requested address

Owner Node: a remote node that currently caches the

requested data line in the state Client-Exclusive

Client Node: a remote node that needs a copy of

the data line

H

O

C

Request Message: A node-to-node
request message (initiates the transaction)

Protocol Message

Data-bearing Message

Sharing list link

Figure 3.9: Message
ow diagram notation

Client Write Miss

When a client processor wants to write to a data line, all other copies (including the home

copy) must be invalidated before the update is allowed to proceed. This involves sending an

invalidate request to the home node, which marks any home copy as invalid, and forwards

the request along the sharing list. All sharing list entries will be invalidated, apart from

the copy at the writing node. The sharing list is locked for the duration of this operation

by setting the home node's directory entry status to Home-Locked. The last entry on the

sharing list will respond to the invalidate request by sending a take-exclusive message to

the requesting node. If the original write request involved a miss (i.e. the processor did not

have a copy of the data line in its SLC) this message will also carry a copy of the data line.

A exclusive-ack message is then sent by the requester to the home node to release the lock

on the sharing list. While the line remains in the Exclusive state, the processor may write to

it repeatedly without incurring coherence message tra�c. The sequence of messages and the

changes to the sharing list are shown in Figure 3.8.

3.3 Benchmark Applications

The applications are summarised in Table 3.1, along with the problem sizes used in this

work. GE implements a Gaussian Elimination algorithm [128]. CFD is a computational
uid

dynamics application modelling laminar
ow [132]. The remaining six applications were taken

from Stanford's Splash-2 suite [144], and were selected to give a representative cross-section

of scienti�c and engineering shared-memory applications. A brief description of each of the

applications is given below.

3.3.1 Barnes

The Barnes application simulates the interaction of a system of bodies (e.g. galaxies or par-

ticles) in three dimensions over a number of time-steps using the Barnes-Hut hierarchical

84 Chapter 3. Node Controller Contention

application problem size

Barnes 16K particles

CFD 64� 64 grid

FFT 64K points

FMM 8K particles

GE 512� 512 matrix

Ocean-Contig 258� 258 ocean

Ocean-Non-Contig 258� 258 ocean

Water-Nsq 512 molecules

Table 3.1: Benchmark applications

N-body algorithm [11]. The Splash-2 implementation allows for multiple particles to be

stored in each leaf cell of the space partition [58].

3.3.2 CFD - Computational Fluid Dynamics

Computational
uid dynamics is a major application area of high performance computing.

The problems studied are concerned with the way
uids (liquids or gases) deform under the

action of shear stress. The parallelisation comes from distributing the region of
uid to be

studied among the available processing elements. The
uid
ow algorithm implemented in the

CFD application is capable of solving two-dimensional laminar and turbulent incompressible

ows. In laminar
ows, the
uid moves in smooth layers, or laminae, and the shear stress is

the result of the microscopic action of the molecules. Turbulent
ow is characterised by large

scale, observable
uctuations in
uid and
ow properties, and the shear stress is the result of

these
uctuations.

The
uid dynamics situation being modelled in CFD is that of laminar
ow in a square cavity

with a sliding lid causing friction. The lid moves across the cavity, which introduces a zone

of re-circulatory
uid. If the analysis grid of the square cavity is su�ciently �ne, then small

counter-rotating eddies should be observed in the corners of the cavity. The CFD algorithm

was originally implemented on a distributed-memory message-passing architecture [132], but

the version used in this thesis had already been adapted to run as a shared-memory application

and optimised to reduce false sharing [129]. The program is written in FORTRAN, so it is

converted to C (using \f2c") before being run on the ALITE simulator. The structure of

the program is illustrated in Figure 3.10. The grid size for analysing the
uid is a run-time

parameter.

3.3. Benchmark Applications 85

calculates the latest

velocities (in u and v
directions) and pressure
for each cell in the grid

approximations of

 1 ?
processor

 1 ?
processor

BARRIER

BARRIER

BEGIN

initialise global variables

BARRIER

no

yes

its variables
each processor initialises

CALCU

CALCV

CALCP

calculate convergence criteria

yes

no

or max iterations
reached ?

convergence
END

yesno

Figure 3.10: Structure of the CFD application

3.3.3 FFT - Fast Fourier Transform

The FFT kernel program is a complex, one-dimensional version of the \Six-Step" Fast Fourier

Transform described by Bailey [10]. The FFT kernel is widely used in applications ranging

from signal processing to climate modelling. Speci�c optimisations in the Splash-2 implemen-

tation include [145]:

1. Performing staggered blocked transposes that exploit cache-line reuse.

2. The roots of unity data structure is arranged and distributed for only local accesses

during application of the roots of unity step.

3. A small set of roots of unity elements are replicated locally at each processor for com-

putation of the 1D FFTs.

4. The matrix data structures are padded to reduce cache mapping con
icts.

86 Chapter 3. Node Controller Contention

3.3.4 FMM - Fast Multipole Method

FMM, like Barnes, simulates a system of bodies over a number of time-steps. However it sim-

ulates interactions in two dimensions using a di�erent hierarchical N-body method called the

Fast Multipole Method [115]. FMM was run for a two-cluster Plummer distribution with cost

zones partitioning, and the precision set at 1:0e-6, in line with the Splash-2 guidelines [144].

Analysis of running the application on a 32 node simulated system showed that queues of

length 31 were occurring for access to elements of the f array, which forms part of the

G Memory data structure [129]. This array is used in each iteration of FMM to enable all

the processors to obtain the current overall dimensions of the x � y grid containing the 2-

dimensional model of the particles. The queueing occurs immediately after a barrier, when all

the processors read all the elements of the f array. This was the most signi�cant case of read

contention detected in FMM and it scales with the number of processors. It is independent

of the number of particles, so simulations were run for a small problem size of 8192 particles

and for three iterations to reduce simulation time.

3.3.5 GE - Gaussian Elimination

GE is a simple Gaussian elimination application, similar to that used by Bianchini and

LeBlanc in their study of eager combining [16]. The application is based on a vector system

algorithm described by Stone [128]. At the end of each iteration a single processor updates

a row of the matrix which is designated as the pivot row. Following a barrier, all processors

read this row and use it to update the set of rows which they maintain. It is immediately

clear that this will cause contention since the data lines holding the pivot row will all have the

same owner, and are also likely to have the same home node. The responsibility for updating

the rows is re-allocated each iteration, with each processor handling approximately the same

number of rows (in contiguous data lines) of the remaining matrix data.

3.3.6 Ocean

The Ocean program simulates large-scale ocean movements based on eddy and boundary

currents. It uses a Red-Black Gauss-Seidel Multigrid technique to solve the elliptic equations

associated with the problem, and partitions the grids into squarish subgrids rather than strips

of columns to improve the communication to computation ratio. There are two versions of

Ocean in Splash-2: using contiguous and non-contiguous allocations of partitions.

3.4. Experimental Design 87

1. Contiguous partition allocation:

This version implements the grids to be operated on as 3-dimensional arrays. The �rst

dimension speci�es the processor which owns the partition, and the second and third

dimensions specify the x and y o�set within a partition. This data structure allows

partitions to be allocated contiguously and entirely in the local memory of processors

that \own" them, thus enhancing the data locality.

2. Non-contiguous partition allocation:

This version implements the grids to be operated on as two-dimensional arrays. This

data structure prevents partitions from being allocated contiguously, but leads to a

conceptually simple programming implementation.

The base problem size for a system with up to 64 processors is a 258� 258 grid. The default

values are used for other parameters (except the number of processors, which is varied up

to 64). In addition, sample output �les for the default parameters for each version of the

code are contained in the �le correct.out in each subdirectory. The Splash-2 distribution

guidelines indicate that the less optimised versions of applications, where available, should

only be used in addition to their optimised counterpart [122]. It can be assumed, therefore,

that other work which only refers to \Ocean" will be using Ocean-Contig.

3.3.7 Water-Nsq

This N-body molecular dynamics application evaluates forces and potentials in a system of

water molecules in the liquid state. The computation is performed over a user-speci�ed

number of time-steps, with the aim of reaching a steady state. The code in Splash-2 is an

improvement over the Water code in the original Splash suite, but is mostly the same. There-

fore the best source of information about this application is the original Splash report [116].

The main change found in the Splash-2 version is an improvement to the locking strategy

which protects the updates to the water accelerations (in interf.C): a process updates a

local copy of the relevant particle accelerations, and then accumulates into the shared copy

at the end [144].

3.4 Experimental Design

The experimental results in this thesis were generated by ALITE, an execution-driven simu-

lator2. The simulator parameterises the cc-NUMA design and provides detailed reporting on

2Please see Appendix B for more information about simulation techniques and the ALITE simulator.

88 Chapter 3. Node Controller Contention

the run-time characteristics of the benchmark applications, both at summary and node-by-

node level. Using a simulator allowed for a detailed evaluation of the e�ects of changing the

network bandwidth characteristics, and of altering the cache coherence policy to tackle node

controller contention.

The node speci�cation is summarised in Table 3.2. The CPU is a generic reduced instruction

set computer (RISC), using a subset of the DEC Alpha instructions [15]. The �rst level caches

are write-through, direct-mapped, and 8 Kbytes in size. Instruction accesses are assumed to

be dealt with by a separate, perfect memory system. Second level caches (SLC) are write-back,

direct-mapped, and 4 Mbytes in size. The line size is 64 bytes throughout. The simulator

times all events in terms of clock cycles; for example Table 3.3 shows the latencies for the

most signi�cant node actions. In order to relate these \clock tick" timings to the real world,

one only needs to specify a clock speed. For example, three network bandwidths are provided

by the simulator (fast, medium, and slow); given a 100 MHz clock these bandwidths equate

to 160 Mbytes/sec, 16 Mbytes/sec and 1.6 Mbytes/sec respectively. Unless otherwise stated,

the network bandwidth is the fast bandwidth. Messages consist of a header (containing a

message type, and the identities of the source, destination, requester and home nodes) and

optionally a 64 byte data line payload.

The simulator models in detail the data miss and node controller actions. For example,

consider the CPU on a client node making a read request for data which is not present in

its FLC or SLC. The processor acquires the SLC bus, does a lookup of the tag in the SLC,

acquires the MEM bus, and then instructs the node controller to initiate the transmission

of a read-request message to the home node. While this is taking place the resources at

the node (buses, SLC, node controller) are occupied, and therefore other requests which have

been sent to this node will be denied service for some period of time.

The detailed level of simulation also captures the node controller actions at the home node.

Consider again the read-request message which has been sent to the home node. When

a home node services a read-request, the node controller performs a lookup in DRAM to

determine the state of the line. Assuming that the state is Home-Exclusive, the SLC bus is

acquired and a lookup in the SLC is done. If the data is not present, the SLC bus is released,

the data is read from DRAM, directory information is updated in DRAM, the MEM bus is

released, and the reply message is dispatched. An example of this is given in Figure 3.11,

where the timings represent the relative length of each operation. While the request is being

handled, other requests may arrive from remote nodes which cannot be serviced until the

node controller has �nished this transaction. In addition, the home node's CPU is prevented

from accessing the SLC for part of the transaction (i.e. when SLC bus is in use by the node

controller).

3.4. Experimental Design 89

CPU CPI 1.0

Instruction set generic RISC; subset of DEC Alpha

Instruction cache All instruction accesses are assumed to be �rst level cache hits

First level data cache Capacity 8 Kbytes

(FLC) Line size 64 bytes

Direct mapped, write-through, on-chip.

Transaction look-aside bu�er Capacity 64 entries

(TLB) Fully associative

Second-level cache Capacity 4 Mbytes

(SLC) Line size 64 bytes

Direct mapped, write-back, o�-chip.

Memory Capacity Large enough to hold all the data

(dynamic random access required by an application. Given

memory - DRAM) that P=number of nodes, each node

has 1

P
share of the total DRAM.

Data line size 64 bytes

Page size 8 Kbytes

Node controller Non-pipelined

Service time and occupancy See Table 3.3 and Appendix B.2.

Interconnection network Topology Full crossbar

Incoming message queues In�nite for Chapters 3 & 4.

Limited to 8 for incoming read-

request messages in Chapters 5, 6,

& 7.

Cache coherence protocol Invalidation-based, sequentially-consistent cc-NUMA, home nodes

assigned to �rst CPU to reference each page (i.e. \�rst-touch-after-

-initialisation").

Distributed directory, using singly-linked sharing list: based on the

Stanford distributed-directory Protocol, described by Thapar and

Delagi [134]

Table 3.2: Details of the simulated architecture

Operation Time (cycles)

Acquire SLC bus 2

Release SLC bus 1

SLC lookup 6

SLC line access 18

Acquire MEM bus 3

Release MEM bus 2

DRAM lookup 20

DRAM line access 24

Initiate message send 5

Table 3.3: Latencies of the most important node actions

The local memory (DRAM) at each node is part of an overall pool of shared-memory which

is large enough to hold all of the data required for each application: the memory size at each

node is an input parameter to the simulator. The pool of memory is divided evenly across

the nodes, so in a 64 node system each node will have 1
64
th of the overall DRAM. However

the memory at an individual node may not be su�cient to hold all of the pages which the

90 Chapter 3. Node Controller Contention

Dispatch message

Update directory info in DRAM

Read data from DRAM

Release SLC bus

Lookup in SLC

Acquire SLC bus

Arbitrate for SLC bus

Lookup directory info in DRAM

Acquire MEM bus

Release MEM bus

Decode Message

time

Occupancy

Figure 3.11: Occupancy of an example client read request at the home node

�rst-touch placement policy would like to allocate to that node: in this over
ow case the

pages will be allocated to the next node which has space available in its DRAM.

The ALITE implementation of the coherence operations handled by the node controller, and

the resulting state transitions, have been cross-validated with an analytical model [12]. It

should be noted that the node controller state machine includes many intermediate states,

which are derived from the directory and SLC states: these are documented in detail in

Appendix C of this thesis.

The pointers associated with the second-level cache lines are stored in the network controller

so that pointer maintenance and traversal can be performed without generating internal bus

tra�c. This is a common way of implementing distributed directory protocols, because the

performance bene�ts outweigh the additional storage requirements in DRAM, and it avoids

complicating the SLC. Most SCI-based architectures follow this approach [120].

In the experimental work presented in this chapter and Chapter 4, the bu�ers at the node

controllers are assumed to be in�nite in size. The later experiments use bounded-length

queues for incoming read-request messages. The default network bandwidth is the fast

network (equivalent to 160 Mbytes/sec with a 100MHz clock speed). In addition to this fast

bandwidth, the medium and slow bandwidth settings are used in this chapter to investigate

the interaction between the network bandwidth, the resulting transaction latency, and the

buildup of queues in the message bu�ers which can lead to node controller contention.

3.5. Bandwidth, Occupancy, and Contention 91

3.5 Bandwidth, Occupancy, and Contention

In order to understand node controller contention, and how it is a�ected by varying the

bandwidth characteristics of the network, the eight applications were run for the three network

bandwidths described in Section 3.4. Figure 3.12 shows the performance results in terms of

relative speedup. Relative speedup is the ratio of the execution time for the fastest algorithm

running on one processor to the execution time for P processors. It is not surprising that

using a slow bandwidth results in the worst performance, given that any accesses to remote

data will only travel at 1.2 Mbytes per second. However even with the fastest network some

of the applications show a disappointing speedup with 64 processing nodes, with CFD and

GE showing speedups of less than 30, and the best speedup (of 55.3 for Water-Nsq) is still

well short of the \ideal speedup" of 64.

The breakdown of the execution times shown in Figure 3.14 helps to explain the performance

problem. Taking FFT as an example, the faster the network, the smaller the percentage of

overall execution time that is spent by the CPUs waiting for load misses. However even with

the fastest network, 35.6% of the execution time is spent by CPUs stalled waiting for read

data. In addition, the percentage of execution time spent waiting for store misses increases as

the network gets faster. Of course the overall execution time improves with faster networks,

but there is a performance bottleneck occurring for remote data accesses.

The queueing delay results presented in Figure 3.15 indicate that there is a problem with the

distribution of queueing times across the nodes. The maximum and minimum mean delays

are, respectively, the longest and shortest mean incoming message queue delay experienced

by individual nodes. The overall value is the mean incoming queue delay taken across all the

nodes. Once again taking FFT as an example it can be seen that, as the network bandwidth

increases, all three mean values increase. However the minimum mean queueing time for

individual nodes stays low, while the maximum is very high for the fast network (note the

change of vertical scale). Figure 3.13 shows that the maximum individual node mean queueing

delay is a�ected by the number of processing nodes for all three network bandwidths. However

with the fast network the delay rises noticeably for all applications as the number of nodes

increases, with FFT and GE showing particular \hot spots". This indicates that there are one

or more nodes which have a high level of queueing when the network bandwidth is increased.

3.5.1 The Causes of Queueing

A study by Chandra et al. investigated where the time is spent in message-passing and shared-

memory implementations of a number of algorithms [22]. They included a shared-memory

92 Chapter 3. Node Controller Contention

� � barnes

 cfd
� � fft
� � fmm
� � ge
� � ocean-contig

 ocean-non-contig
� � water-nsq

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|10

|20

|30

|40

|50

|60

re
la

tiv
e

sp
ee

du
p

number of nodes

slow network

��
�
�

�

�

�

���
�

�
� �

��
�
�

�

�
�

���
� � � ���

�
�

�

�
�

��
�
�

�

�

�

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|10

|20

|30

|40

|50

|60

re
la

tiv
e

sp
ee

du
p

number of nodes

medium network

��
�
�

�

�

�

��
�
�

�

�

�

��
�
�

�

�

�

��
�
�

�
� �

��
�
�

�

�

�

��
�
�

�

�

�

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|10

|20
|30

|40

|50

|60

re
la

tiv
e

sp
ee

du
p

number of nodes

fast network

��
�
�

�

�

�

��
�
�

�

�

�

��
�
�

�

�

�

��
�
�

�

�
�

��
�
�

�

�

�

��
�
�

�

�

�

Figure 3.12: Performance speedup with di�erent network bandwidths

� � barnes

 cfd
� � fft
� � fmm
� � ge
� � ocean-contig

 ocean-non-contig
� � water-nsq

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|200
|400

|600

|800

|1000

|1200

|1400

|1600

|1800

qu
eu

ei
ng

 c
yc

le
s

number of nodes

slow network

��� � � � �

��� � � � ���� � � � ���� � � � ���� � � � �

��� � � � �

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|200

|400

|600

|800

|1000

|1200

|1400

|1600

|1800

qu
eu

ei
ng

 c
yc

le
s

number of nodes

medium network

��� � � � �

��� � � �
�

��� � � � ���� � � � ���� � � � �

��� � � � � |

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|200

|400

|600

|800

|1000

|1200

|1400

|1600

|1800

qu
eu

ei
ng

 c
yc

le
s

number of nodes

fast network

��� � � �
�

��� � �

�

�

��� � � �

�

��� �
�

�

�

��� � � �
�

��� � � �
�

Figure 3.13: Maximum individual node mean queueing cycles with di�erent network band-
widths

3.5. Bandwidth, Occupancy, and Contention 93

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

ex
ec

ut
io

n
tim

e
pe

rc
en

ta
ge

slow network

cpu active

lock delay

barrier delay

store miss delay

load miss delay

barnes
cfd

fft
fmm

ge
ocean-con

ocean-non
water-nsq

16.2

14.6

16.3

27.5

25.4

0.5
5.8

22.4

39.7

31.6

6.0
2

10.6

17.3

64.1

9.4
1.1

45.4

21.6

22.5

0.7

34.7

7.2

57.4

4.2
3.3

28

30.6

33.9

2.6
0.7

30

35.8

30.9

41.4

4.6
5.9

22.9

25.2

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

ex
ec

ut
io

n
tim

e
pe

rc
en

ta
ge

medium network

cpu active

lock delay

barrier delay

store miss delay

load miss delay

barnes
cfd

fft
fmm

ge
ocean-con

ocean-non
water-nsq

24.2

3.9

20.4

33.7

17.8

4.3
2.9

22

32.6

38.2

26.7

1.1
5.5

24.9

41.8

19.9

0.2

41.7

31.7

6.5

6.1

35.2

6.2

52.5

15.8

1.7

18.6

17.1

46.8

18.4

0.8

20.1

26.2

34.5

68.9

0.7
3.2

20.1

7.1

| ||0

|10

|20
|30

|40

|50

|60

|70

|80

|90

|100

|110

ex
ec

ut
io

n
tim

e
pe

rc
en

ta
ge

fast network

cpu active

lock delay

barrier delay

store miss delay

load miss delay

barnes
cfd

fft
fmm

ge
ocean-con

ocean-non
water-nsq

25.3

2.5

20.9

34.6

16.7

13.3

2.5
11.7

23.3

49.2

34.2

0.4
2.8

27

35.6

21.3

40.3

33.4

5.0

12.2

28.3

6.6

52.9

19.9

0.8

14.9

13.2

51.2

31.4

0.8

12.8

18.5

36.5

72.5

0.2
3

19.7

4.6

Figure 3.14: Execution time pro�les with di�erent network bandwidths (64 nodes)

version of the Gaussian Elimination algorithm which, like the one used in this thesis, has

the problem of disseminating the pivot row to all the nodes. For this application the study

found that the delays were due to directory contention, i.e. accessing the directory data

held at the home node. Their simulations were for 32 processing nodes using the Wisconsin

Wind Tunnel [109], and they noted that the queueing delays observed for GE would become

untenable for larger systems because even more nodes would have to queue up for read access

to the data lines of the current pivot row.

There are two factors at work in the buildup of an incoming message queue. The �rst is

the rate at which messages arrive, and the second is the rate at which the messages are

94 Chapter 3. Node Controller Contention

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

qu
eu

ei
ng

 c
yc

le
s

slow network

barnes cfd fft fmm ge ocean-con ocean-non water-nsq

maximum

overall

minimum

�

�

�

� �
�

�

�
�
�

�

�
�

� �
�

�

�

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

qu
eu

ei
ng

 c
yc

le
s

medium network

barnes cfd fft fmm ge ocean-con ocean-non water-nsq

maximum

overall

minimum

�

�

�

�
�
�

�

�

�

�

�

�

�

�
�

�

�

�

| ||0

|200

|400

|600

|800

|1000

|1200

|1400

|1600

|1800

|2000
qu

eu
ei

ng
 c

yc
le

s

fast network

barnes cfd fft fmm ge ocean-con ocean-non water-nsq

maximum

overall

minimum

(nb. different vertical scale)

�

�

�

�

�
�

�

�
�

�

�

�
�
�

�

�

�
�

Figure 3.15: Mean queueing cycles for incoming messages (64 nodes)

serviced. The latter depends on the occupancy of the node controller, i.e. the time for

which the node controller is tied up with one action and cannot perform another [57]. It is

possible to reduce the occupancy for node controllers by introducing the ability to overlap

the processing of requests, e.g. by pipelining or by splitting the processing of local CPU

misses and remote requests (e.g. the Sun S3.mp). However these techniques reduce rather

than avoid the occupancy, and occupancy will still be a problem when there is contention for

a node controller. Contention can occur for either homes or owners. Directory tra�c for a

large set of lines, whose ownership is dispersed, may be concentrated in a single home node

due to home allocation. Ownership of many data lines with di�erent homes may become

3.5. Bandwidth, Occupancy, and Contention 95

A B C

C

B

AA

B

C

node controller occupancy communication

time

Client node A

Client node B

Client node C

Network

Home node

Figure 3.16: Overall transaction latency for an example of three simultaneous requests arriving
at a home node

concentrated in a single cache because of the application's write behaviour.

The severity of node controller contention is both application and architecture dependent.

Some contention is inevitable and will result in the latency of transactions being elongated.

The key problem is that queue lengths at node controllers, and hence contention, are non-

uniformly distributed around the system. Some node controllers may have short queues,

whereas others have long, or full queues. The result is that many requests are waiting in

bu�ers for long periods of time, and processors are stalled unnecessarily. For example see

Figure 3.16, where the simultaneous arrival of three requests at the home node results in a

queue forming in the incoming message bu�er, and the serialisation of the requests increases

the overall latency before the reply is received at Client C.

The communications access pattern is non-uniform primarily because of the way homes and

ownership are allocated. It is the non-uniform distribution of requests made by the applica-

tion which causes the variation in contention over the execution time of the program. The

characteristics of the architecture determine how e�ectively the non-uniform distribution of

requests can be resolved.

3.5.2 Widely-Shared Data

In Section 2.2.3 of this thesis, it was noted that applications which use widely-shared data

often send many simultaneous read-request messages to the same home node. GE is a

benchmark application which is already known to widely-share the current pivot row data

96 Chapter 3. Node Controller Contention

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

pe
rc

en
ta

ge

average invalidations per invalidating write = 2.7764

number of invalidations per invalidating write

0 1 2 3 4 5 6 16 26 36 46 56 63
15 25 35 45 55 62

Barnes

1.27

48.35

22.87

10.56
5.33

2.87
6.84

1.06 0.34 0.17 0.33

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

pe
rc

en
ta

ge

average invalidations per invalidating write = 1.0053

number of invalidations per invalidating write

0 1 2 3 4 5 6 16 26 36 46 56 63
15 25 35 45 55 62

FFT

0.09

99.9

0.01

| ||0

|10
|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

pe
rc

en
ta

ge

average invalidations per invalidating write = 1.2556

number of invalidations per invalidating write

0 1 2 3 4 5 6 16 26 36 46 56 63
15 25 35 45 55 62

Ocean-Contig

80.98

15.06

3.04
0.49 0.34 0.03 0.03 0.02

Figure 3.17: Invalidation pro�les for Barnes, FFT, and Ocean-Contig (data from [121])

in each iteration. Kaxiras et al. have shown that there is modest mean degree of sharing

in GE of 2.75 sharers per data item in a 128 node system, but about half of all the reads

issued by the application are for widely-shared data. The very few but large read-runs for

widely-shared data represent around half the overall number of reads [69].

As the number of nodes in the system is increased, the bottleneck caused by widely-shared

data becomes worse: requests for the same data line made simultaneously by more nodes

3.6. An Analysis of Widely-Shared Data Accesses 97

will increase the contention at the home node. This will lead to performance degradation,

as is seen for GE in Figure 3.12 for the fast network, where the speedup tails o� as the

number of nodes increases, and the queueing imbalance between nodes becomes very large

(see Figure 3.15). This bottleneck leads to performance problems which are not only connected

with the number of nodes in the system, but also with the rate at which a node controller

can deal with incoming messages, and with the network bandwidth. If the network is unable

to deal with a rush of messages all with the same destination node then there are likely to be

hot-spot problems within the network as well as the contention at the home node [105].

The Stanford Splash-2 benchmark suite also contains some applications with widely-shared

data: these include Barnes, FFT, and Ocean-Contig [144]. The sharing can be identi�ed

from the invalidation patterns provided in the Splash-2 results database [121]. Looking at

Figure 3.17 it can be seen that all three applications have a \tail" in the number of invalida-

tions needed before a node has obtained exclusive access to the data line and the write can

proceed. Although the average number of invalidations in an invalidating write transaction

is low, there are data structures where (P � 1) invalidations are needed before the write can

proceed, i.e. copies of the same data line are held in SLC at all the nodes on the system. The

widely-shared data can lead to a buildup of incoming messages which have to queue at the

home node controller as they wait to access the same directory information.

It is always possible to tune a program to avoid high degrees of sharing, but this tuning

may be time consuming, and tends to increase the complexity of a program [24]. However,

by providing e�cient hardware support for programs that use widely-shared data, Johnson

believes that signi�cantly less time will be needed to get good performance out of shared-

memory multiprocessors with thousands of processing nodes [61]. Given the performance

bottleneck which can result from widely-shared data, a scalable distributed shared-memory

system needs to provide a mechanism to support this sharing pattern if it is to avoid seemingly

unpredictable performance problems.

3.6 An Analysis of Widely-Shared Data Accesses

The experimental runs in the preceding section demonstrated that there is a problem with

node controller contention, in particular where there are widely-shared data structures. This

section presents an analysis of the node controller behaviour, with the aim of gaining in-

sight into the e�ects of simultaneous read-request messages for widely-shared data arriving

at the home node. The analysis is consistent with the work done by Holt et al. on node

occupancy [57], and the analysis of contention by Dwork et al. [33].

98 Chapter 3. Node Controller Contention

The main latency elements in the access of widely-shared data are the network traversal time,

the queueing delay and occupancy (both at the client itself and at the home node), and the

interval between read-request messages arriving at the home node. Consider the following

example, where there are P processors, one at each node, each executing the same fragment

of pseudo-code:

barrier()

for i := 1 to N do

read A[i]

end

i.e. each processor is going to reference the entire array A. This example captures the data

access pattern of the GE application when all processors require read access to the pivot row.

It is assumed that:

� Array A is held in one page of DRAM with home node processor Phome, and is n bytes

in length.

� Each data item is i bytes long, where i = n=N .

� A data line is d bytes long, and contains q consecutive data items from A.

� A[1] is at the start of a data line.

� The yth data line in A will contain A[((y � 1)� q + 1) : (y � q)].

� There are no (valid) cached copies of data from A after the barrier, except at the home

node.

� The home node is initially in state Home-Exclusive for each data line in A: there is

a more up-to-date copy of the data line in the home node's SLC. After processing the

read-request from the �rst client, a data line's state will be updated to Home-Shared

and the DRAM will be up-to-date.

3.6.1 Node Controller Occupancy

Using the approach of Holt et al. [57], the node controller occupancy is characterised as

follows:

� When the node controller is simply generating a request into the network or receiving

a reply from the network, it incurs a �xed occupancy to.

3.6. An Analysis of Widely-Shared Data Accesses 99

� When the node controller is at the home node for a request, it incurs a �xed occupancy

of 2 � to, because it has to retrieve data from memory and/or manipulate coherence

state information.

� If the state lookup at the home reveals that the requested line is dirty in the home

node's cache, the node controller incurs an extra �xed occupancy of C.

3.6.2 Network

Using the approach of Holt et al. [57], the time for a message to traverse the network can be

characterised as follows:

� Startup time ts is the time required to handle a message at the sending processor. It

includes the time to prepare the message (adding header, trailer, and error correction

information), the time to execute the routing algorithm, and the time to establish an

interface between the local node controller and the router. This delay is only incurred

once for each message.

� Per-hop time thop is the time taken by the header of a message to travel between two

directly-connected processors in the network.

� Per-byte transfer time tb : if the channel bandwidth is r bytes per second, then each

byte takes time tb = 1=r to traverse the link.

Many factors in
uence the communication latency of a network, such as the topology of the

network and the switching techniques (see Section 2.1.3). For the purpose of analysing the

e�ects of contention, the simplifying assumption is made here that the network is a completely

non-blocking fully-switched crossbar. This results in each message only having one \hop",

and the further assumption is made that a given message will always take the same time to

travel between any two processors regardless of locality and network load. This is the same

simpli�cation as is made in the ALITE simulator.

Given these assumptions, the latency for a read-request message to traverse the network

tread = ts + thop, and the latency of a take-shared message ttake = ts + thop + d� tb.

3.6.3 Hit to Miss Interval

The CPU will sooner or later (later given that the processor �rst has to process the data line

containing items A[1 : q] which has just arrived, sooner if it has a prefetching mechanism)

request the node controller to obtain the next data line containing items from A, i.e. the data

100 Chapter 3. Node Controller Contention

line containing A[q+1 : 2q]. tx represents the time that passes between the CPU receiving the

data for one cache miss, and when it requests the next data line. This value can be negative

if the system uses prefetching.

3.6.4 Contention

After the barrier, the (P � 1) client processors will each send a read-request message to the

home node Phome for the data line containing A[1]. Given the network assumptions, this will

cause a queue of (P � 1) messages in the input queue at the node controller for Phome. Only

one message can be serviced at a time, in time (2 � to + C) for the �rst message, and time

2 � to for the remaining (P � 2) messages. Depending on its original position in the input

queue of messages, it will take between (2� to+C) and ((P �1)�2� to+C) for a request to

be serviced by the node controller at Phome. Dwork et al. have noted this serialisation e�ect,

and the increase in latency which it causes [33].

The processor whose request message is initially at the head of the incoming message queue at

Phome will receive the data line line containing A[1] in time to+ tread+(2� to+C)+ ttake+ to,

i.e. request occupancy + read-request message latency + home node controller occupancy

+ take-shared message latency + reply occupancy.

The next read-request message from that client node will be sent to the same home node,

Phome, and will have to join the input queue waiting for service from the node controller. If

the home node controller has not �nished processing the remaining (P � 2) read-request

messages for the �rst data line of A, then the request for the next data line will have to

wait. Meanwhile, further requests for this new data line will arrive from the other processors.

Given this pattern of requests, the measure of node controller contention at the home node,

Contentionhome, is given by how long requests from a particular client node will have to wait

for service at the home node.

Contentionhome = [(P � 2)� 2to]� [(ts + thop + d� tb) + to + tx + to + (ts + thop)]

If Contentionhome � 0 then there is no incoming message contention at the home node for

access to the widely-shared data structure. If Contentionhome > 0 then there is contention.

If the occupancy time taken to service the remaining (P � 2) read requests for a data line is

any longer than the mean time between read-request messages from the �rst client, then

the queue will build up to a maximum of (P�2) read messages (or even worse if prefetching is

allowed) causing processors to stall for longer as they wait for the arrival of their take-shared

messages.

3.6. An Analysis of Widely-Shared Data Accesses 101

The equation for Contentionhome gives a straightforward way of seeing the e�ect of varying

the characteristics of the cc-NUMA system. Reducing the node controller occupancy to will

help delay the point where the bottleneck occurs. However increasing the number of nodes

P in the system will make the queueing bottleneck more likely, as will decreasing tx using

pre-fetching of data lines or faster CPUs. It can also be seen that an increase in network

bandwidth will reduce the per-byte transfer time tb, which will in turn reduce the amount of

time before the next request arrives from a given client. An increase in bandwidth will also

reduce the per-hop time thop, i.e. the time taken by the message header to travel between two

directly connected nodes. Therefore improving the network bandwidth, or the arrival rate of

successive data line read-requestmessages, or increasing the number of nodes in the system

will exacerbate the queueing at the input bu�er of the home node's controller.

It should also be noted that the local CPU at the home node is loading the data items of A,

which may add to the contention for the SLC bus. In addition, given that the home node's

CPU will obtain the data for A sooner than the remote nodes, it is likely to \race ahead" to

the next synchronisation point which will increase the barrier delay as the home node waits

for the other nodes to \catch up". In addition, client node controllers will be idle while they

are waiting for each take-shared message, given that their local CPUs have stalled waiting

for that data.

The analysis is una�ected by the choice of mechanism for holding directory data about the

sharers of a data line (e.g. as a bit vector or as a distributed list) because in all cases it is

necessary to access the state information and add a new sharer, all of which is done at the

home node. The simplifying assumption of a full-crossbar network does a�ect the analysis.

However the thop values in the Contentionhome equation can be multiplied by a suitable value

to represent the mean number of hops which are taken by a message in another type of

network.

This analysis has shown that the usual mechanisms for improving system performance, such

as increasing the network bandwidth or the number of processors or the local CPU speed,

will result in accesses to a widely-shared data structure becoming a performance bottleneck

because of queueing for service at the home node. The client CPUs will spend a considerable

amount of time stalled waiting for data, and using prefetching of data lines will only increase

the bottleneck. In addition, the client node controllers will be mostly idle during the access

to the widely-shared data structure.

102 Chapter 3. Node Controller Contention

3.7 Conclusions

This chapter has presented the representative cc-NUMA architecture used throughout this

thesis, and has demonstrated the performance problems which arise from contention for

node controllers. A speci�c problem was identi�ed with widely-shared data, where many

read-request messages are sent simultaneously to the home node. Although only a small

part of the shared-memory may be widely-shared, the widely-shared data can give rise to

signi�cant performance problems.

The next four chapters investigate a technique for alleviating node controller contention, which

uses combining to reduce the number of read-request messages arriving at a home node.

The approach builds on the knowledge gained in this chapter, including the observation that

client node controllers are often idle during the transactions to access widely-shared data.

Chapter 4

The Basic Proxy Scheme

It has been shown in Chapter 3 that contention for node controllers can lead to performance

degradation. These problems are particularly severe for the class of shared-memory applica-

tions where a large data structure is read simultaneously by many processors, and whose data

lines have a common home node. This chapter presents a protocol modi�cation which aims

to reduce the node controller contention at the home node which results from access to this

widely-shared data. The protocol modi�cation was �rst presented in [13], but this chapter

includes more detailed experimental results, investigates the e�ects of proxying for �ve more

benchmark applications, and uses an improved representation of the pending chain of proxies.

4.1 Proxies: an overview

In the analysis of node controller contention presented in Section 3.6 it was noted that the

client node controllers are often idle, while a long queue of incoming read-request messages

builds up at the home node. Given that this contention problem arises because many nodes

are accessing the same data lines, it would be better if some of the idle clients obtained

the data and then provided that data to the rest of the clients. This would shift some of

the read-request messages from the home node's input queue to the input queues of the

under-utilised client node controllers.

4.1.1 Proxies

The high concentration of read requests at home nodes can be reduced by distributing the

messages to other node controllers, using them as intermediaries. These are referred to as

proxies. In the proxy scheme, a processor issuing a read request for remote data sends the

request message to another node, which is known to act as a proxy for that data line, rather

103

104 Chapter 4. The Basic Proxy Scheme

Home

Proxy

Proxy

Home

(a) Without proxies (b) With two proxy clusters

Figure 4.1: Contention is reduced by routing loads via a proxy

than going directly to the data line's home node. As an example, Figure 4.1 shows how more

than one proxy could service requests for a given data line, each handling requests from a

di�erent subset of the processing nodes. If the proxy has the data, it is supplied to the client;

otherwise a read request is made by the proxy node to the home node. The home node either

supplies the data to the proxy, or forwards the request to the owner of the line, which then

replies to the proxy. The sequence of messages is illustrated in Figure 4.2. The proxy scheme

also combines read requests. If multiple requests for the same data line are sent to the same

proxy, only the �rst requires a request to be made to the home. When the proxy receives

the data, it is added to its second level cache (SLC) and sent to all the waiting clients. This

basic form of proxies was �rst described by Bennett et al. [13], and builds on the idea of eager

combining suggested by Bianchini and LeBlanc [16].

It should be noted that every node in the system can act as a proxy, i.e. there are no separate

specialised proxy nodes. The use of proxies is expected to be sporadic, depending on the

nature of individual applications, and it makes sense to use existing nodes rather than build

in the hardware overheads of specialised nodes.

When a write occurs, the cache copies used for proxying are treated in the same way as any

other cache copy: they appear on the sharing list, and so are invalidated automatically on a

write.

4.1.2 Potential Bene�ts and Costs of Proxying

The proxy scheme will shift the balance of processing for proxied data, and so it should have

a number of e�ects. Among the bene�ts one would expect are:

Incoming message queue length reduction at home node: queueing for directory in-

4.1. Proxies: an overview 105

Owner Home

3. request forwarded to the owner

(in state Home-Invalid)

(read-request-fwd)

Client

Proxy

1. proxy-read-request

4. data supplied to
the proxy
(take-shared)

6. data supplied to
the stalled client
 (take-shared)

(read-request)
2. request sent to the home

5. data supplied to the home
 (take-shared-home)

Figure 4.2: A simple proxy read request

formation served by a single node controller, due to unfortunate home node allocation,

should be reduced.

Combining of read requests: when the proxy has, or has already requested, a copy of the

data, further read requests are serviced at the proxy node.

The potential costs are:

Indirection: every load (for addresses subject to proxying) must now go via a proxy, whereas

with the original protocol no indirection would be involved. For example, an original

two message sequence of a read-request message to the home node followed by a

take-shared message back to the client could become a sequence of four messages

when proxies are used. The proxy-read-request from the client to the proxy node

could be followed by a read-request from the proxy to the home when the proxy does

not have a copy of the data. The home node would then send a take-shared message

back to the proxy, and the proxy would send a take-shared message on to the client

node.

Cache pollution: allocating proxy data in the SLC may displace another line, and lead to

a later cache miss. Extra unhooking messages are required, which will increase the

latency of satisfying the original remote read request.

Longer sharing lists: the distributed sharing list for a data line will have one extra entry

for each proxy currently holding a copy of the data where the proxy node does not need

the data for its local processing. This will increase the number of invalidation messages

needed when a write is pending.

106 Chapter 4. The Basic Proxy Scheme

These expected bene�ts and costs are considered further in Section 4.4 which analyses the

results of running the eight benchmark applications with the proxy protocol.

4.2 Design Issues

There are a number of issues that need to be addressed when designing a proxy scheme. They

are how to decide which data structures should be subjected to proxying, how to choose the

proxy node(s), how combining of read requests can be achieved, and when to supply proxy

nodes with modi�ed data. These issues are discussed in this section.

4.2.1 Selective Use of Proxying

To avoid using proxies on data which is not widely-shared, the protocol will only use proxying

for pages of the shared-memory which have been \marked" for proxying. If the proxy does

not have a copy of the data, two more messages are required (labelled 1 and 4 in the example

given in Figure 4.2) than is the case where proxying is not used. The advantages of proxies

come when further read requests are made via the proxy. However, if pages of shared memory

are marked for proxying when their data is not widely-shared, then this message overhead is

likely to degrade performance rather than improve it.

The marking of pages would be achieved by using directives inserted by the programmer (or

potentially by a compiler). This approach was used by Bianchini and LeBlanc with pages

being marked as \hot" for eager combining [16]. The original version of the GLOW proto-

col extensions for widely-shared data also used program directives to mark data: however

Kaxiras et al. have since recognised that there are a number of drawbacks to statically mark-

ing widely-shared data [69]. Firstly the user involvement in marking data compromises the

ideal of shared-memory programming, i.e. that the user does not have to worry about how

data structures are accessed. Secondly it may not always be possible to statically identify

the widely-shared data. Finally, a mechanism would be needed to transfer the marking in-

formation to the hardware: such a mechanism is hard to implement if the system is to be

constructed from commodity parts.

In this chapter it is assumed that a mechanism is available to transfer the marking information

from the application program to the node controller hardware1. The choice of which data

structures should be proxied can be made by using the application programmer's knowledge

of the application, or by analysing memory usage traces to determine which data lines and

1Chapter 5 will introduce proxy strategies which do not require the data to be marked.

4.2. Design Issues 107

pages are widely-shared (e.g. using the Clarissa tool [129]). To evaluate the cost of proxying

in circumstances when it is not bene�cial, the results in Section 4.4 include applications for

which all of the shared data is proxied.

4.2.2 Choosing the Proxy

The choice of proxy node can be random or, as shown in Figure 4.1, on the basis of locality.

The following de�nitions are used to describe how a client node decides which node to use as

a proxy:

� P: the number of processing nodes.

� H(l): the home node of location l. This is determined by the operating system's page

placement policy.

� NPC: the number of proxy clusters, i.e. the number of clusters into which the nodes

are partitioned for proxying. In the example shown in Figure 4.1, NPC=2. The choice
of NPC depends on the balance between the degree of combining and the length of the

proxy pending chain. NPC=1 will give the highest combining rate, because all proxy

read requests for a particular data line will be directed to the one proxy node. As NPC
increases, combining will reduce but the number of clients for each proxy will also be

reduced, which will lead to shorter proxy pending chains.

� PCS(C): the set of nodes which are in the cluster containing client node C. In this

work, PCS(C) is one of NPC disjoint clusters, each containing P=NPC nodes, with the

nodes grouped into clusters based on their node number. In a system where \geographic

locality" a�ects the communication latency between nodes, it would be sensible to form

each proxy cluster set from neighbouring nodes.

� PN (l; C) the proxy node chosen for a given client node C when reading location l. The

proxy is chosen from the proxy cluster PCS(C). If the chosen node is the client or the

home node (i.e. PN (l; C) = C, or PN (l; C) = H(l)), then client C will send a read

request directly to the home node H(l).

The choice of proxy node is, therefore, a two stage process. When the system is con�gured,

the nodes are partitioned into NPC clusters. Then, whenever a client wants to issue a proxy

read, it will use the function PN (l; C) to select one proxy node from PCS(C). This mapping

ensures that requests for a given location are routed via a proxy (so that combining occurs),

and that reads for successive data lines go to di�erent proxies, as shown in Figure 4.3. This

should reduce network contention and balance the message load across all the node controllers

108 Chapter 4. The Basic Proxy Scheme

Proxy

Proxy

Home Home

Proxy

Proxy

(a) Load Line K (b) Load Line K + 1

Figure 4.3: The proxy is di�erent for successive data lines

in a way that is akin to Valiant's two-phase random routing [137]. Figure 4.4 shows an example

of the split into proxy clusters when P=10 and NPC=4.

Given the partition into clusters, the actual choice of proxy node for a given data line tag

and client node has been implemented as a round-robin of the available nodes in the client's

proxy cluster set. For example, in Figure 4.4, if node 9 is the client, then a given tag value

K could map to having node 10 as its proxy, and tag value K + 1 would map to node 8.

Although this round-robin approach is vulnerable to stride access patterns, extensive tests

using the eight benchmark applications with pseudo-random and incremental o�set round-

robin functions failed to get better results than the simple round-robin. This is because the

size of the proxy cluster set used in this work is relatively small (� 64), so the pseudo-random

and o�set functions make poor use of the available nodes.

1
2

Cluster 1

3
Cluster 2

4

5
6

Cluster 3

7

8

9

Cluster 4 10

Figure 4.4: Example partition of nodes into proxy clusters, P=10 and NPC=4

4.2. Design Issues 109

Client 1

Proxy

1. client makes read request
(proxy-read-request)

Home (read-request)
2. request is sent on to the home

(a) First request to proxy has to be forwarded to the home node:

Client 1 Client 2
3. client makes read request

(proxy-read-request)

(b) Second client request, before data is returned, forms pending chain:

Proxy

Home

4. client receives pointer
 to 2nd client

 (take-hole)

Client 1 Client 2

Home

(take-shared)

(c) Data is passed to each client on the pending chain:

Proxy

5. data supplied to the proxy
(take-shared)

(take-shared)

7. data supplied to Client 2

6. data supplied to Client 1

Figure 4.5: Combining of proxy requests

4.2.3 Combining

The proxy scheme combines read requests. If multiple requests for the same data line are

sent to the same proxy, only the �rst request has to be forwarded on to the home. When the

proxy receives the data, it is added to its SLC and sent on to the list of waiting clients. The

list of waiting clients is held as a \pending chain", i.e. a distributed singly-linked list of the

nodes which have requested a particular line of data. The process is illustrated in Figure 4.5.

The implementation of the pending chain as a distributed list (rather than the proxy node

keeping a local list of the pending clients) means that the proxy's node controller occupancy

is kept to a minimum because it does not have to send a separate take-shared message to

each of the waiting clients. The distributed list approach also has the advantage of being

more scalable than a pending-client bit vector2. For a di�erent network, e.g. a mesh of buses

where broadcast facilities are available, one might choose a di�erent implementation of the

pending chain.

2Although the singly-linked list used in this work is not fully scalable, because of the time taken to traverse

the list, other distributed implementations such as a tree are scalable.

110 Chapter 4. The Basic Proxy Scheme

2. data sent to client

Client Y

Proxy X

Proxy X Node Z

(take-shared)

1. proxy-read-request

(b) Sequence of messages

(c) New portion of sharing list

Proxy X Client Y Node Z

(a) Original portion of sharing list

Figure 4.6: Read request when proxy has the data

When a client requests data, and the proxy already has a copy in its SLC, the request can

be satis�ed immediately by the proxy node. The proxy is able to add the new sharer to

the sharing list, without having to exchange messages with the home node, by updating the

pointers appropriately as illustrated in Figure 4.6. In this example Proxy X changes its SLC

entry to point to Client Y, and the message sent to Client Y includes the pointer to Node Z

(i.e. the next node on the sharing list).

The way that proxies allow read requests for data to be combined in controllers, away from

the node su�ering from contention, is reminiscent of the combining within the network used

for the atomic read-modify-write operations proposed for the NYU Ultracomputer [45] and

the IBM RP3 [104]. Combining of requests within the network is also used in COMA systems

such as the Swedish Institute of Computer Science's (SICS) DDM [50], and it is also found

in the SB-PRAM [37]. The GLOW extensions for widely-shared data use combining and

are, like proxies, designed to be added to existing cache coherence protocols [70]. GLOW

uses agents to intercept requests for widely-shared data at selected network switch nodes.

In all these cases the combining opportunities are restricted to requests which go through a

common switch on the network, so the combining often occurs close to the home node. This

is in contrast to the proxy scheme which routes requests via speci�c proxy nodes, increasing

the likelihood of early combining.

4.2. Design Issues 111

Eager combining, suggested by Bianchini and LeBlanc, uses intermediate nodes which act

like proxies for \hot" pages, i.e. the programmer is expected to mark the \hot" data struc-

tures [16]. The choice of server node is based on the page address rather than data line

address, so their scheme does not spread the load of messages around the system, unlike the

more �ne-grained approach of proxies. Bianchini and LeBlanc's scheme eagerly updates all

proxies whenever a newly-updated value is read. In contrast, the basic proxy scheme allo-

cates copies of data at proxies on demand. This approach was chosen to incur lower overheads

because it only provides data when it is needed, reducing cache pollution at the proxies.

4.2.4 Caching the Proxy Data

In the combining scheme used for the NYU Ultracomputer [45] and the IBM RP3 [104],

there is no retention of data at the combining node. In the proxy scheme, it was decided

to explore the option of retaining a copy of proxied data at the proxy node. This should

achieve a higher level of combining by allowing for later client read requests to be satis�ed

at the proxy. Combining requests for the same data lines at intermediate nodes, to improve

the retrieval time for remote accesses, has been explored for hierarchical architectures, such

as the SICS DDM [50]. The proxies approach is di�erent because it does not use a �xed

hierarchy: requests for copies of successive data lines are serviced by di�erent proxies, and

later requests (i.e. after an earlier proxied read transaction has completed) may be satis�ed

by data retained at the proxy.

As was noted in Section 4.1.2, the problems with holding a copy of proxy data at a node

include cache pollution and a potential increase in the number of invalidations required before

a write. In this chapter, the evaluation is done on a system where the proxy data is held in

the proxy's SLC. The issue is explored further in Chapter 6 and Chapter 7, with schemes

that do not cache the proxy data or hold it in a separate proxy bu�er.

4.2.5 Adding Proxy Protocol Handlers

It is envisaged that the proxy protocol extensions would be implemented in software on

a programmable node controller, with the original cache coherence protocol implemented in

hardware. The way in which the node controller is implementedmay be critical to performance

of the whole multiprocessor, and so it is important to understand the performance tradeo�s

between using customised hardware and/or a programmable protocol processor to implement

the coherence protocol. Michael et al. have carried out a study of the performance and

convenience tradeo�s between using hardwired or programmable node controllers [97]. Their

112 Chapter 4. The Basic Proxy Scheme

conclusions were that: (1) programmable node controllers have higher occupancy; (2) protocol

errors can be easily �xed in programmable node controllers; and (3) having more than one

protocol engine (i.e. the node controller can process more than one action at a time) improves

performance.

The Wisconsin Typhoon [110] and Stanford Flash [81] are research examples of programmable

network controllers which aim to combine the speed and concurrency of existing hardware

mechanisms with the
exibility of software coherence. The Sequent NUMA-Q is a commercial

system with a programmable node controller [92]. These all show the bene�ts of combining

hardwired protocol handlers for common actions and programmable protocol handlers for

correcting errors or adding complicated but less frequently used actions.

4.3 Modi�cations to the Protocol and Architecture

The proxy scheme requires a change to the hardware to allow a small amount of extra storage

to be associated with the node controller, shown as the \Proxy Transit Cache" in Figure 4.7.

Speci�cally the node controller needs to be able to identify which data lines have outstanding

proxy transactions, and record the head and �nish of each pending chain. This could be

implemented using a small, fast associative store on the MEM bus, or as a reserved area

within DRAM, or within the node controller. In the simulated system, the Proxy Transit

Cache is assumed to be within the node controller.

The Proxy Transit Cache is similar in function to the Remote Access Cache (RAC) in Stan-

ford's DASH [89]. The RAC is a 128 Kbyte direct-mapped cache which acts as a staging

area to receive and bu�er replies from remote clusters. RAC entries are allocated when a

remote request is issued (by one of the four local processors) and persist until all inter-cluster

transactions relating to the request have completed. If there is a con
ict for a RAC entry, the

later request is delayed and then retried after the earlier request has �nished with the RAC

entry. The RAC also enables the DASH system to detect when local processors are accessing

the same remote location: in this case the RAC combines the later request with the earlier

one, and satis�es both requests when the reply to the earlier request is returned. To use the

RAC for proxy transit data, each entry would need to have two extra �elds to hold the node

numbers of the head and �nish of the proxy pending chain.

Adding proxying to the protocol outlined in Section 3.2 requires the addition of three new

message types. Relatively minor changes are also needed in the protocol state machine to

handle the new message types. These protocol changes could be made in software on a

programmable node controller such as MAGIC [80]. The protocol changes needed to support

4.3. Modi�cations to the Protocol and Architecture 113

DRAM

CONTROLLER

NETWORK proxy_transit_cache_t *

SLC

MEM bus

SLC bus

CACHE
TRANSIT
PROXY

CONTROLLER

NODE

Second Level Cache:

direct-mapped, ie.
1-way associative

write-back

First Level Cache:

direct-mapped

write-through

tag

CPU

FLCTLB

Translation Look-Aside Buffer

provides physical address
needed to access the SLC
from the virtual address

Direct Random Access Memory

"infinite" capacity, ie. no
paging out to disk: each node
is assigned 1/P of total memory
where P=number of processing
nodes

4 Mbyte capacity
64 byte line size

way
head finish

the Proxy Transit Cache holds
information about data lines for
which a proxy read is in progress

number of entries =
MAX_PROCESSORS - 1

the PTC is on-chip with the node
controller, with access latency
of 1 cycle

Figure 4.7: Memory model for a cc-NUMA node with basic proxies

proxy-read-request

Client-Pending-Invalid
take-shared

Client-Exclusive

Client-Pending-Invalid-Fwd

take-shared take-hole

Client-Invalid
local read miss

take-exclusive
OR take-shared

proxy-read-request

Client-Shared

Proxy-Pending-Invalid

proxy-read-request

Figure 4.8: Extra node controller state transitions for client node actions

114 Chapter 4. The Basic Proxy Scheme

the proxy processing are illustrated in Figure 4.8. There are no extra node controller state

transitions for home node actions. The new message types are:

proxy-bounced-read-request: this message is sent in response to a proxy-read-request

when the proxy node is in the process of obtaining another data line which con-

icts with the new request in the proxy transit cache. The client will re-send the

proxy-read-request, but after 10 failed attempts it will revert to sending a read-

request to the home node.

proxy-read-request: this message is sent by a client to a proxy node once the client has

decided that it will use a proxy to service a remote read request.

take-hole: used to build the pending chain of clients. When a proxy-read-request arrives

from a client, and the proxy is already in the process of obtaining the data for another

client, this message is sent to the old \tail" of the pending chain to link it to the latest

client (that latest client then becomes the new \tail"). The message is called \take-hole"

because the client will be added to the pending chain, which is a hollow sharing list that

contains no data until it receives a take-shared message. The use of the take-hole

message was illustrated in Figure 4.5(b).

4.4 Results

This section presents the results obtained from execution-driven simulations of the basic proxy

protocol. The objective of this experimental work was to investigate the potential bene�ts

and costs of proxies, as outlined in Section 4.1.2. For details of the architecture simulated,

refer to Section 3.4.

It has been shown in Section 3.5 that contention only becomes an important issue when more

than a few tens of nodes are used. For this reason the detailed results presented below are

from simulations of a 64 node design. Table 4.1 shows how the shared data was marked for

application problem size shared data marked for basic proxying

Barnes 16K particles all

CFD 64� 64 grid all

FFT 64K points all

FMM 8K particles f array (part of G Memory)

GE 512� 512 matrix entire matrix

Ocean-Contig 258� 258 ocean q multi and rhs multi

Ocean-Non-Contig 258� 258 ocean fields, fields2, wrk, and frcng

Water-Nsq 512 molecules VAR and PFORCES

Table 4.1: Benchmark problem sizes, and data marked for basic proxies

4.4. Results 115

relative % change in execution time (+ is better,

application speedup � is worse) for NPC = 1 to 8

no proxies 1 2 3 4 5 6 7 8

Barnes 46.4 -0.3 0.0 0.0 0.0 -0.2 -0.1 -0.2 -0.4

CFD 28.8 +8.4 +7.0 +7.2 +11.8 +9.0 +8.2 +5.0 +13.7

FFT 47.2 +9.4 +9.1 +8.8 +9.0 +9.5 +8.7 +9.6 +8.5

FMM 52.4 +0.4 +0.3 +0.4 +0.4 +0.3 +0.4 +0.4 +0.4

GE 21.7 +28.8 +28.9 +29.0 +29.0 +29.1 +29.2 +29.2 +29.2

Ocean-Contig 49.8 -0.4 -2.1 -2.1 -5.0 +1.0 -0.8 -3.0 -3.9

Ocean-Non-Contig 50.8 -2.8 -1.6 -12.8 +0.1 +0.7 -9.4 -2.5 -1.5

Water-Nsq 55.3 -0.7 -0.6 -0.6 -0.6 -0.6 -0.5 -0.7 -0.5

Table 4.2: Benchmark relative speedups for 64 processing nodes

proxying for each of the eight benchmarks. The choice of data was based partly on knowledge

of the applications, and partly as a result of data usage pro�ling [129]. For applications where

there was no obvious sharing of data, all the shared data pages were marked for proxying.

The performance results for the eight benchmarks are summarised in Table 4.2. The per-

formance speedup results are presented in terms of relative speedup, i.e. the ratio of the

execution time for the fastest algorithm running on one processor to the execution time on

P processors. The main point to note is that proxying improves the performance of four of

the applications, but the other applications show mixed or slightly worse performance. In

addition, the number of proxy clusters a�ects performance, but there is no \winning" value

of NPC which gives the best result for all the applications. Figure 4.9 shows that the general

trend is for the bene�ts of proxying to increase with the number of processing nodes.

In the following sub-sections, the results for each of the applications are examined in more

detail in order to understand their di�erent reactions to the introduction of proxies. For each

application, the detailed results are presented as two graphs (one of relative changes and one

of message ratios) and two histograms (one showing the execution time pro�le and the other

showing the message category pro�le).

The relative changes results show four di�erent metrics:

messages: the ratio of the total number of messages to the total without proxies,

execution time: the ratio of the execution time (excluding startup) to the execution time

(also excluding startup) without proxies,

116 Chapter 4. The Basic Proxy Scheme

 1 proxy cluster
� � no proxies

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|10

|20

|30

|40

|50

|60

re
la

tiv
e

pe
rf

or
m

an
ce

number of nodes

barnes

��
�
�

�

�

�
�

�

�

�

 1 proxy cluster
� � no proxies

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|10

|20

|30

|40

|50

|60

re
la

tiv
e

pe
rf

or
m

an
ce

number of nodes

c f d

��
�
�

�

�

�

 1 proxy cluster
� � no proxies

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|10

|20

|30

|40

|50

|60

re
la

tiv
e

pe
rf

or
m

an
ce

number of nodes

f f t

��
�
�

�

�

�

 1 proxy cluster
� � no proxies

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|10

|20

|30

|40

|50

|60

re
la

tiv
e

pe
rf

or
m

an
ce

number of nodes

f m m

��
�
�

�

�

�

�

�

�

�

 1 proxy cluster
� � no proxies

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|10

|20

|30
|40

|50

|60

re
la

tiv
e

pe
rf

or
m

an
ce

number of nodes

g e

��
�
�

�
�

� � � � �

 1 proxy cluster
� � no proxies

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|10

|20

|30

|40

|50

|60

re
la

tiv
e

pe
rf

or
m

an
ce

number of nodes

ocean-contig

��
�
�

�

�

�

 1 proxy cluster
� � no proxies

|

0
|

10
|

20
|

30
|

40
|

50
|

60
|0

|10

|20

|30

|40

|50

|60

re
la

tiv
e

pe
rf

or
m

an
ce

number of nodes

ocean-non-contig

��
�
�

�

�

�

 1 proxy cluster
� � no proxies

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|10

|20

|30

|40

|50

|60

re
la

tiv
e

pe
rf

or
m

an
ce

number of nodes

water-nsq

��
�
�

�

�

�

Figure 4.9: Performance speedup graphs

queueing delay: the ratio of the total time that messages spend waiting for service to the

total without proxies, and

remote read delay: the ratio of the mean delay between issuing a read-request and re-

ceiving the data, to the same mean delay when proxies are not used.

The message ratios are:

proxy hit rate: the ratio of the number of proxy read requests which are serviced directly

by the proxy node, to the total number of proxy read requests (in contrast, a proxy

miss would require the proxy to request the data from the home node),

proxy read ratio: the ratio of the total number of proxy-read-request messages to the

total number of read-request messages - this gives a measure of how much proxying

is used by an application.

The execution time pro�le presents the overall execution time split into CPU active time and

4.4. Results 117

the time spent waiting because of delays. The delays are further split into load, store, barrier

and lock delays. The times are normalised with respect to the execution time without proxies.

The message category pro�le shows how the total number of messages breaks down into

four categories: read, write, unhook, and proxy messages. The allocation of message types to

message categories is given in Appendix C.2. It should be noted that read messages include all

the read-request and take-sharedmessages, write messages include all the write-request,

invalidate and take-exclusive messages, and unhooks are all the messages needed to

handle the eviction of con
icting data lines from the SLCs.

4.4.1 Barnes

This application does not bene�t from the use of proxies, and for a number of values of NPC
the performance worsens (by up to �0:4%). It should, however, be noted that proxies did

achieve their aim of reducing node controller contention, as shown in Figure 4.10(a) by the

reduction in mean queueing delay. This e�ect is re
ected in the reduction in the remote read

delay, despite the overall increase in the number of messages. The use of proxies is high, as

shown by the proxy read ratio in Figure 4.10(b): this was expected because all the shared

data was marked for proxying. The proxy hit rate indicates that there is a reasonable level of

combining at the proxies, i.e. when proxy-read-request messages arrive at the proxy node

there is up to 50% chance that the data is already there or has already been requested.

Although the adverse e�ect on performance is small, it is important to understand why it

occurs. Using proxies reduces the number of read messages but adds the overhead of proxy

messages, and this causes a slight increase in the overall load miss delay. In addition, cache

pollution e�ects cause an increase in unhooking, as shown in Figure 4.10(d). The number of

write messages increases because proxy nodes are added to the distributed sharing lists, so

additional invalidation messages are needed before a write can complete, although this e�ect

does not a�ect the store miss delay because of the overall reduction in queueing time. As a

result of the increase in unhook messages, together with the introduction of proxy messages,

the load miss delay increases despite the improvement in remote read delay. In addition the

timing di�erences for individual node processing introduced by the additional messages have

a slight knock-on e�ect on barrier and lock delays.

The Barnes application is an example of where the indiscriminate use of proxying can lead

to performance degradation. All of the shared data was marked for proxying. Although

combining of requests was achieved for at least 50% of the read-request messages sent to

proxies, this was not su�cient to outweigh the delays introduced by the indirection of sending

requests via proxies.

118 Chapter 4. The Basic Proxy Scheme

(a) Changes (relative to no proxies case) (b) Message ratios

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy clusters

 %

barnes

�
� � � � � � � �

� � � � � � � � �

�
� � � � � � � �

� � proxy hit rate
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes

�

�

�
�

�
� � �

�

�

�

�
�

� �
� �

�

(c) Execution time pro�le

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes

100

25.3

2.5

20.9

34.6

16.7

100.3

25.3

2.5

20.9

34.6

17

100

25.3

2.5

20.8

34.6

16.8

100

25.3

2.3

20.9

34.6

16.9

100

25.3

2.2

21

34.6

16.9

100.2

25.3

2.4

21

34.6

16.9

100.1

25.3

2.4

20.8

34.6

17

100.2

25.3

2.4

21

34.6

16.9

100.4

25.3

2.6

21

34.6

16.9

(d) Message category pro�le

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

barnes

100

41.6

1.7

56.7

109.2

13.1

43.4

3.5

49.2

111.7

12.8

43.8

4.2

50.9

110

12.4

44.1

2.2

51.3

110.2

12.2

44.2

1.9

51.9

113.4

12.1

44.3

4.4

52.6

111.1

11.8

44.3

2.3

52.7

111.8

11.6

44.2

2.9

53.1

111.6

11.4

44.5

2.1

53.6

Figure 4.10: Barnes

4.4. Results 119

4.4.2 CFD

Using proxies improves the performance of CFD by between 5.0% and 13.7%. The perfor-

mance improvement and proxy hit rate exhibit a \stride" pattern with powers of 2, i.e. they

are better for 2, 4, and 8 proxy clusters. This is an example of proxy selection being \in step"

with data line ownership. In particular, at NPC=8, when a processing node requires corona

data from the \east" and \west" nodes, PN (l; C) picks the owner node for l. This results

in a quite dramatic drop in the number of read messages, because there is no longer a need

to go via the home node. By using a round-robin function for PN (l; C) the high combining

rate and the reduction in read-request messages are an artifact of the data ownership being

in-step with the proxy node selection function3.

When NPC is not in step with the algorithm, there is still a considerable bene�t to be

had from proxies. Contention is reduced at the home node, and combining helps reduce the

number of read-request and read-request-fwdmessages, which in turn reduces the remote

read delay and overall load miss delay. The least improvement is at NPC=7, and is the result
of a higher mean queueing delay than is seen for the other values of NPC� 1 (see Figure 4.11).

That increase in queueing delay is caused by the spread of proxy-read-request messages

around the nodes in the system, resulting from the way the nodes are partitioned into clusters

at NPC=7. The best performance improvements are obtained when the problem size, cache

line size, and NPC are all in step: change any one of these and the performance bene�ts for

CFD are reduced.

4.4.3 FFT

This application bene�ts from proxies, with performance improvements of between 8.5% and

9.6%, at NPC=8 and 7 respectively. Figure 4.12 shows the dramatic decrease in queueing

delay, which gives a corresponding decrease in node controller contention. As with the �rst

two applications, all the shared data has been marked for proxying, and this generally leads

to a high level of proxy-read-request messages. However, there is a low proxy hit rate

indicating that there is very little combining. The performance bene�t for FFT comes from

spreading out the input queue waiting across the nodes, rather than from combining read

requests for the same data line. The e�ect of spreading the queueing of messages around the

system by using proxies is analogous to Valiant's two-phase random routing scheme which

aims to reduce queueing at network switches [137]. It should also be noted that the level

of unhooking increases when proxies are used with FFT. This indicates that there is cache

3Simulations using a more random PN (l; C) function avoided the arti�cial bene�ts observed for some values

of NPC with CFD, but the randomness unfortunately worsened the results for all the other applications.

120 Chapter 4. The Basic Proxy Scheme

(a) Changes (relative to no proxies case) (b) Message ratios

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

c f d

�
� �

�
�

� � �

�
�

� � �
� � � �

�

�

� � �
�

� � �

�

� � proxy hit rate
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

c f d

�

�

�

�

�

� � �

�

�

�
�

� �
� �

�
�

(c) Execution time pro�le

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

c f d
100

13.3
2.5

11.7

23.3

49.2

91.6

13.3
1.4

11.5

21.8

43.6

93

13.3
1.4

12.3

23

43

92.8

13.3
1.2

11.6

22.9

43.8

88.2

13.3
1.5

10.3

20.8

42.3

91

13.3
1.4

10.6

22.2

43.5

91.8

13.3
1.6

11

22.2

43.7

95

13.3
1.7

12

23.7

44.3

86.3

13.3
1.7
9.4

20.3

41.6

(d) Message category pro�le

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

c f d

100

52.3

47.7

111.3
9.9

60.9

40.5

108
9.3

59.9

38.8

114.7
9.9

61

43.8

103.2
8.4

58.4

36.4

113.9
9.3

60.7

43.9

114.1
9.2

60.5

44.4

113.2
8.9

60.1

44.2

90.4
6.5

54.7

29.2

Figure 4.11: CFD

4.4. Results 121

(a) Changes (relative to no proxies case) (b) Message ratios

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

f f t

�

�

�

�

�

� � �

�
�

� � � � � � � �

�

� � �
�

� � �
�

� � proxy hit rate
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0
|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t

�

� �
�

�

� � �

�

�

�

�

�

�

� � �

�

(c) Execution time pro�le

| ||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f f t
100

34.2

0.4
2.8

27

35.6

90.6

34.2

0.4
2.5

27.6

25.9

90.9

34.2

0.4
3.4

27.4

25.5

91.2

34.2

0.4
2.7

27.7

26.2

91

34.2

0.4
4.9

27.1

24.4

90.5

34.2

0.4
2.1

27.7

26.1

91.3

34.2

0.4
2.9

27.6

26.2

90.4

34.2

0.4
1.9

27.7

26.2

91.5

34.2

0.4
5.2

27.1

24.6

(d) Message category pro�le

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f f t

100

40.6

0.3

59.1

152.6

22.4

53.4

0.9

75.9

139.4

16.9

50.1

1.1

71.3

165.3

26.3

56.6

1.4

81

111.1
5.9

43

1.3

60.9

160.9

24.9

55.5

0.9

79.6

161.3

24.8

55.5

1.5

79.5

161.1

25.1

55.5

0.8

79.7

111.8
6.4

43

1.5

60.9

Figure 4.12: FFT

122 Chapter 4. The Basic Proxy Scheme

pollution in the SLCs as a result of holding proxy data lines.

There is an oscillation in the number of messages and proxy read ratio, with an inverse

oscillation in the proxy hit rate. The lower message totals at NPC=2,4&8 occur where the

client node is the proxy within its cluster for the data line it requires. As with CFD, the

e�ect is an artifact of the simple round-robin function that is used to select proxies.

The bene�ts of proxying are also shown by the reductions in both the load miss delay (all

read misses by CPUs), and the reduction in remote read delay. However, there is a slight

increase in store miss delay, attributable to the increase in invalidation messages now that

nodes are holding data as proxies: this is re
ected in the increase in write messages as shown

in Figure 4.12(d). The number of read category messages also increases when proxies are used.

This is due to a sizeable increase in the number of take-shared messages, because (bearing

in mind the low rate of combining) using proxies for FFT usually replaces one take-shared

message to the client with two take-shared messages: one to the proxy and another one

from the proxy to the client.

4.4.4 FMM

This application gets a marginal improvement in performance by using proxies, with per-

formance gains of between 0.3% and 0.4%. Only one data structure has been marked for

proxying in FMM, chosen because it was the only obvious example of widely-shared data in

the application. As a result there is very little use of proxies, as shown by the low proxy read

ratio and small number of proxy messages (see Figure 4.13), but the proxying which does

occur is very e�ective, and has a high proxy hit rate. The queueing delay is reduced by more

than 40%, with corresponding reductions in remote read delay, and load miss delay. However

it is not surprising that there is only a small improvement in performance, because proxying

is aimed at reducing load miss delays, and these account for only 5% of the overall execution

time.

4.4.5 GE

The Gaussian Elimination application bene�ts greatly from the use of proxies, with perfor-

mance improvements of around 29%. The overall queueing delay is reduced dramatically

when proxying is used, dropping by over 90%. This is a result of the application's behaviour:

in each iteration, all nodes need a copy of the current pivot row, which will have one home

node (or possibly more, if the row crosses page boundaries). When proxies are used, the read

messages are diverted to proxy nodes, resulting in a more uniform distribution of messages,

4.4. Results 123

(a) Changes (relative to no proxies case) (b) Message ratios

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

f m m

� � � � � � � � �� � � � � � � � �

�

� � � � � � � � � � proxy hit rate
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m

�

� � � � � � � �

� � � � � � � � �

(c) Execution time pro�le

| ||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f m m

100

21.3

40.3

33.4

5.0

99.6

21.3

40.3

33.4

4.6

99.7

21.3

40.3

33.4

4.7

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.7

21.3

40.3

33.4

4.7

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.6

21.2

40.3

33.3

4.8

(d) Message category pro�le

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f m m

100

43.3

4.2

52.5

100.3

0.3

43.6

4.1

52.3

101.1

0.3

43.5

4.9

52.4

101.1
0.4

43.4

5

52.3

100

0.5

43.6

3.8

52.1

101

0.5

43.5

4.5

52.5

100.8

0.5

43.5

4.4

52.4

100.9

0.5

43.7

4.4

52.3

100.3

0.5

43.5

4.1

52.2

Figure 4.13: FMM

124 Chapter 4. The Basic Proxy Scheme

(a) Changes (relative to no proxies case) (b) Message ratios

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

 %

g e

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

� � proxy hit rate
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

|2.2

|2.4

proxy clusters

g e

�

� � � � � � � �

�

�
�

� �
� � � �

(c) Execution time pro�le

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

g e
100

12.2

28.3

6.6

52.9

71.2

12.2

31.5

6.4

21.1

71.1

12.2

31.4

6.5

21

71

12.2

31.4

6.5

20.9

71

12.2

31.3

6.5

21

70.9

12.2

31.3

6.5

20.9

70.8

12.2

31.2

6.5

20.9

70.8

12.2

31.1

6.4

21.1

70.8

12.2

31.1

6.4

21.1

(d) Message category pro�le

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

g e

100

37.1

62.9

125.9

22.4

45.6

57.9

125.7

22.8

45.4

57.5

125.8

23.3

45.1

57.4

125.7

23.6

44.9

57.2

125.5

24

44.7

56.8

125.2

24.2

44.5

56.5

124.8

24.2

44.3

56.3

124.3

24.1

44.1

56.1

Figure 4.14: GE

4.4. Results 125

reduced queueing delay, and an overall reduction in remote read delay. This has the e�ect of

reducing the overall load miss delay by more than 50%, as shown in Figure 4.14(c). There is

a slight increase in barrier delay, due to some nodes checking-in earlier: i.e. there has been

an increase in barrier delay because the decrease in load delay can introduce more processing

imbalance.

The store miss delay is slightly reduced, re
ecting the shorter queueing delays because mes-

sages related to writes are no longer caught in long queues at the hot-spot nodes. That

being said, the number of write messages increases because all updates to matrix data �rst

have to invalidate any proxy copies in addition to the \genuine" members of the sharing list.

Although the current pivot row data is required by all the nodes, any other read to shared

data will also be proxied, resulting in proxy nodes being on the sharing list which would not

have been there without the proxy scheme. The overall increase in write category messages

does not result in a longer store miss delay because the large reduction in queueing delay

means that the messages su�er much shorter queueing penalties even though there are more

messages.

The proxy read ratio is very high for this application, re
ecting the fact that the vast majority

of read-requestmessages have been converted to proxy-read-requestmessages. The value

tails o� as NPC increases, because there are fewer clients issuing proxy read requests and

more proxy nodes issuing read requests to the home nodes.

Figure 4.14(b) shows the proxy hit rate to be highest with one proxy, and then it tails o�

slowly as the number of proxies is increased. This is as expected, because every node accesses

each data line of the pivot row; therefore a high rate of combining is possible, but the best

combining rate is achieved when only one location is acting as proxy for a given data line.

When NPC=1, all proxy-read-request messages for a particular data line are sent to the

same node, and this will give the best combining, since at most one read-request has to be

sent on to the home node.

The proxy hit rate is not as high as it is for some applications, e.g. FMM, because in GE

all reads for matrix data are converted into proxy read requests, but those reads not relating

to the current pivot row are not widely-shared. For example, a read from the new owner

of the data will be followed by a write, so combining for this data line is likely to be very

low (i.e. zero unless the proxy is the current owner). Contrast this with pivot row data lines

where, with NPC=1, the hit rate will be very high, because the �rst proxy read request will

trigger the read to the home node, and all the subsequent proxy read requests will combine

at the proxy.

126 Chapter 4. The Basic Proxy Scheme

As NPC increases, the pivot row's proxy hit rate will decrease as more proxy-read-request

messages su�er an initial \miss" at di�erent proxies, but the chances of a proxy being the

owner node will increase, so for non pivot row reads, the proxy hit rate should increase slightly:

this leads to an slow decline in the overall proxy hit rate.

The performance does not vary much with changes in the value of NPC because the perfor-

mance bene�t comes from directing the read requests away from the home node, and varying

NPC does not really a�ect this for GE. With NPC=1, there is maximum combining, but it

takes longer to send the data to all the clients on the single pending chain. As NPC increases,
the burden of being proxy for a particular data line is spread over more nodes, and the bar-

rier delay (which is symptomatic of processing imbalance) improves slightly. As a result, the

overall execution time shows gradually greater improvements.

4.4.6 Ocean-Contig

The results for Ocean-Contig are summarised in Figure 4.15. This application is unusual

among the benchmarks, because the queueing delay and remote read delay both increase,

i.e. proxies degrade rather than improve these performance measures. The application has

been speci�cally written to exploit data locality. The introduction of proxies increases the

sharing list by one for each proxy, because the proxy node does not require the data itself,

i.e. it is not on the sharing list when NPC=0. This increases the take-sharedmessages, and

also increases the number of invalidation messages required when a node wants to write to a

proxied data line. Figure 4.15(d) shows that there is a signi�cant increase in the number of

read and write messages. The read messages total includes all take-sharedmessages, and the

write messages total includes the invalidation messages required to get exclusive ownership

of a data line.

The data locality of Ocean-Contig means that using proxies is likely to increase indirection

without the compensation of combining at the proxy nodes. In addition, proxying shifts the

timing of processing at the individual CPUs and so a�ects the barrier delays. This change of

barrier delays results in the only performance improvement, which occurs when NPC=5 and
the barrier delay is at its lowest level.

4.4.7 Ocean-Non-Contig

The performance of this application varies, depending on the number of proxy clusters, be-

tween an improvement of 0.7% and a slowdown of �12:8% (see Figure 4.16). The performance

varies according to the e�ect proxies have on the queueing delay: when queueing delay is worse

4.4. Results 127

(a) Changes (relative to no proxies case) (b) Message ratios

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

ocean-contig

�

� � � � � � � �

� � � � �
� � � �

�

� � � � � � � �

� � proxy hit rate
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig

�

� � � �
� � � �

�

� � � � � � � �

(c) Execution time pro�le

| ||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig

100

19.9
0.8

14.9

13.2

51.2

100.4

19.8
0.7

14.7

13.5

51.7

102.1

19.9
0.7

15.9

13.5

52.1

102.1

19.9
0.7

15.9

13.6

52

105

20
0.7

18.3

13.7

52.3

99

19.7
0.7

13.5

13.5

51.6

100.8

19.8
0.7

14.9

13.6

51.8

103

19.9
0.7

16.7

13.6

52.1

103.9

20
0.7

17.3

13.7

52.2

(d) Message category pro�le

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-contig

100

48.3

1.8

49.9

131.7
13.9

58.9

2

56.9

130.8
13.6

58.6

1.8

56.8

131
13.3

58.7

2

57

130
13

58.4

1.8

56.8

130.7
12.7

58.6

2.1

57.3

130.2
12.5

58.5

1.9

57.3

129.5
12.1

58.2

1.7

57.5

128.1
11.9

57.9

1.7

56.6

Figure 4.15: Ocean-Contig

128 Chapter 4. The Basic Proxy Scheme

(a) Changes (relative to no proxies case) (b) Message ratios

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

ocean-non-contig

� � �
� � � � � �

� � �

�

� �

�
� �

�

� � � � �
�

� �
� � proxy hit rate
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

ocean-non-contig

�

� �

�

�
� � �

�

�

� �
� � � � � �

(c) Execution time pro�le

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-non-contig

100

31.4

0.8

12.8

18.5

36.5

102.8

31.6

0.8

13.1

19.1

38.2

101.6

31.6

0.8
12.4

19

37.8

112.8

32.1

0.8

19.4

20.4

40.1

99.9

31.5

0.7
11.2

18.9

37.6

99.3

31.3

0.8
11.3

18.8

37.1

109.4

32.1

0.8

17.4

20.4

38.7

102.5

31.5

0.8

13.6

19.1

37.5

101.5

31.4

0.8

13.1

18.9

37.3

(d) Message category pro�le

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-non-contig

100

57.5

4.2

38.3

104.7

1.3

58.9

5.1

39.4

105

1.3

58.9

5.3

39.5

110.3

1.6

60.3

7.9

40.5

105.5

1.3

58.9

6

39.3

105.2

1.3

59.1

5.6

39.2

105.4

1.3

59.3

5.7

39.1

105.6

1.2

59.1

6.2

39.1

104.4

1

58.8

5.6

39

Figure 4.16: Ocean-Non-Contig

4.4. Results 129

than the base case, performance su�ers; when it is better than the base case, performance

improves. The question is, why does the queueing delay oscillate depending on the value of

NPC ?

The performance is at its best when NPC=4&5, i.e. when the queueing delays are spread

evenly around the system and the individual nodes do not receive more than their fair share

of proxy read requests. For the other values of NPC� 1, the mean queueing time for some

nodes is a�ected more than others, and when two or more nodes have queueing times that

stand out from the pack, the performance su�ers. In Ocean-Non-Contig, poor data locality is

the price paid for having an implementation that is easier to understand than Ocean-Contig.

As a result, there is already a high level of messages in the network, and certain values of

NPC have the unfortunate e�ect of creating new message queue bottlenecks.

It should also be noted from Figure 4.16(d) that there is an increase in unhook messages

for all values of NPC� 1. This indicates that proxies are causing cache pollution for this

application.

4.4.8 Water-Nsq

This application shows a slight worsening in performance when proxies are used, ranging

between �0:5% and �0:7%. As shown in Figure 4.17, proxies reduce queueing but they have

the e�ect of slightly increasing the load and store miss delays. Most of the read-request

messages from clients are converted to proxy-read-requestmessages, and this is re
ected by

the high proxy read ratio. However, combining is below 50%, and so many read requests are

forwarded on from proxy nodes to home nodes. Taken together with the extra take-shared

messages needed to pass the data to proxy nodes, the overall level of read category messages

remains close to the level seen without proxies. By routing the messages via proxies the

queueing delay is slightly reduced, which is the aim of proxying. However, the remote read

delay shows a slight increase due to the indirection of going via a proxy node and the relatively

low level of combining. In addition, there is a marked increase in the number of write messages,

primarily because of the extra invalidation messages needed to remove proxy copies from

sharing lists. This results in a slight increase in the overall store miss delay.

The slight \blip" in queueing delay, when NPC=3, is due to a very uneven distribution of

proxy read requests in cluster 1 (nodes 1 to 21) and cluster 2 (nodes 22 to 42), as shown

in Figure 4.18. The distribution of proxy-read-request messages is very even for all the

other values of NPC�1. However, although the uneven distribution of proxy-read-request

messages at NPC=3 slightly increases the overall remote read delay, it does not have any

extra e�ect on the execution time.

130 Chapter 4. The Basic Proxy Scheme

(a) Changes (relative to no proxies case) (b) Message ratios

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

 %

water-nsq

�

� � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � proxy hit rate
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

proxy clusters

water-nsq

�

� � � � � � � �

�

�
� � � � � � �

(c) Execution time pro�le

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

water-nsq
100

72.5

0.2
3

19.7

4.6

100.7

72.7

0.2
3.1

20

4.7

100.6

72.7

0.2
3

20

4.7

100.6

72.7

0.2
3

19.9

4.8

100.6

72.7

0.2
3

19.9

4.8

100.6

72.7

0.2
3

19.9

4.8

100.5

72.7

0.2
3

19.9

4.7

100.7

72.8

0.2
3.2

19.9

4.6

100.5

72.7

0.2
3

19.9

4.7

(d) Message category pro�le

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

water-nsq

100

46

54

126.3

17.3

54.8

0.1

54.1

125.8

17.1

54.7

0.1

53.9

125.1

16.8

54.5

0.1

53.7

124.5

16.6

54.3

0.1

53.5

124

16.3

54.2

53.5

123.5

16.1

54

53.4

123

15.8

53.8

53.4

122.3

15.5

53.6

0.1

53.1

Figure 4.17: Water-Nsq

4.4. Results 131

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|
|

|
|

|
|

2000

5000

8000

11000

14000

node number

 water-nsq - 3 proxy clusters

take hole messages
proxy read requests

�

�

�
�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 4.18: Individual incoming take-hole and proxy-read-request message totals for
Water-Nsq, with NPC=3

4.4.9 Summary of Results

Using the basic proxy protocol, which routes read requests via proxy nodes when the data

is marked for proxying, does not have the same e�ect on all the applications. Four out of

the eight benchmarks had better performance when proxies were used, although this ranged

from a peak improvement of 29.2% with GE, to a minimum improvement of 0.3% with FMM.

Of the remaining four benchmarks, the performance of Ocean-Contig and Ocean-Non-Contig

oscillated between being worse and being better depending on the value of NPC, while using
proxies had a slightly adverse e�ect on Barnes and Water-Nsq. There were a number of

reasons for this variance: the selection of data structures for proxying, the level of remote

reads in the application (i.e. algorithm locality), the interaction of the proxy selection function

with the data accesses, unhooking caused by cache pollution, the level of combining, and the

trade-o� between higher combining and shorter pending chains.

The GE benchmark showed a signi�cant performance improvement using basic proxies. This

was to be expected because the application was speci�cally chosen as an example of read

contention. The application ran around 29% faster on 64 nodes with proxies. For CFD, when

NPC was in step with the data ownership for a particular problem size and cache line size,

the performance bene�ts were enhanced. However, the application still bene�ted from the

use of proxies for other values of NPC.

Ocean-Non-Contig showed oscillating behaviour, i.e. the performance was usually worse but

sometimes better with proxies. This oscillation was caused by the interaction of the queueing

redistribution resulting from proxies (di�erent for each value of NPC) with the high level of

messages needed during the execution of the application. As a result, new queueing bottle-

necks were created for some values of NPC. Barnes and Water-Nsq both showed a slight drop

in performance. This serves as a warning that basic proxies can have a detrimental e�ect on

performance if the wrong data structures are marked for proxying.

132 Chapter 4. The Basic Proxy Scheme

Although only GE showed a substantial improvement in execution time, the results have

demonstrated that more random message delivery can result in reduced message queueing,

even when there is an overall increase in network tra�c. Although the overall message tra�c

level is somewhat higher, the distribution is more uniform.

There are some overheads associated with proxies. Every load (for addresses subject to

proxying) goes via a proxy, whereas with the underlying protocol no indirection would be

involved. This can be detrimental to performance where inappropriate data structures are

marked as \hot". In addition, there can be cache pollution i.e. allocating space in the cache

for proxied data may displace another line, and lead to a later cache miss, with an unhooking

overhead for the displaced line. In the simulations, these delays were more signi�cant for some

applications than for others, and this e�ect is studied further in Chapter 6 and Chapter 7.

To what extent do these results depend on details of the simulator? The experimental setup

was designed to give results that were relatively straightforward to interpret, and so some

simplifying assumptions were made. The most important is assuming a fully-interconnected

network. This means that blocking occurs only when there is contention for network inter-

faces. With proxies, the overall tra�c level is increased, but the tra�c pattern is partially

randomised so that the load tends to be spread more evenly. This is highly desirable for some,

but not all network designs. This simpli�cation has allowed the study of the interaction be-

tween the proxy selection algorithm and the data access patterns of the applications.

The wide range of performance results, the di�culty of selecting the correct data for proxying,

and the hardware and software costs of implementing proxies, lead to the conclusion that this

basic form of proxies is not suitable for general use. However, proxies can give a noticeable

improvement in performance in some cases.

4.5 Conclusions

This chapter has introduced the proxy protocol extensions, and evaluated the basic form of

proxies. The results are encouraging, in that some applications show a marked performance

improvement. However, the slight drop in performance su�ered by other applications, such as

Water-Nsq, indicates that the basic form of proxies is not suitable for general use in cc-NUMA

architectures. In the next three chapters, di�erent implementations of the proxy strategy are

considered to determine whether proxies can be provided in a way that is bene�cial for all

applications.

Chapter 5

Automatic Invocation of Proxies

The basic form of proxies, described in Chapter 4, has the disadvantage that data has to be

marked for proxying by the application programmer, or possibly by a compiler. This chapter

introduces two automatic forms of proxying, reactive and adaptive proxies, which detect

run-time node congestion and make this the trigger for using proxies. The mechanism for

detecting node congestion exploits the handling of full message bu�ers which will be present in

any real system. Some of the material in this chapter �rst appeared in [130], which presented

preliminary results for the reactive proxies scheme.

5.1 Finite Bu�ers

In real systems, message bu�ers have a limited size. This limitation a�ects all bu�ers, in-

cluding those in the network, and the input and output bu�ers of each node controller. In

addition, in large-scale systems it is impractical to provide enough bu�ering at each node

to hold all the incoming messages, because all (or many) of the nodes in the system could

simultaneously send a request to one node. These physical limitations complicate the task of

ensuring the correct operation of distributed systems: inter-node operations must be guaran-

teed to complete in a �nite amount of time, and the system as a whole must make forward

progress [89]. The memory system must be free from deadlock, and individual requests must

not starve. Figure 5.1 illustrates two of the problems that can occur with �nite bu�ers.

A commonly adopted strategy for tackling these problems (e.g. as used in the Stanford DASH

system [88] and the MIT M-Machine [35]) has four parts [54]:

� A separate network (physical or virtual [27]) is used for requests and replies, where a

reply is any message that a controller waits for before moving to a new state. This

ensures that new requests cannot block replies that will free up bu�ers.

133

134 Chapter 5. Automatic Invocation of Proxies

ORIGINAL SENDER

original message

message received OK

incoming message buffer FULL

incoming message buffer is FULL

sender decides to re-send

ORIGINAL DESTINATION

return to sender

return to sender
=> possible infinite bouncing

=> possible infinite
 re-sending

Figure 5.1: The problem of starvation with bounded input queues

� Every request that expects a reply allocates space to accept the reply when the request

is generated. If no space is available, the request waits. This ensures that a node can

always accept a reply message, which will allow the replying node to free its bu�er.

� Any controller can reject (usually with a negative acknowledge or NAK) any request,

but it can never NAK a reply. This prevents a transaction from starting if the controller

cannot guarantee that it has bu�er space for the reply.

� Any request that receives a NAK in response is simply retried.

A result of adopting such a strategy is that when a read-request reaches a full bu�er, a NAK

will be sent back to the requester. The requester will be able to accept the NAK because it

will already have allocated bu�er space in the reply bu�er.

This approach will avoid the problem of possible in�nite bouncing of messages due to full

incoming message bu�ers. However there is still the possibility that the original sender will

su�er \node starvation" if it keeps having to re-send the request message. This problem can

be avoided either by using timestamp-based priority or by having a higher class of request

message which is used when the normal request becomes stale. Either way, when a request

has failed to be accepted by the destination node over a \long time", there has to be a way

of forcing the destination to accept the request [89].

5.2 Reactive Proxies

In the basic form of proxies, the application programmer uses program directives to mark

data structures for handling by the proxy protocol - all other shared data will be exempt

from proxying. If the application programmer makes a poor choice of data structures to

5.2. Reactive Proxies 135

Home

bounce

Home

Proxy

(a) Input bu�er full, some read requests bounce (b) Reactive proxy reads

Figure 5.2: Bounced read requests are retried via proxies

be marked for proxying, then the overheads incurred by proxies may outweigh any bene�ts

and degrade performance, as was noted in Section 4.4.9. These overheads include the extra

work done by the proxy nodes handling the messages, proxy node cache pollution, and longer

sharing lists. In addition, the programmer may fail to mark data structures that would have

given noticeable performance bene�ts if they had been proxied. An alternative approach is

to detect node controller contention when it occurs at run time, and use this to trigger the

proxy protocol extensions.

As explained in Section 5.1, any system with limited bu�ering has to provide a mechanism to

handle bounced requests, i.e. those messages which cannot be inserted into a full bu�er. When

a remote read-request reaches a full bu�er, a NAK (negative acknowledgement) message

is sent back across the network. The receipt of the NAK message indicates to the requester

that there is a queueing bottleneck, and so this can be used to trigger proxy processing. This

reactive form of proxying only operates when there is congestion: if no NAKs are received

then no proxy-read-request messages will be sent. When a NAK is received in response to

a read-request, the requester will then send a proxy-read-request rather than repeating

the read-request, as illustrated in Figure 5.2. The proxy node will be selected in the same

way as for basic proxies (see Section 4.2.2). Reactive proxies were �rst described in [130].

The reactive proxies protocol, therefore, di�ers from the basic proxies protocol, where the

user has to decide whether all or selected parts of the shared data are proxied, and proxy

reads are always used for data marked for proxying. Instead, the proxying only takes e�ect

when congestion occurs. A proxy read is only done in direct response to the arrival of a

buffer-bounced-read-request, so as soon as the queue length at the destination node has

reduced to below the limit, read requests will no longer be bounced and no proxying will be

employed. This removes the obvious overhead of the basic protocol, where proxying may add

at least one message to every remote read on shared data marked for proxying.

136 Chapter 5. Automatic Invocation of Proxies

A possible variation on this scheme would be to re-route a read request directly to a proxy

from the bouncing node, rather than just sending a NAK back to the client. The problem

with this idea is that it compromises the simplicity of the NAK approach, and it would mean

that each network controller would have to have the capability of calculating PN (l; C). The

simple approach has been used in this work to avoid complicating the underlying protocol

and the hardware needed to implement it.

Using the arrival of read-request NAKs is a straightforward way of detecting home node

congestion. However the congestion will not always be due to many clients requesting the

same data line from the home node: the full bu�er(s) may be due to a hot spot in the network,

or many clients requesting di�erent data lines from the same home node. Although the use of

proxies in such circumstances may not get much bene�t from combining, it is expected that

the re-routing of requests via proxies will have the e�ect of avoiding hot spots and staggering

the arrival of requests at the home node, in the same way as the two-phase random routing

described by Valiant [137].

The need to dynamically identify widely-shared data at run-time, rather than relying on static

marking of data, has independently been identi�ed by Kaxiras et al. in their recent work on

the GLOW extensions to SCI [69]. GLOW intercepts requests for widely-shared data by

providing agents at selected network switch nodes. In their dynamic detection schemes, agent

detection achieves better results than the combining of the NYU Ultracomputer [45] by using

a sliding window history of recent read requests, but does not improve on the static marking

of data. Their best results are with program-counter based prediction (which identi�es load

instructions that su�er very large miss latency) although this approach has the drawback of

requiring customisation of the local node CPUs.

It should be noted that there are other approaches to ensuring forward progress, such as that

used in the Thinking Machines CM-5 [87], where a delivery contract guarantees that any mes-

sage accepted by the network will be delivered to its destination. The data network promises

to eventually accept and deliver all messages injected into the network by the processors as

long as the processors promise to eventually remove all messages from the network when they

are delivered to the processors. The contract relies on the use of a split request-response net-

work. Such an approach will not have the NAK messages to indicate that there is a problem

with full bu�ers. However it would be possible in such an environment to record the response

time for read requests, and to use the detection of an overly long response as the trigger for

using a proxy-read-request.

The reactive proxy scheme has the twin virtues of low overheads and simplicity. No infor-

mation needs to be held about past events, and no decision is involved in using a proxy:

5.3. Adaptive Proxies 137

the protocol state machine is simply set up to trigger a proxy-read-request in response to

the receipt of a NAK'd read request. However, the strategy is \dumb", in as much as when

another read-request needs to be sent soon after a NAK from a particular home node, it

will be sent to that home node even though it is likely to still be congested.

5.3 Adaptive Proxies

A more sophisticated strategy, adaptive proxies, uses the arrival of a NAK'd read-request

message to trigger the start of a proxy-period, i.e. a time during which any further read-

request messages destined for the home node are replaced with proxy-read-request mes-

sages. The proxy-period is modi�ed according to the level of bu�er-bouncing. Adaptive

algorithms cover all areas where a system can adapt to suit run-time conditions, with exam-

ples including adaptive coherency protocols, cache bypassing, and page management. The

schemes have a common theme of a threshold value (which itself may be varied) which is used

to decide whether to use one strategy or another. A selection of adaptive schemes were exam-

ined in Section 2.3 of this thesis, including sequential prefetching [26], the adaptive predictors

for accelerating coherence protocols in Cosmos [98], and the random walk policy.

The random walk policy is a simple and e�ective adaptive algorithm that has been used in

a number of domains including hybrid update/invalidate cache coherency protocols [7] (see

Section 2.3.3 of this thesis). The random-walk policy has low overheads, and so has been used

in this thesis as the basis for adaptive proxying. The algorithm is based on the assumption

that the probability of a bu�er-bounce (from a particular home node) occurring within an

upper time limit of the last bu�er-bounce (from that home) is high if the last inter-bounce

period was less than the upper time limit. Given:

� last bu�er bounce time LB(x;y), i.e. the time at which the last bu�er-bounce message

was received at client node x from home node y,

� current time Tcurr,

� the most recent inter-bounce time IB(x;y), i.e. the gap between bu�er-bounces from

home node y to client node x, set to (Tcurr � LB(x;y)),

� PPunit is one unit of proxy-period time,

� PPmax is the maximum proxy-period,

� the maximum inter-bounce threshold IBmax, set to (PPunit � PPmax),

� PPmin is the minimum proxy-period,

138 Chapter 5. Automatic Invocation of Proxies

� the proxy-period for reads from client node x to home node y is PP(x;y). All PP(x;y)

are initialised to PPmin,

then the arrival at client node x of a buffer-bounced-read-request from home node y will

trigger the adjustment of PP(x;y) as follows:

if (IB(x;y) < IBmax)

then add 1 unit to PP(x;y),

otherwise subtract 1 unit from PP(x;y),

but do not adjust PP(x;y) if the resulting value would be outside

the range PPmin � PP(x;y) � PPmax

The PP(x;y) are upper-bounded by PPmax, to ensure that the level of proxying does not get so

high that it takes a long time for the system to react to a reduction in home node contention.

If there was no upper limit on PP(x;y), then at points in the algorithm where there was a

concentration of home node contention, such as the acquisition of pivot row data in GE, the

PP(x;y) value would go so high that subsequent reads requests from client x to home node y

would be proxied unnecessarily. The choice of suitable values for PPmax and PPunit depends

on the architecture, and the values used in the simulations were selected after experiments

with a range of values.

To decide whether proxying is appropriate, there has to be an extra check before each

read-request is issued by a client x to a home node y. The test is as follows:

if [LB(x;y) > 0] and [(PP(x;y) � PPunit) > (Tcurr � LB(x;y))]

then send a proxy-read-request,

otherwise send a normal read-request.

The adaptive proxies scheme is more
exible than reactive proxies, because it adjusts accord-

ing to the level of congestion at individual home nodes. However it has the storage overheads

of holding the LB(x;y), PP(x;y), PPunit, PPmax, and PPmin values at each node. There are

also the processing overheads of the tests to adjust PP(x;y), and checking before issuing each

remote read-request whether a proxy-read-request should be sent instead.

5.4 Potential Bene�ts and Costs of Automatic Proxying

The two schemes for triggering proxying in response to run-time message bu�er congestion

should have a number of e�ects. Among the bene�ts one would expect are:

5.5. Design Issues 139

No marking of widely-shared data: the new strategies avoid the need for the program-

mer to correctly identify all the widely-shared data structures.

Proxies are only used during bu�er congestion: the new proxy strategies only kick-in

when incoming message bu�ers are full. At other times during the execution of an

application the read-request messages are sent directly to the home node.

The potential costs are:

Delay in deploying proxies: the proxy-read-request is only made after a NAK is re-

ceived. This delay of two messages (read-request and NAK) may outweigh any small

performance gain to be had from sending the request via a proxy. The problem is less

acute for adaptive proxies, because once a proxying-period has been triggered the subse-

quent read-requestmessages for the congested home node are automatically converted

to proxy-read-request messages.

Unnecessary use of proxies: the congestion may have eased at the home node by the time

a NAK is received at the requester. In these circumstances, the requester could get a

faster response by re-sending the read-request to the home node rather than sending

a proxy-read-request.

Moving rather than alleviating congestion: the use of proxies may just move the prob-

lem of full bu�ers from the home node to the proxy node(s). Using a di�erent proxy

for successive data lines, and partitioning the system into more than one proxy cluster

(i.e. NPC> 1) should help to avoid the problem. However, applications with a high

level of messages might still encounter performance degradation because of re-directed

messages.

These potential costs and bene�ts are considered as part of analysing the results in Section 5.7

5.5 Design Issues

There are a number of factors which have to be considered as part of implementing the reactive

and adaptive proxy schemes. The most signi�cant are how to represent �nite bu�ers, and

how to handle the messages which are \bounced" when a message bu�er is full. In addition,

the adaptive scheme requires that historical data about such bu�er-bounces is recorded and

used by node controllers. These issues are discussed in this section.

140 Chapter 5. Automatic Invocation of Proxies

5.5.1 Finite Bu�ers

In this work, to simulate �nite size input message bu�ers, the incoming message queue at

each node is limited to eight for read-request messages. There may be more messages in

an input bu�er, but once the queue length has risen above eight, all read-request messages

will be bounced back to the sender until the queue length has fallen below the limit. This

is done because this research is concerned with the e�ect of �nite bu�ering on read requests

rather than all messages, and the approach also ensures that all transactions will complete

in the protocol. The implementation in e�ect splits read-request messages away from other

messages, in the spirit of split read-response networks (e.g. as used in Stanford's DASH

project [89]), and curtails the number of reads. The limit of eight may seem low, but it was

chosen to re
ect the limitations in queue length that one would expect in large cc-NUMA

con�gurations. The queue length of
p
P , where P is the number of processing nodes, is an

arbitrary but reasonable limit.

5.5.2 Handling Bounced Messages

When the reactive and adaptive proxy protocols are in use, the return of a \bu�er-bounced"

NAK of a read-request will trigger a proxy read. For reactive proxies, a read request is

only sent to a proxy in direct response to the arrival of a NAK. This is implemented by a

straightforward modi�cation to the client state machine: the arrival of a read-request NAK

will now result in sending a proxy-read-request rather than repeating the read-request.

In addition, for adaptive proxies, proxy reads will be done instead of direct read-request

messages to a home node when there has recently been a bu�er-bounce from that home node.

Two changes are needed to the node controller processing to support this. When a NAK is

received, the value of PP(x;y) needs to be adjusted. In addition, the controller needs to check

before any read-request message is issued to see whether a proxying period is in e�ect for

the home node: if it is, then a proxy-read-request message has to be sent instead.

5.5.3 Adaptive Proxy Data

Every node controller needs to keep track of the last time a read-request was bu�er-bounced

back to it from each of the other nodes in the system. This last bu�er-bounce information

(LB(x;y)) has to be updated whenever a buffer-bounced-read-requestmessage is received.

This information is used, in conjunction with PP(x;y) (the current proxy period for each node)

to decide whether a proxy-read-request should be sent instead of a read-request. PP(x;y)

is updated whenever a buffer-bounced-read-request is received.

5.6. Modi�cations to the Protocol and Architecture 141

The minimum proxy-period PPmin could be set to zero, which would initialise the algorithm

to behave like reactive proxies when a bu�er-bounce is �rst received. However for this work

PPmin was initialised to one, so the receipt of a buffer-bounced-read-request always

triggers a period of proxying. This was done in order to distinguish clearly between the

e�ects of the adaptive and reactive proxy schemes..

The choice of suitable values for PPmax and PPunit depends on the architecture, and the

values used in the simulations were selected after experiments with a range of values. Setting

too large a range between PPmin and PPmax, or a high value of PPunit results in proxying

being over-used when a home node is no longer congested, because the algorithm takes too

long in adjusting PP(x;y) down to PPmin. However, setting PPmax at too low a value prevents

proxying from being used for as long as it should be when a home node is congested over

a long period. After experiments with a range of values (both higher and lower than those

chosen to produce the results presented in this chapter) the PPmax and PPunit parameters

were set to 50 and 1000 respectively, i.e. PPunit is one unit of proxy-period time, and is set to

1000 node controller cycles, and PPmax is the maximum proxy-period, and is set to 50 units.

These values produced balanced performance results for the eight benchmark programs using

adaptive proxies. The performance balance was between making the maximum use of proxies

for applications such as GE (i.e. with higher values of both PPmax and PPunit), and not

over-using proxies for applications such as Ocean-Contig where the performance degrades for

larger values of PPmax or PPunit.

5.6 Modi�cations to the Protocol and Architecture

The architecture needed to support reactive proxies is the same as for basic proxies. How-

ever, adaptive proxies need to keep track of the timestamp of the last NAK'd read-request

received from each of the other nodes in the system, and the current value of PP(x;y) for each

of the other nodes. These values are held in the Adaptive Proxy Table, which is part of the

node controller, as illustrated in Figure 5.3.

There are no extra node controller states or state transitions needed to support reactive and

adaptive proxies, i.e. the state machine is as for basic proxies. However the processing of

local read misses changes for adaptive proxies because there has to be a check on whether

the proxying period is in e�ect. In addition, the introduction of �nite bu�ers requires the

node controller to handle the receipt of buffer-bounced-read-request messages: for basic

proxies the will result in the read-request being re-sent to the home node, whereas for the

automatic proxying schemes this is the trigger for sending a proxy-read-request instead.

142 Chapter 5. Automatic Invocation of Proxies

DRAM

CONTROLLER

NETWORK

PROXY
TRANSIT
CACHE

CONTROLLER

SLC

MEM bus

SLC bus

NODE ADAPTIVE
PROXY
TABLE

buffer size is
limited to 8 for
incoming read
request messages

TLB

CPU

FLC

LB(x,y)

PP(x,y)
y

The adaptive proxy table holds the PP(x,y)
and LB(x,y) values for x=this node number,
and y=1 to P (where P=number of nodes)

The table is modelled as being on-chip
with the node controller, with access
latency of 1 cycle

Figure 5.3: Memory model for a cc-NUMA node with �nite message bu�ers

5.7 Results

This section presents the results obtained from execution-driven simulations of the basic,

reactive, and adaptive proxy strategies. It has been shown in Section 3.5 that contention only

becomes an important issue when more than a few tens of nodes are used. For this reason the

detailed results presented below are from simulations of a 64 node design. For details of the

simulated architecture, please refer back to Section 3.4. For basic proxies, the shared data

marked for proxying is shown in Table 5.1: the same marking was used in Chapter 4.

application problem size shared data marked for basic proxying

Barnes 16K particles all

CFD 64� 64 grid all

FFT 64K points all

FMM 8K particles f array (part of G Memory)

GE 512� 512 matrix entire matrix

Ocean-Contig 258� 258 ocean q multi and rhs multi

Ocean-Non-Contig 258� 258 ocean fields, fields2, wrk, and frcng

Water-Nsq 512 molecules VAR and PFORCES

Table 5.1: Benchmark problem sizes, and data marked for basic proxies

5.7. Results 143

relative % change in execution time (+ is better,

application speedup proxy � is worse) for NPC = 1 to 8

no proxies type 1 2 3 4 5 6 7 8

basic +0.2 0.0 0.0 +0.2 -0.1 -0.3 0.0 -0.1

Barnes 46.3 reactive +0.4 +3.3 +0.2 0.0 +0.3 0.0 +0.5 +0.4

adaptive +0.1 +3.2 +0.4 +0.4 +0.4 +0.2 -0.1 +0.2

basic +10.4 +11.3 +8.1 +11.8 +9.8 +9.3 +9.2 +14.8

CFD 28.3 reactive +7.6 +7.4 +8.3 +7.6 +8.6 +7.6 +7.6 +6.1

adaptive +9.2 +13.1 +11.3 +11.6 +11.2 +10.4 +10.6 +12.1

basic +9.4 +8.7 +8.7 +9.6 +9.5 +8.6 +10.0 +8.5

FFT 47.3 reactive +11.7 +11.2 +10.9 +11.0 +11.2 +11.8 +11.2 +10.7

adaptive +11.9 +11.6 +11.3 +11.4 +11.2 +11.5 +11.0 +11.0

basic +0.4 +0.4 +0.5 +0.3 +0.4 +0.3 +0.3 +0.4

FMM 52.4 reactive +0.3 +0.4 +0.4 +0.4 +0.3 +0.4 +0.4 +0.4

adaptive +0.4 +0.4 +0.4 +0.4 +0.4 +0.5 +0.4 +0.4

basic +29.3 +29.3 +29.3 +29.4 +29.4 +29.5 +29.6 +29.6

GE 21.6 reactive +28.4 +28.6 +28.9 +28.8 +28.8 +28.8 +28.7 +28.9

adaptive +30.5 +30.7 +31.4 +31.2 +31.7 +31.6 +31.4 +31.6

basic -2.6 -0.9 -1.1 -4.7 -2.1 +0.4 -5.4 +0.9

Ocean-Contig 49.7 reactive -0.6 -4.4 +1.8 +3.3 -0.9 +2.5 +1.8 +2.6

adaptive -1.3 -2.8 -6.1 -3.5 -1.4 -3.6 -0.4 -3.6

basic +5.3 0.0 +2.4 -0.7 +6.4 +1.8 +5.7 -1.2

Ocean-Non-Contig 48.2 reactive +5.8 +3.1 +2.0 +4.7 +4.0 -1.9 +2.5 +5.5

adaptive +7.8 +7.6 -6.3 +2.0 +4.1 +6.6 -8.3 -1.5

basic -0.6 -0.6 -0.6 -0.6 -0.6 -0.5 -0.7 -0.5

Water-Nsq 55.3 reactive +0.2 +0.2 +0.2 +0.2 +0.1 +0.2 +0.2 +0.1

adaptive +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2

Table 5.2: Benchmark relative speedups for 64 processing nodes

The performance results for the eight benchmark applications are summarised in Table 5.2.

The results are presented in terms of relative speedup, i.e. the ratio of the execution time

for the fastest algorithm running on one processor to the execution time on P processors1.

There is no overall \winner" among basic, reactive, and adaptive proxies: no policy improves

the performance of all the applications for all values of the number of proxy clusters (NPC).
Looking at the results for di�erent values of NPC, for basic proxies there is no value which has
a positive e�ect on the performance of all the benchmarks. However, for reactive proxies, there

are values of NPC which improve the performance of all the benchmarks, i.e. NPC=3,7&8 all
achieve a balance between combining, the length of the proxy pending chains for the simulated

system, and an even distribution of queue lengths. Reactive proxies may not always deliver

the best possible performance improvement, but by providing stable points for NPC they may

be of more use to system designers. Adaptive proxies usually perform as well as, and often

better than, reactive proxies; this includes obtaining the best performance for GE. However

adaptive proxies are \let down" by their performance with the Ocean-Contig application.

In the following sub-sections, the results for each of the applications are examined in more

detail, in order to understand their di�erent reactions to the use of proxies with �nite bu�ering.

For each application, the detailed results are presented as two graphs (one of relative changes

1It should be noted that the relative speedup and percentage change values for basic proxies di�er from

those presented in Chapter 4. This is because the results in Chapter 4 were from simulations with in�nite

bu�ers, as opposed to the current results where read-request messages are liable to be bu�er-bounced.

144 Chapter 5. Automatic Invocation of Proxies

and one of message ratios) and two histograms (one showing the execution time pro�le, and

the other showing the message category pro�le).

The relative changes graphs show four di�erent metrics:

messages: the ratio of the total number of messages to the total without proxies,

execution time: the ratio of the execution time (excluding startup) to the execution time

(also excluding startup) without proxies,

queueing delay: the ratio of the total time that messages spend waiting for service to the

total without proxies, and

remote read delay: the ratio of the mean delay between issuing a read-request and re-

ceiving the data, to the same mean delay when proxies are not used.

The message ratios are:

proxy hit rate: the ratio of the number of proxy-read-request messages which are ser-

viced directly by the proxy node, to the total number of proxy-read-requestmessages

(in contrast, a proxy miss would require the proxy to request the data from the home

node),

bu�er bounce ratio: the ratio of the total number of bu�er bounce messages to read re-

quests. This gives a measure of how much bouncing there is for an application. This

ratio can go above one, since only the initial read-request is counted in that total

(i.e. the retries are excluded), and

proxy read ratio: the ratio of the proxy read messages to read requests - this gives a mea-

sure of how much proxying is used in an application.

The execution time pro�le presents the overall execution time split into CPU active time and

the time spent waiting because of delays. The delays are further split into load, store, barrier

and lock delays. The times are normalised with respect to the execution time without proxies.

The message category pro�le shows how the total number of messages breaks down into

four categories: read, write, unhook, and proxy messages. The allocation of message types

to message categories is given in Appendix C.2, but it should be noted that read messages

include all the read-request, buffer-bounced-read-request, and take-shared messages,

write messages include all the write-request, invalidate and take-exclusive messages,

and unhooks are all the messages needed to handle cache line replacements.

5.7. Results 145

5.7.1 Barnes

For this application, the basic proxy protocol sometimes degrades the performance, whereas

the reactive and adaptive proxy protocols usually improve the performance. The performance

changes resulting from the use of proxies can, for this application, be as much from the e�ects

of changes in barrier and lock delays than from the changes in load and store miss delays.

Changing the balance of processing by routing read requests via proxy nodes can have more

impact than the direct e�ects of reducing home node congestion. For example, when NPC=2
for adaptive proxies, the store and load miss delays are the same as with no proxies, yet a

reduction of 3.2% in barrier delay results in an overall performance improvement of 3.2% (see

Figure 5.5).

The low level of bu�er-bouncing shown in Figure 5.6 indicates that there is no need for a

high degree of proxying in this application. However, all the shared-data was marked for

basic proxies because there was no obvious data structure that would speci�cally bene�t from

proxying. As a result, there is a high proxy read ratio for basic proxies, but the proxy hit rate

is not as good as that achieved by reactive and adaptive proxies (which are only triggered when

bu�er-bouncing occurs), and basic proxies have little e�ect on the level of bu�er-bouncing.

Taken together with the very low proxy read ratio for reactive and adaptive proxies (close to

zero for NPC�1), this shows that there is very little reactive/adaptive proxying taking place

in Barnes, but that which occurs is signi�cant enough to a�ect the overall performance of the

application.

For basic proxies, the remote read delay initially drops and then rises as NPC is increased

up to 8. This is in line with the increase in messages (see Figure 5.4) which mainly occurs

because the number of read-request messages increases. The steady rise in read-request

messages is due to the increasing number of proxies needing copies of data. This leads in

turn to an increase in the level of unhooking because of SLC con
icts (see Figure 5.7), which

leads to later local SLC misses and an increase in the overall load miss delay, as shown in

Figure 5.5. Given that all the shared data in Barnes is marked for basic proxying, this results

in basic proxies having a higher load miss delay than with no, reactive, or adaptive proxies.

Reactive and adaptive proxies both have a high proxy hit rate (see Figure 5.6), i.e. when

a proxy read is received at a node then with NPC=1 there is > 90% chance that the data

is already held at the proxy or has been requested. This suggests that the data which is

subjected to reactive/adaptive proxies is widely-shared.

Unhooking delays resulting from proxy cache pollution can be signi�cant for this application.

The e�ect is most marked for adaptive proxies when NPC=7, as shown in Figure 5.7. In this

146 Chapter 5. Automatic Invocation of Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy clusters

 %

barnes - basic proxies

�
� � � � �

�
� �

� � � � � � � � �

�
� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy clusters

 %

barnes - reactive proxies

� � � � � � � � �� � � � � � � � �

�
� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy clusters

 %

barnes - adaptive proxies

� � � � � � �

�

�� � � � � � � � �

�
� � � � � � � �

Figure 5.4: Barnes: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes - basic proxies

100

25.3

2.3

21.1

34.5

16.8

99.8

25.3

2.4

20.8

34.6

16.7

100

25.3

2.3

20.9

34.6

16.9

100

25.3

2.4

20.9

34.6

16.8

99.8

25.3

2.3

20.9

34.6

16.7

100.1

25.3

2.4

21.1

34.6

16.7

100.3

25.3

2.5

21

34.6

16.9

100

25.3

2.3

20.9

34.6

16.9

100.1

25.3

2.4

20.9

34.6

16.9

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes - reactive proxies

100

25.3

2.3

21.1

34.5

16.8

99.6

25.3

2.2

20.8

34.5

16.8

96.7

25.3

2.2

17.9

34.5

16.8

99.8

25.3

2.2

20.9

34.5

16.9

100

25.3

2.3

21

34.5

16.9

99.7

25.3

2.3

20.8

34.5

16.8

100

25.3

2.4

20.9

34.5

16.9

99.5

25.3

2.2

20.8

34.5

16.7

99.6

25.2

2.1

20.8

34.5

17

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes - adaptive proxies

100

25.3

2.3

21.1

34.5

16.8

99.9

25.3

2.2

21

34.5

16.9

96.8

25.3

2.3

17.9

34.5

16.8

99.6

25.3

2.3

20.7

34.5

16.8

99.6

25.3

2.3

20.8

34.5

16.7

99.6

25.3

2.3

20.8

34.5

16.7

99.8

25.3

2.3

20.9

34.5

16.8

100.1

25.2

2.3

21

34.5

17.1

99.8

25.3

2.3

21

34.5

16.7

Figure 5.5: Barnes: execution time pro�les

5.7. Results 147

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes - basic proxies

�

�

�

�
�

�
�

�
�

� � � � � � � � ��

�

�
�

�
� �

� �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes - reactive proxies

�

�
�

� �
� � � �

�
� � � � � � � �� � � � � � � � � |

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes - adaptive proxies

�

�
� � � �

� �
�

�
� � � � � � � �� � � � � � � � �

Figure 5.6: Barnes: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

barnes - basic proxies

100

41.4

1.6

57

106.4

12.7

43.2

1.6

48.9

110.5

12.7

43.8

2.8

51.2

112.5

12.4

44.2

3

52.9

112.9

12.1

44.6

2

54.2

114.9

12

44.9

2.9

55.1

123.3

12.3

45

9.3

56.7

116.2

11.6

45.1

2.7

56.8

118.3

11.5

45.4

3.8

57.6

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

barnes - reactive proxies

100

41.4

1.6

57

99.1
0.1

41.4

1.3

56.3

99.3
0.1

41.5

1.4

56.3

99.3
0.1

41.4

1.4

56.4

99.8
0.1

41.4

1.7

56.6

99.3
0.1

41.3

1.5

56.4

99.5
0.1

41.4

1.5

56.5

100.2
0.1

41.4

2.1

56.6

99.4
0.1

41.4

1.5

56.4

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

barnes - adaptive proxies

100

41.4

1.6

57

99.5
0.1

41.4

1.7

56.3

102.1
0.1

41.4

3.6

57

99.2
0.1

41.4

1.4

56.3

99.2
0.1

41.4

1.4

56.3

99
0.1

41.4

1.2

56.3

100
0.1

41.4

1.9

56.6

127.3
0.2

41.4

25.5

60.2

100.1
0.1

41.4

2.1

56.5

Figure 5.7: Barnes: message category pro�les

148 Chapter 5. Automatic Invocation of Proxies

case, unhooking increases dramatically because there is a con
ict between proxy data lines. In

each proxy cluster, one node (A) sends a proxy-read-request for data lineX to node B, and

at the same time nodeB sends a proxy-read-request for data line Y to nodeA. Data linesX

and Y happen to map to the same SLC cache line, and so the proxy-read-requestmessages

are bounced because each node has already reserved the cache line for its local processing. In

an early implementation of the protocol this caused an in�nite loop of requests and bouncing:

the protocol was amended to break the cycle by giving up on the proxy-read-request, once

it had bounced ten times, by sending a read-request directly to the home node. However

the cache line con
ict still causes a high level of unhooking because, for example, node A may

obtain data line X directly from the home node, but then a proxy-read-request arrives

from node B for data line Y , and this will cause X to be evicted from the SLC. The \frenzy"

of unhook messages, resulting from this unfortunate correspondence between data usage by

the algorithm and the partitioning into seven proxy clusters, increases the load miss delay and

results in slightly worse overall performance. However the performance degradation is only

�0:1% because the problem only occurs sporadically during the execution of the application,

and the nodes which are not caught up in the SLC cache line con
ict bene�t from the lower

queueing delays.

The application can bene�t marginally from automatic proxying, but only if it is timely. The

bene�t can be lost with adaptive proxies, because in the time it takes for the client to react,

send the proxy-read-request, and receive the data, the congestion may have eased at the

home node; to continue proxying for the proxy period is counter-productive. Reactive proxies

achieve the most stable performance, which is never worse and often better than without

proxies, because they avoid the proxying of too many data structures seen with basic proxies,

and they do not su�er from the unhooking con
ict seen for NPC=7 with adaptive proxies.

5.7.2 CFD

All three forms of proxying improve the performance of the CFD application. Adaptive and

basic proxies obtain the best performance. Reactive proxies, although successful in improving

the performance over no proxies, generally have a lower bene�t. This re
ects their \on

demand" strategy, i.e. a proxy read is only used in direct response to a NAK'd read request,

rather than all the read requests being proxied (basic proxies) or proxying for a proxy period

after a NAK (adaptive proxies).

As was observed in Section 4.4.2, Figure 5.10 shows that this application has a \stride" in

proxy hit rate for values of NPC which are powers of 2. This is because the proxy tends

to already be using the data (as a result of the algorithm and problem size). Basic proxies

5.7. Results 149

display the same knock-on e�ect on the performance as was seen with in�nite bu�ers, but

reactive and adaptive proxies do not have the same performance variations, as is shown in

Figure 5.8. The basic proxy protocol has its highest level of combining and lowest number of

read-request-fwdmessages from home to owner nodes whenNPC=4&8. Although adaptive
proxies show a similar proxy hit rate, proxies are used for considerably fewer read requests,

as shown by the lower proxy read ratio in Figure 5.10. As a result, the adaptive strategy does

not get the same level of reduction in read-request-fwd messages, and hence does not get

such large improvements in remote read delay.

For this application, reactive proxies make relatively little use of proxies, as shown by the

proxy read ratio and proxy message category pro�le in Figures 5.10 and 5.11. Although

proxies are not often used, the technique results in > 40% drop in the remote read delay, and

this has the e�ect of reducing the overall load miss delay (see Figure 5.9).

Adaptive proxies make greater use of proxy-read-request messages than reactive proxies

(as shown by the proxy read ratios in Figure 5.10), and get an even better reduction in remote

read delay. Although, as shown in Figure 5.11, the proxy and invalidation messages increase,

there is a decrease in read messages which results in a reduction of both the overall queueing

delay and the load miss delay.

The bu�er bounce ratio, as shown in Figure 5.10, is a�ected by all three types of proxying, but

it oscillates rather than falls away. In fact the absolute number of buffer-bounced-read-

request messages falls by up to 50% with proxies, but because the number of read-request

messages also falls (replaced by proxy-read-request messages) the bu�er-bounce ratio is

una�ected. The drop in read category messages is shown in Figure 5.11.

On balance, although the best performance is obtained by basic proxies when NPC=8, the
adaptive proxies scheme gives the most reliable performance improvement for this applica-

tion, and should not be so vulnerable to variations in performance resulting from particular

combinations of problem size, cache line size, and NPC value.

5.7.3 FFT

This application shows a performance improvement with all three forms of proxying. There

is a high level of bu�er-bouncing without proxies: this is shown by the bu�er bounce ratio,

which is 70% without proxies, i.e. on average for every 100 read-request messages there are

70 NAK's. This ping-ponging e�ect (NAK followed by retrying the read) will continue until

there is room for the read-request in the input message bu�er at the home node. When

proxies are introduced, the bu�er bounce ratio falls dramatically, but di�erently, for each of

150 Chapter 5. Automatic Invocation of Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

c f d - basic proxies

�
� �

�

�
� � �

�

�

� � � � � � �
�

�

� �
�

�
� � �

�

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

c f d - reactive proxies

� � � � � � � � ��
� � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

c f d - adaptive proxies

� �
� � � � � �

�
�

� � � � � � � �

�

� � � � � � � �

Figure 5.8: CFD: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

c f d - basic proxies
100

13.1
2.1

12.4

20.9

51.5

89.6

13.1
1.5

10.9

20.4

43.7

88.7

13.1
1.5

10.6

20.4

43.1

91.9

13.1
1.2

11.8

21.4

44.4

88.2

13.1
1.5

10.7

20.5

42.4

90.2

13.1
1.4

10.6

20.8

44.3

90.7

13.1
1.6

10.7

21.1

44.2

90.8

13.1
1.5

11

20.7

44.5

85.2

13.1
1.8
9.3

19.2

41.8

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

c f d - reactive proxies
100

13.1
2.1

12.4

20.9

51.5

92.4

13.1
2.2

11.7

20.4

45

92.6

13.1
2.3

10.9

21

45.3

91.7

13.1
2.4

10.6

20.6

45

92.4

13.1
2.4

10.8

20.4

45.7

91.4

13.1
2.3

10.7

20.1

45.2

92.4

13.1
2.5

10.5

20.8

45.5

92.4

13.1
2.6

11.1

19.9

45.7

93.9

13.1
2.1

11.3

21.1

46.3

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

c f d - adaptive proxies
100

13.1
2.1

12.4

20.9

51.5

90.8

13.1
1.3

11.8

20.9

43.7

86.9

13.1
1.5
10.1

19.8

42.4

88.7

13.1
1.7

10.9

20.1

42.9

88.4

13.1
1.9

10.6

20.3

42.5

88.8

13.1
1.7
9.9

20.7

43.4

89.6

13.1
1.9

10.8

20.1

43.7

89.4

13.1
2

10.6

20

43.7

87.9

13.1
2
10

19.6

43.2

Figure 5.9: CFD: execution time pro�les

5.7. Results 151

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

c f d - basic proxies

�

�

�

�

�

� � �

�

�

�
�

�
�

� � �

�

�

�
�

� �
�

� �
�

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

c f d - reactive proxies

�

�
�

�

�

�
�

�

�

�
� �

�

�
� �

�

�

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

c f d - adaptive proxies

�

�

�

�

�

�
� �

�

� �

�

�

�

�
� �

�

�

�

�
� �

�

� �
�

Figure 5.10: CFD: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

c f d - basic proxies

100

49.3

50.7

105.8
9.1

56.6

40.1

103.9
8.8

56.1

39

111.6
9.3

57.4

44.9

99.2
7.9

54.6

36.7

109.3
8.8

56.6

43.9

109.9
8.6

56.2

45.1

108.6
8.4

55.8

44.4

85.8
6

51

28.8

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

c f d - reactive proxies

100

49.3

50.7

98.4

1.7

50.5

46.2

97.4

1.5

50

45.9

97.4

1.5

50.2

45.7

95.9

1.2

49.9

44.8

96.2

1.2

49.8

45.2

96.8

1.2

49.8

45.8

96.6

1.1

49.8

45.7

98

1.2

50.4

46.4

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

c f d - adaptive proxies

100

49.3

50.7

101.2
5.4

53.4

42.4

95.2

3.5

51.8

39.9

98.4
4

52.3

42.1

96

3.7

51.9

40.4

100.5
4.4

52.9

43.2

98.8

3.4

52

43.4

97.6

3.2

51.3

43.1

92.5

2.5

50.4

39.6

Figure 5.11: CFD: message category pro�les

152 Chapter 5. Automatic Invocation of Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

f f t - basic proxies

�

� � � � � � � �

�
� � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

f f t - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

f f t - adaptive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

Figure 5.12: FFT: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f f t - basic proxies
100

34.3

0.4
3

27

35.3

90.6

34.3

0.4
1.8

27.8

26.3

91.3

34.3

0.4
2.5

27.8

26.3

91.3

34.3

0.4
2.6

27.7

26.3

90.4

34.3

0.4
1.7

27.7

26.3

90.5

34.3

0.4
1.9

27.7

26.2

91.4

34.3

0.4
2.8

27.7

26.2

90

34.3

0.4
1.3

27.7

26.3

91.5

34.3

0.4
2.7

27.7

26.4

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f f t - reactive proxies
100

34.3

0.4
3

27

35.3

88.3

34.3

0.4
1.7

27

24.9

88.8

34.3

0.4
2.2

27

24.9

89.1

34.3

0.3
2.4

27

25.1

89

34.3

0.4
2.3

27

25

88.8

34.3

0.4
2

27

25.1

88.2

34.3

0.3
1.5

27

25.1

88.8

34.3

0.3
2

27

25.2

89.3

34.3

0.3
2.4

27

25.3

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f f t - adaptive proxies
100

34.3

0.4
3

27

35.3

88.1

34.3

0.4
1.9

27

24.5

88.4

34.3

0.4
2.1

27

24.6

88.7

34.3

0.4
2.5

27

24.5

88.6

34.3

0.4
2.3

27

24.6

88.8

34.3

0.4
2.5

27

24.6

88.5

34.3

0.4
2.2

27

24.6

89

34.3

0.4
2.6

27

24.7

89

34.3

0.4
2.7

27

24.6

Figure 5.13: FFT: execution time pro�les

5.7. Results 153

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t - basic proxies

�

� � � � � � � �

�

� � � � � � � �
�

�
� �

� � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

�
� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t - adaptive proxies

�

� � � � � � � �

�

� � � � � � � ��
� � � � � � � �

Figure 5.14: FFT: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f f t - basic proxies

100

33.8
0.6

65.6

138.4

22.7

47.1

0.6

68

138.6

22.2

47.1

1

68.3

138.9

22.2

47.1

1.2

68.4

135.9

21.4

46.6

0.4

67.5

136.8

21.5

46.7

0.7

67.9

136.8

21.3

46.6

1.2

67.7

135.2

21

46.4

0.4

67.4

136

21.2

46.4

1

67.4

| ||0

|20

|40

|60

|80

|100
|120

|140

|160

|180

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f f t - reactive proxies

100

33.8
0.6

65.6

85.6
2.2

33.7
0.5

49.2

86.4
2.4

33.7
0.8

49.5

86.7
2.5

33.7
0.9

49.6

86.8
2.5

33.7
0.9

49.7

86.8
2.5

33.7
0.7

49.9

86.8
2.5

33.7
0.4

50.2

87.3
2.4

33.7
0.7

50.5

87.7
2.4

33.7
1

50.6

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f f t - adaptive proxies

100

33.8
0.6

65.6

84.4
2.2

33.7
0.4

48.1

84.8
2.4

33.7
0.7

48

85
2.5

33.7
0.8

48

85
2.6

33.7
0.7

48

85.5
2.6

33.7
1.1

48.1

85.2
2.6

33.7
0.8

48.1

85.6
2.6

33.7
1.2

48.1

85.8
2.5

33.7

1.2

48.4

Figure 5.15: FFT: message category pro�les

154 Chapter 5. Automatic Invocation of Proxies

the three proxy strategies.

The basic proxy scheme, with all the shared-data marked for proxying, gets the least per-

formance bene�t: this is the result of its \overuse" of proxies which leads to a low rate

of combining and a large increase in the number of messages. The technique also leads to

a worsening of the store miss delay mainly because of the additional invalidation messages

needed to remove proxy copies before writes can proceed. However, the technique is still very

e�ective in reducing queueing delays, and the resulting improvements in load miss delay lead

to performance gains of between 8.5% and 10.0% depending on the value of NPC.

The more selective use of proxies under the reactive and adaptive schemes results in greater

reductions in load miss delay and has no adverse e�ect on store miss delay (see Figure 5.13).

Adaptive proxies are able to reduce the load miss delay further than reactive proxies because

they are more successful at avoiding NAK'd read requests. This is because once a home

node NAK triggers proxying, all further read-request messages to that home node are

changed to proxy-read-request messages during the proxying period. As a result, there

are fewer read-request messages and NAKs, and this is re
ected in the lower level of read

messages shown in Figure 5.15. The high proxy hit rate for reactive and adaptive proxies (see

Figure 5.14) con�rms that for this application it is a good idea to target the proxy reads at

the data experiencing home node congestion, rather than marking all data for proxying.

The FFT application shows that an application which bene�ts from the use of basic proxies

can obtain even better performance when proxying is triggered by run-time congestion. In

addition, the adaptive proxy approach generally gets the best performance by continuing to

use proxies during the proxying period after a triggering NAK.

5.7.4 FMM

All three forms of proxying improve the performance of FMM, and reduce both the number of

messages and the overall queueing delay. However, FMM has a marginal speedup compared

with no proxies (between 0.3% and 0.5%). This is as expected given that only the f array data

structure (part of G Memory) is widely-shared, which was why it was marked for basic proxies.

However, the performance improvement with the automatic proxying schemes is comparable

to that achieved using basic proxies, so the new methods are able to detect dynamically the

opportunities for read combining without the need for code inspection and/or pro�ling tools.

The proxy read ratios (see Figure 5.18) show that reactive and adaptive proxies make slightly

more use of proxy reads than does the basic proxy strategy. This increased use of proxies

leads to a marginally greater decrease in load miss delay with the two automatic schemes.

5.7. Results 155

The adaptive proxy strategy usually gives better performance than the reactive scheme for

FMM, re
ecting its ability to be best at reducing bu�er bouncing, remote read delay, and

overall load miss delay for this application, by continuing to use proxies for read requests

during the proxying period.

5.7.5 GE

This application bene�ts from the use of any of the three proxy strategies: the best per-

formance gains are with adaptive proxies (around 31.0%), followed by basic proxies (up to

29.6%), with reactive proxies getting performance improvements of up to 28.9%. It was to

be expected that the performance bene�t using reactive proxies would not be as good as

that obtained using basic proxies, because the proxying is no longer targeted by marking

the widely-shared data structure. Instead proxying is triggered when a read is rejected be-

cause a bu�er is full, and so there will be two messages (the read and its NAK) before a

proxy-read-request is sent by the client. The delay incurred by the �rst two messages

means that the performance improvement is not as good as can be obtained with basic prox-

ies, and this is con�rmed by the execution time pro�les in Figure 5.21. Adaptive proxies,

however, are able to get better performance improvements than basic proxies because once

congestion triggers a proxy read at a client, all further read requests for that home node made

by the client during the proxying period will be replaced by proxy-read-request messages.

This strategy is eminently suited to pivot row acquisition, and avoids unnecessarily proxying

the matrix data at other points during the execution.

Using basic proxies reduces the remote read delay to around 10% of the no proxy level. By

marking all of the matrix for proxying, nearly all the read-request messages are converted

into proxy-read-request messages. As a result these requests go via a proxy, and avoid the

home node's full bu�er. The level of read messages (including NAKs) drops dramatically, and

despite the introduction of proxy messages the overall number of messages falls by around

35% (see Figure 5.23). It should be noted that the number of write messages increases with

basic proxies because of the extra invalidation messages needed to remove proxy copies from

sharing lists.

Reactive proxies also reduce the remote read delay, but not by as much as is seen with basic

proxies. This is because there is the initial delay of sending a read-request to the home node

and receiving its NAK before a proxy-read-request is sent instead. In addition, the overall

queueing delay initially increases with reactive proxies. This increase is due to a much longer

queueing delay for one node, which now receives proxy-read-requestmessages for the global

data �eld \el" which all nodes read once every iteration. The node (which happens to be

156 Chapter 5. Automatic Invocation of Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

f m m - basic proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

f m m - reactive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

f m m - adaptive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

Figure 5.16: FMM: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f m m - basic proxies

100

21.3

40.3

33.4

5.0

99.6

21.3

40.3

33.3

4.7

99.6

21.3

40.3

33.3

4.7

99.5

21.2

40.3

33.3

4.7

99.7

21.3

40.4

33.4

4.6

99.6

21.3

40.3

33.3

4.7

99.7

21.3

40.3

33.3

4.8

99.7

21.3

40.3

33.4

4.7

99.6

21.3

40.3

33.3

4.7

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f m m - reactive proxies

100

21.3

40.3

33.4

5.0

99.7

21.3

40.4

33.4

4.6

99.6

21.3

40.4

33.4

4.5

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.7

21.3

40.4

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f m m - adaptive proxies

100

21.3

40.3

33.4

5.0

99.6

21.3

40.4

33.4

4.5

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.4

33.4

4.5

99.6

21.3

40.3

33.4

4.6

99.5

21.3

40.3

33.4

4.5

99.6

21.3

40.4

33.4

4.5

99.6

21.3

40.4

33.4

4.5

Figure 5.17: FMM: execution time pro�les

5.7. Results 157

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m - basic proxies

�

� � � � � � � �

�

� � � � � � � �

� � � � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m - reactive proxies

�

� �
� �

� �
� �

�

� � � � � � � �

� � � � � � � � �
|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m - adaptive proxies

�

�
� �

�
� �

�
�

�

� � � � � � � �
� � � � � � � � �

Figure 5.18: FMM: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f m m - basic proxies

100

40.9

4.4

54.7

96.7
0.3

40.7

3.9

51.8

98.3
0.3

40.9

4.9

52.2

96.5
0.4

40.7

3.7

51.7

96.3

0.4

40.5

3.7

51.7

97.9

0.5

40.8

4.3

52.3

97.3

0.5

40.4

4.8

51.6

99.2

0.4

41.1

5.1

52.6

97

0.4

40.5

4.1

52

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f m m - reactive proxies

100

40.9

4.4

54.7

95.8

0.7

40.6

4.7

49.8

95.4

0.7

40.7

4

50

96.1

0.7

40.8

4.3

50.3

96.2

0.7

40.6

4.2

50.7

96.8

0.7

41.2

4.1

50.8

96.3

0.7

40.8

4.1

50.7

96.2

0.7

40.9

3.9

50.7

96.3

0.7

41.1

3.8

50.7

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f m m - adaptive proxies

100

40.9

4.4

54.7

95.4

0.7

40.9

4.2

49.6

96.3

0.8

41

4.5

50

97.1

0.8

41

5

50.3

95.5

0.9

41

3.8

49.8

94.8

0.8

40.7

3.7

49.6

95.4

0.8

40.9

3.8

49.9

95.8

0.8

41

4

50

97.4

0.9

41.2

4.9

50.4

Figure 5.19: FMM: message category pro�les

158 Chapter 5. Automatic Invocation of Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

g e - basic proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

g e - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

g e - adaptive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

Figure 5.20: GE: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

g e - basic proxies
100

12.1

29.6

6.1

52.2

70.7

12.1

31.2

6.3

21.1

70.7

12.1

31.2

6.4

21

70.7

12.1

31.2

6.5

20.9

70.6

12.1

31

6.5

21

70.6

12.1

31

6.4

21.1

70.5

12.1

30.9

6.4

21.1

70.4

12.1

30.9

6.4

21

70.4

12.1

30.8

6.4

21.1

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

g e - reactive proxies
100

12.1

29.6

6.1

52.2

71.6

12.1

27.3

7.1

25.1

71.4

12.1

27.1

6.8

25.4

71.1

12.1

27

6.6

25.4

71.2

12.1

27

6.7

25.4

71.2

12.1

27

6.6

25.5

71.2

12.1

26.9

6.6

25.6

71.3

12.1

26.9

6.6

25.7

71.1

12.1

26.9

6.6

25.5

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

g e - adaptive proxies
100

12.1

29.6

6.1

52.2

69.5

12.1

27.5

7.1

22.8

69.3

12.1

27.5

6.9

22.8

68.6

12.1

27.6

6.7

22.2

68.8

12.1

27.4

6.7

22.6

68.3

12.1

27.4

6.6

22.2

68.4

12.1

27.4

6.6

22.3

68.6

12.1

27.3

6.6

22.6

68.4

12.1

27.3

6.6

22.4

Figure 5.21: GE: execution time pro�les

5.7. Results 159

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

proxy clusters

g e - basic proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

proxy clusters

g e - reactive proxies

�

� � � � � � � �

�

� � � � � � �
�

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

proxy clusters

g e - adaptive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

Figure 5.22: GE: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

g e - basic proxies

100

18.5

81.5

65.4

11.2

22.8

31.4

65.5

11.4

22.6

31.5

65.7

11.6

22.5

31.6

65.7

11.8

22.4

31.5

65.7

11.9

22.3

31.5

65.6

12

22.2

31.4

65.4

12

22.1

31.3

65.1

11.9

22

31.2

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

g e - reactive proxies

100

18.5

81.5

62.1
7.2

18.8

36.1

64
7.6

18.8

37.6

64.1
7.6

18.8

37.7

64.6
7.7

18.8

38.1

65.2
7.6

18.8

38.8

65.4
7.5

18.8

39.1

66
7.5

18.8

39.7

65.6
7.5

18.8

39.3

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

g e - adaptive proxies

100

18.5

81.5

58.2
7.6

19.5

31.1

59.4
8.5

19.5

31.4

59.1
8.7

19.7

30.7

59.5
8.9

19.5

31.1

59.4
9.1

19.5

30.8

59.2
9.1

19.5

30.6

59.3
9.1

19.5

30.7

58.7
8.9

19.4

30.4

Figure 5.23: GE: message category pro�les

160 Chapter 5. Automatic Invocation of Proxies

running the master process) is also the home node to about 25% of the data pages containing

the main matrix, and is often owner for other lines, and as a result its input message queue is

very heavily used. Despite this bottleneck, the overall remote read delay and load miss delay

drop, but the store miss delay increases. However the overall improvement in performance

with reactive proxies shows the bene�ts for this application of spreading the read-request

load around the system. In addition, the reactive scheme achieves a better level of combining

then the basic scheme, as shown by the proxy hit rate in Figure 5.22, and this indicates that

the proxying is being targeted at the widely-shared data.

With adaptive proxies, there is a similar drop in service for write messages with an increase in

store miss delay, once again due to one of the nodes having a longer mean queueing delay than

the other nodes. However the queueing delay is not as badly a�ected as for reactive proxies

because read requests for matrix data are automatically converted into proxy-read-request

messages during the proxying period and there is a high level of combining at the proxies

which relieves some of the queueing pressure on the bottleneck node. These results highlight

the complicated balance between re-distributing the messages to avoid home node hot-spots,

and not overloading the other nodes to the detriment of their normal processing.

For all three proxy strategies, the proxy hit rate falls o� after one proxy because it is more

likely that the proxy node has to send a read-request to the home node as the number of

proxies increases. This increase in read-requestmessages from proxy nodes in turn increases

the bu�er bounce ratio, because these requests are more likely to get bounced because there

is no room for read messages in the home node's input message bu�er. However, the reactive

and adaptive schemes make better use of the proxy nodes, with a higher hit rate than that

obtained with basic proxies.

The GE application illustrates how even the careful marking of a widely-shared data structure

under the basic proxies scheme does not get the best performance. By using the adaptive

proxy strategy, performance gains are obtained which are better than those achieved with

either the \dumb" reactive strategy or basic proxies.

5.7.6 Ocean-Contig

This application displays a very mixed response to the use of proxies. None of the three

proxy policies is able to avoid performance degradation at some value of NPC, and there

is no value of NPC which gets a performance improvement for all three proxy strategies.

The best performance improvement (of 3.3%) is obtained by reactive proxies at NPC=4,
and this scheme achieves performance improvements for more values of NPC than the other

5.7. Results 161

proxy strategies. Adaptive proxies have the poorest results. Basic proxies usually degrade

performance (by up to �5:4% at NPC=4), although small performance gains are seen when

NPC=6&8.

Basic proxies cause increases in both the number of messages and the queueing delay (see

Figure 5.24). These changes are due to increases in the number of take-shared messages

(and subsequent invalidation messages) for proxy nodes. There is also a slight increase in

bu�er-bouncing of read-request messages, as a result of the longer queues at nodes. How-

ever, despite increasing the store and load miss delays, basic proxies are still able to obtain

performance improvements (see Figure 5.25) when NPC=6&8 because the redistribution of

read requests via proxy nodes changes the balance of processing in the system. This can

result in lower barrier delays, which more than compensate for the increases in store and load

miss delays.

When Ocean-Contig is run with reactive or adaptive proxies, it makes very little use of

proxy-read-requestmessages, as is shown by the low level of proxy messages in Figure 5.27.

Despite the low usage, these proxy reads have the e�ect of reducing the bu�er-bounce ratio

and the number of read messages, although there is a slight increase in the number of write

messages because the number of invalidations goes up. The reduction in the number of read

messages, and the re-routing of some read requests via proxy nodes, have the e�ect of lowering

the overall queueing delay (see Figure 5.24). However, the redistribution of messages also has

the e�ect, for some values of NPC, of changing the balance of processing. This results in

increased barrier delay and CPU active times which, at NPC=1,2&5 for reactive proxies and
NPC� 1 for adaptive proxies, result in an overall increase in execution time (i.e. performance

su�ers).

On balance, Ocean-Contig has its best performance with reactive proxies. The tiny proxy

read ratio shows that there is very little use of proxies, although proxying does reduce the

bu�er bouncing to almost zero. This application is best suited to the \on demand" strategy

of reactive proxies: overuse of proxying by the adaptive or basic policies has an adverse e�ect

on the overall performance.

162 Chapter 5. Automatic Invocation of Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

ocean-contig - basic proxies

�

� � � � � � � �

� � � � � � �
�

�

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

ocean-contig - reactive proxies

� � � � � � � � �� � �
� �

� � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

ocean-contig - adaptive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

Figure 5.24: Ocean-Contig: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig - basic proxies

100

19.9
0.8

15.3

13.1

50.9

102.6

19.8
0.7

16.4

13.6

52.1

100.9

19.8
0.7

15.3

13.5

51.6

101.1

19.8
0.7

15.3

13.5

51.8

104.7

19.9
0.7

18

13.7

52.4

102.1

19.8
0.7

16.2

13.5

51.9

99.6

19.7
0.7

14.1

13.5

51.6

105.4

20
0.7

18.8

13.7

52.2

99.1

19.7
0.7

13.8

13.4

51.5

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig - reactive proxies

100

19.9
0.8

15.3

13.1

50.9

100.6

20
0.8

15.6

13.1

51.1

104.4

20.1
0.8

18.7

13.4

51.4

98.2

19.8
0.8

13.6

13.1

50.9

96.7

19.8
0.8

12.7

13

50.4

100.9

20
0.8

15.8

13.1

51.2

97.5

19.9
0.8

12.9

13

50.9

98.2

19.9
0.8

13.9

13

50.6

97.4

19.8
0.8

12.8

13.1

50.9

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig - adaptive proxies

100

19.9
0.8

15.3

13.1

50.9

101.3

20
0.8

16.2

13.1

51.2

102.8

20.1
0.8

17.2

13.3

51.4

106.1

20.2
0.8

19.7

13.4

52

103.5

20.1
0.8

17.8

13.3

51.5

101.4

20.1
0.8

16.2

13.2

51.1

103.6

20.1
0.8

17.6

13.4

51.7

100.4

20
0.8

15.5

13.1

51

103.6

20.1
0.8

17.9

13.4

51.4

Figure 5.25: Ocean-Contig: execution time pro�les

5.7. Results 163

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig - basic proxies

�

� � � �
� � � �

� � � � � � � � �
�

� � � � � � � �
� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig - reactive proxies

�

� � � � � � � �

�
� � � � � � � �� � � � � � � � � |

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig - adaptive proxies

�

� � � � � �
�

�

�
� � � � � � � �� � � � � � � � �

Figure 5.26: Ocean-Contig: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-contig - basic proxies

100

47.9

1.7

50.4

131.3
13.8

58.4

1.8

57.3

130.6
13.5

58.1

1.8

57.2

130.7
13.2

58.2

1.9

57.4

129.9
12.9

57.9

1.9

57.2

129.6
12.6

57.9

1.7

57.4

130.2
12.4

58.2

1.9

57.7

129.6
12

57.9

1.9

57.8

128.1
11.8

57.4

1.9

57

| ||0

|20

|40

|60

|80

|100
|120

|140

|160

|180

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-contig - reactive proxies

100

47.9

1.7

50.4

100.1
0.1

48.3

1.8

49.9

99.8
0.1

48.2

1.7

49.8

100.1
0.1

48.2

1.8

50

99.9
0.1

48.2

1.7

49.9

100.1
0.1

48.2

1.8

50

100.1
0.1

48.2

1.8

50

100
0.1

48.1

1.8

50

100
0.1

48.1

1.8

50

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-contig - adaptive proxies

100

47.9

1.7

50.4

99.9
0.1

48.2

1.8

49.8

100
0.1

48.3

1.7

49.9

99.8
0.1

48.1

1.7

49.9

100
0.1

48.2

1.8

49.9

100.2
0.1

48.3

1.9

49.9

100.3
0.1

48.2

1.9

50.1

99.8
0.1

48

1.8

49.9

100
0.1

48.1

1.8

50

Figure 5.27: Ocean-Contig: message category pro�les

164 Chapter 5. Automatic Invocation of Proxies

5.7.7 Ocean-Non-Contig

This application can bene�t from the use of proxies, with performance gains of up to 7.8%,

but the overhead of additional unhooking and invalidation messages can cause a degradation

in performance of up to �8:3% (see Figure 5.29 and Figure 5.31). Reactive proxies keep

the number of messages below (or in the case of NPC=6, only 0.1% above) the message

level without proxies, and as a result reactive proxies nearly always improve the performance

of Ocean-Non-Contig. The performance oscillations show that a relatively small increase in

messages puts up the queueing delay signi�cantly and degrades the performance.

Ocean-Non-Contig has a high level of remote read requests because the algorithm was written

to preserve understandability rather than to exploit data locality. These remote read-request

messages result in a high level of bu�er-bounces, which in turn invoke the reactive and adap-

tive proxy protocols. Unfortunately the data is seldom widely-shared, so there is little com-

bining at the proxy nodes, as is shown by the low proxy hit rates in Figure 5.30. The low

proxy hit rates indicate that even for reactive and adaptive proxies there is less than a 20%

probability that the proxy has (or has already requested) the data required by a client's

proxy-read-request. The bu�er-bouncing which is used to trigger reactive and adaptive

proxying is the result of the already high level of remote read requests caused by the ap-

plication prizing understandability over optimum data placement, rather than indicating a

concentration of read requests for a particular data line. However, for reactive proxies, the

application usually shows improved performance despite the lack of combining: the bene�t

comes from the two phase \random routing" e�ect of sending the read request via a proxy.

Like Ocean-Contig, this application is best served by reactive proxies, because proxy-read-

request messages are only used in direct response to the bu�er-bouncing of read requests.

As a result, reactive proxies has only one value of NPC which displays adverse performance,

unlike the basic and adaptive proxy strategies.

5.7.8 Water-Nsq

This application bene�ts from triggering the use of proxies in response to home node con-

gestion: both reactive and adaptive proxies improve the performance, whereas basic proxies

degrade the performance. Despite the very low level of proxying by the reactive and adaptive

schemes (see the proxy read ratio in Figure 5.34), both strategies succeed in reducing the

bu�er-bounce ratio and remote read delay. This can lead to a slight reduction in the overall

load miss delay, as shown in Figure 5.33. In contrast, the basic proxy scheme increases the

number of messages in the system, as shown in Figure 5.35, and fails to achieve the drop

5.7. Results 165

in remote read delay obtained by the other proxy strategies (see Figure 5.32). Using basic

proxies also causes more disturbance to the balance of processing between the nodes, leading

to an increase in the CPU active time. The results indicate that the wrong data structure

was chosen for basic proxying, whereas the reactive and adaptive schemes are able to improve

the application's performance with only a low use of proxy-read-request messages.

For both the reactive and adaptive schemes there are values of NPC where the load miss delay

is at the same level as when NPC=0, despite a drop in the remote read delay. This is due to

the increased delay for local load misses (i.e. those wanting to get to access the local DRAM).

Local misses experience an increased delay because they have to wait for service from their

node controller while it is dealing with the current incoming message (local requests only have

to wait for the current message to be serviced, rather than having to wait for all the currently

queued incoming messages). This is an example of how the proxy schemes can a�ect the order

of processing at node controllers.

The Water-Nsq application is suited to either of the automatic proxying schemes, getting a

slight performance improvement (of around 0.2%) for all values of NPC. This is in contrast

to the performance degradation caused by using the basic proxy strategy. The behaviour of

this benchmark clearly illustrates the advantages of using automatic proxying rather than

taking the risk that the programmer (or compiler) will incorrectly mark data structures for

proxying.

5.7.9 Summary of Results

These results show that there are certain values of NPC for which the reactive proxy scheme

improves the performance of all the applications. These balance points for reactive prox-

ies occur when NPC=3,7&8. Reactive proxies always su�er a delay of read-request and

buffer-bounce-read-request before invoking the proxy-read-request, but overall the la-

tency bene�ts from the complex interaction of the higher level of combining when NPC
is low, and the shorter proxy pending chains and queue lengths when NPC is high. The

balance points occur when the partitioning into proxy clusters results in a distribution of

proxy-read-request messages which strikes a balance between the length of proxy pending

chains, the degree of combining, the minimum disturbance to other processing at each proxy

node, and little if any cache pollution.

For the adaptive proxy scheme, once proxying has been invoked the reads bene�t from spread-

ing the messages around the system during the proxying period. However the scheme su�ers

from over-using proxies for the Ocean-Contig application, and so has no overall balance point

for the eight benchmark applications.

166 Chapter 5. Automatic Invocation of Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

ocean-non-contig - basic proxies

� �
� � �

� � � ��
�

� � �
�

� �
�

�

�
�

�
�

� � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

ocean-non-contig - reactive proxies

� � � � � � � � ��
� � � � �

�
� �

�

�
� � � �

�
� �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

 %

ocean-non-contig - adaptive proxies

� � �
� � � � � ��

� �

�
� � �

�
�

�

� � � � � � � �

Figure 5.28: Ocean-Non-Contig: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-non-contig - basic proxies

100

30

0.8

14.1

18.4

36.7

94.7

29.8

0.8
11.7

17.5

34.9

100

30.2

0.9

13

18.7

37.2

97.6

29.8

0.8
12.5

18.2

36.3

100.7

30.1

0.9

14.3

18.4

37

93.6

29.6

0.8
11.3

17.3

34.6

98.2

29.9

0.8

13.7

18

35.8

94.3

29.6

0.8
11.2

17.5

35.2

101.2

30.1

0.8

15.6

18.4

36.3

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-non-contig - reactive proxies

100

30

0.8

14.1

18.4

36.7

94.2

29.8

0.7
11.3

17.7

34.7

96.9

30

0.7

12.9

17.9

35.4

98

30.1

0.7

12.7

18.4

36.1

95.3

29.9

0.7
11.7

17.8

35.2

96

30

0.7
12.1

17.9

35.3

101.9

30.4

0.7

15.2

18.8

36.8

97.5

30.1

0.7

12.9

18.4

35.4

94.5

30

0.6
10.6

18

35.3

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-non-contig - adaptive proxies

100

30

0.8

14.1

18.4

36.7

92.2

29.8

0.7
10.2

17.4

34.1

92.4

29.8

0.7
10.6

17.2

34.1

106.3

30.5

0.7

19

18.9

37.2

98

30.1

0.7

13.4

18.3

35.5

95.9

29.8

0.6
12.3

18

35.2

93.4

29.7

0.7
10.3

17.8

34.9

108.3

30.7

0.7

20.2

19.3

37.4

101.5

30.2

0.7

15.5

18.7

36.4

Figure 5.29: Ocean-Non-Contig: execution time pro�les

5.7. Results 167

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

ocean-non-contig - basic proxies

�

� �
� �

�
�

�

�

�

�

�
�

�

�
�

�
�

�

� � � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

ocean-non-contig - reactive proxies

�

�
� � � �

�
� �

�

� �
�

� �

� � �

�
� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

ocean-non-contig - adaptive proxies

�

�
�

�
�

� � � �

�

� �
� � �

� � �

�
� �

�
�

�
� �

�

Figure 5.30: Ocean-Non-Contig: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-non-contig - basic proxies

100

54.4

6.2

39.4

97.9

1.2

54.3

4.3

38.1

103.7

1.4

55.5

6.6

40.2

103.2

1.3

55.6

6.7

39.6

102.9

1.2

55.1

5.8

40.8

97.2

1.1

54.2

3.6

38.3

100.6

1.2

54.9

5.4

39.1

99.3

1.2

54.2

5.3

38.6

101.9

1.2

55.1

6.1

39.5

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-non-contig - reactive proxies

100

54.4

6.2

39.4

97.1

0.4

54

4.9

37.8

97.5

0.4

54

5

38.1

99.7
0.4

54.7

5.9

38.7

97.9
0.3

54.2

5.4

38

97.2
0.3

54.2

4.9

37.8

100.1
0.4

54.6

6.2

38.9

98.1
0.3

54.3

5.1

38.4

97.3
0.3

54.1

4.7

38.2

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-non-contig - adaptive proxies

100

54.4

6.2

39.4

95.6

0.6

53.8

3.9

37.3

95.2

0.6

53.9

3.4

37.3

102.4

1

55.4

6.6

39.4

99.4

0.7

54.7

5.7

38.3

100.6

1.3

55.1

5.3

38.9

99.6

0.8

54.8

5.9

38.1

102.6

0.8

55.5

7.3

39

102.1

1.2

55.4

6.7

38.8

Figure 5.31: Ocean-Non-Contig: message category pro�les

168 Chapter 5. Automatic Invocation of Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

 %

water-nsq - basic proxies

�

� � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

 %

water-nsq - reactive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

 %

water-nsq - adaptive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

Figure 5.32: Water-Nsq: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

water-nsq - basic proxies
100

72.5

0.2
3.1

19.7

4.5

100.6

72.7

0.2
3.1

20

4.6

100.6

72.7

0.2
3.1

19.9

4.7

100.6

72.7

0.2
3.1

19.9

4.7

100.6

72.7

0.2
3

19.9

4.8

100.6

72.7

0.2
3.1

19.9

4.7

100.5

72.7

0.2
3

19.9

4.7

100.7

72.8

0.2
3.2

19.9

4.6

100.5

72.7

0.2
3

19.9

4.7

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

water-nsq - reactive proxies
100

72.5

0.2
3.1

19.7

4.5

99.8

72.5

0.2
3

19.7

4.4

99.8

72.4

0.2
3

19.7

4.5

99.8

72.4

0.2
3

19.7

4.5

99.8

72.5

0.2
3

19.7

4.4

99.9

72.5

0.2
3.1

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.9

72.5

0.2
3.1

19.7

4.4

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

water-nsq - adaptive proxies
100

72.5

0.2
3.1

19.7

4.5

99.8

72.4

0.2
3

19.7

4.5

99.8

72.4

0.2
3

19.7

4.5

99.8

72.5

0.2
3

19.7

4.4

99.8

72.4

0.2
3

19.7

4.5

99.8

72.5

0.2
3

19.7

4.4

99.8

72.4

0.2
3

19.7

4.5

99.8

72.5

0.2
3

19.7

4.4

99.8

72.4

0.2
3

19.7

4.5

Figure 5.33: Water-Nsq: execution time pro�les

5.7. Results 169

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

proxy clusters

water-nsq - basic proxies

�

� � � � � � � �

� � � � � � � � �
�

�
� � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

proxy clusters

water-nsq - reactive proxies

�

� � � � � � � �

�
� � � � � � � �� � � � � � � � � |

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

proxy clusters

water-nsq - adaptive proxies

�

� � � � � � � �

� � � � � � � � �� � � � � � � � �

Figure 5.34: Water-Nsq: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

water-nsq - basic proxies

100

45.5

0.1

54.4

125.8

17.1

54.3

0.1

54.3

125.1

16.9

54.1

0.1

54

124.4

16.6

53.9

0.1

53.8

123.7

16.4

53.7

0.1

53.5

123.2

16.1

53.6

0.1

53.4

122.8

15.8

53.4

0.1

53.5

122.8

15.6

53.4

0.1

53.7

122

15.4

53.1

0.1

53.4

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

water-nsq - reactive proxies

100

45.5

0.1

54.4

98.8
0.1

45.3

0.1

53.3

98.6
0.1

45.3

0.1

53.1

99.3
0.1

45.5

0.1

53.6

99.4
0.1

45.5

53.8

98.9
0.1

45.4

0.1

53.3

99
0.1

45.4

0.1

53.4

99
0.1

45.4

0.1

53.4

99.6
0.1

45.5

0.1

53.9

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

water-nsq - adaptive proxies

100

45.5

0.1

54.4

99
0.1

45.3

53.6

98.6
0.1

45.3

0.1

53.1

99.5
0.1

45.5

0.1

53.8

98.8
0.1

45.4

0.1

53.2

98.9
0.1

45.4

53.4

98.7
0.1

45.3

0.1

53.2

98.9
0.1

45.4

0.1

53.3

99.1
0.1

45.4

53.6

Figure 5.35: Water-Nsq: message category pro�les

170 Chapter 5. Automatic Invocation of Proxies

The existence of balance points for reactive proxies is very encouraging, because the scheme

can obtain sizeable performance improvements for three benchmarks (GE, FFT, and CFD),

with no detrimental e�ect on the other applications, and this has been achieved without

having to mark data structures. By selecting a suitable NPC for an architecture, the sys-

tem designers can provide a cc-NUMA system with more stable performance for portable

programs. This is in contrast to basic proxies, where although better performance can be

obtained for some benchmarks, the strategy relies on judicious marking of widely-shared data

for each application.

The detailed examination of the results also showed that the potential costs of the automatic

schemes identi�ed in Section 5.4 can a�ect the performance of the applications. For example,

Ocean-Non-Contig is an application with a high level of messages, and performance su�ers

when the number of messages increases with proxies: the bottlenecks have just been shifted

to other nodes. However, for this application, the reactive proxy scheme keeps the message

count close to or well below the no proxy level, and as a result the scheme alleviates the

message queueing bottlenecks and gets better performance.

The GE application illustrated how even the careful marking of a widely-shared data structure

under the basic proxies scheme will not necessarily get the best performance. Using the

adaptive proxy strategy gave performance gains which were better than those obtained with

either basic proxies or the \dumb" reactive strategy. The adaptive proxy scheme bene�ted

from only using proxies when congestion occurred, and then continuing to use proxies during

the adaptive proxying period.

The GE application also exhibited some bottleneck problems for both of the automatic prox-

ying schemes, where proxy-read-request messages were sent to an already congested node

leading to a rise in overall queueing delay (although this was more than compensated for

by the gains at other nodes). In an ideal situation, the proxying scheme would not send

proxy-read-request messages to a node which is currently bu�er-bouncing other read re-

quests. It would be possible to extend the automatic schemes to check whether they had

received a bu�er-bounce from the proxy candidate. However this would then raise the issue

of how to choose an alternative proxy, which is the subject of further work.

It is hard to say which of the automatic proxying schemes is the best. The reactive strategy

has the advantage of being inexpensive to implement and use. It only requires a simple

change to the client state machine processing at each node controller to handle the generation

of proxy-read-request messages in response to the NAK of a read request. However the

reactive scheme has no \memory" of past events, and therefore subsequent read-request

messages are still sent direct to a home node even when it is likely that it is still congested.

5.8. Conclusions 171

The results showed that for the CFD and GE applications it was better to use the adaptive

scheme (see Table 5.2). The downside of the adaptive scheme is that it is more complicated

to implement because it needs changes to the NAK receipt processing, and all outgoing

read requests have to check against the adaptive proxy table to see if the read-request

should be converted to a proxy-read-request message. This check would really have to be

implemented in hardware otherwise normal processing would be slowed down by too much,

and such hardware changes would be expensive. In addition the Ocean-Contig application

showed performance degradation with adaptive proxies because it was not appropriate to go

on using proxy-read-requestmessages for the proxy period. On balance it is likely that the

reactive proxy scheme would be chosen for implementation even though it does not always get

the best possible performance. This is because reactive proxies only require minor changes

to the node controller's protocol processing, and these could reasonably be implemented in

software on a programmable node controller (because read-request NAK's are an exception

rather than being regular processing tasks which need to be implemented in hardware).

5.8 Conclusions

This chapter has introduced two strategies for proxying which are invoked automatically at

run-time. The schemes operate in a realistic environment where message bu�ers are �nite,

and read-request messages are \returned to sender" when there is no room for them in an

incoming message bu�er. The new reactive proxy policy was shown to have values of NPC
(number of proxy clusters) for which the performance of all eight benchmark application was

improved. This suggests that reactive proxies could be used to avoid the bottlenecks which

result from full message bu�ers, and so provide more stable performance for shared-memory

systems.

Some of the applications still exhibited problems with cache pollution which were exacerbated

by proxies. The next two chapters investigate proxy caching strategies which aim to reduce

the e�ect of proxying on SLC cache pollution.

172 Chapter 5. Automatic Invocation of Proxies

Chapter 6

Non-Caching Proxies

In the work described so far, any data obtained by a node when it is acting as a proxy is

cached in its second level cache (SLC). This was done deliberately to increase the combining

e�ect, i.e. further read requests for that data can be satis�ed immediately from the proxy

node's cache. There are, however, a number of drawbacks to this approach, including in-

creased sharing list length, cache pollution, and delays to the local CPU and node controller

processing.

These delays and con
ict problems lead one to ask whether it is worthwhile caching the

proxied data lines, i.e. would it have been just as e�ective to have non-caching proxy read

operations, thereby avoiding the unhooking of con
icting data lines? Alternatively, would it

be better to have a separate \proxy bu�er" to hold the data obtained by a node when it is

acting as a proxy? This chapter examines the �rst of these strategies, i.e. not caching proxy

data at proxy nodes. The approach of using a separate bu�er for proxy data is investigated

in Chapter 7.

6.1 The Non-Caching Approach to Proxies

The original proposal for proxies included caching data obtained by a node (while acting as

proxy) in its SLC, in order to increase the potential for combining (because further proxy read

requests for that data line are more likely to be immediately satis�ed from the proxy node's

SLC). Unfortunately this approach has some drawbacks, which include increased sharing list

length, cache pollution, and delays to local CPU and node controller processing. The sharing

list increases by the number of proxies holding a copy of a data line which they will not use

for local processing. This leads to increased latency for invalidations of the entire sharing list,

and also gives rise to longer unhooking latency when the proxy node evicts the proxied data

173

174 Chapter 6. Non-Caching Proxies

from its SLC.

The cache pollution occurs because the proxy data in the cache may displace another data

line. At the very least this will cause a delay while the displaced line is removed from its

sharing list, and at worst it will be displacing data which is about to be required by the local

CPU, in which case the proxy data will soon be displaced (causing yet another unhook delay).

There may also be delays associated with accessing the SLC. In the cc-NUMA architecture

simulated in this thesis the node controller �rst has to gain control of the SLC bus, which

will cause a delay if the SLC bus is already in use by the local CPU. In addition, while the

node controller has control of the SLC bus the local CPU cannot access its SLC, which will

increase the latency of any FLC miss which occurs during this period. The delay to the CPU

would be even worse in systems where the SLC can only be accessed by the CPU because the

CPU might have to be interrupted from its local processing to load the proxy data into the

SLC.

In the non-caching form of proxies, data which is obtained by a node acting as proxy will

not be cached locally unless the local CPU also needs the data. In some ways this looks

like a minor change to the protocol, with a similar sequence of messages and state changes

as were needed for the original proxy protocol described in Chapter 4. However, because a

proxy node must not be added to the sharing list there has to be a way for the home node

to distinguish between \normal" read requests and non-caching read requests from proxies.

Figure 6.1 shows an example of a proxy read under the non-caching proxy scheme. It is

similar to Figure 4.2, but di�ers at steps 2 and 3 because non-caching proxy messages are

used to ensure that the proxy node is not added to the sharing list. The detailed design issues

associated with non-caching proxies are discussed further in Section 6.2.

It should be noted that the non-caching policy can be used with all three forms of proxying

described so far in this thesis. The basic, reactive, and adaptive proxy schemes are all

concerned with deciding whether a client node will send a proxy-read-request to a proxy.

The caching policy at the proxy is independent of the decision of when to use proxies, so the

non-caching policy will be evaluated for all three proxy strategies.

It is likely that there will be less combining in the non-caching scheme than was observed

under the original caching approach. When a node receives a take-shared message for data

which is destined for its clients, the node will send the data on to all the clients but will not

cache the data in its SLC (unless the local CPU is also stalled waiting for that data). As a

result, a proxy-read-request for the same data which arrives soon afterwards at the proxy

node cannot be serviced immediately because the proxy does not have a copy of the data line.

6.1. The Non-Caching Approach to Proxies 175

Owner Home

3. request forwarded to the owner

(in state Home-Invalid)

(non-caching-proxy-request-fwd)

Client

Proxy

1. proxy-read-request

6. data supplied to
the stalled client
 (take-shared)

(take-shared-home)
5. data supplied to the home

2. request sent to the home
(non-caching-proxy-request)

4. data supplied to
the proxy
(take-shared)

Figure 6.1: A non-caching proxied read request

The proxy will have to issue another non-caching-proxy-request to the home node, and

the client will have to wait longer for its data.

This reduction in the potential for combining is the main drawback to the scheme. Combining

does occur for any \duplicate" proxy-read-requestmessages which arrive during the period

between the proxy requesting the data from the home node and its arrival in a take-shared

message. In addition, if a proxy node has an SLC copy of the data for its local CPU's

processing, then it will be able to satisfy proxy-read-request messages. This potential

for combining is better than schemes where combining only occurs for requests which are

simultaneously in a switch's input bu�er (e.g. the NYU Ultracomputer [45]). However, the

level of combining will be no better than schemes which combine requests for the same data

at intermediate nodes in the network hierarchy (e.g. hierarchical COMA systems such as the

SICS DDM [50]), and will not be as good as schemes which hold a copy of widely-shared data

in intermediate network nodes (e.g. the GLOW protocol extensions [69]).

6.1.1 Potential Bene�ts and Costs of Non-Caching Proxies

The non-caching proxy scheme should have a number of e�ects. Among the bene�ts one

would expect are:

No SLC pollution from using proxies: a better SLC hit rate for the local CPU, fewer

unhooking messages, and less CPU stall time because SLC misses caused by a con
ict

with proxy data are avoided.

Shorter sharing lists: because the proxy no longer has a copy; leading to fewer invalidation

messages.

176 Chapter 6. Non-Caching Proxies

Reduced usage of SLC bus: the node controller will not have to load or invalidate proxy

data in the SLC.

The potential costs are:

Less combining: proxies will no longer retain a copy of the proxied data lines, so a subse-

quent proxy-read-request arriving from a client will require another non-caching-

proxy-request to be send to the home node.

Complication of the coherence protocol: special actions are needed to handle the re-

ceipt of a \non-caching" read request from a proxy (to add the �rst client rather than

the proxy to the head of the sharing list).

These potential costs and bene�ts are considered as part of analysing the results in Section 6.4.

6.2 Design Issues

There are a number of factors which have to be considered in order to implement the non-

caching proxy scheme. These are how to support non-caching read requests, and the need to

modify the handling of proxy-read-request messages to prevent the reservation of an SLC

cache line to hold the data which will arrive with the take-shared message.

6.2.1 Non-Caching Read Requests from Proxies

The non-caching proxy policy relies on the proxy node not being added to the sharing list.

However, in the original protocol, read-request messages result in the requester being

added to the sharing list. As a result, it is necessary to introduce a new message type,

the non-caching-proxy-request, to indicate to a home node controller that the receipt of

such a message should result in the client being added to the sharing list, rather than the

requester. Figure 6.2 shows an example of the actions required to handle a straightforward

proxy read transaction using the new message type.

The decision to have the home node send the take-sharedmessage to the proxy node, rather

than directly to the client node, was taken to maximise the combining of requests. Further

clients (and possibly the proxy node itself) may be added to the proxy's pending chain while

the non-caching-proxy-request is being processed by the home node. By routing the

take-shared via the proxy, one can be certain that all the opportunities for combining are

realised in the non-caching proxy scheme. This approach does have the drawback that the

6.2. Design Issues 177

a. CPU suffers cache miss.
 Node Controller issues
 a proxy-read-request.

b. Node Controller receives
 take-shared.
 Allocates data in SLC
 and restarts the CPU.

1. proxy-read-request

a. Data block in state Home-Shared
 (in DRAM).
 Node Controller adds client node to
 head of the sharing list and sends
 take-shared to proxy node.

 removes entry from Proxy
 Sends data on to client and
 Data not required locally.

b. Proxy receives take-shared.

 Transit Cache.

3. take-shared

4. take-shared

 in existing "pointer" field).
(client id sent with message

 request to the home node.
 Issue a non-caching-proxy-

 Transit Cache.
 Allocate entry in Proxy

a. Data block not cached
 locally.

2. non-caching-proxy-request

Proxy Node

Client Node

Home Node

Figure 6.2: Actions required to handle a non-caching proxied read request

client will be at the head of the sharing list for some time before it is sent a take-shared

message. This can increase the probability that other messages (such as an invalidate or

client-unhook-forward) traverse the sharing list and reach the client before it knows it is

part of the sharing list. Invalidation or unhook-forward messages will have to be \bu�ered"

at a client when the client has requested to be added to the sharing list, but has not yet

received the take-shared message from the proxy which provides the link to the tail of the

list.

There was a further change needed to handle non-caching read requests from proxies. In cases

where the home node is in the Home-Invalid state, i.e. where there is a more up-to-date copy

of the data at the current owner node, read requests are forwarded to the owner node. The

non-caching processing was triggered by providing a new non-caching-proxy-request-fwd

message type, which prompts the owner node to add the client to the sharing list and send a

take-shared message to the proxy (and a take-shared-home message to the home node).

It should be noted that non-caching-proxy-request messages are not to be confused with

the \normal" non-caching operations which are allowed for in some instruction sets, for ex-

ample the cache bypass \hints" held in the 2-bit cache control �eld provided in Hewlett

Packard's PA-RISC instruction set [65]. Such non-caching operations are provided to avoid

caching data which the CPU will not need again before the data is evicted. In contrast, for

non-caching-proxy-request messages, although the data is not cached in the proxy's SLC

the data line is cached at the client node.

178 Chapter 6. Non-Caching Proxies

6.2.2 Reduction of SLC Con
icts

The introduction of non-caching proxies means that a proxy node no longer has to reserve

space in the SLC for a data line which is currently being obtained for a client. This di�ers

from the original proxy protocol, where the arrival of a proxy-read-request would trigger

the eviction of a con
icting data line (i.e. a di�erent data line which maps to the same cache

line) from the SLC. This unhooking is no longer required in the non-caching protocol, because

the cache line does not have to be \reserved" for the arrival of the proxy data. This change

in the use of the SLC has rami�cations for the handling of SLC misses from the proxy node's

CPU which occur before the arrival of the take-shared message with proxy data.

The �rst relevant cache miss instance is where the proxy node's CPU su�ers a cache miss

on a data line which maps to the same SLC cache line as a data line for which the node is

currently acting as proxy. Under the original proxy scheme, the local CPU would be stalled

until the proxy data was loaded into the SLC when the take-shared message arrived: the

proxy data would then be unhooked, and only then could the node controller start processing

the local CPU's cache miss. With the non-caching proxy scheme, there is no longer a con
ict

between the proxied data and the data the local CPU requires, so the local cache miss can

be dealt with immediately by the node controller. As a result, the local CPU's stall time will

be reduced, and there is no knock-on unhooking of a proxy data line.

The other situation is where the local CPU su�ers a cache read miss on a data line for which

it is currently acting as proxy. Unlike the situation under the original proxy protocol, the

non-caching-proxy-request will not cause the proxy node to be added to the sharing list,

and there may be con
icting data in the SLC. The possible con
ict is easily dealt with by

the underlying protocol, which will evict the con
icting data. However getting the local node

added to the sharing list is slightly more complicated. The solution adopted was to use a
ag

in the proxy transit cache entry to indicate that the local CPU now needs the data. This

local-read
ag is set to \o�" when entries are added to the proxy transit cache. If the local

CPU su�ers a cache read miss for that data line, the local-read
ag is set \on". When a

take-shared message arrives for which there is a matching entry in the proxy transit cache,

the local-read
ag can be checked to see if the data should be copied into the SLC.

There still remains the question of how to link the local node into the sharing list. It seems

sensible not to change the existing protocol which passes the take-shared message along the

pending chain of client nodes. However, by getting the local SLC's entry to point to the tail

of the sharing list, and by putting the local node's ID as the \pointer" to the tail of the list

which is sent to the clients, the local node is inserted on the list after the client nodes. The

6.3. Modi�cations to the Protocol and Architecture 179

2nd client 3rd client1st client

home
node

sharing list
head of the

pending chain of clients

sharing
list tail

proxy

Figure 6.3: Example ordering of sharing list when the proxy's CPU also needs the data line

resulting sharing list is illustrated by the example in Figure 6.3. This approach allows the

local CPU to be restarted as part of processing the take-shared message at the proxy node.

6.3 Modi�cations to the Protocol and Architecture

The main changes needed to support non-caching proxies are to the protocol. To enable the

home (or owner) node to add the �rst client rather than the proxy to the sharing list, two new

message types are required: the non-caching-proxy-request and the non-caching-proxy-

request-fwd. The arrival of these messages can result in the state changes illustrated in

Figure 6.4. Two additional messages are needed to handle certain node controller states: a

bounced-non-caching-proxy-request is sent back to the proxy when the home node's direc-

tory entry for the data line is locked, and a buffer-bounced-non-caching-proxy-request

supports the simple �nite bu�er simulation (it is sent by the home node when there are eight

or more messages in its incoming message bu�er). The introduction of the latter message type

ensures that a fair comparison is made with the \SLC proxy caching" results in Section 5.7,

where any read-request sent by a proxy node is liable to be bu�er-bounced. In addition

to handling the new message types and state transitions, changes must be made to the node

controller's processing of local read misses, and to the processing for proxy-read-request

and take-shared messages (as discussed in Section 6.2).

Home-Shared

non-caching-proxy-request

Home-Exclusive

Client-Shared

non-caching-proxy-request-fwd

Client-Exclusive

Figure 6.4: Extra node controller state transitions for non-caching proxies

180 Chapter 6. Non-Caching Proxies

DRAM

CONTROLLER

NETWORK

PROXY
TRANSIT
CACHE

CONTROLLER

SLC

MEM bus

SLC bus

NODE ADAPTIVE
PROXY
TABLE

buffer size is
limited to 8 for
incoming read
request messages

local-read
head finish

tag

pending chain

TLB

CPU

FLC

Figure 6.5: Memory model for a cc-NUMA node with non-caching proxies

Compared with the hardware structure used in Chapter 5 (see Figure 5.3), the only architec-

tural modi�cation needed to support non-caching proxies is the addition of a local-read
ag

in the proxy transit cache. This is used to indicate whether the local CPU is stalled on a

read miss for the proxy data. The change is illustrated in Figure 6.5.

6.4 Results

This section presents the results obtained from execution-driven simulations1 of the basic,

reactive, and adaptive proxy strategies using the non-caching proxy policy. It was shown in

Section 3.5 that contention only becomes an important issue when more than a few tens of

nodes are used. For this reason the detailed results presented below are from simulations of a

64 node design. For basic proxies, the shared data marked for proxying is shown in Table 6.1:

the same marking was used in the preceding chapters.

The results from using non-caching proxies are summarised in Table 6.2. The performance

speedup results are presented in terms of relative speedup, i.e. the ratio of the execution time

for the fastest algorithm running on one processor to the execution time on P processors. To

simplify the comparison of these results with those from the SLC caching scheme, Table 6.3 is a

copy of Table 5.2 from Chapter 5. Basic proxies tend to have slightly improved performance

1The details of the simulated system were given earlier in Section 3.4.

6.4. Results 181

application problem size shared data marked for basic proxying

Barnes 16K particles all

CFD 64� 64 grid all

FFT 64K points all

FMM 8K particles f array (part of G Memory)

GE 512� 512 matrix entire matrix

Ocean-Contig 258� 258 ocean q multi and rhs multi

Ocean-Non-Contig 258� 258 ocean fields, fields2, wrk, and frcng

Water-Nsq 512 molecules VAR and PFORCES

Table 6.1: Benchmark problem sizes, and data marked for basic proxies

using the non-caching strategy compared to that seen in Chapter 5. The only \balance

point" for reactive proxies is at NPC=2. For adaptive proxies, there is now a balance point

at NPC=1. Overall there are no dramatic changes in performance using the non-caching

scheme.

In order to understand the changes exhibited by the individual applications, the results are

examined in detail in the sub-sections which follow. For each application, the detailed results

are presented as two graphs, one of relative changes and one of message ratios, and two his-

tograms, one showing the execution time pro�le, and the other showing the message category

pro�le. In addition, node-by-node graphs showing the mean queueing cycles are given where

appropriate.

The relative changes results show four di�erent metrics:

messages: the ratio of the total number of messages to the total without proxies,

execution time: the ratio of the execution time (excluding startup) to the execution time

(also excluding startup) without proxies,

queueing delay: the ratio of the total time that messages spend waiting for service to the

total without proxies, and

remote read delay: the ratio of the mean delay between issuing a read-request and re-

ceiving the data, to the same mean delay when proxies are not used.

The message ratios are:

proxy hit rate: the ratio of the number of proxy read requests which are serviced directly

by the proxy node, to the total number of proxy read requests (in contrast, a proxy

miss would require the proxy to request the data from the home node),

bu�er bounce ratio: the ratio of the total number of bu�er bounce messages to read re-

quests. This gives a measure of how much bouncing there is for an application. This

182 Chapter 6. Non-Caching Proxies

relative % change in execution time (+ is better,

application speedup proxy � is worse) for NPC = 1 to 8

no proxies type 1 2 3 4 5 6 7 8

basic -0.3 +0.4 -0.1 +0.2 +0.2 +0.2 +0.1 -0.1

Barnes 46.3 reactive +0.1 +3.4 0.0 +0.2 +0.1 +0.1 -0.2 +0.4

adaptive +0.4 +3.7 0.0 0.0 +0.5 +0.3 +0.1 +0.2

basic +14.3 +14.9 +14.7 +15.7 +14.8 +15.0 +14.3 +15.3

CFD 28.3 reactive +10.5 +9.4 +8.9 +8.1 +9.5 +7.4 +8.4 +6.3

adaptive +12.9 +13.7 +13.6 +12.7 +12.9 +13.5 +12.7 +12.5

basic +10.7 +10.0 +9.8 +10.4 +9.6 +9.6 +10.5 +9.5

FFT 47.3 reactive +11.2 +10.8 +10.7 +10.7 +10.7 +11.4 +10.7 +10.3

adaptive +11.7 +11.2 +11.3 +11.4 +11.3 +11.1 +11.2 +10.8

basic +0.4 +0.4 +0.5 +0.5 +0.4 +0.4 +0.4 +0.4

FMM 52.4 reactive +0.3 +0.4 +0.4 +0.4 +0.3 +0.4 +0.4 +0.3

adaptive +0.4 +0.4 +0.5 +0.4 +0.4 +0.4 +0.4 +0.4

basic +30.9 +30.8 +30.7 +30.7 +30.6 +30.5 +30.3 +30.1

GE 21.6 reactive +27.5 +27.8 +28.1 +28.0 +27.9 +27.9 +27.9 +27.9

adaptive +30.3 +30.5 +31.4 +31.0 +31.3 +31.3 +31.0 +31.0

basic -2.0 +1.0 +1.0 -2.9 -1.0 -1.5 -1.6 -0.7

Ocean-Contig 49.7 reactive -1.1 +0.2 -7.0 +3.0 -3.3 -1.5 +0.7 -0.4

adaptive +3.2 +0.5 -1.0 -2.3 0.0 -2.6 -0.1 -1.1

basic +4.8 +7.1 +1.4 +4.1 +2.2 +2.1 +6.1 +2.6

Ocean-Non-Contig 48.2 reactive +4.1 +0.9 +4.2 -19.4 -6.9 +7.4 +6.2 +4.6

adaptive +0.5 -3.6 +4.4 -11.3 +3.7 +4.7 +7.4 +3.3

basic -0.4 -0.4 -0.3 -0.4 -0.3 -0.3 -0.4 -0.3

Water-Nsq 55.3 reactive +0.2 +0.2 +0.2 +0.1 +0.1 +0.2 +0.2 +0.1

adaptive +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.1 +0.2

Table 6.2: Benchmark relative speedups for non-caching proxies (64 nodes)

relative % change in execution time (+ is better,

application speedup proxy � is worse) for NPC = 1 to 8

no proxies type 1 2 3 4 5 6 7 8

basic +0.2 0.0 0.0 +0.2 -0.1 -0.3 0.0 -0.1

Barnes 46.3 reactive +0.4 +3.3 +0.2 0.0 +0.3 0.0 +0.5 +0.4

adaptive +0.1 +3.2 +0.4 +0.4 +0.4 +0.2 -0.1 +0.2

basic +10.4 +11.3 +8.1 +11.8 +9.8 +9.3 +9.2 +14.8

CFD 28.3 reactive +7.6 +7.4 +8.3 +7.6 +8.6 +7.6 +7.6 +6.1

adaptive +9.2 +13.1 +11.3 +11.6 +11.2 +10.4 +10.6 +12.1

basic +9.4 +8.7 +8.7 +9.6 +9.5 +8.6 +10.0 +8.5

FFT 47.3 reactive +11.7 +11.2 +10.9 +11.0 +11.2 +11.8 +11.2 +10.7

adaptive +11.9 +11.6 +11.3 +11.4 +11.2 +11.5 +11.0 +11.0

basic +0.4 +0.4 +0.5 +0.3 +0.4 +0.3 +0.3 +0.4

FMM 52.4 reactive +0.3 +0.4 +0.4 +0.4 +0.3 +0.4 +0.4 +0.4

adaptive +0.4 +0.4 +0.4 +0.4 +0.4 +0.5 +0.4 +0.4

basic +29.3 +29.3 +29.3 +29.4 +29.4 +29.5 +29.6 +29.6

GE 21.6 reactive +28.4 +28.6 +28.9 +28.8 +28.8 +28.8 +28.7 +28.9

adaptive +30.5 +30.7 +31.4 +31.2 +31.7 +31.6 +31.4 +31.6

basic -2.6 -0.9 -1.1 -4.7 -2.1 +0.4 -5.4 +0.9

Ocean-Contig 49.7 reactive -0.6 -4.4 +1.8 +3.3 -0.9 +2.5 +1.8 +2.6

adaptive -1.3 -2.8 -6.1 -3.5 -1.4 -3.6 -0.4 -3.6

basic +5.3 0.0 +2.4 -0.7 +6.4 +1.8 +5.7 -1.2

Ocean-Non-Contig 48.2 reactive +5.8 +3.1 +2.0 +4.7 +4.0 -1.9 +2.5 +5.5

adaptive +7.8 +7.6 -6.3 +2.0 +4.1 +6.6 -8.3 -1.5

basic -0.6 -0.6 -0.6 -0.6 -0.6 -0.5 -0.7 -0.5

Water-Nsq 55.3 reactive +0.2 +0.2 +0.2 +0.2 +0.1 +0.2 +0.2 +0.1

adaptive +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2

Table 6.3: Benchmark relative speedups for SLC caching proxies (64 nodes)

6.4. Results 183

ratio can go above one, since only the initial read request is counted in that total, i.e. the

retries are excluded, and

proxy read ratio: the ratio of the proxy read messages to read requests - this gives a mea-

sure of how much proxying is used in an application.

The execution time pro�le presents the overall execution time split into CPU active time and

the time spent waiting because of delays. The delays are further split into load, store, barrier

and lock delays. The times are normalised with respect to the execution time without proxies.

The message category pro�le shows how the total number of messages breaks down into

�ve categories: read, non-caching proxy requests, write, unhook, and proxy messages. The

allocation of message types to message categories is given in Appendix C.2.

6.4.1 Barnes

This application has a variable response to the introduction of non-caching proxies. The

performance under basic proxies is usually slightly better than seen in Chapter 5, although

there are still values of NPC where the performance is worse with proxies (see Figure 6.7).

The proxy hit rate (see Figure 6.8) is much lower than with SLC caching, and this loss of

combining leads to a smaller reduction in remote read delay, as shown in Figure 6.6.

The reactive proxies scheme generally improves the performance of Barnes. However the level

of unhook messages shown in Figure 6.9 is higher than was observed in Chapter 5. This is

a surprising result, given that the non-caching policy will reduce the direct cache pollution

caused by caching proxy data. It is caused by an increase in client-unhook-forward mes-

sages. The delays introduced by the indirect approach of requesting data via a proxy are

increased by the reduction in combining. This has a knock-on e�ect of changing the ordering

of sharing lists, and as a result the \normal" unhook requests have to traverse more links

from the home node to the node preceding the unhooker. For reactive proxies this e�ect is

most marked at NPC=7.

The side-e�ect increase in unhook category messages is also observed for adaptive proxies.

However it is never as bad as seen for reactive proxies at NPC=7, and, with the overall

message total keeping close to the no proxy level, the scheme always improves the performance

compared to not using proxies.

On balance, the performance of the Barnes application under the non-caching scheme is

comparable to that seen with SLC caching of proxies. However it is interesting that the side-

e�ect, which rearranges the ordering of the sharing list, causes an increase in the number of

unhooking category messages despite the reduction in direct cache pollution by proxy data.

184 Chapter 6. Non-Caching Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

barnes - basic proxies

�

� � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

barnes - reactive proxies

� � � � � � � � �� � � � � � � � �

�
� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

barnes - adaptive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

Figure 6.6: Barnes: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes - basic proxies

100

25.3

2.3

21.1

34.5

16.8

100.3

25.3

2.7

20.9

34.5

16.9

99.6

25.3

2.1

20.8

34.6

16.8

100.1

25.3

2.5

21

34.5

16.8

99.8

25.3

2.2

20.9

34.6

16.8

99.8

25.3

2.3

20.9

34.6

16.7

99.8

25.3

2.2

20.9

34.5

16.9

99.9

25.3

2.4

20.8

34.5

16.9

100.1

25.3

2.4

20.9

34.5

17

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes - reactive proxies

100

25.3

2.3

21.1

34.5

16.8

99.9

25.3

2.4

20.9

34.5

16.8

96.6

25.3

2.2

17.9

34.5

16.7

100

25.3

2.4

21

34.5

16.8

99.8

25.3

2.2

21

34.5

16.8

99.9

25.3

2.4

20.8

34.5

16.9

99.9

25.3

2.4

20.9

34.5

16.8

100.2

25.3

2.6

21

34.5

16.8

99.6

25.3

2.2

20.9

34.5

16.7

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes - adaptive proxies

100

25.3

2.3

21.1

34.5

16.8

99.6

25.3

2.2

20.9

34.5

16.7

96.3

25.2

2.1

17.8

34.5

16.7

100

25.3

2.5

20.9

34.5

16.8

100

25.3

2.5

20.9

34.5

16.8

99.5

25.3

2.1

20.9

34.5

16.7

99.7

25.3

2.1

20.9

34.5

16.9

99.9

25.3

2.4

20.9

34.5

16.8

99.8

25.3

2.3

20.9

34.5

16.8

Figure 6.7: Barnes: execution time pro�les

6.4. Results 185

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes - basic proxies

�

� � � � � � � �

� � � � � � � � ��

� � � � � � � �
� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes - reactive proxies

�

� � � �
� � � �

�
� � � � � � � �� � � � � � � � � |

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes - adaptive proxies

�

�
� �

�
�

�
�

�

�
� � � � � � � �� � � � � � � � �

Figure 6.8: Barnes: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

barnes - basic proxies

100

41.4

1.6

57

121.7

12.8

41.3

1.5
13.1

53

122.5

12.6

41.4

2.3

12.9

53.3

121.5

12.4

41.4

1.8
12.7

53.2

126

12.5

41.4

5.7

12.6

53.8

121.7

12

41.4

2.5
12.3

53.5

120.9

11.8

41.3

2.3
12

53.5

120

11.5

41.3

1.8
11.8

53.6

121.9

11.4

41.3

3.8
11.6

53.8

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

barnes - reactive proxies

100

41.4

1.6

57

99.9
0.1

41.4

1.9
0.1

56.4

99.4
0.1

41.4

1.5
0.1

56.3

99.9
0.1

41.4

1.8
0.1

56.5

99.9
0.1

41.4

1.8
0.1

56.5

99.8
0.1

41.3

1.8
0.1

56.5

99.4
0.1

41.4

1.5
0.1

56.3

102.7
0.1

41.4

3.9
0.1

57.2

99.5
0.1

41.4

1.6
0.1

56.3

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

barnes - adaptive proxies

100

41.4

1.6

57

100.4
0.2

41.5

2.1
0.1

56.5

100.1
0.2

41.5

1.9
0.1

56.4

100
0.2

41.3

2
0.1

56.4

99.8
0.2

41.5

1.7
0.1

56.3

99.8
0.2

41.5

1.6
0.1

56.4

99.7
0.2

41.4

1.7
0.1

56.3

99.6
0.2

41.4

1.6
0.1

56.3

100.6
0.2

41.4

2.2
0.2

56.6

Figure 6.9: Barnes: message category pro�les

186 Chapter 6. Non-Caching Proxies

6.4.2 CFD

This application performs slightly better with non-caching proxies than with SLC caching

proxies, i.e. the speedups are in the range 6.3% to 15.7% compared to speedups of between

6.1% and 14.8% with the SLC caching scheme. The improvement might seem surprising given

that, as shown in Figure 6.13, there is no unhooking for this application. The improvements

come from reducing the usage of the SLC bus by the node controller. When a take-shared

message is received for proxy data, the node acting as proxy no longer has to obtain control of

the SLC bus to place the data into the SLC. As a result the local CPU su�ers less delay when

accessing the SLC, and this is re
ected in the larger reduction in load miss delay (shown

in Figure 6.11). In addition, because proxy nodes are now only added to the sharing list

when the local CPU needs the data, the number of invalidation messages is kept low. This

results in the write messages total remaining closer to the level seen with no proxies (see

Figure 6.13). Using proxies still brings the bene�t of reduced node congestion, which leads

to shorter remote read delays, as shown in Figure 6.10.

It should be noted that the proxy hit rate curves shown in Figure 6.12 are similar to those

seen for SLC caching proxies (see Figure 5.10). As was observed in the earlier chapter, much

of the combining exhibited by CFD comes when the proxy node is also the current owner

node for a data line. The non-caching policy for proxies only loses some of the combining

which comes from data that is not needed by the local CPU, and this is not a signi�cant

factor in the performance of this application.

6.4.3 FFT

For basic proxies, using the non-caching scheme results in slightly better performance im-

provements than were obtained using the SLC caching approach (see Figure 6.15). The extra

improvement is in the range 0.1% to 1.3%. It comes from the reduced store miss delay which

results from fewer invalidation messages because there are no proxy copies on the sharing list.

Using the non-caching approach with reactive or adaptive proxies gives good performance

improvements when compared with not using proxies. However the improvements are usually

not quite as good as were observed using SLC caching of proxy data, with the performance

shortfall being up to 0.5%. The shortfall is attributable to di�erent barrier delays resulting

from a change to the delays experienced by the local CPUs. This change occurs because there

is less competition for the SLC bus since the node controller, when acting as a proxy, no longer

has to use the SLC bus to access proxy data lines. However, as shown in Figure 6.15, the

barrier delays are always less than without proxies because of the reduction in mean queueing

6.4. Results 187

delay for NPC�1 (see Figure 6.14).

For all three proxy strategies (basic, reactive, and adaptive) the level of combining is com-

parable to that achieved with SLC caching, as shown in Figure 6.16. This is because the

widely-shared data in FFT tends to be accessed by many nodes at the same time, so the

non-caching scheme is still able to combine requests at the proxy nodes by allowing requests

to join the pending chain. However the hit rate is very low for basic proxies (where all the

shared data was marked for proxying) regardless of whether the SLC caching or non-caching

approach is used, indicating that some data has been inappropriately marked for proxying.

It should be noted that the results show a slight increase in unhooking category messages

compared to the SLC caching scheme examined in Chapter 5. As with Barnes, this increase

is caused by an increase in client-unhook-forward messages, which occurs because timing

delays introduced by using a proxy can a�ect the ordering of sharing lists.

Overall, FFT achieves performance improvements with the non-caching approach which are

similar to those obtained when the proxy data is cached in the SLC. In addition, the basic

proxy scheme bene�ts from the reduction in store miss delay which comes from not needing

to invalidate proxy copies (see Figure 6.17) and shorter queueing delays (see Figure 6.14).

6.4.4 FMM

The performance of this application with non-caching proxies is similar to that observed in

Chapter 5, with a small performance improvement in the range 0.3% to 0.5%. The perfor-

mance improvements are once again due to the slight reduction in the load miss delay, as

shown in Figure 6.19. There are a few cases, e.g. when NPC=8 for reactive proxies, where

the load miss delay is not reduced by as much as when SLC caching is used. This shortfall

is attributable to the lower proxy hit rate (see Figure 6.20) achieved by non-caching proxies

because a proxy node no longer retains a copy of proxied data.

6.4.5 GE

Using the non-caching policy results in the basic proxy scheme attaining even better perfor-

mance speedups than were observed for SLC caching in Section 5.7.5. The improvements stem

from the lower store miss delay that comes from there no longer being proxy copies which

have to be invalidated before a write can proceed. As a result there is no increase in the

number of write messages (see Figure 6.25), the store miss delay remains at or falls below the

level of 6.1% observed without proxies (see Figure 6.23), and nodes spend less time waiting at

188 Chapter 6. Non-Caching Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

c f d - basic proxies

�
� � �

�
� � �

�

�

� � � � � � � �

�

� � � � � � �
�

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

c f d - reactive proxies

�
� � � � � � � ��

� � � � � � � �

�

� � � � �
� � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

c f d - adaptive proxies

�
� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

Figure 6.10: CFD: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

c f d - basic proxies
100

13.1
2.1

12.4

20.9

51.5

85.7

13.1
3

9.3

17.8

42.5

85.1

13.1
1.9
9.7

17.9

42.5

85.3

13.1
1.6

10.2

17.7

42.7

84.3

13.1
1.6
9.5

18.1

42

85.2

13.1
1.6
9.6

18

42.9

85

13.1
1.6
9.6

17.7

43

85.7

13.1
1.5
9.7

18.4

43

84.7

13.1
1.7
9.2

18.4

42.3

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

c f d - reactive proxies
100

13.1
2.1

12.4

20.9

51.5

89.5

13.1
2.5

9.8

19.3

44.8

90.6

13.1
2.3

10.5

19.6

45.1

91.1

13.1
2.4

10.1

19.9

45.6

91.9

13.1
2.4

10.3

20.5

45.6

90.5

13.1
2.3

10.3

19.7

45.1

92.6

13.1
2.5

10.4

20.6

46

91.6

13.1
2.4

10.6

20

45.5

93.7

13.1
2.4

11.1

20.6

46.5

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

c f d - adaptive proxies
100

13.1
2.1

12.4

20.9

51.5

87.1

13.1
2.7

9.8

18.6

42.9

86.3

13.1
2.1
9.4

18.7

43

86.4

13.1
1.8
9.6

18.7

43.2

87.3

13.1
1.9
9.8

19.4

43.1

87.1

13.1
1.9
9.7

19

43.4

86.5

13.1
1.9
9.7

18.7

43.1

87.3

13.1
2

9.8

19.3

43.1

87.5

13.1
1.9
9.4

19.7

43.4

Figure 6.11: CFD: execution time pro�les

6.4. Results 189

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

proxy clusters

c f d - basic proxies

�

�
�

�

�

� � �

�

�

� � � � � �
� �

�

�

�
� �

� � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

proxy clusters

c f d - reactive proxies

�

�
�

�

�

�

�

�

�

�

� �
� �

�

�

�

�

�
� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

proxy clusters

c f d - adaptive proxies

�

�
�

�

�

�
� �

�

�

� �
� � � � � �

�

� �

� � �

� � �

Figure 6.12: CFD: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

c f d - basic proxies

100

49.3

50.7

92
9

49.7

16

17.3

93.1
8.8

50.3

16.1

17.9

96.8
9.2

49.8

19.8

18

91.1
7.9

50.2

14.1

18.9

97
8.7

49.9

19.5

18.9

96.4
8.5

49.5

19.1

19.3

97.4
8.4

49.8

19.2

20

85.7
6.1

50.4

8.1

21.1

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

c f d - reactive proxies

100

49.3

50.7

94.4
1.2

49.4

3.3

40.5

94.3
1.2

49.2

3.4

40.5

95.3
1.3

49.2

4.6

40.2

96.3
1.3

49.8

4.3

40.9

95.1
1.1

49.6

4.1

40.3

96.6
1.3

49.4

5.5

40.4

94.8
1

49.1

4.2

40.5

97
1.2

49.7

3.3

42.8

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

c f d - adaptive proxies

100

49.3

50.7

92.7
3

49.6

5.3

34.8

93.2
2.9

50

5.9

34.4

96
4.6

50

10.7

30.7

93.6
4.1

50.2

8.3

31

95.1
4.3

49.8

10.5

30.5

94.3
3.2

50.1

8.7

32.3

94.4
3.3

49.7

9.3

32.1

92
2.9

50.4

6.1

32.6

Figure 6.13: CFD: message category pro�les

190 Chapter 6. Non-Caching Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f f t - basic proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f f t - reactive proxies

�

� � � � � � � �
�

� � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f f t - adaptive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

Figure 6.14: FFT: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f f t - basic proxies
100

34.3

0.4
3

27

35.3

89.3

34.3

0.4
1.6

26.8

26.2

90

34.3

0.4
2.3

26.8

26.2

90.2

34.3

0.4
2.4

26.8

26.3

89.6

34.3

0.4
1.8

26.8

26.3

90.4

34.3

0.4
2.5

26.8

26.4

90.4

34.3

0.4
2.6

26.8

26.3

89.5

34.3

0.4
1.5

26.9

26.4

90.5

34.3

0.4
2.5

26.8

26.5

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f f t - reactive proxies
100

34.3

0.4
3

27

35.3

88.8

34.3

0.4
2.1

27

25

89.2

34.3

0.4
2.5

27

25

89.3

34.3

0.3
2.5

27

25.2

89.3

34.3

0.4
2.6

27

25

89.3

34.3

0.4
2.6

27

25

88.6

34.3

0.3
1.9

27

25.1

89.3

34.3

0.3
2.5

27

25.2

89.7

34.3

0.4
2.7

27

25.3

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f f t - adaptive proxies
100

34.3

0.4
3

27

35.3

88.3

34.3

0.4
2

27

24.6

88.8

34.3

0.3
2.4

27

24.8

88.7

34.3

0.4
2.5

27

24.5

88.6

34.3

0.4
2.4

27

24.5

88.7

34.3

0.4
2.5

27

24.5

88.9

34.3

0.4
2.6

27

24.6

88.8

34.3

0.4
2.5

27

24.6

89.2

34.3

0.4
2.8

27

24.7

Figure 6.15: FFT: execution time pro�les

6.4. Results 191

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t - basic proxies

�

� � � � � � � �

�

� � � � � � � �
�

� � �
� � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t - reactive proxies

�

� � � � � � � �

�

� � � � � � �
�

�
� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t - adaptive proxies

�

� �
� � � �

� �

�

� � � � � � � ��
� � � � � � � �

Figure 6.16: FFT: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f f t - basic proxies

100

33.8
0.6

65.6

125.8

23.2

33.7
0.4

22.3

46.2

125.3

22.8

33.7
0.8

21.7

46.3

125.2

22.7

33.7
0.9

21.7

46.2

123.1

21.8

33.7
0.5

20.7

46.4

123.9

22

33.7
0.9

21

46.3

123.6

21.8

33.7
1.1

20.7

46.3

122.2

21.5

33.7
0.3

20.4

46.3

122.7

21.4

33.7
0.8

20.4

46.4

| ||0

|20

|40

|60

|80

|100
|120

|140

|160

|180

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f f t - reactive proxies

100

33.8
0.6

65.6

86.2
2.3

33.7
0.8
0.3

49.1

86.8
2.4

33.7
1

0.4

49.3

87
2.5

33.7
1.1
0.6

49.1

87.1
2.5

33.7
1

0.8

49.1

87.1
2.5

33.7
1

0.8

49.1

86.9
2.5

33.7
0.5
1

49.2

87.5
2.4

33.7
1

1.2

49.2

88.2
2.4

33.7
1.2
1.6

49.3

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f f t - adaptive proxies

100

33.8
0.6

65.6

84.9
2.4

33.7
0.6
0.2

48

85.3
2.5

33.7
1

0.2

47.9

85.2
2.6

33.7
0.8
0.3

47.8

85.2
2.6

33.7
0.8
0.3

47.8

85.4
2.6

33.7
1

0.4

47.7

85.5
2.6

33.7
1.1
0.4

47.7

85.4
2.6

33.7
1

0.4

47.7

85.9
2.5

33.7

1.3
0.6

47.8

Figure 6.17: FFT: message category pro�les

192 Chapter 6. Non-Caching Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f m m - basic proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f m m - reactive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f m m - adaptive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

Figure 6.18: FMM: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f m m - basic proxies

100

21.3

40.3

33.4

5.0

99.6

21.3

40.3

33.3

4.7

99.6

21.3

40.3

33.3

4.7

99.5

21.2

40.2

33.3

4.8

99.5

21.2

40.3

33.3

4.7

99.6

21.3

40.3

33.3

4.7

99.6

21.3

40.3

33.3

4.7

99.6

21.2

40.3

33.3

4.8

99.6

21.3

40.3

33.3

4.7

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f m m - reactive proxies

100

21.3

40.3

33.4

5.0

99.7

21.3

40.4

33.4

4.6

99.6

21.3

40.4

33.4

4.5

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.7

21.3

40.3

33.4

4.7

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.7

21.3

40.3

33.4

4.7

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f m m - adaptive proxies

100

21.3

40.3

33.4

5.0

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.5

21.3

40.3

33.4

4.5

99.6

21.3

40.4

33.4

4.5

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

Figure 6.19: FMM: execution time pro�les

6.4. Results 193

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m - basic proxies

�

� � � � � � � �

�

� � � � � � � �

� � � � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

� � � � � � � � �
|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m - adaptive proxies

�

� � � � � � �
�

�

� � � � � � � �

�
� � � � � � � �

Figure 6.20: FMM: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f m m - basic proxies

100

40.9

4.4

54.7

97.7
0.4

40.9

4.3

52.1

97.5
0.4

40.8

4.1

52.2

96.5
0.5

40.4

3.8

51.8

97.2
0.5

40.9

3.7

52.1

98.1
0.5

41

4.3
0.1

52.2

97.7
0.5

40.8

4.2
0.1

52.1

98.3
0.4

41.1

4.3
0.1

52.4

97.1
0.4

40.8

3.6
0.1

52.2

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f m m - reactive proxies

100

40.9

4.4

54.7

96.5
0.8

40.4

4.7

1.3

49.3

96.4
0.8

40.7

4.1

1.5

49.3

96.6
0.8

40.7

4.3

1.5

49.3

96.7
0.8

40.6

4.2

1.6

49.5

97.3
0.8

41.1

4

1.6

49.8

97
0.8

40.8

4.1

1.6

49.7

96.8
0.7

40.9

3.9

1.6

49.7

96.6
0.7

40.8

3.8

1.7

49.6

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f m m - adaptive proxies

100

40.9

4.4

54.7

96
0.9

40.9

4.1

1.2

48.9

96.8
0.9

41

4.4

1.4

49.1

95.9
0.9

40.8

3.9

1.4

48.9

96.2
0.9

40.6

4.3

1.6

48.8

96.5
0.9

40.5

4.4

1.6

49.1

96
0.9

40.9

3.8

1.6

48.8

96.4
0.9

40.9

4

1.6

49

96.8
0.9

41

4.1

1.6

49.2

Figure 6.21: FMM: message category pro�les

194 Chapter 6. Non-Caching Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

g e - basic proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

g e - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

g e - adaptive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

Figure 6.22: GE: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

g e - basic proxies
100

12.1

29.6

6.1

52.2

69.1

12.1

29.6

6

21.4

69.2

12.1

29.5

6.1

21.5

69.3

12.1

29.5

6.1

21.6

69.3

12.1

29.4

6.1

21.7

69.4

12.1

29.4

6.1

21.8

69.5

12.1

29.4

6.1

21.9

69.7

12.1

29.3

6.1

22.2

69.9

12.1

29.3

6.1

22.4

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

g e - reactive proxies
100

12.1

29.6

6.1

52.2

72.5

12.1

27.3

7

26.1

72.2

12.1

27.2

6.8

26.1

71.9

12.1

27.1

6.5

26.2

72

12.1

27.1

6.6

26.2

72.1

12.1

27.1

6.5

26.4

72.1

12.1

27.1

6.5

26.4

72.1

12.1

27.1

6.5

26.4

72.1

12.1

27.1

6.5

26.4

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

g e - adaptive proxies
100

12.1

29.6

6.1

52.2

69.7

12.1

27.3

7

23.3

69.5

12.1

27.2

6.8

23.4

68.6

12.1

27.2

6.5

22.8

69

12.1

27.1

6.6

23.2

68.7

12.1

27.2

6.5

22.9

68.7

12.1

27.2

6.5

22.9

69

12.1

27.2

6.5

23.2

69

12.1

27.2

6.5

23.2

Figure 6.23: GE: execution time pro�les

6.4. Results 195

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

proxy clusters

g e - basic proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

proxy clusters

g e - reactive proxies

�

� � � � � � � �

�

� � � � � � �
�

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

proxy clusters

g e - adaptive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

Figure 6.24: GE: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

g e - basic proxies

100

18.5

81.5

61.1

13

18.5

11.2

18.4

60.9

12.8

18.5

11.1

18.5

60.8

12.8

18.5

10.8

18.7

60.9

12.9

18.5

10.8

18.7

60.9

12.9

18.5

10.6

18.9

60.8

12.9

18.5

10.5

18.9

60.7

12.8

18.5

10.4

19

60.6

12.6

18.5

10.3

19.2

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

g e - reactive proxies

100

18.5

81.5

63.8
7.8

18.5

3.2

34.3

65.1
7.9

18.5

3.7

35

65.4
7.8

18.5
4.4

34.7

66.2
7.8

18.5

4.9

35

66.7
7.7

18.5

5.3

35.2

67
7.6

18.5

5.7

35.2

67.5
7.5

18.5

6.2

35.3

67.7
7.4

18.5

6.6

35.2

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

g e - adaptive proxies

100

18.5

81.5

58.3
8.8

18.5

3.6

27.4

59.1
9.2

18.5

3.9

27.5

58.5
9.4

18.5
4.2

26.4

59.2
9.5

18.5
4.2

27

59
9.6

18.5
4.3

26.6

58.8
9.6

18.5
4.4

26.3

59.2
9.4

18.5
4.5

26.8

58.6
9.3

18.5
4.7

26.1

Figure 6.25: GE: message category pro�les

196 Chapter 6. Non-Caching Proxies

barriers for writes to complete. These improvements outweigh the increased number of proxy

messages and read messages (including non-caching reads) which are needed now that there

is a lower level of combining of proxy-read-request messages (shown by the proxy hit rate

in Figure 6.24).

The non-caching proxy scheme is not so successful for reactive proxies. Although there is

still a large performance improvement, in the range 27.5% to 28.1%, this is not as good as

was observed when proxy data was held in the SLC. Although the policy succeeds in keeping

the level of write messages the same as without proxies, the overall number of read messages

(including non-caching reads) is high compared to the basic proxy policy. This is because of

both the higher level of buffer-bounced-read-request messages which are used to trigger

the reactive proxy policy, and the higher number of take-shared messages as the proxy node

has to keep re-acquiring a data line for clients rather than using a copy from its SLC. The

slightly higher level of proxy messages in comparison to the SLC caching scheme is also a

direct result of the non-caching policy. More take-hole messages are needed to build the

proxy pending chains while the proxy is obtaining data via the home node (data for which a

copy would already have been available at the proxy node under the SLC caching scheme).

Adaptive proxies also su�er, albeit only slightly, in comparison to the performance improve-

ments seen in Chapter 5. This small reduction in the performance gain is again due to the

slight reduction in combining.

Overall, using non-caching proxies for GE improves the performance of basic proxies further

than under the SLC caching scheme because the reduction in proxy copies improves the store

miss delay. However the reactive and adaptive proxy schemes su�er in comparison to their

performance with SLC caching of proxies, because the reduction in combining restricts the

improvement in remote read delay.

6.4.6 Ocean-Contig

For basic proxies, the introduction of non-caching proxies makes little di�erence to the relative

changes pro�le when compared to the SLC caching scheme, with both messages and queueing

delay increasing, and with an execution time which is sometimes better and sometimes worse

than without proxies (see Figure 6.26). The e�ect of non-caching proxies is seen more clearly

in Figure 6.28, where the proxy hit rate for basic proxies is almost zero, i.e. there is now very

little combining at proxy nodes. This results in a slightly higher remote read delay than was

observed under the SLC caching scheme. However the increase in load miss delay tends to be

balanced in performance terms by the decrease in overall store miss delay which results from

no longer having to invalidate proxy copies before a write can proceed.

6.4. Results 197

The reactive proxies strategy also shows mixed performance results in response to the non-

caching policy. Although the level of combining is quite high, as shown by the proxy hit rate

in Figure 6.28, it is not as good as that achieved with SLC caching, and this causes an increase

in the load miss delay. The main in
uence on performance is the
uctuation in barrier delay,

which results from changes in the timing of the arrival of messages at node controllers.

The performance for adaptive proxies shows an improvement over the SLC caching scheme,

although the performance is often worse than not using proxies. As with reactive proxies,

there is a performance drop when unfortunate proxy selection patterns have a knock-on e�ect

by increasing node controller processing at the proxy node, which delays the local CPU and

increases the barrier delay. However the non-caching strategy generally improves the load

miss delay (because it results in fewer bu�er-bounced read messages), and does not have the

adverse e�ect on the store miss delay which was observed under the SLC caching approach

(because there are no proxy copies which need to be invalidated prior to the completion of a

write request).

In general, Ocean-Contig is slightly better suited to the non-caching form of proxies than

to SLC caching. Most signi�cantly, when NPC=1&2 for adaptive proxies the performance

improves, which allows adaptive proxies to get an overall balance point at NPC=1.

6.4.7 Ocean-Non-Contig

Running the Ocean-Non-Contig application under the non-caching scheme with basic proxies

improves the performance for all values of NPC� 1. This improvement is in contrast to the

SLC caching scheme used in Chapter 5, where the performance oscillated. The main factor

in the success of the non-caching policy is the reduction in store miss delays, which results

from no longer having to invalidate proxy copies. In addition, there is a reduction in unhook

category messages because proxy cache pollution has been avoided. By reducing the level of

messages in the system, for both invalidate and unhook messages, the application no longer

su�ers from the bu�er saturation experienced for some values of NPC under the SLC caching

strategy.

In contrast, both the reactive and adaptive policies have instances where the store miss delay

increases, and these are the values of NPC for which the overall performance is worse than

not using proxies. As shown in Figure 6.32, the cases where the performance degrades (for

NPC�1) are those where the bu�er bounce ratio is at its highest, namely whenNPC=4&5 for
reactive proxies, and whenNPC=2&4 for adaptive proxies. These cases have the highest level
of buffer-bounced-non-caching-proxy-requestmessages, i.e. the home node is bouncing

198 Chapter 6. Non-Caching Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-contig - basic proxies

�

� � � � � � � �

� � � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-contig - reactive proxies

� � � � � � � � �� � �
�

�
� � � �

�
� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-contig - adaptive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

Figure 6.26: Ocean-Contig: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig - basic proxies

100

19.9
0.8

15.3

13.1

50.9

102

19.9
0.7

16.2

13

52.2

99

19.7
0.7

14.1

12.9

51.6

99

19.8
0.7

14.1

12.8

51.6

102.9

19.9
0.7

17.2

13

52.1

101

19.9
0.7

15.5

13

51.9

101.5

19.9
0.7

16.1

12.9

51.9

101.6

19.9
0.7

16.1

13

51.9

100.7

19.8
0.7

15.4

12.9

51.9

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig - reactive proxies

100

19.9
0.8

15.3

13.1

50.9

101.1

20
0.8

16.1

13.1

51.1

99.8

20
0.8

14.7

13.2

51.1

107

20.3
0.8

20.8

13.3

51.8

97

19.8
0.8

12.9

13

50.5

103.3

20.1
0.8

17.9

13.1

51.4

101.5

20
0.8

15.9

13.3

51.5

99.3

19.9
0.8

14.7

13.1

50.8

100.4

19.9
0.8

15.5

13.1

51.1

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig - adaptive proxies

100

19.9
0.8

15.3

13.1

50.9

96.8

19.8
0.8

12.9

13

50.3

99.5

19.9
0.8

15

13.1

50.7

101

20
0.8

15.9

13.2

51.1

102.3

20.1
0.8

17.1

13.2

51.1

100

19.9
0.8

15.2

13.1

51

102.6

20.1
0.8

17.2

13.2

51.3

100.1

19.9
0.8

15.2

13.1

51.1

101.1

20
0.8

16.1

13.1

51.1

Figure 6.27: Ocean-Contig: execution time pro�les

6.4. Results 199

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig - basic proxies

� � � � � � � � �
� � � � � � � � �
�

� � � � � � � � � � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig - reactive proxies

�

� � � � � � � �

� � � � � � � � �� � � � � � � � � |

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig - adaptive proxies

�

� � � � � � �
�

� � � � � � � � �� � � � � � � � �

Figure 6.28: Ocean-Contig: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-contig - basic proxies

100

47.9

1.7

50.4

125.7
13.8

48

1.7
15.7

46.5

125.3
13.5

48.2

1.9
15.2

46.5

124.4
13.2

48.2

1.8
14.8

46.4

123.6
12.9

48.1

1.8
14.3

46.5

123.1
12.7

48.1

1.8
14.1

46.4

122.3
12.4

48.1

1.6
13.7

46.5

122.2
12.1

48.3

1.9
13.3

46.6

121.1
11.8

48.2

1.8
12.8

46.5

| ||0

|20

|40

|60

|80

|100
|120

|140

|160

|180

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-contig - reactive proxies

100

47.9

1.7

50.4

99.7
0.1

48

1.7
0.2

49.7

99.8
0.1

48.1

1.6
0.1

49.9

99.9
0.1

48.2

1.7
0.2

49.7

99.9
0.1

48

1.8
0.1

49.9

100.1
0.1

48.2

1.9
0.1

49.8

100.2
0.1

48.2

1.8
0.1

50

100.1
0.1

48.3

1.7
0.1

49.9

99.9
0.1

48.2

1.6
0.1

49.9

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-contig - adaptive proxies

100

47.9

1.7

50.4

99.8
0.1

48.2

1.6
0.2

49.7

101.2
0.1

48.2

2.8
0.2

49.9

99.7
0.1

48

1.7
0.2

49.7

100.3
0.1

48.2

2
0.2

49.8

99.9
0.1

48.2

1.6
0.2

49.8

99.8
0.1

48

1.9
0.2

49.6

100.1
0.1

48.2

1.9
0.2

49.7

100
0.1

48.2

1.7
0.2

49.8

Figure 6.29: Ocean-Contig: message category pro�les

200 Chapter 6. Non-Caching Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-non-contig - basic proxies

� � � � � � � � ��
� �

� � � �
� �

� � � �
� � � �

�

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-non-contig - reactive proxies

� � � �
� � � � ��

� � �

�

�

� � �

�
� � �

� �
� � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-non-contig - adaptive proxies

� � � �
�

� � � �� �
�

�

�

� � �
�

�
�

� � �
� � � �

Figure 6.30: Ocean-Non-Contig: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-non-contig - basic proxies

100

30

0.8

14.1

18.4

36.7

95.2

29.7

0.8
11.7

17.5

35.5

92.9

29.6

0.8
10.1

17.4

35

98.6

29.9

0.8

14.4

17.8

35.7

95.9

29.8

0.8
12.2

17.5

35.6

97.8

29.9

0.8

13.3

17.8

36

97.9

30

0.9

13.5

17.8

35.7

93.9

29.6

0.8
11.4

17.2

34.9

97.4

29.9

0.8

13.3

17.7

35.7

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-non-contig - reactive proxies

100

30

0.8

14.1

18.4

36.7

95.9

29.9

0.7
11.7

17.8

35.8

99.1

30.2

0.7

14.6

17.9

35.7

95.8

29.9

0.7
11.9

17.9

35.4

119.4

31.3

0.8

27.2

20.1

40

106.9

30.7

0.8

19.1

18.8

37.5

92.6

29.6

0.7
10.5

17.4

34.4

93.8

29.7

0.7
10.5

17.9

35

95.4

29.9

0.7
11.5

17.8

35.5

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-non-contig - adaptive proxies

100

30

0.8

14.1

18.4

36.7

99.5

30.1

0.7

14.7

18.2

35.8

103.6

30.4

0.8

16.6

18.6

37.2

95.6

29.8

0.7
11.7

17.9

35.5

111.3

30.8

0.7

21.3

20.1

38.4

96.3

30

0.7
12.6

17.9

35.1

95.3

29.9

0.7
11.9

17.4

35.4

92.6

29.6

0.7
10.2

17.3

34.8

96.7

30

0.7
12.5

17.8

35.7

Figure 6.31: Ocean-Non-Contig: execution time pro�les

6.4. Results 201

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

ocean-non-contig - basic proxies

� � � � � � � � �

�
�

� �
� � �

�
�

�

� � � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

ocean-non-contig - reactive proxies

�

� �
�

� �
� � �

�

� �
�

�
�

�
� �

�
� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

ocean-non-contig - adaptive proxies

�
� � � � � � � �

�

�

�

�
�

� � � �

�

� � � � � � � �

Figure 6.32: Ocean-Non-Contig: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-non-contig - basic proxies

100

54.4

6.2

39.4

97.9
1.2

53.4

4.6

2

36.7

97.2
1.2

53.5

4.3

2

36.2

98.5
1.2

53.7

5.1

2

36.5

96.8
1.1

53.2

4.2

1.8

36.5

99.5
1.2

53.9

5.5

2

36.9

98.1
1.2

53.7

4.7

2

36.5

97.1
1.1

53.5

4.4

1.8

36.3

98.2
1.1

53.6

4.8

1.8

36.9

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-non-contig - reactive proxies

100

54.4

6.2

39.4

98
0.3

54.1

5.3

2.1

36.2

97.1
0.3

53.8

4.8

2.2

36

98.1
0.3

54.1

5.9

1.7

36.1

103.5
0.3

55.2

8

2.4

37.6

99.7
0.4

54.3

5.7

2.7

36.6

95.6
0.3

53.6

4.3

1.6

35.8

98
0.3

54.1

5.7

1.8

36.1

98.2
0.3

54.2

5.6

1.8

36.3

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-non-contig - adaptive proxies

100

54.4

6.2

39.4

98.8
0.8

54

5.9

3

35.1

101
1

54.4

6.3

3.9

35.4

98.1
0.8

53.8

5.5

2.9

35.1

104.6
1

55.5

8.5

3.5

36.1

97.8
0.8

53.9

5.3

2.8

35

96.7
0.8

53.5

4.6

2.8

35

96.8
0.9

53.6

4.8

2.9

34.6

98.7
0.9

54.2

5.4

3

35.2

Figure 6.33: Ocean-Non-Contig: message category pro�les

202 Chapter 6. Non-Caching Proxies

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

qu
eu

ei
ng

 c
yc

le
s

proxy clusters
0 1 2 3 4 5 6 7 8

maximum

overall

minimum

ocean-non-contig - basic proxies

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

qu
eu

ei
ng

 c
yc

le
s

proxy clusters
0 1 2 3 4 5 6 7 8

maximum

overall

minimum

ocean-non-contig - reactive proxies

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

| ||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

qu
eu

ei
ng

 c
yc

le
s

proxy clusters
0 1 2 3 4 5 6 7 8

maximum

overall

minimum

ocean-non-contig - adaptive proxies

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 6.34: Ocean-Non-Contig mean queueing cycles

the requests from a proxy because there are still at least eight messages in the home node

controller's input message bu�er. This bu�er saturation also delays the processing of other

messages, and this is re
ected by the elevated maximum individual node mean queue lengths

shown in Figure 6.34.

An additional feature of the NPC=4 results for reactive and adaptive proxies is the in-

crease in unhook messages (see Figure 6.33). This increase is due to there being more

client-unhook-request and client-head-unhook messages than are seen when NPC=0.
Given that the non-caching proxy technique was speci�cally designed to avoid cache pollu-

6.4. Results 203

tion, it was worrying to observe an increase in the level of SLC unhooks. Careful investigation

revealed that the e�ect is due to a change in home node allocation using the �rst-touch page

placement policy. For this application when NPC=4, the delays introduced by the bu�er

congestion a�ect which CPU is �rst to \touch" some pages of the shared memory. As a re-

sult, nodes which were the home node when NPC=0 are no longer the home node. Cache line

con
icts which previously caused a replacement to the local memory now require an unhook

request to be sent to the remote home node.

Ocean-Non-Contig is best suited to the basic proxies protocol when non-caching proxies are

used, because the performance improves for all values of NPC� 1. However this result does

rely on appropriate data structures having been marked for proxying by the programmer.

6.4.8 Water-Nsq

The performance of Water-Nsq using non-caching proxies is similar to that obtained when

proxy data was cached in the local SLC. For basic proxies the performance is slightly worse

than not using proxies, whereas both reactive and adaptive proxies get slightly better perfor-

mance than without proxies.

For basic proxies, comparing the non-caching strategy with SLC caching, the lower proxy

hit rate, increase in read messages (including non-caching reads) and the increased latency

for overall load miss delays are more than compensated for by the reduction in store miss

delay. There are no longer proxy copies which have to be invalidated before a write request

can complete. Although the performance is still worse than not using proxies, using the non-

caching strategy with basic proxies is less harmful to the performance of Water-Nsq than SLC

caching.

The level of combining achieved for the reactive and adaptive proxy schemes (see Figure 6.37)

is similar to that seen in Chapter 5. This indicates that the combining for these schemes

comes from proxy-read-request messages arriving while the proxy node is in the process

of obtaining the data from the home node, rather than from requests which arrive later and

rely on there being a copy of the proxy data still held at the proxy.

6.4.9 Summary of Results

The simulation results for the eight applications have shown that the proxying technique is

still e�ective even when the opportunities for combining are restricted because proxied data is

not held in the local SLCs. The non-caching proxy policy was introduced as a way of reducing

204 Chapter 6. Non-Caching Proxies

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

water-nsq - basic proxies

�

� � � � � � � �

� � � � � � � � �

�
� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

water-nsq - reactive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

water-nsq - adaptive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

Figure 6.35: Water-Nsq: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

water-nsq - basic proxies
100

72.5

0.2
3.1

19.7

4.5

100.4

72.6

0.2
3.1

19.7

4.8

100.4

72.6

0.2
3.1

19.7

4.8

100.3

72.6

0.2
3.1

19.7

4.7

100.4

72.6

0.2
3.1

19.7

4.8

100.3

72.6

0.2
3

19.7

4.8

100.3

72.6

0.2
3

19.7

4.8

100.4

72.6

0.2
3.1

19.7

4.8

100.3

72.6

0.2
3

19.7

4.8

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

water-nsq - reactive proxies
100

72.5

0.2
3.1

19.7

4.5

99.8

72.5

0.2
3

19.7

4.4

99.8

72.4

0.2
3

19.7

4.5

99.8

72.5

0.2
3

19.7

4.4

99.9

72.5

0.2
3.1

19.7

4.4

99.9

72.5

0.2
3.1

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.9

72.5

0.2
3.1

19.7

4.4

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

water-nsq - adaptive proxies
100

72.5

0.2
3.1

19.7

4.5

99.8

72.5

0.2
3

19.7

4.4

99.8

72.4

0.2
3

19.7

4.5

99.8

72.5

0.2
3.1

19.7

4.3

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3.1

19.7

4.3

99.8

72.5

0.2
3

19.7

4.4

99.9

72.5

0.2
3.1

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

Figure 6.36: Water-Nsq: execution time pro�les

6.4. Results 205

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

proxy clusters

water-nsq - basic proxies

�

� � � � � � � �

� � � � � � � � �
�

� � � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

proxy clusters

water-nsq - reactive proxies

�

� � � � � � � �

� � � � � � � � �� � � � � � � � � |

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

proxy clusters

water-nsq - adaptive proxies

�

� � � � � � � �

� � � � � � � � �� � � � � � � � �

Figure 6.37: Water-Nsq: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

water-nsq - basic proxies

100

45.5

0.1

54.4

123

17.1

45.4

25.5

35

120.8

16.8

45.4

0.1

24.1

34.4

118.9

16.6

45.5

0.1

22.6

34.1

118.6

16.3

45.5

0.1

22.3

34.4

118

16.1

45.6

0.1

21.6

34.6

117

15.8

45.5

20.7

35

117.1

15.5

45.5

0.1

20.6

35.4

115.8

15.2

45.3

19.8

35.5

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

water-nsq - reactive proxies

100

45.5

0.1

54.4

99.2
0.1

45.4

0.1
0.4

53.2

98.7
0.1

45.3

53.3

99.4
0.1

45.5

0.1
0.4

53.3

99.5
0.1

45.5

0.1
0.5

53.3

99.1
0.1

45.4

0.3

53.3

99.2
0.1

45.5

0.2

53.4

99
0.1

45.4

0.1
0.2

53.2

99.3
0.1

45.5

0.1
0.1

53.5

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
non-caching proxy reqs
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

water-nsq - adaptive proxies

100

45.5

0.1

54.4

99.1
0.1

45.3

0.1
0.4

53.2

98.6
0.1

45.3

0.1

53.1

99.4
0.1

45.5

0.1
0.4

53.3

98.8
0.1

45.4

0.1

53.2

98.9
0.1

45.4

0.1
0.2

53.1

99
0.1

45.4

0.2

53.3

98.9
0.1

45.4

0.1
0.1

53.2

98.7
0.1

45.4

53.2

Figure 6.38: Water-Nsq: message category pro�les

206 Chapter 6. Non-Caching Proxies

cache pollution, and this was e�ective for the basic proxies strategy. However the performance

improvements were also due to a reduction in contention for the SLC bus because the node

controllers no longer needed access to the bus in order to load proxied data lines into the

SLC.

The level of messages related to unhooking rose for some of the simulations, e.g. for the

Barnes and Ocean-Non-Contig applications using adaptive proxies. Investigations into the

e�ect showed that the use of proxies introduces delays which can a�ect (1) the order in

which entries appear on sharing lists, and (2) the allocation of pages to home nodes. These

side-e�ects can cause the overall level of unhooking messages (including the forwarding of

unhooking messages along the sharing list) to increase.

The increase in client-unhook-forward messages which arises because the unhooking node

is further along the sharing list, is an e�ect of using a singly-linked list to represent the

sharing list in the Stanford distributed-directory protocol [134]. If the sharing list had been

represented in another way, for example as a doubly-linked list or a bit vector, then the

\position" of a node in the list would not have changed the number of messages required

to complete an unhook transaction. Such alternative implementations might improve the

performance results for applications such as Barnes, and an investigation of the alternatives

should be the subject of further work.

Reactive proxies have a single balance point at NPC=2, i.e. the value of NPC where the

performance of all eight applications is improved. The lack of balance points for NPC> 2 is

due to the lower combining opportunities when there are more proxies for a particular data

line. It should be noted that adaptive proxies also have a balance point using non-caching

proxies, unlike when the SLC caching scheme was used. The balance point occurs when

NPC=1, i.e. when the chances of combining are greatest because there is only one proxy

node for a given data line. The Ocean-Contig application, which su�ered under adaptive

proxies with SLC caching, is able to bene�t from the reduced cache pollution at NPC=1,
and so achieves a balance point.

6.5 Conclusions

The non-caching strategy can be used to support proxying in a system where the node con-

troller does not have direct access to the local SLC. The strategy reduces contention for the

SLC bus between node controllers acting as proxies and the local CPUs, and avoids polluting

the SLC with proxy data. However the timing and sharing list order side-e�ects introduced

by the reduction in combining (because proxied data is no longer retained) result in variable

6.5. Conclusions 207

performance improvements. Given that the reduction in combining can exacerbate some of

the side-e�ects of proxies, it is prudent to investigate the other policy which avoids using the

SLC, namely having a separate bu�er to hold proxied data. That approach is examined in

the next chapter.

208 Chapter 6. Non-Caching Proxies

Chapter 7

Using a Separate Proxy Bu�er

The e�ects of not holding a copy of proxied data were examined in the preceding chap-

ter. It was found that SLC pollution was reduced, but the reduction in combining of

proxy-read-request messages increased the number of read requests sent by proxies to

home nodes. This increase in the overall number of messages sometimes degraded the per-

formance. An alternative way of avoiding SLC cache pollution is to have a separate small

bu�er for proxy data at each node. This has the potential to deliver a greater level of read

request combining than was achieved with the non-caching approach. The separate proxy

bu�er approach is investigated in this chapter, and the results are compared with both the

original SLC caching scheme and the non-caching scheme.

7.1 The Proxy Bu�er

The proxy bu�er is a separate area of storage used to hold the data lines which a node has

obtained when acting as a proxy. When a copy of a data line arrives in a take-shared

message, and the data is not needed for local processing, the data line will be inserted into

the proxy bu�er. It will stay there until it is invalidated, or it is \promoted" to the local

SLC (in response to a local read miss for the data), or it is evicted to make room for a new

data line of proxied data. The existence of the proxy bu�er means that the node controller

has to be modi�ed for local read misses, and for handling proxy-read-request, unhooking,

and invalidation messages: there has to be an additional check in the proxy bu�er to see if

there is a matching entry. Using the proxy bu�er rather than the SLC to hold proxy copies

of data should reduce both cache pollution and contention for the SLC bus. In addition the

scheme will maximise the opportunity for satisfying read requests at the proxy node, unlike

the non-caching policy evaluated in Chapter 6.

209

210 Chapter 7. Using a Separate Proxy Bu�er

7.1.1 Related Work

The idea of using a small fully-associative bu�er to hold data lines which con
ict with current

cache entries, termed a victim cache, was introduced by Jouppi [63]. Victim caches are small

(e.g. 8 entries) fully-associative caches which are used to hold data lines which have just been

evicted from the FLC because of con
ict or capacity misses. If the processor requires the

victim data soon after its eviction, it can be retrieved from the victim cache with a latency

which is only slightly higher than a cache hit.

Using a separate cache area to hold a copy of data obtained from remote nodes is an idea

which has been implemented in a number of forms, with examples including the Remote

Access Cache in Stanford's DASH [89], the Interconnect Cache (IC) in the HP/Convex Ex-

emplar [1], and the Remote Data Cache in the Sequent NUMA-Q [92]. In the DASH system,

the Remote Access Cache (RAC) is a 128 Kbyte direct-mapped cache which acts as a staging

area to receive and bu�er replies from remote clusters. RAC entries are allocated when a

remote request is issued (by one of the four local processors) and persist until all inter-cluster

transactions relating to the request have completed. If there is a con
ict for a RAC entry,

the later request is delayed and then retried after the earlier request has �nished with the

RAC entry. The RAC is also able to detect when more than one of the local processors are

accessing the same remote location: in this case the RAC combines the later request with the

earlier one, and satis�es both requests when the reply to the earlier request is returned.

In the HP/Convex Exemplar, the Interconnect Cache (IC) is a dedicated section of each

node's memory which is designed to improve locality of reference for data with a remote

home node [1]. When a remote shared-memory access misses in both a processor's data cache

and the node's IC, a memory line is retrieved over the SCI ring interconnect which passes

through the home node. This line is then stored in the local IC as well as in the processor's

data cache. As a result, subsequent references to this line from other processors at the node

can be satis�ed locally from the IC, until the line is replaced or invalidated by a remote node.

The size of the IC is set by the system administrator to achieve the best performance for

frequently executed applications.

The Sequent NUMA-Q is another design which uses a separate cache to hold copies of data

lines obtained from remote nodes [92]. The Remote Data Cache (RDC) is a 32 Mbyte 4-way

associative cache. Local node data accesses which hit in the RDC are satis�ed with a latency

which is similar to a local memory hit. Data is copied into the RDC as part of supplying

remote data to a local processor.

7.2. Design Issues 211

7.1.2 Potential Bene�ts and Costs of a Separate Proxy Bu�er

The proxy bu�er scheme should have a number of e�ects. Among the bene�ts one would

expect are:

More opportunities for combining: node controllers will use the proxy bu�er to hold a

copy of each data line obtained while acting as a proxy. This data will then be available

to satisfy subsequent proxy-read-request messages from clients. A data line will

remain in the proxy bu�er until it is out-of-date (invalidation), or it is evicted to make

room for a new entry, or it is promoted to the local SLC in response to a local read

miss.

No extra cache pollution from using proxies: the local SLC does not hold proxy data.

The potential costs are:

Additional protocol processing: needed to manage the proxy bu�er, i.e. for adding, in-

validating, and evicting entries.

Data storage: the proxy bu�er will take up a (small) part of the local memory (DRAM),

or be part of the node controller, or there will need to be a small bu�er added to the

MEM bus. The latency of accessing the proxy bu�er depends on its location.

These potential costs and bene�ts are considered as part of analysing the results in Section 7.4.

7.2 Design Issues

The issues surrounding the implementation of the proxy bu�er are concerned with how to

incorporate the existence of the separate bu�er into the protocol, and how to manage the

bu�er.

7.2.1 Using the Proxy Bu�er

Using a separate proxy bu�er to hold the data which a node has obtained as proxy introduces

the problem that there is now an additional location which has to be checked for the existence

of a data line copy. This extra checking is needed for local cache misses, and for the pro-

cessing of various external requests such as invalidations, unhooks, and proxy-read-request

messages. These checks of the proxy bu�er are required when:

212 Chapter 7. Using a Separate Proxy Bu�er

1. A local read miss occurs: the node controller needs to check if the data is currently

in the proxy bu�er. If it is, the data line is \promoted" to the SLC, i.e. the tag, data,

and sharing list pointer are copied to the SLC and the proxy bu�er entry is deleted. No

further action is needed before the CPU is restarted because the node is already on the

sharing list for the data line.

2. A local write miss occurs: the node controller needs to check if the data is currently

in the proxy bu�er. If it is, the data line is \promoted" to the SLC, i.e. the tag, data,

and sharing list pointer are copied to the SLC and the proxy bu�er entry is deleted.

Processing then continues as if the write had hit in the SLC on a clean shared data line,

i.e. the node will have to obtain exclusive access to the data line before the write can

proceed. This promotion of the proxy bu�er entry to the SLC minimises the changes

to the original protocol processing.

3. An invalidate message arrives: the node controller must check to see if there is a

matching entry in the proxy bu�er. If there is, the entry must be deleted from the proxy

bu�er. As for a \normal" invalidate match in the SLC, the node controller must then

pass the invalidation on to the rest of the sharing list.

4. An unhooking message arrives (client-unhook-forward or client-unhook-ptr):

if there is a match in the proxy bu�er, the node controller processing is similar to

a match in the SLC, apart from using the proxy bu�er pointer data rather than the

pointer from the SLC.

For this work it was decided that accesses to the proxy bu�er would have the same latency as

accesses to the local DRAM. This can be seen as implementing the proxy bu�er in DRAM,

which would be possible using the IC of the HP/Convex Exemplar [1], or in the Stanford

FLASH architecture where the MAGIC chip can adapt the use of the DRAM to suit each

protocol [120]. This approach is more realistic than making the data instantly accessible

within the node controller. It also allows the bu�er size to be tuned to suit the multiprocessor's

con�guration, e.g. the bu�er size might need to be increased as more processing nodes are

added to a system.

7.2.2 Managing the Proxy Bu�er

In order to use the proxy bu�er, decisions had to be made on the policies for adding, deleting,

and evicting entries from the bu�er, and how to handle the potential over
ow given that

the bu�er is very small. The proxy bu�er is fully associative, i.e. a data line can be placed

anywhere in the bu�er. Entries will be deleted from the proxy bu�er in response to an

7.3. Modi�cations to the Protocol and Architecture 213

invalidation message or because the entry is being \promoted" to the SLC to satisfy a local

read miss. When an entry has to be evicted to make room for a new entry (i.e. when the

bu�er is full), it was decided, for simplicity, to use a FIFO policy.

An entry is chosen for eviction when it is the oldest entry and there is no room in the bu�er

for a new entry. The data line copy will have to be removed from the sharing list, so an

unhook request is sent to the home node. The data line being evicted is moved to an over
ow

region for entries which are in the process of being unhooked, and this leaves room in the

bu�er for the new entry. Entries held in the over
ow region can still be accessed by the node

controller, so the data can be used to satisfy proxy-read-request messages and local read

misses for the data line. When the unhook request completes, the entry will be deleted from

the over
ow region.

A new entry will be added to the proxy bu�er whenever a take-shared message arrives at a

node and the node does not require the data for local processing (i.e. the data is only needed

by the client nodes). The data line will be inserted in the �rst available slot in the bu�er. If

it is not possible to evict the oldest entry when the bu�er is full, because the over
ow area is

currently �lled with entries pending unhook, the processing of the take-shared message will

be suspended until there is room in the proxy bu�er for the new entry.

7.3 Modi�cations to the Protocol and Architecture

The extra states, state transitions, and message types needed to support the use of the proxy

bu�er are illustrated in Figure 7.1 and Figure 7.2. A separate set of unhooking messages

has been introduced for the proxy bu�er. This was done for two reasons: to avoid over-

complicating the existing processing for normal SLC unhooking, and to make it easier to

distinguish between proxy bu�er and SLC unhooking for reporting purposes. In fact, sepa-

rating the processing for the two types of unhooking might well re
ect the implementation on

a programmable node controller, where the standard SLC unhook protocol processing would

be implemented in hardware, with the much less common processing for proxy bu�er un-

hooks being implemented in software. The proxy bu�er unhook message types are described

in detail in Appendix C.2.6.

The proxy bu�er has been implemented in ALITE as a wraparound �rst-in-�rst-out (FIFO)

bu�er with 32 entries. The �rst 16 bu�er positions hold the current entries, with state

Proxy-Bu�er-Valid. The remaining 16 entries are reserved for data lines which are currently

being unhooked (i.e. in state Proxy-Bu�er-Pending-Invalid). In e�ect, the bu�er is limited

to 16 entries, with the \over
ow" region providing the opportunity for further combining (or

214 Chapter 7. Using a Separate Proxy Bu�er

Home-Shared

Home-Locked

Home-Invalid

proxy-buffer-head-unhooked

Home-Load-Stalled

local write miss

local read miss

proxy-buffer-unhook-request

proxy-buffer-head-unhooked

OR proxy-buffer-unhook-cancelled
OR proxy-buffer-unhooked proxy-buffer-head-unhooked

OR proxy-buffer-unhooked
OR proxy-buffer-unhook-cancelled

proxy-buffer-unhook-request

proxy-buffer-head-unhooked

proxy-buffer-head-unhooked

Home-Exclusive

Home-Store-Stalled

Figure 7.1: Extra node controller state transitions for home node actions

Client-Invalid

Client-Shared
local read miss

local read miss

invalidate
OR home-invalidate
OR proxy-buffer-unhook-ok

invalidate
OR home-invalidate

local proxy buffer eviction

Proxy-Buffer-Valid

Proxy-Buffer-Pending-Invalid

Figure 7.2: Extra node controller state transitions for client node actions

satisfying a local read miss) before the unhooking transaction completes. The sizes of the

\current" and \unhooking" regions were set after experimental evaluation. They keep the

overall bu�er size low, while also keeping evictions from the proxy bu�er reasonably low for

most applications, and avoiding stalling evictions (due to the \unhooking" region being full)

in most cases.

7.4. Results 215

CONTROLLER

NETWORK

PROXY
TRANSIT
CACHE

DRAM

CONTROLLER

SLC

MEM bus

SLC bus

NODE ADAPTIVE
PROXY
TABLE

buffer size is
limited to 8 for
incoming read
request messages

local-read

PROXY

BUFFER

pending-unhook

tag

pointer
data

head

tag

finish

pending chain

TLB FLC

CPU

wraparound buffer - 16 entries
plus up to 16 in the process of
being evicted

access latency from node
controller is the same as for
DRAM (see Table B.1)

Figure 7.3: Memory model for a cc-NUMA node with a separate proxy bu�er

The proxy bu�er is simulated as a separate structure accessible via the MEM bus. This is

a conservative approach because the latency of accessing its data from the node controller is

similar to accessing DRAM data. A more aggressive approach would model the proxy bu�er

data as being directly accessible to the node controller either on-chip or as an o�-chip cache

(i.e. similar to the \directory caching" options investigated by Michael and Nanda [96]). The

revised node architecture is illustrated in Figure 7.3.

7.4 Results

This section presents the results obtained from execution-driven simulations of the basic,

reactive, and adaptive proxy strategies using the separate proxy bu�er policy. It was shown

in Section 3.5 that contention only becomes an important issue when more than a few tens

of nodes are used, so the detailed results presented below are from simulations of a 64 node

design. For details of the architecture simulated, refer to Section 3.4. For basic proxies, the

shared data marked for proxying is shown in Table 7.1: the same marking was used in the

preceding chapters.

216 Chapter 7. Using a Separate Proxy Bu�er

application problem size shared data marked for basic proxying

Barnes 16K particles all

CFD 64� 64 grid all

FFT 64K points all

FMM 8K particles f array (part of G Memory)

GE 512� 512 matrix entire matrix

Ocean-Contig 258� 258 ocean q multi and rhs multi

Ocean-Non-Contig 258� 258 ocean fields, fields2, wrk, and frcng

Water-Nsq 512 molecules VAR and PFORCES

Table 7.1: Benchmark problem sizes, and data marked for basic proxies

relative % change in execution time (+ is better,

application speedup proxy � is worse) for NPC = 1 to 8

no proxies type 1 2 3 4 5 6 7 8

basic +0.2 +0.3 0.0 +0.1 0.0 -0.5 -0.3 -0.1

Barnes 46.3 reactive +0.4 +3.2 -0.3 0.0 +0.3 +0.2 +0.3 0.0

adaptive 0.0 +3.3 +0.4 +0.2 +0.2 +0.2 +0.4 +0.4

basic +9.9 +12.1 +10.9 +13.9 +10.4 +9.0 +9.3 +15.5

CFD 28.3 reactive +9.8 +5.6 +8.5 +6.8 +8.4 +7.7 +7.5 +4.4

adaptive +9.4 +9.4 +9.0 +12.5 +10.7 +10.8 +10.5 +12.7

basic +7.5 +8.0 +8.6 +7.9 +8.8 +7.1 +8.6 +6.9

FFT 47.3 reactive +11.6 +11.0 +10.9 +11.2 +10.9 +10.9 +10.9 +10.5

adaptive +11.9 +11.9 +11.6 +11.8 +11.4 +11.4 +11.0 +10.8

basic +0.4 +0.4 +0.4 +0.4 +0.4 +0.4 +0.4 +0.4

FMM 52.4 reactive +0.4 +0.4 +0.4 +0.4 +0.4 +0.4 +0.3 +0.4

adaptive +0.4 +0.3 +0.4 +0.4 +0.5 +0.4 +0.4 +0.4

basic +30.2 +30.4 +30.8 +30.4 +30.5 +30.6 +30.7 +30.5

GE 21.6 reactive +28.4 +28.7 +28.9 +28.9 +28.8 +28.9 +28.9 +28.8

adaptive +30.7 +30.9 +31.8 +31.3 +31.8 +31.8 +31.5 +31.7

basic -2.1 +3.1 -0.4 -6.5 -1.3 -2.0 -4.8 -2.1

Ocean-Contig 49.7 reactive -1.8 +0.4 -3.5 +4.4 -3.4 -1.5 -1.6 -2.3

adaptive -2.4 +1.5 -1.5 -6.8 -0.2 +1.9 +0.8 -0.7

basic +7.5 +5.3 +0.2 +2.2 +3.9 +2.0 +0.9 +1.0

Ocean-Non-Contig 48.2 reactive +3.7 +7.8 +2.0 +4.4 +7.5 +6.6 +6.3 +3.5

adaptive +4.5 +6.5 +5.8 +2.3 -0.2 +3.0 +3.7 +6.8

basic -0.4 -0.4 -0.4 -0.3 -0.3 -0.3 -0.5 -0.3

Water-Nsq 55.3 reactive +0.2 +0.2 +0.2 +0.2 +0.1 +0.2 +0.2 +0.1

adaptive +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2

Table 7.2: Benchmark relative speedups with a separate proxy bu�er (64 nodes)

The results for the eight applications using a separate proxy bu�er are summarised in Ta-

ble 7.2. To simplify the comparison with the SLC and non-caching schemes, Table 7.3 repeats

the results from Chapter 5, and Table 7.4 repeats the results from Chapter 6. The perfor-

mance results are presented in terms of relative speedup, i.e. the ratio of the execution time

for the fastest algorithm running on one processor to the execution time on P processors.

Basic proxies show similar performance characteristics to those seen with SLC caching proxies.

Some applications fare slightly better using the proxy bu�er, e.g. GE, while other applications

such as FFT get slightly better performance using SLC caching. The exception is CFD which

gets its best performance under basic proxies by using the non-caching approach.

7.4. Results 217

relative % change in execution time (+ is better,

application speedup proxy � is worse) for NPC = 1 to 8

no proxies type 1 2 3 4 5 6 7 8

basic +0.2 0.0 0.0 +0.2 -0.1 -0.3 0.0 -0.1

Barnes 46.3 reactive +0.4 +3.3 +0.2 0.0 +0.3 0.0 +0.5 +0.4

adaptive +0.1 +3.2 +0.4 +0.4 +0.4 +0.2 -0.1 +0.2

basic +10.4 +11.3 +8.1 +11.8 +9.8 +9.3 +9.2 +14.8

CFD 28.3 reactive +7.6 +7.4 +8.3 +7.6 +8.6 +7.6 +7.6 +6.1

adaptive +9.2 +13.1 +11.3 +11.6 +11.2 +10.4 +10.6 +12.1

basic +9.4 +8.7 +8.7 +9.6 +9.5 +8.6 +10.0 +8.5

FFT 47.3 reactive +11.7 +11.2 +10.9 +11.0 +11.2 +11.8 +11.2 +10.7

adaptive +11.9 +11.6 +11.3 +11.4 +11.2 +11.5 +11.0 +11.0

basic +0.4 +0.4 +0.5 +0.3 +0.4 +0.3 +0.3 +0.4

FMM 52.4 reactive +0.3 +0.4 +0.4 +0.4 +0.3 +0.4 +0.4 +0.4

adaptive +0.4 +0.4 +0.4 +0.4 +0.4 +0.5 +0.4 +0.4

basic +29.3 +29.3 +29.3 +29.4 +29.4 +29.5 +29.6 +29.6

GE 21.6 reactive +28.4 +28.6 +28.9 +28.8 +28.8 +28.8 +28.7 +28.9

adaptive +30.5 +30.7 +31.4 +31.2 +31.7 +31.6 +31.4 +31.6

basic -2.6 -0.9 -1.1 -4.7 -2.1 +0.4 -5.4 +0.9

Ocean-Contig 49.7 reactive -0.6 -4.4 +1.8 +3.3 -0.9 +2.5 +1.8 +2.6

adaptive -1.3 -2.8 -6.1 -3.5 -1.4 -3.6 -0.4 -3.6

basic +5.3 0.0 +2.4 -0.7 +6.4 +1.8 +5.7 -1.2

Ocean-Non-Contig 48.2 reactive +5.8 +3.1 +2.0 +4.7 +4.0 -1.9 +2.5 +5.5

adaptive +7.8 +7.6 -6.3 +2.0 +4.1 +6.6 -8.3 -1.5

basic -0.6 -0.6 -0.6 -0.6 -0.6 -0.5 -0.7 -0.5

Water-Nsq 55.3 reactive +0.2 +0.2 +0.2 +0.2 +0.1 +0.2 +0.2 +0.1

adaptive +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2

Table 7.3: Benchmark relative speedups for SLC caching proxies (64 nodes)

relative % change in execution time (+ is better,

application speedup proxy � is worse) for NPC = 1 to 8

no proxies type 1 2 3 4 5 6 7 8

basic -0.3 +0.4 -0.1 +0.2 +0.2 +0.2 +0.1 -0.1

Barnes 46.3 reactive +0.1 +3.4 0.0 +0.2 +0.1 +0.1 -0.2 +0.4

adaptive +0.4 +3.7 0.0 0.0 +0.5 +0.3 +0.1 +0.2

basic +14.3 +14.9 +14.7 +15.7 +14.8 +15.0 +14.3 +15.3

CFD 28.3 reactive +10.5 +9.4 +8.9 +8.1 +9.5 +7.4 +8.4 +6.3

adaptive +12.9 +13.7 +13.6 +12.7 +12.9 +13.5 +12.7 +12.5

basic +10.7 +10.0 +9.8 +10.4 +9.6 +9.6 +10.5 +9.5

FFT 47.3 reactive +11.2 +10.8 +10.7 +10.7 +10.7 +11.4 +10.7 +10.3

adaptive +11.7 +11.2 +11.3 +11.4 +11.3 +11.1 +11.2 +10.8

basic +0.4 +0.4 +0.5 +0.5 +0.4 +0.4 +0.4 +0.4

FMM 52.4 reactive +0.3 +0.4 +0.4 +0.4 +0.3 +0.4 +0.4 +0.3

adaptive +0.4 +0.4 +0.5 +0.4 +0.4 +0.4 +0.4 +0.4

basic +30.9 +30.8 +30.7 +30.7 +30.6 +30.5 +30.3 +30.1

GE 21.6 reactive +27.5 +27.8 +28.1 +28.0 +27.9 +27.9 +27.9 +27.9

adaptive +30.3 +30.5 +31.4 +31.0 +31.3 +31.3 +31.0 +31.0

basic -2.0 +1.0 +1.0 -2.9 -1.0 -1.5 -1.6 -0.7

Ocean-Contig 49.7 reactive -1.1 +0.2 -7.0 +3.0 -3.3 -1.5 +0.7 -0.4

adaptive +3.2 +0.5 -1.0 -2.3 0.0 -2.6 -0.1 -1.1

basic +4.8 +7.1 +1.4 +4.1 +2.2 +2.1 +6.1 +2.6

Ocean-Non-Contig 48.2 reactive +4.1 +0.9 +4.2 -19.4 -6.9 +7.4 +6.2 +4.6

adaptive +0.5 -3.6 +4.4 -11.3 +3.7 +4.7 +7.4 +3.3

basic -0.4 -0.4 -0.3 -0.4 -0.3 -0.3 -0.4 -0.3

Water-Nsq 55.3 reactive +0.2 +0.2 +0.2 +0.1 +0.1 +0.2 +0.2 +0.1

adaptive +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.1 +0.2

Table 7.4: Benchmark relative speedups for non-caching proxies (64 nodes)

218 Chapter 7. Using a Separate Proxy Bu�er

For reactive proxies, using a separate proxy bu�er gives a balance point at NPC=2, i.e. the
same balance point obtained with non-caching proxies. The performance e�ects are similar

to those seen with SLC caching, with the exception of the Ocean applications.

Overall the adaptive proxy scheme gets the best performance by using a separate proxy bu�er,

with balance points at NPC=2,6&7. This increase in the number of balance points, compared

to there being no balance point with SLC caching, and only one balance point at NPC=1 for
non-caching proxies, arises from the improved performance of the Ocean-Contig application.

The following sub-sections contain a more detailed analysis of the results of using a separate

proxy bu�er for each of the eight applications. The results for each application are presented

in the form of two graphs and two histograms for each of the basic, reactive, and adaptive

proxy schemes. The graphs show relative changes and message ratios, while the histograms

show the execution time pro�les and message category pro�les. In addition, node-by-node

graphs showing mean queueing cycles are included where appropriate.

As in previous chapters, the relative changes graphs show four di�erent metrics:

messages: the ratio of the total number of messages to the total without proxies,

execution time: the ratio of the execution time (excluding startup) to the execution time

(also excluding startup) without proxies,

queueing delay: the ratio of the total time that messages spend waiting for service to the

total without proxies, and

remote read delay: the ratio of the mean delay between issuing a read-request and re-

ceiving the data, to the same mean delay when proxies are not used.

The message ratios are:

proxy hit rate: the ratio of the number of proxy read requests which are serviced directly

by the proxy node, to the total number of proxy read requests (in contrast, a proxy

miss would require the proxy to request the data from the home node),

bu�er bounce ratio: the ratio of the total number of bu�er bounce messages to read re-

quests. This gives a measure of how much bouncing there is for an application. This

ratio can go above one, since only the initial read request is counted in that total, i.e. the

retries are excluded, and

proxy read ratio: the ratio of the proxy read messages to read requests - this gives a mea-

sure of how much proxying is used in an application.

7.4. Results 219

The execution time pro�le presents the overall execution time split into CPU active time and

the time spent waiting because of delays. The delays are further split into load, store, barrier

and lock delays. The times are normalised with respect to the execution time without proxies.

The message category pro�le shows how the total number of messages breaks down into

�ve categories: read, write, unhook, proxy, and proxy bu�er unhook messages. The allo-

cation of message types to message categories is given in Appendix C.2, but it should be

noted that read messages include all the read-request, buffer-bounced-read-request,

and take-shared messages, and write messages include all the write-request, invalidate,

and take-exclusive messages.

7.4.1 Barnes

For basic proxies this application has worse performance when NPC� 6 than not using prox-

ies, whereas the reactive and adaptive schemes generally improve the performance compared

to not using proxies (see Figure 7.5). The most marked e�ect with basic proxies is the in-

crease in queueing delay when NPC� 1, as shown in Figure 7.4. This increase is caused by

the increase in the total number of messages because of the high level of proxy bu�er unhook

messages (Figure 7.7). The queueing delay is worst when NPC=1 because a bottleneck oc-

curs for a few proxy nodes. The queueing delay across the nodes evens out as the number of

proxies is increases, as shown in Figure 7.8.

The proxy bu�er unhook messages are generated when node controllers need to evict the

oldest entry from the proxy bu�er to make room for the newest line of data to be proxied.

All the shared data was marked for basic proxying in Barnes, and as a result there is a high

turnover of entries in the proxy bu�er. This lowers the proxy hit rate in comparison to the

SLC caching scheme, because proxy bu�er entries are evicted earlier than when they were

held in the SLC. However the hit rate is still better than that observed using the non-caching

approach. The turnover of entries in the proxy bu�er increases with NPC because for a given

data line there will be more nodes acting as proxy and retaining a copy of the data line in

their proxy bu�ers. The resulting increase in the number of evictions is re
ected by a rise in

the number of proxy bu�er unhook messages, as shown in Figure 7.7. The processing of the

extra unhook messages introduces delays for other messages, and so the performance degrades

for basic proxies when NPC� 6.

The reactive and adaptive schemes only invoke proxying when home node congestion causes

the bu�er-bouncing of read requests. There is very little bu�er-bouncing in Barnes, as shown

by the bu�er bounce ratio in Figure 7.6. As a result there are hardly any proxy-read-request

220 Chapter 7. Using a Separate Proxy Bu�er

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

barnes - basic proxies

�

� � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

barnes - reactive proxies

� � � � �
�

� � �� � � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

barnes - adaptive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

Figure 7.4: Barnes: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes - basic proxies

100

25.3

2.3

21.1

34.5

16.8

99.8

25.3

2.2

20.8

34.6

16.9

99.7

25.3

2.1

20.8

34.6

16.9

100

25.2

2.4

20.9

34.6

16.9

99.9

25.3

2.2

20.9

34.6

16.9

100

25.3

2.3

20.9

34.6

16.9

100.5

25.3

2.5

21.3

34.6

16.8

100.3

25.3

2.6

21

34.6

16.8

100.1

25.3

2.3

21

34.6

16.9

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes - reactive proxies

100

25.3

2.3

21.1

34.5

16.8

99.6

25.3

2.3

20.8

34.5

16.7

96.8

25.3

2.2

18.1

34.5

16.7

100.3

25.3

2.6

21

34.5

16.9

100

25.3

2.4

20.9

34.5

16.9

99.7

25.3

2.3

20.8

34.5

16.8

99.8

25.3

2.4

20.9

34.5

16.7

99.7

25.3

2.2

20.9

34.5

16.8

25.3

2.4

21

34.5

16.8

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes - adaptive proxies

100

25.3

2.3

21.1

34.5

16.8

100

25.3

2.3

21

34.5

16.9

96.7

25.3

2.2

17.9

34.5

16.8

99.6

25.3

2.2

20.8

34.5

16.8

99.8

25.3

2.4

20.9

34.5

16.7

99.8

25.3

2.3

20.9

34.5

16.8

99.8

25.3

2.4

20.9

34.5

16.7

99.6

25.2

2.3

20.8

34.5

16.8

99.6

25.3

2.3

20.7

34.5

16.8

Figure 7.5: Barnes: execution time pro�les

7.4. Results 221

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes - basic proxies

�

�
� �

� � � � �

� � � � � � � � ��

� � � � � � � �
� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes - reactive proxies

�

�
�

� �
� � � �

�
� � � � � � � �� � � � � � � � � |

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes - adaptive proxies

�

�
� � �

� �
� �

�
� � � � � � � �� � � � � � � � �

Figure 7.6: Barnes: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

barnes - basic proxies

100

41.4

1.6

57

142
12.9

42.5

1.9

23.3

61.4

146.7
12.7

42.6

2.7

26.2

62.5

147.2
12.4

42.5

3

26.9

62.4

149.4
12.2

42.5

2.7

28.8

63.2

149.3
12.1

42.6

2.9

28.7

63

149.9
11.8

42.6

3

29.2

63.3

149.1
11.5

42.6

2.2

29.5

63.3

149.8
11.4

42.5

2.3

30.1

63.5

| ||0

|20

|40

|60

|80

|100

|120
|140

|160

|180

|200

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

barnes - reactive proxies

100

41.4

1.6

57

99.3 0.1

41.4

1.5

56.3

99.3 0.1

41.4

1.5

56.3

99.5 0.1

41.4

1.6

56.4

101.9 0.1

41.4

3.1

57.3

107.1 0.1

41.4

7.7

57.9

99.4 0.1

41.4

1.5

56.4

100.3 0.1

41.4

2.1

56.7

99.8 0.1

41.4

1.7

56.6

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

barnes - adaptive proxies

100

41.4

1.6

57

100 0.1

41.4

1.9

56.6

99.6 0.1

41.4

1.7

56.4

99.8 0.1

41.4

1.8

56.5

99.7 0.1

41.4

1.8

56.4

100.5 0.1

41.4

2.3

56.7

99.7 0.1

41.4

1.8

56.4

102.1 0.1

41.4

3.6

57

99.7 0.1

41.4

1.8

56.4

Figure 7.7: Barnes: message category pro�les

222 Chapter 7. Using a Separate Proxy Bu�er

| ||0

|5

|10

|15

|20

|25

|30

|35

|40

qu
eu

ei
ng

 c
yc

le
s

proxy clusters
0 1 2 3 4 5 6 7 8

maximum

overall

minimum

barnes - basic proxies

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

| ||0

|5

|10

|15

|20

|25

|30

|35

|40

qu
eu

ei
ng

 c
yc

le
s

proxy clusters
0 1 2 3 4 5 6 7 8

maximum

overall

minimum

barnes - reactive proxies

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

| ||0
|5

|10

|15

|20

|25

|30

|35

|40

qu
eu

ei
ng

 c
yc

le
s

proxy clusters
0 1 2 3 4 5 6 7 8

maximum

overall

minimum

barnes - adaptive proxies

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7.8: Barnes mean queueing cycles

messages, and the much lower usage of the proxy bu�ers means that no entries have to

be evicted. Both the reactive and adaptive schemes achieve a high rate of combining for

proxy-read-request messages, as shown by the proxy hit rate in Figure 7.6.

Reactive proxies usually improve the performance of Barnes. However when NPC=3 the per-
formance is �0:3% worse than not using proxies. This drop in performance stems from higher

lock and barrier delays. For NPC=3 on this application, the redistribution of processing via

proxies has an adverse e�ect on the \normal" processing which needs to be done by node

controllers. As a result, the proxy messages delay the handling of other messages, and the

overall performance su�ers.

7.4. Results 223

Adaptive proxies improve the performance of Barnes for NPC� 2. For NPC=1 the overall

performance is the same as when proxies are not used. As shown in Figure 7.5, the overall

load miss delay increases very slightly compared to when NPC=0. This happens because

there is a slight increase in the number of unhooking messages attributable to an increase in

client-unhook-forward messages, i.e. normal unhook requests have to traverse the extra

proxy nodes in a sharing chain. However the marginal increase of 0.1% in the load miss delay

is balanced by a matching improvement in the barrier delay resulting from the redistribution

of node controller processing.

On balance, the best performance for this application with a separate proxy bu�er is obtained

by using adaptive proxies. The adaptive strategy of using proxying for the proxy period once

node congestion has been detected, in conjunction with avoiding SLC pollution, improves the

performance for NPC� 2, and does not degrade performance when NPC=1.

7.4.2 CFD

Using a separate proxy bu�er improves the performance with all three proxy strategies. As

shown in Figure 7.10, the speedups are in the ranges 9.0% to 15.5% for basic proxies, 4.4%

to 9.8% for reactive proxies, and 9.0% to 12.7% for adaptive proxies. The results are similar

to those observed for the SLC caching scheme examined in Chapter 5, but are generally not

as good as were seen for the non-caching scheme used in Chapter 6. The use of a separate

proxy bu�er avoids unnecessary con
ict for the SLC bus between the local CPU and the node

controller. However the number of write messages increases with proxies (see Figure 7.12)

because invalidations are needed to remove proxy copies prior to a write. In addition, evictions

from proxy bu�ers generate proxy bu�er unhook requests. These increases in the number of

messages, for the write and proxy bu�er unhook categories, put the proxy bu�er approach at

a disadvantage to the non-caching scheme. This is because the increase in messages generally

leads to the queueing delay being longer than with the non-caching scheme.

Although the performance improvements are not as good as those seen with non-caching

proxies, the results indicate that the proxy bu�er scheme is still very successful at reducing

home node contention for this application.

7.4.3 FFT

The performance of the FFT application is improved by using a separate proxy bu�er for all

three proxy strategies. For basic proxies, the performance improvement is in the range 6.9%

to 8.8%. However, this is not as good as was observed for basic proxies using either of the SLC

224 Chapter 7. Using a Separate Proxy Bu�er

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

c f d - basic proxies

�

� �
�

�

� � �

�

�

� � � � � � �
�

�

� �
�

�
� � �

�

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

c f d - reactive proxies

� � � � � � � � ��
�

� � � � � � �

�

�
�

�
� � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

c f d - adaptive proxies

�
� �

�

�
� � �

�
�

� � � � � � � �

�

� � �
� � � � �

Figure 7.9: CFD: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

c f d - basic proxies
100

13.1
2.1

12.4

20.9

51.5

90.1

13.1
1.5

11.2

20.3

44

87.9

13.1
1.4

10.5

19.8

43.1

89.1

13.1
1.4

10.9

19.7

44

86.1

13.1
1.6
10.1

19.1

42.2

89.6

13.1
1.5

10.6

20.5

43.9

91

13.1
1.4

11.2

20.6

44.7

90.7

13.1
1.4

11.4

20.6

44.2

84.5

13.1
1.7
9.2

18.9

41.6

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

c f d - reactive proxies
100

13.1
2.1

12.4

20.9

51.5

90.2

13.1
2.2

10.8

19.6

44.5

94.4

13.1
2.4

11.9

21.5

45.5

91.5

13.1
2.4

11.2

20

44.8

93.2

13.1
2.3

11.1

20.8

45.9

91.6

13.1
2.3

10.9

20

45.3

92.3

13.1
2.4

10.3

20.4

46.1

92.5

13.1
2.5

10.7

20.3

45.9

95.6

13.1
2.1

12.1

21.1

47.2

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

c f d - adaptive proxies
100

13.1
2.1

12.4

20.9

51.5

90.6

13.1
1.5

12.2

20.3

43.5

90.6

13.1
1.5

11.7

20.7

43.6

91

13.1
1.5

11.9

20.3

44.2

87.5

13.1
1.7
10.1

19.8

42.8

89.3

13.1
1.7

10.5

20.2

43.8

89.2

13.1
1.7

11

19.8

43.6

89.5

13.1
1.8

10.7

20.2

43.7

87.3

13.1
1.9
9.4

19.6

43.3

Figure 7.10: CFD: execution time pro�les

7.4. Results 225

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

c f d - basic proxies

�

�

�

�

�

� � �

�

�
�

�

�

�

� � �

�

�

�
�

� �
�

� �
�

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

c f d - reactive proxies

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�
�

� � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

c f d - adaptive proxies

�

�
�

�

�

�
�

�

�

�
� �

�

�

�
� �

�

�

� � �

�

�

�
�

�

Figure 7.11: CFD: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

c f d - basic proxies

100

49.3

50.7

115.5
9.1

53.9

11.8

40.7

111.2
8.7

53.9

9.6

39

119.5
9.2

54

12

44.3

103.1
7.9

53.1

5.9

36.2

117.9
8.7

54.3

10.8

44.1

118.2
8.6

54

10.8

44.8

117
8.4

54

10.1

44.5

85.1
5.9

50.8

28.4

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

c f d - reactive proxies

100

49.3

50.7

95.5
1.3

50

44.2

99
1.8

50.3

0.1

46.8

96
1.3

49.7

0.1

44.9

98.3
1.5

50.2

0.1

46.5

96.7
1.2

49.9

0.1

45.5

97.7
1.3

49.9

0.1

46.4

97.1
1.2

49.9

0.2

45.8

98
1.3

49.9

46.8

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

c f d - adaptive proxies

100

49.3

50.7

105.1
5.3

52.6

4.3

42.9

103.3
5.4

52.2

3.4

42.3

108.6
5.6

52.5

5.1

45.4

95.2
3.2

50.9

1.1

40

102.7
4.5

51.9

2.6

43.7

99.4
3.4

51.1

2.3

42.6

101.8
3.9

51.8

2.7

43.4

92.7
2.7

51

39

Figure 7.12: CFD: message category pro�les

226 Chapter 7. Using a Separate Proxy Bu�er

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy clusters

f f t - basic proxies

�

� � � � � � � �

�
� � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy clusters

f f t - reactive proxies

�

� � � � � � � �
�

� � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy clusters

f f t - adaptive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

Figure 7.13: FFT: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f f t - basic proxies
100

34.3

0.4
3

27

35.3

92.5

34.3

0.4
2.2

27.5

28.1

92

34.3

0.4
1.9

27.5

27.9

91.4

34.3

0.4
1.4

27.5

27.8

92.1

34.3

0.4
2.2

27.5

27.7

91.2

34.3

0.4
1.4

27.5

27.6

92.9

34.3

0.4
3

27.5

27.7

91.4

34.3

0.4
1.5

27.5

27.7

93.1

34.3

0.4
3.1

27.5

27.8

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f f t - reactive proxies
100

34.3

0.4
3

27

35.3

88.4

34.3

0.4
1.8

27

24.9

89

34.3

0.4
2.3

27

25

89.1

34.3

0.3
2.5

27

25

88.8

34.3

0.4
2.1

27

25

89.1

34.3

0.4
2.3

27

25.1

89.1

34.3

0.3
2.3

27

25.2

89.1

34.3

0.3
2.3

27

25.2

89.5

34.3

0.3
2.6

27

25.3

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f f t - adaptive proxies
100

34.3

0.4
3

27

35.3

88.1

34.3

0.4
1.8

27

24.6

88.1

34.3

0.4
1.9

27

24.5

88.4

34.3

0.4
2.1

27

24.6

88.2

34.3

0.4
2

27

24.5

88.6

34.3

0.4
2.4

27

24.5

88.6

34.3

0.4
2.3

27

24.6

89

34.3

0.4
2.7

27

24.6

89.2

34.3

0.4
2.9

27

24.6

Figure 7.14: FFT: execution time pro�les

7.4. Results 227

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t - basic proxies

�

� � � � � � � �

�

�
� � � � � � �

�

� � �
� � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

�
� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t - adaptive proxies

�

� � � � � � � �

�

� � � � � � � ��
� � � � � � � �

Figure 7.15: FFT: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f f t - basic proxies

100

33.8
0.6

65.6

189.6

22.7

34.4
0.4

61.6

70.5

186

22.2

34.4
0.2

60

69.2

185.6

22.2

34.4
0.2

60.1

68.7

181.3

21.3

34.3
0.3

57.5

67.9

181.9

21.4

34.4
0.3

57.7

68.1

181.8

21.4

34.4
1.1

57.1

67.8

179.1

21

34.4
0.3

55.9

67.5

179.6

21.1

34.4
0.6

56

67.5

| ||0

|20

|40

|60

|80

|100

|120
|140

|160

|180

|200

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f f t - reactive proxies

100

33.8
0.6

65.6

85.6
2.2

33.7
0.5

49.2

86.6
2.4

33.7
0.9

49.6

86.8
2.5

33.7
1

49.6

86.7
2.5

33.7
0.7

49.8

87.1
2.5

33.7
0.9

50

87.3
2.5

33.7
0.9

50.2

87.4
2.4

33.7
0.9

50.4

87.9
2.4

33.7
1.2

50.6

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f f t - adaptive proxies

100

33.8
0.6

65.6

84.3
2.1

33.7
0.4

48.1

84.5
2.5

33.7
0.4

47.9

84.9
2.5

33.7
0.6

48.1

84.9
2.6

33.7
0.6

48

85.3
2.6

33.7
0.9

48.1

85.4
2.6

33.7
1

48.1

85.5
2.6

33.7
1.1

48.1

85.9
2.5

33.7
1.3

48.4

Figure 7.16: FFT: message category pro�les

228 Chapter 7. Using a Separate Proxy Bu�er

caching or non-caching approaches. Looking at Figure 7.13, the queueing delay increases for

basic proxies which is in contrast to the earlier chapters where the queueing delay decreased

with basic proxies. The increase stems from the high level of proxy bu�er unhooks for this

application (see Figure 7.16). The proxy bu�ers are greatly in demand, and as a result there

is a high turnover of entries in the small bu�ers, as old entries are evicted to make room for

the newest line of proxied data.

Using a separate proxy bu�er for reactive and adaptive proxies gives performance improve-

ments which are very similar to those obtained with the SLC caching and non-caching ap-

proaches. There are no evictions from the proxy bu�ers, re
ecting the much lower use of

proxies when proxy-read-request messages are triggered by home node congestion rather

than marking all the shared data for basic proxying. The best performance is obtained using

adaptive proxies, with speedups in the range 10.8% to 11.9%.

7.4.4 FMM

The performance of FMM is improved for all three types of proxying, with reductions in the

overall queueing delay and the remote read delay (see Figure 7.17). The speedup is very small,

being in the range 0.3% to 0.5%, but this was to be expected given that there is only one small

widely-shared data structure in FMM. The results are very similar to those obtained using

the SLC caching approach to holding proxied data. Both the use of a separate proxy bu�er

and the SLC caching strategy obtain a better proxy hit rate than the non-caching approach

(see Figure 7.19, Figure 5.18, and Figure 6.20 respectively). This is because retaining a copy

of a proxied data line allows subsequent proxy-read-request messages for this data line to

be satis�ed at the proxy node.

7.4.5 GE

All three forms of proxying improve the execution time for GE when a separate proxy bu�er is

used. The adaptive proxy scheme achieves the best performance, with speedups in the range

30.7% to 31.8%. The speedup with adaptive proxies is slightly better than that obtained

when proxy data was cached in the SLC. In addition, the adaptive proxy performance is

marginally better than that seen in Chapter 6 with the non-caching approach. This is because

the retention of proxied data in the proxy bu�er gives a slightly higher proxy hit rate (see

Figure 7.23) and results in a lower load miss delay (see Figure 7.22).

The reactive proxy strategy gets the least improvement in performance, although the speedup

is still substantial, being in the range 28.4% to 28.9%. This speedup is comparable to that

7.4. Results 229

achieved with SLC caching of proxy data, and is better than that achieved with non-caching

proxies. As with adaptive proxies, this shows the additional performance bene�ts for this

application that come from maximising the proxy hit rate by retaining a copy of proxied

data.

The basic proxy scheme achieves performance improvements in the range 30.2% to 30.8%.

This is not quite as good as obtained using SLC caching, the di�erence being caused by the

eviction of proxy data from the proxy bu�er. The turnover of proxy bu�er entries is at a

much lower rate than seen earlier for the Barnes and FFT applications, and consequently has

a less detrimental e�ect on the proxy hit rate.

7.4.6 Ocean-Contig

Using a separate proxy bu�er with the Ocean-Contig application results in performance that

is usually worse then not using proxies. However there are cases where reduced barrier delays

give an overall performance speedup. As shown in Figure 7.26, this reduction in barrier delay

occurs when NPC=2 for all types of proxying, and also when NPC=4 for reactive proxies,

and when NPC=6&7 for adaptive proxies.

For basic proxies, the high level of proxy bu�er unhooks (see Figure 7.28) indicates that

there is a high turnover of entries in the proxy bu�ers. This contributes to the high level of

messages and the increase in overall and minimum mean queueing delays (see Figure 7.29).

However, when NPC=2 the lower load miss and barrier delays combine to improve the overall

execution time.

There are only two values of NPC where reactive proxies improve the performance, i.e. at

NPC=2&4. This is in contrast to the SLC caching scheme investigated in Section 5.7.6, where

the performance improved for NPC=3,4,6,7&8. The deciding factor in all the performance

improvements is a drop in barrier delay compared to not using proxies, as shown in Figure 7.26.

The changes in barrier delay are not the result of uneven queueing distribution, because

Figure 7.29 shows that this remains quite steady for NPC� 1. The barrier delay changes

stem from the nature of the Ocean-Contig application, which was written to maximise data

locality. This results in the accesses to remote data being minimised, but these accesses tend

to be \protected" by a barrier, i.e. updates to boundary data are followed by a barrier before

the boundary data is read by the neighbouring processor. Any extra delay to an update

transaction which precedes a barrier will delay all the processors which have already reached

the barrier. Equally, any reduction in the update delay can reduce the barrier delay su�ered

by the other processors. The ordering of incoming messages is a�ected by the introduction

230 Chapter 7. Using a Separate Proxy Bu�er

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f m m - basic proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f m m - reactive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f m m - adaptive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

Figure 7.17: FMM: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f m m - basic proxies

100

21.3

40.3

33.4

5.0

99.6

21.3

40.3

33.3

4.7

99.6

21.3

40.3

33.3

4.7

99.6

21.3

40.3

33.3

4.7

99.6

21.2

40.3

33.3

4.8

99.6

21.3

40.3

33.3

4.7

99.6

21.2

40.3

33.3

4.8

99.6

21.3

40.3

33.3

4.7

99.6

21.2

40.3

33.3

4.8

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f m m - reactive proxies

100

21.3

40.3

33.4

5.0

99.6

21.3

40.4

33.4

4.5

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.4

33.4

4.5

99.6

21.3

40.3

33.4

4.6

99.7

21.3

40.4

33.4

4.6

99.6

21.3

40.3

33.4

4.6

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

f m m - adaptive proxies

100

21.3

40.3

33.4

5.0

99.6

21.3

40.3

33.4

4.6

99.7

21.3

40.4

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.4

33.4

4.5

99.5

21.3

40.3

33.4

4.5

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.3

33.4

4.6

99.6

21.3

40.4

33.4

4.5

Figure 7.18: FMM: execution time pro�les

7.4. Results 231

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m - basic proxies

�

� � � � � � � �

�

� � � � � � � �

� � � � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m - reactive proxies

�

� �
� � � � � �

�

� � � � � � � �

� � � � � � � � �
|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m - adaptive proxies

�

�
� �

� � �
� �

�

� � � � � � � �

� � � � � � � � �

Figure 7.19: FMM: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f m m - basic proxies

100

40.9

4.4

54.7

98.4
0.3

40.7

5.3

52.1

96.4
0.3

40.6

3.6

51.9

97.5
0.4

41

4

52.1

97
0.4

40.6

4

52

97.8
0.5

40.9

4.3

52.1

98.2
0.5

40.8

4.7

52.2

98
0.4

40.7

4.8

52.1

97.3
0.4

40.8

4.1

52

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f m m - reactive proxies

100

40.9

4.4

54.7

95.7
0.7

40.5

4.7

49.8

95.5
0.7

40.8

4

50

96.2
0.7

40.8

4.3

50.4

96.3
0.7

40.7

4.3

50.6

96.8
0.7

41.1

4

51

96.4
0.7

40.9

4.1

50.7

96.1
0.7

40.9

3.9

50.6

96.2
0.7

40.9

3.8

50.8

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

f m m - adaptive proxies

100

40.9

4.4

54.7

95.7
0.7

41.1

4.2

49.7

96.3
0.8

41

4.4

50.1

97.3
0.8

41.1

5

50.4

95.6
0.9

40.9

3.7
0.1

50

96.5
0.8

40.7

4.8

50.2

96.5
0.8

40.8

4.8

50.1

95.7
0.8

40.8

4
0.1

50

97.1
0.8

41.1

4.7
0.1

50.4

Figure 7.20: FMM: message category pro�les

232 Chapter 7. Using a Separate Proxy Bu�er

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

g e - basic proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

g e - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

g e - adaptive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

Figure 7.21: GE: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

g e - basic proxies
100

12.1

29.6

6.1

52.2

69.8

12.1

30.5

6.1

21.1

69.6

12.1

30.4

6.3

20.8

69.2

12.1

30

6.3

20.8

69.6

12.1

30.3

6.3

20.9

69.5

12.1

30.2

6.3

20.9

69.4

12.1

30.1

6.3

20.9

69.3

12.1

30

6.3

20.9

69.5

12.1

30.1

6.3

21

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

g e - reactive proxies
100

12.1

29.6

6.1

52.2

71.6

12.1

27.3

7.1

25.1

71.3

12.1

27.1

6.8

25.3

71.1

12.1

27

6.6

25.4

71.1

12.1

27

6.7

25.3

71.2

12.1

26.9

6.6

25.6

71.1

12.1

26.9

6.6

25.5

71.1

12.1

26.9

6.6

25.5

71.2

12.1

26.9

6.6

25.6

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

g e - adaptive proxies
100

12.1

29.6

6.1

52.2

69.3

12.1

27.4

7.1

22.7

69.1

12.1

27.4

6.8

22.8

68.2

12.1

27.4

6.6

22.1

68.7

12.1

27.3

6.7

22.6

68.2

12.1

27.3

6.6

22.2

68.2

12.1

27.3

6.6

22.2

68.5

12.1

27.2

6.6

22.6

68.3

12.1

27.2

6.6

22.4

Figure 7.22: GE: execution time pro�les

7.4. Results 233

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

proxy clusters

g e - basic proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

proxy clusters

g e - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

proxy clusters

g e - adaptive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

Figure 7.23: GE: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

g e - basic proxies

100

18.5

81.5

68.7

11.2

22.2

3.4

31.9

68.4

11.3

22

3.4

31.7

65.8

11.5

22.5

0.3

31.5

68.4

11.6

21.8

3.2

31.8

68

11.8

21.8

2.8

31.6

67.5

11.9

21.7

2.4

31.5

66.7

11.9

21.8

1.7

31.3

67.6

11.9

21.4

3

31.3

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

g e - reactive proxies

100

18.5

81.5

62.2
7.2

18.8

36.2

64.1
7.6

18.8

37.7

64.1
7.7

18.8

37.6

64.5
7.7

18.8

38

65.4
7.6

18.8

39

65.4
7.5

18.8

39.1

65.6
7.6

18.8

39.2

65.7
7.4

18.8

39.5

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

g e - adaptive proxies

100

18.5

81.5

58.4
7.6

19.5

31.3

59.7
8.5

19.6

0.1

31.5

59.1
8.7

19.7

30.7

59.7
8.9

19.5

0.1

31.2

59.5
9.1

19.5

0.1

30.8

59.4
9.1

19.5

30.8

59.3
9.1

19.5

30.7

58.8
8.9

19.4

0.1

30.4

Figure 7.24: GE: message category pro�les

234 Chapter 7. Using a Separate Proxy Bu�er

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-contig - basic proxies

�

� � � � � � � �

� �
� �

�
� � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-contig - reactive proxies

� � � � � � � � �� � � �
�

� � � �

�
� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-contig - adaptive proxies

� � � � � � � � �� � � �
�

� � � �

�

� � � � � � � �

Figure 7.25: Ocean-Contig: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig - basic proxies

100

19.9
0.8

15.3

13.1

50.9

102.1

19.8
0.7

16.2

13.3

52.1

96.9

19.6
0.7

12.5

13

51.1

100.4

19.8
0.7

15

13.1

51.8

106.5

20
0.7

19.6

13.4

52.8

101.3

19.8
0.7

15.6

13.2

52

102

19.9
0.7

16.4

13.2

51.8

104.8

20
0.7

18.4

13.3

52.4

102.1

19.9
0.7

16.2

13.3

52

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig - reactive proxies

100

19.9
0.8

15.3

13.1

50.9

101.8

20
0.8

16.4

13.2

51.4

99.6

20
0.8

14.7

13.1

51

103.5

20.1
0.8

17.9

13.3

51.4

95.6

19.7
0.8

11.9

12.9

50.3

103.4

20.1
0.8

17.9

13.3

51.3

101.5

20.1
0.8

16.1

13.2

51.3

101.6

20
0.8

16.5

13.3

51

102.3

20
0.8

17

13.2

51.3

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig - adaptive proxies

100

19.9
0.8

15.3

13.1

50.9

102.4

20.1
0.8

17.1

13.2

51.2

98.5

19.9
0.8

14.1

13

50.7

101.5

20
0.8

16.2

13.2

51.3

106.8

20.2
0.8

20.5

13.4

51.9

100.2

20
0.8

15.5

13

50.9

98.1

19.8
0.8

13.6

13.1

50.8

99.2

19.9
0.8

14.6

13.1

50.8

100.7

20
0.8

15.3

13.3

51.3

Figure 7.26: Ocean-Contig: execution time pro�les

7.4. Results 235

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig - basic proxies

�

� � � �
� � � �

� � � � � � � � �
�

� � � � � � � �
� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig - reactive proxies

�

� � � � � � � �

�
� � � � � � � �� � � � � � � � � |

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig - adaptive proxies

�

� � � � � � � �

�
� � � � � � � �� � � � � � � � �

Figure 7.27: Ocean-Contig: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-contig - basic proxies

100

47.9

1.7

50.4

140.3
13.8

55.6

1.7
11.2

58

138.9
13.5

55.5

1.6
10.7

57.6

139.7
13.2

55.4

1.7
11.3

58.1

137.3
12.9

55.4

1.7
9.8

57.5

138.8
12.7

55.5

1.9
10.6

58.1

137.6
12.4

55.5

1.7
10

58

137.8
12.1

55.3

1.9
10.4

58.1

134.6
11.8

55.3

1.9
8.4

57.2

| ||0

|20

|40

|60

|80

|100

|120
|140

|160

|180

|200

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-contig - reactive proxies

100

47.9

1.7

50.4

100 0.1

48.2

1.8

49.9

99.8 0.1

48.1

1.7

49.9

100.1 0.1

48.2

1.8

50

100.1 0.1

48.3

1.8

49.9

99.7 0.1

48

1.7

49.9

100 0.1

48.2

1.7

50

100 0.1

48.3

1.6

50

100.1 0.1

48.2

1.8

50

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-contig - adaptive proxies

100

47.9

1.7

50.4

100 0.1

48.2

1.8

49.9

99.6 0.1

48.2

1.5

49.8

99.9 0.1

48.2

1.7

49.9

100 0.1

48.2

1.7

50

100 0.1

48.2

1.8

49.9

99.6 0.1

48

1.7

49.8

99.7 0.1

48

1.7

49.9

99.8 0.1

48

1.8

49.9

Figure 7.28: Ocean-Contig: message category pro�les

236 Chapter 7. Using a Separate Proxy Bu�er

| ||0

|5

|10

|15

|20

|25

|30

|35

|40

qu
eu

ei
ng

 c
yc

le
s

proxy clusters
0 1 2 3 4 5 6 7 8

maximum

overall

minimum

ocean-contig - basic proxies

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

| ||0

|5

|10

|15

|20

|25

|30

|35

|40

qu
eu

ei
ng

 c
yc

le
s

proxy clusters
0 1 2 3 4 5 6 7 8

maximum

overall

minimum

ocean-contig - reactive proxies

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

| ||0
|5

|10

|15

|20

|25

|30

|35

|40

qu
eu

ei
ng

 c
yc

le
s

proxy clusters
0 1 2 3 4 5 6 7 8

maximum

overall

minimum

ocean-contig - adaptive proxies

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7.29: Ocean-Contig mean queueing cycles

of proxies, and changing the value of NPC a�ects which nodes receive proxy-read-request

messages for a particular data line. Using a separate proxy bu�er rather than SLC caching

reduces the level of unhook messages for this application, but this can lead to a local CPU

reaching a barrier earlier, which can increase the overall barrier delay. The side-e�ects are

complex and highlight the experimental approach which would be needed before setting the

value ofNPC which would be most likely to improve the performance of a speci�c architecture.

For adaptive proxies, Ocean-Contig fares better using a separate proxy bu�er than was the

case with SLC caching (where the performance was worse for NPC� 1). As with reactive

7.4. Results 237

proxies, it is reduced barrier delay which produces the performance improvements. When

the separate proxy bu�er is used it is the adaptive proxy scheme which is best suited to the

Ocean-Contig application.

7.4.7 Ocean-Non-Contig

The use of a separate proxy bu�er nearly always gives performance speedups for the three

proxy strategies. This is an improvement on the SLC caching and non-caching approaches,

where there were a number of instances of performance degradation. With the separate proxy

bu�er there is only one case where the performance is impaired: for adaptive proxies when

NPC=5.

The poor performance observed when NPC=5 for adaptive proxies stems from there being

more proxy nodes on the sharing lists than is the case for other values of NPC�1. This

increase is re
ected by the increase in the number of write and unhook category messages

seen in Figure 7.33. These higher message levels are caused by there being more invalidate,

home-invalidate, and client-unhook-forward messages, these being the message types

which are sent along sharing lists. The increase in proxy nodes on sharing lists occurs because

of the interaction between the non-locality of access in the application, and the partitioning

of nodes at NPC=5. In Chapter 5 the resulting increase in unhook and invalidate messages

did not lead to a drop in performance when NPC=5 for adaptive proxies because the overall
level of messages was kept relatively close to that observed when NPC=0. In the current

case, however, the lower proxy hit rate which results from turnover of entries in the proxy

bu�ers leads to more read-request messages being sent to home nodes by proxies. Given

that there are already many messages using the interconnection network (because of the poor

locality of data access in Ocean-Non-Contig) these extra read-request messages lead to a

rise in mean queueing delay (Figure 7.30) and the overall execution time su�ers because of

the queueing delays.

It is encouraging that the performance of Ocean-Non-Contig using a separate proxy bu�er

is much more stable than was seen with either SLC caching or non-caching proxies. The

proxy bu�er technique avoids the cache pollution seen with SLC caching, and improves on

the proxy hit rate results seen for non-caching proxies. The separate proxy bu�er provides

the best performance environment for Ocean-Non-Contig, given that the application has poor

data locality so is particularly vulnerable to increases in the total number of messages.

238 Chapter 7. Using a Separate Proxy Bu�er

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-non-contig - basic proxies

� � � � � � � � �
�

� �
� � � � � �

�
� � �

�
�

�
�

�

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-non-contig - reactive proxies

� � � � � � � � �� �
�

� � � � � �

�
� � � �

�
�

�
�

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-non-contig - adaptive proxies

� � � � � � � � ��
� � � � � � � �

� � � � �
�

� � �

Figure 7.30: Ocean-Non-Contig: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-non-contig - basic proxies

100

30

0.8

14.1

18.4

36.7

92.5

29.6

0.8
10

17.3

34.8

94.7

29.8

0.9
11.4

17.5

35.1

99.8

30.1

0.8

14.3

18.4

36.2

97.8

29.9

0.8

12.7

18

36.4

96.1

29.8

0.8

12.8

17.6

35.1

98

29.9

0.8

12.7

18

36.6

99.1

30

0.8

14.8

17.9

35.6

99

30.1

0.8
12.3

18.4

37.4

| ||0

|10

|20

|30
|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-non-contig - reactive proxies

100

30

0.8

14.1

18.4

36.7

96.3

29.6

0.7

12.8

17.5

35.7

92.2

29.3

0.6
9.8

16.9

35.6

98

29.7

0.7
12.6

18

37

95.6

29.4

0.7
12.1

17.5

35.9

92.5

29.3

0.7
10.2

17.2

35.1

93.4

29.4

0.7
10.5

17.3

35.5

93.7

29.3

0.7
10.9

17.5

35.3

96.5

29.8

0.7
12.7

17.5

35.8

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

cpu active
lock delay
barrier delay
store miss delay
load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-non-contig - adaptive proxies

100

30

0.8

14.1

18.4

36.7

95.5

29.5

0.7
12.1

17.6

35.6

93.5

29.2

0.7
11.3

17.1

35.2

94.2

29.2

0.7
11.3

17.1

35.9

97.7

29.6

0.7

13.2

17.7

36.5

100.2

29.8

0.6

14.3

18.1

37.4

97

29.5

0.7

13

17.7

36.1

96.3

29.5

0.7
12.3

17.7

36.1

93.2

29.4

0.7
10.1

17.4

35.6

Figure 7.31: Ocean-Non-Contig: execution time pro�les

7.4. Results 239

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

|1.3

proxy clusters

ocean-non-contig - basic proxies

�
� � � � � �

� �

�
� � �

�
�

�
�

�

�

� � � � � � � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

|1.3

proxy clusters

ocean-non-contig - reactive proxies

�

�

� � � � � � �

�
� � � � � �

�

�

� � � � � � � � �
|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

|1.3

proxy clusters

ocean-non-contig - adaptive proxies

�

�
�

�
�

� � � �

�

� � � �
�

� � �

�
�

� � �
�

� � �

Figure 7.32: Ocean-Non-Contig: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-non-contig - basic proxies

100

54.4

6.2

39.4

101.1
1.1

54.1

4.3

2.6

39

100.7
1.1

54

3.9

2.7

39

103.7
1.2

54.3

5.7

3

39.5

103.7
1.3

54.4

5.3

2.9

39.8

100.8
1.1

54

4.2

2.5

39

103.9
1.2

54.3

5.7

2.7

40

101.2
1.1

54

4.8

2.6

38.7

104.8
1.1

54.6

6

2.8

40.3

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-non-contig - reactive proxies

100

54.4

6.2

39.4

97.1
0.3

53.7

4.4
0.4

38.3

96.2
0.3

53.4

3.6
0.5

38.4

100.4
0.4

54.3

5.8

0.5

39.4

98.3
0.3

53.9

4.9
0.5

38.7

97.3
0.3

53.9

4.4
0.4

38.3

97
0.3

53.6

4.3
0.4

38.4

97.7
0.2

53.9

5.3
0.3

38

96.5
0.3

53.5

3.8
0.4

38.5

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

ocean-non-contig - adaptive proxies

100

54.4

6.2

39.4

99
0.6

54.1

5.2

0.8

38.3

99.4
1

54.2

4.6

1

38.6

100
0.8

54.1

5.1

1

39

101.2
0.9

54.3

5.8

1.1

39.1

104.7
1.4

55.2

6.3

1.5

40.3

101.3
1

54.5

5.7

1.1

39

101.9
1.2

54.9

5.3

1.1

39.4

100
1

54.4

4.8

1

38.8

Figure 7.33: Ocean-Non-Contig: message category pro�les

240 Chapter 7. Using a Separate Proxy Bu�er

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

water-nsq - basic proxies

�

� � �
� � � � �

� � � � � � � � �

�
� � � � � � � �

� � messages
� � execution time

 queueing delay
� � remote read delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

water-nsq - reactive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

water-nsq - adaptive proxies

� � � � � � � � �� � � � � � � � �

�

� � � � � � � �

Figure 7.34: Water-Nsq: changes (relative to no proxies case)

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

water-nsq - basic proxies
100

72.5

0.2
3.1

19.7

4.5

100.4

72.6

0.2
3.1

19.8

4.7

100.4

72.6

0.2
3.1

19.8

4.7

100.4

72.6

0.2
3.1

19.8

4.7

100.3

72.6

0.2
3.1

19.8

4.6

100.3

72.6

0.2
3

19.8

4.7

100.3

72.6

0.2
3

19.8

4.7

100.5

72.7

0.2
3.2

19.8

4.6

100.3

72.6

0.2
3

19.8

4.7

| ||0

|10

|20
|30

|40
|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

water-nsq - reactive proxies
100

72.5

0.2
3.1

19.7

4.5

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.9

72.5

0.2
3.1

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.9

72.5

0.2
3.1

19.7

4.4

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

cpu active

lock delay

barrier delay

store miss delay

load miss delay

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

water-nsq - adaptive proxies
100

72.5

0.2
3.1

19.7

4.5

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3.1

19.7

4.3

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

99.8

72.5

0.2
3

19.7

4.4

Figure 7.35: Water-Nsq: execution time pro�les

7.4. Results 241

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

proxy clusters

water-nsq - basic proxies

�

� � � � � � � �

� � � � � � � � �
�

�
�

�
� �

� � �

� � proxy hit rate
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

proxy clusters

water-nsq - reactive proxies

�

� �
� � � � � �

� � � � � � � � �� � � � � � � � � |

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

proxy clusters

water-nsq - adaptive proxies

�

� �
�

� � � � �

� � � � � � � � �� � � � � � � � �

Figure 7.36: Water-Nsq: message ratios

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

water-nsq - basic proxies

100

45.5

0.1

54.4

125.9

17.1

54.2

0.1

54.5

126.1

16.9

54

0.1
0.8

54.3

128.6

16.6

53.9

0.1

2.9

55.1

124.4

16.3

53.6

0.1
0.7

53.7

124.4

16.1

53.6

0.1
0.9

53.7

124.3

15.8

53.3

0.1
1.2

53.9

123.8

15.5

53.2

0.1
1

54

122.2

15.2

53

0.1
0.5

53.4

| ||0

|20

|40

|60

|80
|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

water-nsq - reactive proxies

100

45.5

0.1

54.4

99.1
0.1

45.3

53.7

98.7
0.1

45.3

53.3

99.4
0.1

45.5

53.8

99.5
0.1

45.5

53.9

99.1
0.1

45.4

0.1

53.5

99.2
0.1

45.5

53.6

99
0.1

45.4

0.1

53.4

99.5
0.1

45.5

0.1

53.8

| ||0

|20

|40

|60

|80

|100

|120

|140

proxy messages
write messages
unhook messages
proxy buffer unhooks
read messages

proxy clusters
0 1 2 3 4 5 6 7 8

no
rm

al
is

ed
 m

es
sa

ge
 to

ta
ls

water-nsq - adaptive proxies

100

45.5

0.1

54.4

99
0.1

45.4

0.1

53.4

98.7
0.1

45.3

0.1

53.2

99.4
0.1

45.5

0.1

53.7

98.8
0.1

45.4

0.1

53.2

99.1
0.1

45.4

0.1

53.5

98.9
0.1

45.4

0.1

53.3

98.9
0.1

45.4

0.1

53.3

98.7
0.1

45.4

53.2

Figure 7.37: Water-Nsq: message category pro�les

242 Chapter 7. Using a Separate Proxy Bu�er

7.4.8 Water-Nsq

The performance of the Water-Nsq application using a separate proxy bu�er is similar to

that obtained with non-caching proxies. The performance degrades with basic proxies (in

the range �0:3% to �0:5%), but it improves slightly with reactive and adaptive proxies by

between 0.1% and 0.2%. This marginal e�ect of using proxies is due to the small part which

load miss delays play in the overall execution pro�le of this application, i.e. around 4.5%

without proxies as shown in Figure 7.35. However, it should be noted that the techniques

which avoid cache pollution, viz. using a separate proxy bu�er or not caching proxy data,

have a smaller adverse e�ect for basic proxies than is seen when SLC caching is used.

7.4.9 Summary of Results

Using a separate proxy bu�er with basic proxies can lead to a high turnover of entries in the

proxy bu�ers. This was seen for the Barnes, FFT, and Ocean-Contig applications. The size

of the proxy bu�er was deliberately set to be low in order to (1) follow the approach taken

with victim caches where increasing the bu�er size had little e�ect on the hit rate [63], and (2)

allow for putting the proxy bu�er \on-chip" with the node controller (or minimise the amount

of DRAM required). Despite the high turnover, these applications still obtained performance

speedups, although they were not as good as might have been achieved by having a larger

proxy bu�er. Any further investigation into the use of the separate proxy bu�er should

consider the e�ects of a range of bu�er sizes, bearing in mind that the performance should

be better if the proxy bu�er was on-chip with the node controller, although this approach is

not so
exible or scalable.

Employing a separate proxy bu�er keeps the proxy hit rate close to the level seen with SLC

caching, i.e. combining is kept as high as possible. Even FFT, despite its high turnover in the

proxy bu�ers for basic proxies, gets a slightly higher proxy hit rate than was seen with the

non-caching approach. For reactive and adaptive proxies the small size of the proxy bu�er

did not result in a high turnover of proxy bu�er entries.

It was noticeable that the proxy bu�er technique avoided the cache interference patterns

seen in Chapter 5 for Barnes and Ocean-Non-Contig, while keeping most of the bene�ts of

combining (unlike the non-caching approach examined in Chapter 6). Ocean-Non-Contig in

particular, which has poor data locality and so su�ers when any increase in messages swamps

the network, bene�ts from the reduction in SLC cache pollution and the combining of proxy

read requests.

7.5. Conclusions 243

The results for Ocean-Contig highlighted a subtle side-e�ect of using proxies. For values of

NPC� 1 the performance was determined by the e�ect the use of proxies had on the overall

barrier delay. The changes in barrier delay resulted from redistributing messages to proxy

nodes and the delays experienced by other messages queueing for service at proxy nodes. This

sensitivity to the redistribution of read requests makes it clear that careful experimentation

would be needed before determining the appropriate value of NPC for a speci�c system

con�guration.

On balance, the adaptive proxy strategy gets the most out of the proxy bu�er approach.

Adaptive proxies have three balance points at NPC=2,6,&7, which re
ect the stability that

can be achieved when the handling of read requests is spread around the system, and the

opportunities for combining are maximised by holding copies of data at the proxy nodes

without polluting the local SLCs.

The use of a small separate proxy bu�er enables proxies to be implemented in a way which

avoids SLC pollution and achieves most of the bene�ts of combining which were seen in

Chapter 5. Implementing the proxy policy in this way, i.e. with a separate proxy bu�er, would

require a node controller which is capable of using a small area of the local memory for its

own purposes, or which has some on-chip or o�-chip storage accessible to the node controller.

The �rst approach is the subject of current research at Stanford University, i.e. the MAGIC

node controller within FLASH [80].

7.5 Conclusions

This chapter has investigated a scheme where proxy data is held in a separate proxy bu�er.

The approach avoids the SLC pollution caused by holding proxy data in the local SLC,

but retains the potential for satisfying proxy-read-request messages at the proxy node.

Given a node controller which can manage a small bu�er (either on-chip or as part of the

local memory), the proxy bu�er technique in conjunction with adaptive proxies delivers the

most stable performance, with balance points at NPC=2,6,&7, i.e. there are three values of
NPC�1 where the performance improves for all eight applications. Adaptive proxies do not

always achieve the best performance speedup, but they provide stable performance without

the need for the application programmer or compiler to mark widely-shared data structures.

244 Chapter 7. Using a Separate Proxy Bu�er

Chapter 8

Summary, Conclusions, and Further

Work

This chapter summarises the material presented in the preceding chapters, and assesses the

extent to which the objectives set out at the start of the thesis have been met. Finally, some

directions for future work in the area are considered.

8.1 Thesis Summary

The starting point of this thesis was that the unpredictable performance characteristics of

shared-memory multiprocessors have hampered their acceptance. The performance anomalies

stem from accessing non-local data, particularly in distributed shared-memory architectures,

and are compounded by the characteristics of the interconnection network and the overheads

of any cache coherence protocol. One approach to solving the problem has been to tune

applications to run on a speci�c architecture, but this goes against the simple programming

model of shared-memory, and compromises the portability of such tuned applications. The

focus of this thesis is on the performance problems which arise when incoming messages have

to queue for service at a processing node.

Chapter 2 presented a survey of shared-memory architectures, and considered the perfor-

mance problems that can arise on cache-coherent non-uniform memory access (cc-NUMA)

multiprocessors. These performance issues have been the subject of a wide range of proposed

solutions, some of which are complementary (i.e. they can be used together) whereas others

can have side-e�ects which work against each other. This results in system designers having

to trade-o� the bene�ts and drawbacks of various performance enhancing techniques to suit

the target market for a new architecture. This was illustrated by considering the design trade-

o�s present in the Silicon Graphics Origin2000 architecture. Any new technique designed to

245

246 Chapter 8. Summary, Conclusions, and Further Work

alleviate performance problems in distributed shared-memory multiprocessors must aim to

minimise its side-e�ects on other aspects of the system.

Chapter 3 introduced the cc-NUMA architecture studied in this work, and used execution-

driven simulations of eight application programs to illustrate how the level of queueing in-

creases as the bandwidth of the interconnection network is increased. The buildup of messages

was shown to be in part due to access to widely-shared data structures, i.e. data items which

are accessed by many or all of the processing nodes. Read requests for data items are directed

to the processing node which holds in its local memory the page containing the data. This

home node su�ers from a buildup of incoming messages when there are many simultaneous

requests for the same data line. The performance problems caused by read access to widely-

shared data was analysed in the chapter, and was shown to be dependent on the number of

processors accessing the data, the characteristics of the network, the service time for a mes-

sage at the home node, and the interval between successive requests to the same home node

from the same client node. The e�ects of read access to widely-shared data were encapsulated

in the Contentionhome equation.

Given that read access to widely-shared data is a cause of performance degradation in cc-

NUMA multiprocessors, Chapter 4 introduced a protocol modi�cation designed to reduce the

number of read-request messages arriving at the home node. The basic proxy protocol

distributes read requests to nodes other than the home node, using these other nodes as

intermediaries. If these \proxy" nodes already have a copy of the data line it is sent to the

client. Otherwise the proxy node will keep a note of the client, and send a read-request

on to the home node. When the data arrives back at the proxy a copy is retained to satisfy

any later requests, and the data line is sent on to all the waiting client nodes. Not all the

shared-data used by an application will be widely-shared, so the basic proxy technique is only

applied to read requests for data marked as widely-shared (by the application programmer

or compiler). The proxy technique was evaluated using execution-driven simulations. It

improved the performance of some applications, but was shown to have a small adverse e�ect

on other applications where the indirection introduced by going via proxies outweighed any

reduction in queueing times at the home node. It was also noted that relying on the application

programmer to mark all the widely-shared data (and not mark any other data structures)

meant that to get the best performance the programmer had to have detailed knowledge of

the applications.

Chapter 5 introduced two forms of automatic proxying, where read requests are only sent

via proxies when run-time queueing is detected at the home node. The trigger is the arrival

of a buffer-bounced-read-request at a client node. Reactive proxies then send the read

request to a proxy node, but later read requests destined for the home node will not be proxied

8.2. Conclusions 247

unless they are \bu�er-bounced". Adaptive proxies continue to send any read requests for the

congested home node via proxies until a proxying period has expired. The proxying period

is adjusted depending on the interval between bu�er-bounces from a home node. Execution-

driven simulations of the eight application programs showed that it was possible to improve

the performance of all eight applications using reactive proxies. However it was noted that

using the local second level cache (SLC) to hold copies of proxied data could cause the eviction

of data lines which were still needed by the local processor.

Chapter 6 and Chapter 7 explored two ways of avoiding this pollution of SLCs by proxy data.

In Chapter 6, data copies were no longer held at proxy nodes unless they were needed for

local processing. The results from execution-driven simulations showed that avoiding SLC

usage by proxy data led to further performance improvements for some of the applications.

Unfortunately, the non-caching form of proxies has the disadvantage that subsequent read

requests arriving at a proxy require a fresh read-request message to be sent on to the home

node, i.e. the proxy hit rate is lower with non-caching proxies. As a result the performance

obtained for some applications was not as good as that seen in Chapter 5. That being said,

it was possible to improve the performance of all eight applications using reactive or adaptive

proxies, each of which had one balance point (i.e. a value of NPC�1 where the performance

of all eight applications is improved).

Chapter 7 addressed the reduced proxy hit rate seen for some applications when non-caching

proxies were used. By employing a small separate bu�er (with a few tens of entries) to hold

proxy data, subsequent proxied read requests from clients could be satis�ed at the proxy

nodes. The separate proxy bu�er technique was evaluated using execution-driven simulations

with the proxy bu�er assumed to have the same access latency as the local memory at each

processing node. As was to be expected, the proxy hit rate improved in comparison to

non-caching proxies, and the SLC pollution seen in Chapter 5 was reduced. Overall, the

best performance was obtained using adaptive proxies which bene�ted from reduced SLC

pollution during the proxying period. Adaptive proxies improved the performance of all eight

applications at three \balance points", i.e. three di�erent ways of partitioning the processing

nodes to decide which node will be the proxy for a given client node and data line. Reactive

proxies also improved the performance of all eight applications, but only at one balance point.

8.2 Conclusions

The purpose of this thesis was to study the causes of erratic performance on distributed

shared-memory multiprocessors. In particular, the following objectives were set out in Sec-

tion 1.1.1:

248 Chapter 8. Summary, Conclusions, and Further Work

1. What are the causes of the performance anomalies observed for applications running on

distributed shared-memory multiprocessors?

2. Have any of these causes been neglected by the research to date?

3. Can an architectural technique be found to alleviate such a performance problem?

4. Can this technique be designed to minimise its side-e�ects on existing performance-

enhancing techniques such as caching?

These four questions have been addressed in the thesis. Chapter 2 investigated the current

state of shared-memory multiprocessors, with particular emphasis on the causes of the perfor-

mance problems which have been observed on these systems (Section 2.2) and the techniques

which have been proposed to address these performance problems (Section 2.3).

A combination of execution-driven simulation and analysis was used in Chapter 3 to demon-

strate that the performance problems associated with contention for node controllers are

exacerbated by read accesses to widely-shared data. The problem of widely-shared data has

tended to be obscured by researchers categorising applications in terms of their dominant

access patterns, rather than considering that relatively infrequent access patterns can have a

signi�cant e�ect on performance.

The proxy strategy is proposed as an architectural technique which is designed to alleviate

the home node controller contention caused by access to widely-shared data. The technique

builds on past research work, but it is novel because it uses proxies for read access to explicitly

marked widely-shared data, uses a di�erent proxy for successive data lines, combines the read

requests at the proxy node, and does not require additional specialised processors to handle

proxying.

The reduction of side-e�ects from using proxies was the subject of Chapters 5, 6, and 7.

Employing reactive or adaptive proxies avoided any requirement for the programmer (or

compiler) to mark widely-shared data, and so removed the risk of proxying the wrong data.

Problems with SLC pollution were alleviated by using non-caching proxies, although this

technique su�ered from the reduction in combining of requests. Using a separate proxy bu�er

with adaptive proxies gave the most stable performance, with the reduction in side-e�ects

leading to performance improvements for all eight application programs at three balance

points (i.e. when NPC=2,6,&7, as shown in Table 8.1).

Adaptive proxies with a separate proxy bu�er give stable performance, allow the programmer

to write portable applications which are less \architecture speci�c", and save on performance

tuning because the widely-shared data access bottleneck is dealt with automatically by the

8.3. Further Work 249

relative % change in execution time (+ is better,

application speedup � is worse) for NPC = 1 to 8

no proxies 1 2 3 4 5 6 7 8

Barnes 46.3 0.0 +3.3 +0.4 +0.2 +0.2 +0.2 +0.4 +0.4

CFD 28.3 +9.4 +9.4 +9.0 +12.5 +10.7 +10.8 +10.5 +12.7

FFT 47.3 +11.9 +11.9 +11.6 +11.8 +11.4 +11.4 +11.0 +10.8

FMM 52.4 +0.4 +0.3 +0.4 +0.4 +0.5 +0.4 +0.4 +0.4

GE 21.6 +30.7 +30.9 +31.8 +31.3 +31.8 +31.8 +31.5 +31.7

Ocean-Contig 49.7 -2.4 +1.5 -1.5 -6.8 -0.2 +1.9 +0.8 -0.7

Ocean-Non-Contig 48.2 +4.5 +6.5 +5.8 +2.3 -0.2 +3.0 +3.7 +6.8

Water-Nsq 55.3 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2

Table 8.1: Benchmark relative speedups for adaptive proxies with a separate proxy bu�er
(extracted from Table 7.2)

run-time system. It should be remembered that proxies have the overheads of representing the

proxy pending chain, and require minor changes to the \state machine" in a programmable

node controller to handle the extra states and messages associated with proxies. However,

these costs are one-o� in that they only apply when the system is being designed and built.

Proxies can then reduce execution times, and they save the application programmers from

having to write system-speci�c programs.

8.3 Further Work

The work reported in this thesis has raised a number of issues which deserve further attention:

� Using a more complicated architectural model in terms of the network topology and the

number of processors at each node.

� Choosing alternative proxy nodes when the proxy candidate is itself su�ering from node

controller contention.

� Employing a di�erent representation of the sharing list.

� Using more than one level of proxies for larger con�gurations.

� Investigating the e�ects of varying the proxy bu�er size, replacement policy, and loca-

tion.

� Checking the applicability of proxies to commercial workloads.

250 Chapter 8. Summary, Conclusions, and Further Work

In order to study proxies in su�cient detail to detect their side-e�ects on other transac-

tions, caches, and queue lengths it was necessary to make some simpli�cations to avoid being

swamped by too much data and to avoid tying the results to a speci�c architecture. To this

end the network was modelled as a contention-free full crossbar, and each processing node

contained only one local CPU. This approach was successful because it enabled the di�erences

between the various approaches to proxying to be evaluated. However any further work on,

for example, the commercial viability of using adaptive proxies with a separate proxy bu�er

would need to assess the impact of di�erent network topologies and of having more than one

CPU at each processing node.

A separate simpli�cation was the decision to only \bu�er-bounce" the read-request type of

messages when investigating automatic proxying. Any hardware implementation would have

to cater for handling full bu�er conditions for all the message types, and this will considerably

increase the number of conditions which have to be handled by the coherence protocol. In

such an environment it would be necessary to de�ne the action to be taken when a client

received a buffer-bounced-proxy-read-request. Rather than just retrying the request,

or sending it directly to the home node, it might be sensible to select an alternative proxy.

However it should be noted that there is the possibility that any alternative proxy might itself

already be congested.

The increase in client-unhook-forward messages, which arises in Chapter 6 when the un-

hooking node is further along the sharing list, is an e�ect of using a singly-linked list to

represent the sharing list in the Stanford distributed-directory protocol [134]. If the sharing

list had been represented in another way, for example as a doubly-linked list or a bit vector,

then the \position" of a node in the list would not have changed the number of messages re-

quired to complete an unhook transaction. Such alternative implementations should improve

the performance results observed for applications like Barnes where the position of a proxy

node in the singly-linked sharing list has a noticeable e�ect on performance.

The execution-driven simulation results reported in this thesis were for up to sixty-four pro-

cessing nodes. For larger con�gurations of many hundreds or thousands of nodes it would be

prudent to use a hierarchical approach to proxy selection to avoid the proxy nodes themselves

becoming performance bottlenecks. This would complicate the proxy selection algorithm, but

it appears to be feasible.

Using a separate proxy bu�er, as reported in Chapter 7, shows encouraging results for adap-

tive proxies. However the results indicate that there are a number of areas which warrant

further investigation. In particular, the following design parameters have a bearing on the

performance of the strategy: the size of the proxy bu�er, its replacement policy (e.g. using

8.3. Further Work 251

\least-recently-used" rather than \�rst-in-�rst-out"), and its access latency. The values used

in Chapter 7 were deliberately chosen to be conservative, in that the proxy bu�er was small,

no account was taken of the usage of entries when it came to eviction, and situating the

bu�er on the MEM bus gave long access latency. To evaluate the commercial viability of us-

ing adaptive proxies with a proxy bu�er it would be necessary to investigate the performance

e�ects of more aggressive designs.

The eight application programs used in this thesis were taken from the scienti�c and engi-

neering domains. In the past such computation-intensive applications have provided the main

market for large scale multiprocessors. There is now a trend towards designing systems which

also support commercial applications such as large database systems (e.g. for data-mining and

real-time response) and composite workloads [100]. The study of such applications and their

interaction with distributed shared-memory systems is an active research area, and further

evaluation of proxies should aim to include benchmarks from the commercial domain.

252 Chapter 8. Summary, Conclusions, and Further Work

Appendix A

Uniprocessor Caches

The execution time of a program is critically dependent on the rate at which instructions and

data can be fetched from and written to memory. Unfortunately, while processor speeds have

increased at about 50% per year over the last two decades, main memory speeds have grown

at a much slower rate [54]. As a result, the ability to execute instructions and process data

far outstrips the rate at which main memory can provide them. To rectify this mismatch,

most uniprocessor computers now include caches: small, fast memories which are physically

close to the CPU and which provide the instructions and data needed with a shorter latency

that is more in line with the CPU's needs [44].

Caches exploit the fact that the memory references made by programs tend to be clustered

in time and space rather than being to randomly distributed addresses [118]. There are two

forms of locality which are observed in uniprocessors: temporal and spatial.

Temporal locality: items which have been referenced recently are likely to be referenced

again soon, e.g. loops, stacks, temporary variables.

Spatial locality: programs tend to access items whose addresses are near one another,

e.g. arrays, code segments, stacks.

In addition, the working set of the program, i.e. the subset of addresses referenced in some

time interval, only changes slowly during program execution [30].

Caches work by automatically retaining information that the CPU has used or generated

recently, the aim being to keep as much of the working set as possible in fast storage. Data

is brought into cache as a block of contiguous data, the length of which is determined by the

cache line size, and this will exploit any spatial locality. The slower main memory only has to

be accessed when the cache does not contain the necessary information or when that memory

has to be updated, i.e. when a data line is \evicted" (aka. \
ushed") from the cache.

253

254 Appendix A. Uniprocessor Caches

The location in the cache of a data line containing a particular data item is based on the

address of the item and the type of cache organisation. If each data line has only one place

it can appear in the cache, the cache is said to be direct mapped. If a data line can be placed

anywhere in the cache, the cache is said to be fully associative. If a data line can be placed in

a restricted set of places in the cache, the cache is said to be set associative, where a set is the

group of two or more cache lines where the data can be held. A data line is �rst mapped on

to a set, and then the data line can be placed anywhere within that set. Figure A.1 shows the

address partitioning used to determine the set number and identifying tag for a data item.

Figure A.2 shows an example of matching an address with a four-way set associative cache.

In the example there are N sets, each of which contain four lines, i.e. there are four places in

the cache where the data line could be held.

An important cache design issue is the choice of write policy. A write-through policy sends all

writes through to the memory. This keeps the memory hierarchy up-to-date, but the strategy

has the drawback that each write-through of data requires the use of the connection between

caches and memory. This takes time, and there is the added drawback that it prevents other

uses of the connection during the update. Alternatively, a write-back policy will only update

the next level of the memory hierarchy when a modi�ed data line is evicted from the cache.

A \dirty bit" is used to support this policy, and this is set when a cache line is modi�ed.

The problem with this approach is that main memory will not always contain the up-to-

date version of the data line. A compromise in two-level cache systems is to employ the

write-through policy for the �rst level cache (FLC), and to use the write-back policy for the

second level cache (SLC). In this way the SLC is kept up to date, but the update tra�c to

the memory is reduced. If the memory is shared, it will have to have some mechanism for

indicating that the SLC may hold a more up-to-date copy of the data line.

A cache miss occurs when the cache does not hold the data demanded by the CPU. The

consequence of a cache miss is that the item must be fetched from the slower main memory.

In uniprocessors, a cache miss will occur for one of the following reasons [55]:

Compulsory: the �rst access to a line of data requires it to be brought in from main memory.

Capacity: when the cache runs out of room a replacement policy will discard a data line,

which may be required later.

Con
ict: occurs when more than one line of main memory maps to the same cache line; the

con
icting data line must be discarded, and it will have to be retrieved from memory if

it is required again.

When a cache miss occurs, and all suitable locations in the cache are already in use, a data

A. Uniprocessor Caches 255

set number

 (1 of N)

tag offset in line

 (1 of L)

address of datum
(x bits long)

log N log L
bits bits

Figure A.1: Address partitioning for a cache search

=?

=?

=?

=?

SELECT

SELECT

SELECT

SELECT

41423

0326

2262

0173

34125

66021

34714

set number tags lines

0

1

N-1

0

1

N-1

0

1

N-1

0

1

N-1

3411 1

IF NONE MISS DATA OUT

3411

3411 41423

41423

tag number
set

3411 41423

Figure A.2: An implementation of a four-way set-associative cache with N sets [128]

256 Appendix A. Uniprocessor Caches

line must be selected for eviction to make room for the new data line. With a direct-mapped

cache there is only one candidate for eviction. For caches with associativity of more than one

a replacement policy is needed. Two of the common strategies for selecting the cache line for

eviction are [49]:

� Least-Recently Used (LRU): the cache line selected is the one that has been unused

for the longest time. The LRU policy exploits temporal locality, i.e. if recently used

data lines are likely to be used again, then the best candidate for eviction is the least

recently used data line. To implement this policy the system has to keep track of the

latest access to each cache line.

� Random: to evenly distribute the replacements, the line to be evicted is chosen at ran-

dom from the candidates. This policy has the advantage of being simple to implement,

and for larger cache sizes the resulting miss rates are comparable to LRU [54].

Appendix B

The ALITE Execution-Driven

Simulator

This project relied on a simulator to investigate the e�ects of the di�erent forms of proxying.

The simulator used was ALITE, an execution-driven simulator written by Ashley Saulsbury.

This appendix gives an overview of the various techniques used to simulate computer archi-

tectures, and describes the ALITE simulator.

B.1 Simulation of Computer Architectures

A simulator is a piece of software which emulates the behaviour of input workloads in a

particular environment. The environment includes all the system features that determine

the system's behaviour under a given workload. System software, processor architecture,

memory system, and connection network are all included in the environment. The system

being studied is called the target to distinguish it from the host, which is the system on

which the simulator runs. Parallel program execution can be simulated on a sequential host

by using one of the three alternative schemes: full emulation, using application-derived (or

stochastically generated) traces, or execution-driven simulation.

Full emulation is where the architecture under evaluation is simulated completely. The action

of each machine instruction is modelled for the processor registers, pipeline, arithmetic and

logic unit (ALU), and each level of the memory hierarchy. The advantage of this approach is

that it is highly reliable because the results of the simulation can be expected to correspond

closely to an implementation of the architecture being modelled. The main disadvantages

are the huge computational resources required and the signi�cantly longer time it takes to

simulate the execution of a program.

257

258 Appendix B. The ALITE Execution-Driven Simulator

The behaviour of a program executing on a particular architecture is largely determined by

its stream of memory references. An address trace describes the accesses made by a program,

i.e. the address and whether the access is a read or write. Address traces are used as the

input to simulators which concentrate on modelling the behaviour of the memory hierarchy.

The traces themselves are either derived from applications, i.e. they are produced by running

real programs, or they are stochastically generated by a synthetic reference generator. The

disadvantage of trace-driven simulators is that they do not allow for feedback e�ects from

di�erent memory hierarchies, i.e. the trace is static.

Currently the most commonly used simulators for shared-memory multiprocessors are based

on execution-driven simulation, where non-memory instructions are executed directly on the

host system (which can itself be a parallel computer), and only the memory instructions

are actually simulated for the target architecture. Examples of such simulators include the

TangoLite simulator used at Stanford [43], and the Wisconsin Wind Tunnel [109].

B.1.1 Execution-Driven Simulation

An execution-driven simulator is one where the simulation is driven by executing the appli-

cations so that the interaction between the target's processors can a�ect the course of the

simulation. For multiprocessor systems, execution-driven simulation is important because it

allows for accurate modelling of the e�ects of synchronisation and contention. In execution-

driven simulations, the execution of the application program on the host is interleaved with

the simulation of the target architecture. Each processor is represented by a process, and se-

quences of application instructions are directly executed on the simulation host until a global

event is generated. A global event is a process interaction, i.e. an action which can alter

the execution of another process, e.g. accessing a shared data structure, sending a message,

or attempting to acquire a lock. When a process generates a global event, the architectural

simulator takes over in order to determine how long the event will take, i.e. its latency.

Figure B.1 shows an example of how an execution-driven simulation proceeds for a four

processor target system. When the simulator starts, the �rst process is allowed to execute

until it generates a global event, at which point the process blocks. The other processes are

then executed in turn, up to the point where they generate a global event. When all the

processes are blocked, the situation is as shown in Figure B.1(a).

When all the application processes have generated global events, the architectural simulator

is invoked. The simulator selects the process with the earliest timestamp because this cannot

a�ect the behaviour of the other processes at the point at which they have blocked. Process

B.1. Simulation of Computer Architectures 259

��

����������������������������

��

������������������������������������PE0

PE1

PE2

PE3

t1 t2 t3 t4

time

(a) State of the simulation when each process has generated its first global event

t0

��

������������������������������������

��������������������������������������

��

PE0

PE1

PE2

PE3

t0 t2 t3 t4 t5

time

(b) State of the simulation after the first global event has been simulated

Figure B.1: Example of a four processor execution-driven simulation

PE2 has the earliest timestamp, and so its event is simulated. If, for example, the event

was a shared-memory write, and the simulator is modelling an invalidation-based cc-NUMA

system, the invalidation will be observed by the other processes when they restart. This is

the correct behaviour because the other processes will not need to access that data until at

least the time at which they have blocked (any access to that data would generate a global

event and cause the process to block).

When the global event has been simulated, the clock of process PE2 is updated to re
ect the

simulated latency of the event, and process PE2 is then restarted. Eventually it will generate

another global event and it will block at time t5 as shown in Figure B.1(b). The simulator is

again invoked and chooses the processor with the earliest timestamp for simulation, which in

this case is process PE1. This alternation between running processes and the architectural

260 Appendix B. The ALITE Execution-Driven Simulator

simulation continues until all the processors have signalled that they have completed. When

this happens the simulation �nishes.

B.2 ALITE

The ALITE simulator was originally designed to run on a DEC Alpha host, but was adapted

for the proxy work to run on Sun Sparc workstations and on PCs running Linux. It supports

applications written in C or Fortran which use the Argonne National Laboratory's parallel

macros package for parallel constructs such as locks, barriers, and shared data [19].

The cc-NUMA target architecture provided with ALITE consists of a number of processing

nodes, each of which contain a CPU with on-chip FLC and TLB, an o�-chip SLC, some local

memory (DRAM), and a node controller. All timings in the system are measured in terms

of clock cycles. Table B.1 shows the latencies de�ned for the simulations produced for this

thesis. The size of the FLC, TLB, and SLC are parameters set at compile-time, i.e. when

an application program is compiled to a simulation which will run on the host, the resulting

object code includes all the ALITE functions needed to simulate the target architecture. The

DRAM size and the number of processing nodes are run-time parameters. Cache coherence

is maintained using the Stanford distributed-directory protocol [134]; this is described in

Chapter 3 of this thesis, and further details about the protocol's implementation in ALITE

are given in Appendix C. The line size has been set to 64 bytes throughout the memory

hierarchy, i.e. for the FLC, SLC, and DRAM.

B.2.1 FLC

The �rst level caches (FLC) are direct-mapped, and use a write-through policy. The FLC

size for each node was set to 8 Kbytes for the results reported in this thesis. The size of the

FLC used by ALITE is de�ned by setting FLC-SIZE-BITS. Each cache line holds 64 bytes of

data.

B.2.2 Translation Look-Aside Bu�er

The translation look-aside bu�er (TLB) is a bu�er which holds address translations from

logical to physical addresses. The TLB relies on the principle of locality to reduce access

times for address translations. Page tables are usually so large that they are stored in the

local memory (DRAM). By keeping the recent address translations in a special bu�er, if

the address translation is needed again it is usually still in the TLB. A TLB entry is like a

B.2. ALITE 261

#de�ne name delay cycles comments

CPU-SLC-GET-DELAY 2 Cycles it takes the cpu to arbitrate for the SLC bus

CPU-SLC-RELEASE-DELAY 1 Cycles it takes for the cpu to let go of the SLC bus

CPU-SLC-ACCESS-DELAY 6 Delay to address and tag check the SLC, and potentially read
�rst bus word

CPU-SLC-LINE-ACCESS 18 Once SLC is accessed, number of cycles for cpu to read the rest
of the line

CPU-MBUS-GET-DELAY 3 Delay for the cpu to get the mbus once it becomes available

CPU-MBUS-RELEASE-DELAY 2 number of cycles taken by the cpu to release the mbus

CPU-DRAM-ACCESS-DELAY 20 Delay to decode and address a data line in DRAM

CPU-DRAM-LINE-ACCESS-TIME 24 Time to read whole data line from DRAM - once it has been
accessed via CPU-DRAM-ACCESS-DELAY

CTRLR-DRAM-ACCESS-DELAY 20 Delay to decode and address a data line in DRAM

CTRLR-DRAM-LINE-ACCESS-TIME 24 Time to read whole data line from DRAM - once it has been
accessed via CTRLR-DRAM-ACCESS-DELAY

CPU-CTRLR-ACCESS-DELAY 5 number of cycles taken for the cpu to initiate an action
(cache replacement/miss) by the controller

CPU-TLB-LOAD-TIME 80 time taken for a TLB entry to be loaded from DRAM - typically
a DRAM access + some time for the handler

CTRLR-MBUS-GET-DELAY 3 Number of cycles for the controller to negotiate for the mbus
once available

CTRLR-MBUS-RELEASE-DELAY 2 Number of cycles for the controller to release the mbus

CTRLR-SLC-GET-DELAY 2 Number of cycles for the controller to negotiate for the SLC bus
once available

CTRLR-SLC-RELEASE-DELAY 1 Number of cycles for the controller to release the SLC bus

CTRLR-SLC-LINE-FILL-DELAY 6 Assuming the controller already knows the cache way, this is the
number of cycles to �ll an SLC line

CTRLR-SLC-FIRST-WORD-DELAY 6 number of cycles for the controller to place the critical word into
the SLC upon a �ll, and release the cpu

CTRLR-SLC-ACCESS-DELAY 6 Delay for controller to perform a tag check on the SLC to check
its contents

CTRLR-SLC-LINE-READ-DELAY 24 Delay to read back data from SLC - does not include access and
decode time - typically for remote write-back

CPU-PROXY-BUFFER-ACCESS-DELAY 20 Delay to decode and address a data line in the proxy bu�er

CPU-PROXY-BUFFER-LINE-ACCESS-TIME 24 Time to read whole data line from the proxy bu�er - once it has
been accessed via CPU-PROXY-BUFFER-ACCESS-DELAY

CTRLR-PROXY-BUFFER-ACCESS-DELAY 20 Delay to decode and address a data line in the proxy bu�er

CTRLR-PROXY-BUFFER-LINE-ACCESS-TIME 24 Time to read whole data line from the proxy bu�er - once it has
been accessed via CTRLR-PROXY-BUFFER-ACCESS-DELAY

Table B.1: Latencies of the node actions

cache entry, where the tag holds portions of the virtual address, and the data portion holds

a physical page frame number, protection �eld, valid bit, and usually a use bit and dirty

bit [54].

In the simulator, the TLB is modelled to be on-chip with the CPU and FLC. It is accessed

in parallel with the FLC, so if there is an FLC miss then the physical address will already

be available for accessing the SLC. The TLB size for each node was set to 64 entries for the

results reported in this thesis. The size of the TLB used by ALITE is de�ned by setting

TLB-HASH-ENTRIES.

262 Appendix B. The ALITE Execution-Driven Simulator

B.2.3 Second Level Cache

The second level caches (SLC) are direct-mapped, and use a write-back policy. The SLC size

for each node was set to 4 Mbytes for the results reported in this thesis. The size of the SLC

used by ALITE is de�ned by setting SLC-SIZE-BITS.

B.2.4 Memory

The local memory (DRAM) at each node holds a number of pages of data; each page is 8

Kbytes in size, and contains 128 lines of data. Each data line has associated with it a state

variable and a pointer to the head of the sharing list. The DRAM size at each node is a

run-time parameter.

The ALITE simulator provides two page placement policies: �rst-touch-after-initialisation

(the default) and round-robin. The round-robin policy is invoked by compiling with RR-

PAGE-PLACEMENT de�ned; if it is not de�ned then �rst-touch is used. All the results

presented in this thesis use the �rst-touch default, but the round-robin policy was used in

a separate study to investigate the performance trade-o�s between di�erent page placement

policies and the use of proxies [131].

Appendix C

The Cache Coherence Protocol

This appendix documents the cache coherence protocol implemented in the ALITE simulator.

It also describes the di�erent message types, and shows how the messages are grouped into

the reporting categories used to present the simulation results in the main body of the thesis.

The cache coherence protocol used in ALITE is based on invalidations, and it uses a write-

back approach for updating the local memory (DRAM) from the SLC. The coherence policy

is the Stanford distributed-directory protocol, described by Thapar and Delagi [134].

The caches that share a copy of a data line are linked together by a singly-linked list, which

starts in the directory entry for the data line. The directory entry is held in the DRAM at

the home node for the page containing the data line. In addition to the start of the sharing

list, the directory entry also indicates the current state of the data line. A data line in local

memory will be in one of four states:

Home-Exclusive: held at only the home node (may be modi�ed in the local SLC).

Home-Shared: held in an unmodi�ed state in the cache of one or more nodes (local and/or

remote).

Home-Invalid: the data at the home node is out-of-date. The current owner of the data

will have the up-to-date version of the data line.

Home-Locked: the sharing list is being updated. No other transactions are allowed to

traverse the sharing list until the update has been completed.

The coherence protocol has the notion of an \owning" node for each data line. The owner is

the node which has most recently updated the data line.

Cache lines in the processors' second-level caches will be in one of three states:

Invalid: not valid in the cache

263

264 Appendix C. The Cache Coherence Protocol

Shared: unmodi�ed in the cache, valid for reads only. May also be cached at other nodes.

Exclusive: either modi�ed in the cache (dirty bit is set) or not yet modi�ed but the node

has requested exclusive access to the data line. The data line is only held by this cache,

so it must be written back to the home node's DRAM if the line is replaced (i.e. if it is

evicted from the SLC).

C.1 Protocol States

The cache coherence scheme is implemented in the node controller module of the ALITE

simulator using two �nite state machines: one for home node actions, and the other for

client node actions. The state machines include a number of pseudo-states, which are derived

from the actual local memory (DRAM) or SLC states plus additional information from the

incoming message and (as appropriate) the proxy transit cache and the proxy bu�er. The

complexity of the state machines is a direct result of the non-atomicity of transactions in the

distributed-directory protocol. For example, a client read miss cannot result in an atomic

transaction, because there will be at least a read-request message to the home node and

a take-shared message back from the home node, during which time other messages could

arrive at the client node controller which a�ect the SLC cache line.

The implementation of the protocol in the Sun S3.mp prototype provides valuable insights

about the complexity of verifying cache coherence protocols for distributed directory schemes

[106]. The cache-coherence protocol for that system was veri�ed by a combination of mod-

elling and simulation. Due to the maintenance of linked lists by the distributed algorithm and

the non-FIFO nature of the interconnect network (i.e. messages do not necessarily arrive in

order), the complex S3.mp protocol is a challenge for veri�cation. The protocol has roughly

30 stable/transient cache states and 20 memory states: these states represent branches in the

microprogram implementation of the protocol. The number of states is far more than is typi-

cally needed for protocols using a central directory because the non-atomicity of transactions

means that transient states are needed to represent the intermediate states which occur as

the distributed sharing list is being amended.

The home and client state machines used in ALITE are illustrated in Figure C.1 and Fig-

ure C.2. Most of the state transitions are triggered by incoming messages, but the �gures also

show where local read or write misses cause state changes. For the sake of clarity, the Proxy-

Bu�er-Valid and Proxy-Bu�er-Pending-Invalid states have been omitted from Figure C.2 (and

all the state transitions associated with the separate proxy bu�er have likewise been omitted).

They are documented in detail in Section 7.3 of this thesis.

C.1. Protocol States 265

Home-Exclusive Home-Locked
write-request

write-request

client-head-unhooked

write-request
OR client-unhook-request

OR client-unhook-request

OR client-unhooked

OR client-unhooked-exclusive
exclusive-ack

client-head-unhooked
OR home-exclusive

Home-Load-Stalled

client-head-unhooked

client-head-unhooked
OR client-unhooked
OR home-take-shared

local write miss

local write miss

local read miss

OR non-caching-read-request
read-request

local read miss

take-shared-home

Home-Shared

client-head-unhooked

Home-Store-Stalled

Home-Invalid

Figure C.1: Node controller state transitions for home node actions

The states are as follows:

Home-Exclusive: The home node has the only copy of the data line, i.e. it is currently the

owner.

Home-Invalid: The up-to-date data is held at another node (the owning client, who has

obtained exclusive access to write to the data line).

Home-Load-Stalled: This indicates that a local read miss found that its DRAM directory's

state was Home-Invalid for this data line. A home-read-requestmessage has been sent

to the current owner of the data line.

Home-Locked: The sharing list for this data line has been locked in response to a write-re-

quest or a client-unhook-requestmessage. The state will continue until the current

transaction has �nished amending the sharing list, i.e. the lock protects the sharing list

until it is no longer unstable.

Home-Shared: The home node has a shared copy of the data line.

Home-Store-Stalled: This indicates that a local write miss found that its DRAM direc-

tory's state was Home-Invalid for this data line. A home-invalidate message has been

sent along the sharing list.

Client-Exclusive: This node is the owner of the data line and has the most up-to-date

version.

266 Appendix C. The Cache Coherence Protocol

invalidate
OR home-invalidate
OR client-head-unhook

take-exclusive
OR take-shared

invalidate
OR home-invalidate
OR client-unhook-req-ok
OR client-head-unhook

invalidate
OR home-invalidate

proxy-read-request

Client-Pending-Invalid
take-shared

take-exclusive

Client-Pending-Invalid-Fwd

take-shared take-hole

client-unhook-forward

invalidate

take-exclusive
OR invalidate

OR read-request-fwd
OR home-read-request

OR home-invalidate

proxy-read-request

OR client-head-unhook
client-unhook-req-ok

Proxy-Pending-Invalid

local read miss
Client-Invalid

Client-Unhooking-Invalidated

Client-Pending-Valid

OR home-invalidate
invalidate

OR home-invalidate

invalidate
OR home-invalidate

local write miss

Client-Unhooking

local SLC eviction

OR non-caching-read-request-fwd

Client-Exclusive

Client-Pending-Invalidated-Fwd

take-shared

take-shared

Client-Pending-Invalidated

client-unhook-bounced

local SLC eviction

Client-Shared

take-shared

proxy-read-request

invalidate

Client-Pending-Invalid-UnhookReq

Figure C.2: Node controller state transitions for client node actions

Client-Invalid: There is no valid data held in the SLC cache line.

Client-Pending-Invalid: A read-requestmessage has been sent for this data line, i.e. the

cache line has been reserved, and is waiting for the data to arrive in a take-shared

message.

Client-Pending-Invalid-Fwd: The client waiting for a take-shared message (in state

Client-Pending-Invalid) has received a take-hole message from the proxy node. This

state indicates that the node is not at the end of the proxy pending chain.

Client-Pending-Invalid-UnhookReq: An unhook request beat the take-sharedmessage

back to this node, i.e. the node controller will have to handle forwarding the unhook

down the sharing list once the take-shared message has arrived and this node is part

of the sharing list.

Client-Pending-Invalidated: An invalidation request beat the take-sharedmessage back

to this node (which was in state Client-Pending-Invalid). The node controller will have

to handle the invalidation once the take-shared message arrives and this node is part

of the sharing list.

C.2. Message Categories 267

Client-Pending-Invalidated-Fwd: An invalidation request has arrived before the take-

shared message when the node was in state Client-Pending-Invalid-Fwd (i.e. it was on

the proxy pending chain). The node controller will have to handle the invalidation once

the take-shared message arrives and this node is part of the sharing list.

Client-Pending-Valid: A local write miss is being processed (a write-requestmessage has

been sent to the home node). It should be noted that the receipt of an invalidate message

can lead to various transitions from this state, depending on whether the requester of

the invalidation is this node, and its position on the sharing list.

Client-Shared: A clean copy of the data line is held in the SLC.

Client-Unhooking: The data in the cache line is being unhooked from its sharing list.

Client-Unhooking-Invalidated: An invalidation request has arrived at a line which has

requested unhooking. The invalidation is held until the client-unhook-bounced mes-

sage arrives (the sharing list will be locked at the home), at which point the invalidation

can proceed.

Proxy-Bu�er-Valid: There is a valid copy of the data line in the local proxy bu�er. For

the sake of clarity, this state is not shown in Figure C.2, but its use is documented in

detail in Section 7.3.

Proxy-Bu�er-Pending-Invalid: There is a valid entry in the local proxy bu�er, but it is

currently being evicted under the FIFO replacement policy. For the sake of clarity, this

state is not shown in Figure C.2, but its use is documented in detail in Section 7.3.

Proxy-Pending-Invalid: the node has sent a read-request on behalf of a client i.e. there

is an entry in the proxy transit cache.

C.2 Message Categories

This section contains a full list, with descriptions, of the message types used in the simulated

protocol. The messages are grouped into the categories which are used to report the results

in Chapters 4, 5, 6, and 7. The read, write, and unhook messages are used to implement the

Stanford distributed-directory protocol [134]. The proxy, non-caching read, and proxy bu�er

unhook messages were added to support the various proxy strategies.

268 Appendix C. The Cache Coherence Protocol

C.2.1 Read Messages

bounced-read-request: when a home node receives a read-request message for a locked

directory entry, the \bounced" message is sent in response.

bu�er-bounced-read-request: when the system is simulating a simple �nite incoming mes-

sage bu�er, this bu�er-bounce message is sent when a read-request arrives at a home

node and there are already eight or more messages in the incoming message bu�er.

home-read-request: the home node requests a new copy of the data line from the current

owner (because of a read miss by the home node's CPU).

home-take-shared: the owner node sends an up-to-date copy of the data line to the home

node (in response to a home-read-request).

read-request: this message is sent either (1) by a client node to the home node as a re-

sult of a local read miss, or (2) by a proxy node to the home node in response to a

proxy-read-request from a client node.

read-request-fwd: the home node forwards a read request on to the current owner when

the home node directory state is Home-Invalid.

take-shared: a new copy of the data line is sent to the client (or proxy).

take-shared-home: a new copy of the data line is sent to the home node by the owner (when

it changes state from Client-Exclusive to Client-Shared in response to a read-request-

fwd).

C.2.2 Write Messages

bounced-write-request: the directory entry at the home node is locked, so the write-

request is \bounced" back to the client.

exclusive-ack: the new owner (which now has exclusive access to the data line) sends this

acknowledgement to the home node to unlock the home's directory entry. The home

node changes its directory state to Home-Invalid.

home-exclusive: this message is sent to the home node when a home-invalidate has

reached the end of the sharing list (i.e. all entries have now been removed from the

sharing list).

home-invalidate: the home node's CPU wants to write to the data line, so the sharing list

has to be invalidated. This is similar to the invalidate message, but the processing is

initiated by the home node.

C.2. Message Categories 269

invalidate: the home node sends this message along the sharing list in response to a write-

request message. All clients (except the sender of the write-request) are to be

removed from the sharing list.

take-exclusive: the client requiring write access is informed that it is now the owner by the

last node to be invalidated (i.e. by the last node on the old sharing list). This message

is not needed when the requesting node is itself the last node on the old sharing list.

write-request: a client node sends a write-request to the home node when it needs to

obtain exclusive access to change a data item. This causes the home node to lock the

sharing list and send an invalidate message down the sharing list.

C.2.3 Unhook Messages

client-head-unhook: the client which sent a client-unhook-request is at the head of the

sharing list (i.e. it is the �rst entry). The home node locks the sharing list and sends

this message back to the client. The client then knows it is the head of the list, and

can simply unhook itself and send a client-head-unhookedmessage back to the home

node.

client-head-unhooked: the client at the head of the list has unhooked itself, and sends this

message to the home with the pointer to the tail of the sharing list. The home node

can then update the directory entry to point to the tail of the sharing list, and unlock

the directory entry.

client-unhook-bounced: the home node entry is locked, so the client-unhook-request

is sent back to the client.

client-unhook-forward: a client-unhook-request is passed along the sharing list using

this message, until it reaches the node before the client (i.e. the node which points to

the requesting client). At this point a client-unhook-req-ok message is sent to the

unhook requester.

client-unhook-not-found: the client which requested to be unhooked was not found on the

sharing list. This message is sent by the node at the end of the sharing list to the node

which requested to be unhooked. This could happen when an invalidation reached the

unhooking client before the unhook, in which case the protocol handles the receipt of

the client-unhook-not-found message in state Client-Unhooking-Invalidated. If

the client which requested the unhook is in any other state, then the protocol signals

that an error has occurred.

270 Appendix C. The Cache Coherence Protocol

client-unhook-ptr: sent in response to a client-unhook-req-ok, this message contains a

pointer to the tail of the sharing list (i.e. from after the unhook requester). The receiving

node modi�es its SLC entry to point to the tail of the sharing list, in e�ect removing

the unhook requester from the sharing list, and then sends a client-unhookedmessage

to the home node.

client-unhook-request: a client node sends this message to the home node when it wants

to be taken o� the sharing list (i.e. it no longer wants a copy of the data line).

client-unhook-req-ok: this message is sent to the requester by the preceding node in the

sharing list. It prompts the requesting node to send a client-unhook-ptr message

back to the preceding node, and remove the data line from its local SLC.

client-unhooked: this message indicates to the home node that the modi�cations to the

sharing list are complete. The directory entry is unlocked, and the state is set back to

Home-Shared.

client-unhooked-exclusive: this message handles the situation where an unhook request

is \beaten" by an invalidate request from another node. It is possible for a client-

unhook-forward request to arrive at the new owner node (i.e. the node which requested

exclusive access to the data line). When this happens, a client-unhooked-exclusive

message is sent to the home node to prompt the home node to unlock the directory entry

(which was locked by the client-unhook-request). In addition, a client-unhook-

not-found message is sent to the node which requested to be unhooked.

C.2.4 Proxy Messages

proxy-bounced-read-request: this message is sent in response to a proxy-read-request

when the proxy node is in the process of obtaining another data line which con
icts

with the new request in the SLC, or there is no room in the proxy transit cache. The

client will re-send the proxy-read-request until it has bounced 10 times, at which

point the client will revert to sending a read-request to the home node.

proxy-read-request: this message is sent by a client to a proxy node once the client has

decided that it will use a proxy to service a read request.

take-hole: used to build the pending chain of clients. When a proxy-read-request arrives

from a client, and the proxy is already in the process of obtaining the data for another

client, this message is sent to the old \�nish" of the pending chain to link it to the latest

client (that latest client then becomes the new \�nish"). The use of the take-hole

message is illustrated in Figure 4.5(b).

C.2. Message Categories 271

C.2.5 Non-Caching Proxy Messages

bounced-non-caching-proxy-request: the matching directory entry at the home node is

locked (because the sharing list is being updated) so the non-caching-proxy-request

is bounced back to the proxy node.

bu�er-bounced-non-caching-proxy-request: when the system is simulating a simple �-

nite incoming message bu�er, this bu�er-bounce message is sent when a non-caching-

proxy-request arrives at a home node and there are already eight or more messages

in the incoming message bu�er.

non-caching-proxy-request: this message is sent by a proxy node to a home node, in

response to a proxy-read-request from a client, when there is no copy of the data in

the local SLC and the non-caching proxy policy is in use. The client node's id is sent

as part of the message.

non-caching-proxy-request-fwd: when the home node receives a non-caching-proxy-

request and the matching directory entry has status Home-Invalid, then this forwarding

message is sent on to the current owner node.

C.2.6 Proxy Bu�er Unhook Messages

proxy-bu�er-head-unhooked: the proxy node (i.e. a node where the data line copy is in

the proxy bu�er rather than the SLC) which requested to be unhooked from the sharing

chain was at the head of the sharing list. In response to a proxy-buffer-unhook-ok

message from the home node, it sends the proxy-buffer-head-unhooked message to

the home node to con�rm that it has deleted the proxy bu�er copy, along with the

pointer to the tail of the sharing list. The home node will then update the directory

entry for the data line to use the \tail" pointer, and will also unlock the entry.

proxy-bu�er-unhook-bounced: when a home node receives a proxy-buffer-unhook-

requestmessage for a locked directory entry, the \bounced" message is sent in response.

proxy-bu�er-unhook-cancelled: the node which requested the unhook of its proxy bu�er

entry has subsequently experienced a local read miss for the same data line before the

proxy-buffer-unhook-ok message arrived back at the requesting node. The proxy

bu�er entry has been \promoted" to the SLC, and so the node needs to remain on

the sharing list. The proxy-buffer-unhook-cancelled is sent to the home node in

response to the proxy-buffer-unhook-ok message, and it indicates that the unhook

transaction has been aborted and the sharing list should be unlocked by the home node.

272 Appendix C. The Cache Coherence Protocol

proxy-bu�er-unhook-forward: this message is sent along the sharing list until it reaches

the node before the (proxy) node which requested the unhook. When that happens a

proxy-buffer-unhook-ok message is sent to the unhook's requester.

proxy-bu�er-unhook-not-found: the proxy which requested to be unhooked could not be

found on the sharing list. This message is sent to the requester by the node at the end

of the sharing list (and it also sends a proxy-buffer-unhooked message to the home

node to unlock the sharing list).

proxy-bu�er-unhook-ok: this message is sent by the preceding node in the sharing chain

to the node which requested the unhook. It prompts the proxy node to remove the

matching entry from its proxy bu�er, and then send back a proxy-buffer-unhook-ptr

message (or proxy-buffer-head-unhooked if appropriate) containing a pointer to the

rest of the sharing list.

proxy-bu�er-unhook-ptr: sent in response to a proxy-buffer-unhook-ok, this message

contains a pointer to the remainder of the sharing list. The receiving node modi�es

its SLC (or proxy bu�er) entry to use this pointer, in e�ect removing the unhook's

requester from the sharing list. A proxy-buffer-unhookedmessage is then sent to the

home node.

proxy-bu�er-unhook-request: this message is sent to the home node when a proxy needs

to evict an entry from its proxy bu�er. This will initiate the actions needed to remove

the node from the sharing list.

proxy-bu�er-unhooked: this message noti�es the home node that the unhook modi�ca-

tions to the sharing list have �nished. The directory entry is then unlocked.

Appendix D

Order Notation

The order notation used in this thesis for expressing asymptotic magnitudes is that proposed

by Knuth [72]. Assume that f and g are functions over the domain of the natural numbers.

Then O(f(n)) is the set of all g(n) such that there exist positive constants c and n0 so that

jg(n)j � c f(n) for all n � n0. Informally this is the set of functions which \grow no faster"

than f .

Similarly,
(f(n)) is the set of all g(n) such that there exist positive constants c and n0 so

that jg(n)j � c f(n) for all n � n0. This is the set of functions which \grow at least as fast"

as f .

Finally, �(f(n)) are those functions which \grow at the same rate" as f . This is the set of

all g(n) such that g(n) 2 O(f(n)) and g(n) 2
(f(n)).

273

274 Appendix D. Order Notation

Bibliography

[1] Gheith A. Abandah and Edward S. Davidson. E�ects of architectural and techno-

logical advances on the HP/Convex Exemplar's memory and communication perfor-

mance. In the Twenty-Fifth Annual International Symposium on Computer Architec-

ture, Barcelona, pages 318{329, June 1998.

[2] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: a

tutorial. IEEE Computer, 29(12):66{76, December 1996.

[3] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David Krantz,

John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and Donald Yeung. The MIT

Alewife machine: architecture and performance. Twenty-Second Annual International

Symposium on Computer Architecture, Santa Margherita Ligure, in Computer Archi-

tecture News, 23(2):2{13, June 1995.

[4] Anant Agarwal and Anoop Gupta. Memory reference characteristics of multiprocessor

applications under MACH. Conference on Measurement and Modeling of Computer

Systems, Santa Fe, in Performance Evaluation Review, 16(1):215{225, May 1988.

[5] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter�eld,

and Burton Smith. The Tera computer system. International Conference on Supercom-

puting, Amsterdam, in Computer Architecture News, 18(3):1{6, September 1990.

[6] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakr-

ishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. TreadMarks: shared memory

computing on networks of workstations. IEEE Computer, 29(2):18{28, February 1996.

[7] Craig Anderson and Anna R. Karlin. Two adaptive hybrid cache coherency protocols.

In the Second Annual Symposium on High Performance Computer Architecture, San

Jose, California, pages 303{313, February 1996.

[8] Thomas E. Anderson, David E. Culler, and David A. Patterson. The case for networks

of workstations: NOW. IEEE Micro, 15(1):54{64, February 1995.

[9] James Archibald and Jean-Loup Baer. Cache coherence protocols: evaluation using a

multiprocessor simulation model. ACM Transactions on Computer Systems, 4(4):273{

298, November 1986.

[10] David H. Bailey. FFTs in external or hierarchical memory. Journal of Supercomputing,

4(1):23{35, March 1990.

275

276 Bibliography

[11] J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation algorithm. Nature,

324:446{449, December 1986.

[12] Andrew J. Bennett, Anthony J. Field, and Peter G. Harrison. Development and vali-

dation of an analytical model of a distributed cache coherency protocol. Performance

Evaluation, 27&28:541{563, October 1996.

[13] Andrew J. Bennett, Paul H. J. Kelly, Jacob G. Refstrup, and Sarah A. M. Talbot. Using

proxies to reduce cache controller contention in large shared-memory multiprocessors.

In Luc Boug�e, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors, Euro-Par

96 - Second European Conference on Parallel Processing, Lyon, volume 1124 of Lecture

Notes in Computer Science, pages 445{452. Springer-Verlag, August 1996.

[14] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Adaptive software cache

management for distributed shared memory architectures. Seventeenth Annual Interna-

tional Symposium on Computer Architecture, Seattle, in Computer Architecture News,

18(2):125{134, June 1990.

[15] Dileep P. Bhandarkar. Alpha Implementations and Architecture: complete reference and

guide. Digital Press, 1996.

[16] Ricardo Bianchini and Thomas J. LeBlanc. Eager combining: a coherency protocol for

increasing e�ective network and memory bandwidth in shared-memory multiprocessors.

In the Sixth IEEE Symposium on Parallel and Distributed Processing, Dallas, pages

204{213, October 1994.

[17] Peter L. Bird, Alasdair Rawsthorne, and Nigel P. Topham. The e�ectiveness of decou-

pling. In the Seventh International Conference on Supercomputing, Tokyo, pages 47{56,

July 1993.

[18] Matthias A. Blumrich, Richard D. Alpert, Yuqun Chen, Douglas W. Clark, Stefanos N.

Damianakis, Cezary Dubnicki, Edward W. Felten, Liviu Iftode, Kai Li, Margaret

Martonosi, and Robert A. Shillner. Design choices in the SHRIMP system: an empirical

study. In the Twenty-Fifth Annual International Symposium on Computer Architecture,

Barcelona, pages 330{341, June 1998.

[19] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Over-

beek, James Patterson, and Rick Stevens. Portable Programs for Parallel Processors.

Holt, Rinehart and Winston, 1987.

[20] Mats Brorsson. SM-prof: a tool to visualise and �nd cache coherence performance

bottlenecks in multiprocessor programs. In Proceedings of the ACM SIGMETRICS and

Performance '95, pages 178{187, May 1995.

[21] Lucien M. Censier and Paul Feautrier. A new solution to coherence problems in multi-

cache systems. IEEE Transactions on Computers, C-27(12):1112{1118, December 1978.

[22] Satish Chandra, James R. Larus, and Anne Rogers. Where is time spent in message-

passing and shared-memory programs? Sixth International Conference on Architectural

Bibliography 277

Support for Programming Languages and Operating Systems, San Jose, in SIGPLAN

Notices, 29(11):61{73, October 1994.

[23] Alan Charlesworth. Star�re: extending the SMP envelope. IEEE Micro, 18(1):39{49,

February 1998.

[24] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer Architecture:

a hardware/software approach. Morgan Kaufman, 1998.

[25] David E. Culler, Richard M. Karp, David Patterson, Abhijit Sahay, Eunice E. Santos,

Klaus Erik Schauser, Ramesh Subramonian, and Thorsten von Eicken. LogP: a practical

model of parallel computation. Communications of the ACM, 39(11):78{85, November

1996.

[26] Fredrik Dahlgren, Michel Dubois, and Per Stenstr�om. Sequential hardware prefetch-

ing in shared-memory multiprocessors. IEEE Transactions on Parallel and Distributed

Systems, 6(7):733{746, July 1995.

[27] W. J. Dally. Virtual-channel
ow control. IEEE Transactions on Parallel and Dis-

tributed Systems, 3(2):194{205, March 1992.

[28] William J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE

Transactions on Computing, 39(6):775{785, June 1990.

[29] Data General Corporation. NUMALiiNE Technology: the foundation for the AV 25000

server. Technical white paper, available online as http://www.dg.com/aviion/html/

av_25000_foundation.html. 1998.

[30] Peter J. Denning. On modeling program behaviour. In Proceedings of the Spring Joint

Computer Conference, Atlantic City, pages 937{944, May 1972.

[31] J. Dongarra, O. Brewer, J.A. Kohl, and S. Fineberg. A tool to aid in the design,

implementation, and understanding of matrix algorithms for parallel processors. Journal

of Parallel and Distributed Computing, 9(2):185{202, June 1990.

[32] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access bu�ering in mul-

tiprocessors. Thirteenth Annual International Symposium on Computer Architecture,

Tokyo, in Computer Architecture News, 14(2):434{442, June 1986.

[33] Cynthia Dwork, Maurice Herlihy, and Orli Waarts. Contention in shared memory

algorithms. Journal of the ACM, 44(6):779{805, November 1997.

[34] Susan J. Eggers and Randy H. Katz. A characterization of sharing in parallel pro-

grams and its application to coherency protocol evaluation. Fifteenth Annual Inter-

national Symposium on Computer Architecture, Honolulu, in Computer Architecture

News, 16(2):373{382, May 1988.

[35] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich, and W. S.

Lee. The M-machine multicomputer. In Annual International Symposium on Microar-

chitecture, Ann Arbor, pages 146{156. IEEE, December 1995.

278 Bibliography

[36] Michael J. Flynn. Some computer organizations and their e�ectiveness. IEEE Trans-

actions on Computers, C-21(9):948{960, September 1972.

[37] Arno Formella, Thomas Gr�un, and Christoph W. Ke�ler. The SB-PRAM: concept,

design and construction. In the Third Working Conference on Massively Parallel Pro-

gramming Models MPPM-97, London, pages 163{172. IEEE, November 1997.

[38] Edward F. Gehringer, Daniel P. Siewiorek, and Zary Segal. Parallel Processing: the

Cm* experience. Digital Press, 1987.

[39] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Revision to `Memory consis-

tency and event ordering in scalable shared-memory multiprocessors'. Technical Report

CSL-TR-93-568, Stanford University, Computer Systems Laboratory, April 1993.

[40] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta,

and John Hennessy. Memory consistency and event ordering in scalable shared-memory

multiprocessors. Seventeenth Annual International Symposium on Computer Architec-

ture, Seattle, in Computer Architecture News, 18(2):15{26, June 1990.

[41] Stein Gjessing, David B. Gustavson, James R. Goodman, David V. James, and Ernst H.

Kristiansen. The SCI cache coherence protocol. In Michel Dubois and Shreekant S.

Thakkar, editors, Workshop on Scalable Shared Memory Multiprocessors, Toronto,

pages 219{237. Kluwer Academic Publishers, May 1990.

[42] A.J. Goldberg and J.L. Hennessy. Mtool: an integrated system for performance debug-

ging shared memory multiprocessor applications. IEEE Transactions on Parallel and

Distributed Systems, 4(1):28{40, Jan 1993.

[43] Stephen R. Goldschmidt. Simulation of multiprocessors: accuracy and performance.

PhD thesis, Department of Electrical Engineering, Stanford University, June 1993.

[44] James R. Goodman. Using cache memory to reduce processor-memory tra�c. Tenth

Annual International Symposium on Computer Architecture, Stockholm, in Computer

Architecture News, 11(3):124{131, June 1983.

[45] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuli�e, Larry Rudolph,

and Marc Snir. The NYU Ultracomputer { designing an MIMD shared memory parallel

computer. IEEE Transactions on Computers, C-32(2):175{189, February 1983.

[46] S.L. Graham, P.B. Kessler, and M.K. McKusick. An execution pro�ler for modular

programs. Software: Practice and Experience, 13(8):671{685, Aug 1983.

[47] Thomas Gr�un and Mark A. Hillebrand. NAS integer sort on multi-threaded shared

memory machines. In David Pritchard and Je� Reeve, editors, Euro-Par 98 - Fourth

European Conference On Parallel Processing, Southampton, volume 1470 of Lecture

Notes in Computer Science, pages 999{1009. Springer-Verlag, September 1998.

[48] Mary W. Hall, Jennifer M. Anderson, Saman P. Amarasinghe, Brian R. Murphy, Shih-

Wei Liao, Edouard Bugnion, and Monica S. Lam. Maximizing multiprocessor perfor-

mance with the SUIF compiler. IEEE Computer, 29(12):84{89, December 1996.

Bibliography 279

[49] Jim Handy. The Cache Memory Book. Academic Press, second edition, 1998.

[50] Seif Haridi and Erik Hagersten. The cache coherence protocol of the Data Di�usion

Machine. In E. Odijk, M. Rem, and J.-C Syre, editors, PARLE 89 Parallel Architectures

and Languages Europe, Eindhoven, volume 365 of Lecture Notes in Computer Science,

pages 1{18. Springer-Verlag, June 1989.

[51] Mark Heinrich, Vijayaraghavan Soundararajan, John Hennessy, and Anoop Gupta. A

quantitative analysis of the performance and scalability of distributed shared memory

cache coherence protocols. IEEE Transactions on Computing, 48(2), February 1999.

[52] Hermann Hellwagner. On the practical e�ciency of randomized shared memory. In

Luc Boug�e et al, editor, Parallel Processing: CONPAR 92 - VAPP V, Lyon, volume

634 of Lecture Notes in Computer Science, pages 429{440. Springer-Verlag, September

1992.

[53] John Hennessy, Anoop Gupta, and Mark Heinrich. Cache-coherent distributed shared

memory: perspectives on its development and future challenges. Proceedings of the

IEEE, 87(3):418{429, March 1999.

[54] John L. Hennessy and David A. Patterson. Computer Architecture: a quantitative

approach. Morgan Kaufmann, second edition, 1996.

[55] Mark D. Hill. A case for direct mapped caches. IEEE Computer, 21(12):25{40, Decem-

ber 1988.

[56] Mark D. Hill. Multiprocessors should support simple memory consistency models. IEEE

Computer, 31(8):28{34, August 1998.

[57] Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and John Hennessy.

The e�ects of latency, occupancy and bandwidth in distributed shared memory multi-

processors. Technical Report CSL-TR-95-660, Computer Systems Laboratory, Stanford

University, January 1995.

[58] Chris Holt and Jaswinder Pal Singh. Hierarchical N-body methods on shared address

space multiprocessors. In the Seventh SIAM Conference on Parallel Processing for

Scienti�c Computing, pages 313{318, February 1995.

[59] Tor E. Jeremiassen and Susan J. Eggers. Reducing false sharing on shared memory

multiprocessors through compile time data transformations. In the Fifth ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, pages 179{188,

July 1995.

[60] Dongming Jiang and Jaswinder Pal Singh. A methodology and evaluation of the SGI

Origin2000. In SIGMETRICS and Performance '98, pages 171{181, June 1998.

[61] Ross E. Johnson. Extending the Scalable Coherent Interface for Large-Scale Shared-

Memory Multiprocessors. PhD thesis, Computer Science Department, University of

Wisconsin-Madison, February 1993.

280 Bibliography

[62] Teresa L. Johnson and Wen Mei Hwu. Run-time adaptive cache hierarchy management

via reference analysis. Twenty-Fourth Annual International Symposium on Computer

Architecture, Denver, in Computer Architecture News, 25(2):315{326, May 1997.

[63] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small

fully-associative cache and prefetch bu�ers. Seventeenth Annual International Sympo-

sium on Computer Architecture, Seattle, in Computer Architecture News, 18(2):364{373,

May 1990.

[64] M. Kandemir, A. Choudhary, J. Ramanujam, N. Shenoy, and P. Banerjee. Enhancing

spatial locality via data layout optimizations. In David Pritchard and Je� Reeve, edi-

tors, Euro-Par 98 - Fourth European Conference On Parallel Processing, Southampton,

volume 1470 of Lecture Notes in Computer Science, pages 422{434. Springer-Verlag,

September 1998.

[65] Gerry Kane and Hewlett Packard. PA-RISC 2.0 Architecture. Prentice Hall, 1996.

[66] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical studies of com-

petitive spinning for a shared-memory multiprocessor. In the Thirteenth ACM Sympo-

sium on Operating Systems Principles, Paci�c Grove, CA, pages 41{55, October 1991.

[67] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In

Jan van Leeuwen, editor, Handbook of theoretical computer science Vol. A: Algorithms

and Complexity, chapter 17, pages 871{941. Elsevier, 1990.

[68] Stefanos Kaxiras. Cache Optimization for Large Numbers of Processors using the Scal-

able Coherent Interface. IEEE Draft 0.36 Standard 1596.2-1996, available online from

ftp://ftp.cs.wisc.edu/galileo/kaxiras/stdbook.ps, November 1996.

[69] Stefanos Kaxiras, Stein Gjessing, and James R. Goodman. A study of three dynamic

approaches to handle widely shared data in shared-memory multiprocessors. In the

Twelfth International Conference on Supercomputing, Melbourne, pages 457{464, July

1998.

[70] Stefanos Kaxiras and James R. Goodman. The GLOW cache coherence protocol exten-

sions for widely shared data. In the Tenth International Conference on Supercomputing,

Philadelphia, pages 35{43, May 1996.

[71] J�org Keller. Fast rehashing in PRAM emulations. Theoretical Computer Science,

155(2):349{363, March 1996.

[72] Donald E. Knuth. Big omicron and big omega and big theta. SIGACT News, 8(2):18{24,

April-June 1976.

[73] Leonidas Kontothanassis, Galen Hunt, Robert Stets, Nikolas Hardavellas, Michael Cier-

niak, Srinivasan Parthasarathy, Wagner Meira, Jr., Sandhya Dwarkadas, and Michael L.

Scott. VM-based shared memory on low-latency, remote memory access networks.

Twenty-Fourth Annual International Symposium on Computer Architecture, Denver,

in Computer Architecture News, 25(2):157{169, May 1997.

Bibliography 281

[74] Leonidas I. Kontothanassis and Michael L. Scott. Software cache coherence for large

scale multiprocessors. In the First Annual Symposium on High Performance Computer

Architecture, Rayleigh, North Carolina, pages 286{295, January 1995.

[75] Leonidas I. Kontothanassis, Michael L. Scott, and Ricardo Bianchini. Lazy release

consistency for hardware-coherent multiprocessors. Technical Report TR547, University

of Rochester, Department of Computer Science, December 1994.

[76] David Koufaty and Josep Torrellas. Comparing data forwarding and prefetching for

communication-induced misses in shared-memory MPs. In the Twelfth International

Conference on Supercomputing, Melbourne, pages 53{59, July 1998.

[77] David Kroft. Lockup-free instruction fetch/prefetch cache organisation. Eighth An-

nual International Symposium on Computer Architecture, Minneapolis, in Computer

Architecture News, 9(3):81{87, May 1981.

[78] David J. Kuck. High Performance Computing: challenges for future systems. Oxford

University Press, 1996.

[79] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to

Parallel Computing: design and analysis of algorithms. Benjamin Cummings, 1994.

[80] Je�rey Kuskin. The FLASH Multiprocessor: designing a
exible and scalable system.

PhD thesis, Computer Systems Laboratory, Stanford University, November 1997. Also

available as technical report CSL-TR-97-744.

[81] Je�rey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh

Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop

Gupta, Mendel Rosenblum, and John Hennessy. The Stanford FLASH multiproces-

sor. Twenty-�rst Annual International Symposium on Computer Architecture, Chicago,

in Computer Architecture News, 22(2):302{313, April 1994.

[82] Leslie Lamport. How to make a multiprocessor computer that correctly executes mul-

tiprocess programs. IEEE Transactions on Computers, C-28(9):690{691, September

1979.

[83] Richard P. LaRowe Jr and Carla Schlatter Ellis. Experimental comparison of memory

management policies for NUMA multiprocessors. ACM Transactions on Computer

Systems, 9(4):319{363, November 1991.

[84] James R. Larus, Satish Chandra, and David A. Wood. CICO: a shared-memory pro-

gramming performance model. In Jeanne Ferrante and Tony Hey, editors, Portability

and Performance for Parallel Processors. John Wiley & Sons, 1993.

[85] James Laudon and Daniel Lenoski. The SGI Origin: a ccNUMA highly scalable server.

Twenty-Fourth Annual International Symposium on Computer Architecture, Denver, in

Computer Architecture News, 25(2):241{251, May 1997.

[86] Thomas J. LeBlanc, Michael L. Scott, and Christopher M. Brown. Large-scale parallel

programming: experience with the BBN Butter
y parallel processor. ACM SIGPLAN

Notices, 23(9):161{172, September 1988.

282 Bibliography

[87] Charles Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N.

Ganmukhi, Je�rey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St.

Pierre, David S. Wells, Monica C. Wong-Chan, Shaw-Wen Yang, and Robert Zak.

The network architecture of the Connection Machine CM-5. Journal of Parallel and

Distributed Computing, 33:145{158, 1996.

[88] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hen-

nessy. The directory-based cache coherence protocol for the DASH multiprocessor.

Seventeenth Annual International Symposium on Computer Architecture, Seattle, in

Computer Architecture News, 18(2):148{159, May 1990.

[89] Daniel E. Lenoski and Wolf-Dietrich Weber. Scalable Shared-Memory Multiprocessing.

Morgan Kaufmann, 1995.

[90] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM

Transactions on Computer Systems, 7(4):321{359, November 1989.

[91] David J. Lilja. Cache coherence in large-scale shared-memory multiprocessors: issues

and comparisons. Computing Surveys, 25(3):303{338, September 1993.

[92] Tom Lovett and Russell Clapp. STiNG: a CC-NUMA computer system for the com-

mercial marketplace. Twenty-Third Annual International Symposium on Computer Ar-

chitecture, Philadelphia, in Computer Architecture News, 24(2):308{317, May 1996.

[93] Tom Lovett and Shreekant Thakkar. The Symmetry multiprocessor system. In the

International Conference on Parallel Processing, Pennsylvania State University, volume

1 (Architecture), pages 303{310, August 1988.

[94] M. Martonosi, A. Gupta, and T. Anderson. Tuning memory performance of sequential

and parallel programs. IEEE Computer, 28(4):32{40, April 1995.

[95] Kathryn S. McKinley. A compiler optimization algorithm for shared-memory multipro-

cessors. IEEE Transactions on Parallel and Distributed Systems, 9(8):769{787, August

1998.

[96] Maged Michael and Ashwini Nanda. Design and performance of directory caches for

scalable shared memory multiprocessors. In the Fifth Annual Symposium on High Per-

formance Computer Architecture, Orlando, pages 142{151, January 1999.

[97] Maged M. Michael, Ashwini K. Nanda, Beng-Hong Lim, and Michael L. Scott. Coher-

ence controller architectures for SMP-based CC-NUMA multiprocessors. Twenty-Fourth

Annual International Symposium on Computer Architecture, Denver, in Computer Ar-

chitecture News, 25(2):219{228, June 1997.

[98] Shubhendu S. Mukherjee and Mark D. Hill. Using prediction to accelerate coherence

protocols. In the Twenty-Fifth Annual International Symposium on Computer Archi-

tecture, Barcelona, pages 179{190, June 1998.

[99] Henk L. Muller, Paul W. A. Stallard, and David H. D. Warren. Implementing the data

di�usion machine using crossbar routers. In the Tenth International Parallel Processing

Symposium, Honolulu, pages 152{158, April 1996.

Bibliography 283

[100] Jim Nilsson, Fredrik Dahlgren, Magnus Karlsson, Peter Magnusson, and Per Stenstr�om.

Computer system evaluation with commercial workloads. In IASTED International

Conference on Modelling and Simulation, Pittsburgh, pages 293{297, May 1998.

[101] Andreas Nowatzyk, G�unes Aybay, Michael Browne, Edmund Kelly, Michael Parkin,

Bill Radke, and Sanjay Vishin. Exploiting parallelism in cache coherency protocol

engines. In Seif Haridi, Khayri Ali, and Peter Magnusson, editors, Euro-Par 95 - First

European Conference On Parallel Processing, Stockholm, volume 966 of Lecture Notes

in Computer Science, pages 269{286. Springer-Verlag, August 1995.

[102] Andreas Nowatzyk, G�unes Aybay, Michael Browne, Edmund Kelly, Michael Parkin, Bill

Radke, and Sanjay Vishin. The S3.mp scalable shared memory multiprocessor. In the

International Conference on Parallel Processing, Vol. 1, pages 1{10, August 1995.

[103] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for mul-

tiprocessors with private cache memories. Eleventh International Symposium on Com-

puter Architecture, Ann Arbor, June, in Computer Architecture News, 12(3):348{354,

June 1984.

[104] G. F. P�ster, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfekder, K. P.

McAuli�e, E. A. Melton, V. A. Norton, and J. Weiss. The IBM Research Parallel Pro-

cessor Prototype (RP3): introduction and architecture. In the International Conference

on Parallel Processing, Pennsylvania State University, pages 764{771, August 1985.

[105] Gregory F. P�ster and V. Alan Norton. \Hot spot" contention and combining in multi-

stage interconnection networks. IEEE Transactions on Computers, C-34(10):943{948,

October 1985.

[106] Fong Pong, Michael Browne, G�unes Aybay, Andreas Nowatzyk, and Michel Dubois.

Design veri�cation of the S3.mp cache-coherent shared-memory system. IEEE Trans-

actions on Computers, 47(1):135{140, January 1998.

[107] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve, and Luiz Andr�e

Barroso. Performance of database workloads on shared-memory systems with out-of-

order processors. In the Eighth International Conference on Architectural Support for

Programming Languages and Operating Systems, San Jose, October 1998.

[108] Alain Raynaud, Zheng Zhang, and Josep Torrellas. Distance-adaptive update protocols

for scalable shared-memory multiprocessors. In the Second Annual Symposium on High

Performance Computer Architecture, San Jose, pages 323{334, February 1996.

[109] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and D. A. Wood.

The Wisconsin Wind Tunnel: virtual prototyping of parallel computers. Performance

Evaluation, 21(1):48{60, June 1993.

[110] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon:

user-level shared memory. Twenty-First Annual International Symposium on Computer

Architecture, Chicago, in Computer Architecture News, 22(2):325{336, April 1994.

284 Bibliography

[111] Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk. Missing the memory wall: the

case for processor/memory integration. Twenty-Third Annual International Symposium

on Computer Architecture, Philadelphia, in Computer Architecture News, 24(2):90{101,

May 1996.

[112] Ashley Saulsbury, Tim Wilkinson, John Carter, and Anders Landin. An argument

for simple COMA. In the First Annual Symposium on High Performance Computer

Architecture, Rayleigh, North Carolina, pages 276{285, January 1995.

[113] Christoph Scheurich and Michel Dubois. Dynamic page migration in multiprocessors

with distributed global memory. IEEE Transactions on Computers, 38(8):1154{1163,

August 1989.

[114] Steven L. Scott. Synchronization and communication in the T3E multiprocessor. Sev-

enth International Conference on Architectural Support for Programming Languages

and Operating Systems, Cambridge, Mass, in SIGPLAN Notices, 31(9):26{36, Septem-

ber 1996.

[115] Jaswinder Pal Singh, Chris Holt, John L. Hennessy, and Anoop Gupta. A parallel adap-

tive fast multipole method. In Supercomputing 93, Portland, pages 54{65, November

1993.

[116] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford par-

allel applications for shared-memory. Computer Architecture News, 20(1):5{44, March

1992.

[117] Jonas Skeppstedt and Per Stenstr�om. Simple compiler algorithms to reduce ownership

overhead in cache coherence protocols. Sixth International Conference on Architectural

Support for Programming Languages and Operating Systems, San Jose, in SIGPLAN

Notices, 29(11):286{296, October 1994.

[118] Alan Jay Smith. Cache memories. Computing Surveys, 14(3):473{530, September 1982.

[119] James E. Smith. Decoupled access/execute computer architectures. ACM Transactions

on Computer Systems, 2(4):289{308, November 1984.

[120] Vijayaraghavan Soundararajan, Mark Heinrich, Ben Verghese, Kourosh Gharachorloo,

Anoop Gupta, and John Hennessy. Flexible use of memory for replication/migration in

cache-coherent DSM multiprocessors. In the Twenty-Fifth Annual International Sym-

posium on Computer Architecture, Barcelona, pages 342{355, June 1998.

[121] Splash-2 Characterization Database. Available on-line from http://liber.stanford

.edu/~torrie/Splash2/Results.html.

[122] Splash-2 Suite Distribution. Available on-line from ftp://www-flash.stanford.edu

/pub/splash2/.

[123] Per Stenstr�om. A survey of cache coherence schemes for multiprocessors. IEEE Com-

puter, 23(6):12{24, June 1990.

Bibliography 285

[124] Per Stenstr�om, Erik Hagersten, David J. Lilja, Margaret Martonosi, and Madan Venu-

gopal. Trends in shared memory multiprocessing. IEEE Computer, 30(12):44{50, De-

cember 1997.

[125] Per Stenstr�om, Truman Joe, and Anoop Gupta. Comparative performance evaluation of

cache-coherent NUMA and COMA architectures. Nineteenth International Symposium

on Computer Architecture, Gold Coast, in Computer Architecture News, 20(2):80{91,

May 1992.

[126] Thomas Sterling. Beowulf-class clustered computing: harnessing the power of paral-

lelism in a pile of PCs. In the Third Annual Conference on Genetic Programming,

University of Wisconsin-Madison, 1998.

[127] Dimitrios Stiliadis and Anujan Varma. Selective victim caching: a method to improve

the performance of direct-mapped caches. In the Twenty-Seventh Hawaii International

Conference on Systems Sciences, Volume 1, pages 412{421, January 1994.

[128] Harold S. Stone. High-Performance Computer Architecture. Addison Wesley, third

edition, 1993.

[129] Sarah A. M. Talbot, Andrew J. Bennett, and Paul H. J. Kelly. Cautious, machine-

independent performance tuning for shared-memory multiprocessors. In Luc Boug�e,

Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors, Euro-Par 96 - Second

European Conference on Parallel Processing, Lyon, volume 1123 of Lecture Notes in

Computer Science, pages 106{113. Springer-Verlag, August 1996.

[130] Sarah A. M. Talbot and Paul H. J. Kelly. Reactive proxies: a
exible protocol extension

to reduce ccNUMA node controller contention. In David Pritchard and Je� Reeve, edi-

tors, Euro-Par 98 - Fourth European Conference On Parallel Processing, Southampton,

volume 1470 of Lecture Notes in Computer Science, pages 1062{1075. Springer-Verlag,

September 1998.

[131] Sarah A. M. Talbot and Paul H. J. Kelly. Stable performance for cc-NUMA using

�rst-touch page placement and reactive proxies. In Jonathan Schae�er, editor, High

Performance Computing Systems and Applications, pages 251{266. Kluwer Academic

Publishers, May 1998.

[132] B. A. Tanyi. Iterative Solution of the Incompressible Navier-Stokes Equations on a

Distributed Memory Parallel Computer. PhD thesis, University of Manchester Institute

of Science and Technology, 1993.

[133] Charles P. Thacker, Lawrence C. Stewart, and Edwin H. Satterthwaite. Fire
y: a

multiprocessor workstation. IEEE Transactions on Computers, 37(8):909{920, August

1988.

[134] Manu Thapar and Bruce Delagi. Stanford distributed-directory protocol. IEEE Com-

puter, 23(6):78{80, June 1990.

[135] Manu Thapar, Bruce A. Delagi, and Michael J. Flynn. Scalable cache coherence for

shared memory multiprocessors. In Hans P. Zima, editor, First Annual Conference

286 Bibliography

on Parallel Computation, Salzburg, volume 591 of Lecture Notes in Computer Science,

pages 1{12. Springer-Verlag, September 1991.

[136] J. Torrellas, M.S. Lam, and J.L. Hennessy. False sharing and spatial locality in multi-

processor caches. IEEE Transactions on Computers, 43(6):651{663, June 1994.

[137] Leslie G. Valiant. Optimality of a two-phase strategy for routing in interconnection

networks. IEEE Transactions on Computers, C-32(8):861{863, August 1983.

[138] Leslie G. Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103{111, August 1990.

[139] Steven P. VanderWiel and David J. Lilja. When caches aren't enough: data prefetching

techniques. IEEE Computer, 30(7):23{30, July 1997.

[140] T. D. Wagner, E. Smirni, A. W. Apon, M. Madhukar, and L. W. Dowdy. The e�ects

of thread placement on the KSR-1. In the Eighth International Parallel Processing

Symposium, Cancun, pages 618{624, April 1994.

[141] Ian Watson and Alasdair Rawsthorne. Decoupled pre-fetching for distributed shared

memory. In Proceedings of the Twenty-Eighth Hawaii International Conference on Sys-

tem Sciences, volume 5, pages 252{261, January 1995.

[142] Wolf-Dietrich Weber and Anoop Gupta. Analysis of cache invalidation patters in mul-

tiprocessors. In Proceedings of the Third International Conference on Architectural

Support for Programming Languages and Operating Systems, Boston, pages 243{256,

April 1989.

[143] Larry D. Wittie, Gudjon Hermannsson, and Ai Li. Eager sharing for e�cient massive

parallelism. In the International Conference on Parallel Processing, volume II, pages

251{255, August 1992.

[144] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop

Gupta. The SPLASH-2 programs: characterization and methodological considera-

tions. Twenty-Second Annual International Symposium on Computer Architecture,

Santa Margherita Ligure, in Computer Architecture News, 23(2):24{36, June 1995.

[145] Steven Cameron Woo, Jaswinder Pal Singh, and John L. Hennessy. The performance

advantages of integrating block data transfer in cache-coherent multiprocessors. Sixth

International Conference on Architectural Support for Programming Languages and Op-

erating Systems, San Jose, in SIGPLAN Notices, 29(11):219{229, October 1994.

[146] Ken Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro, 16(2):28{40,

April 1996.

[147] Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. Hardware for speculative par-

allelization of partially-parallel loops in DSM multiprocessors. In the Fifth Annual

Symposium on High Performance Computer Architecture, Orlando, January 1999.

