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Abstract

It is widely accepted today that the end of microprocessor performance growth based on in-

creasing clock speeds and instruction-level parallelism (ILP) demands new ways of exploit-

ing transistor densities. Manycore processors (most commonly known as GPGPUs or simply

GPUs) provide a viable solution to this performance scaling bottleneck through large num-

bers of lightweight compute cores and memory hierarchies that rely primarily on software for

their efficient utilization. The widespread proliferation of this class of architectures today is a

clear indication that exposing and managing parallelism on a large scale as well as efficiently

orchestrating on-chip data movement is becoming an increasingly critical concern for high-

performance software development. In such a computing landscape performance portability –

the ability to exploit the power of a variety of manycore chips while minimizing the impact on

software development and productivity – is perhaps one of the most important and challenging

objectives for our research community.

This thesis is about performance portability for manycore processors and how source-to-source

compilation can help us achieve it. In particular, we show that for an important set of

loop-programs, performance portability is attainable at low cost through compile-time poly-

hedral analysis and optimization and parametric tiling for run-time performance tuning. In

other words, we propose and evaluate a source-to-source compilation path that takes affine

loop-programs as input and produces parametrically tiled parallel code amenable to run-time

tuning across different manycore platforms and devices – a very useful and powerful property if

we seek performance portability because it decouples the compiler from the performance tun-

ing process. The produced code relies on a platform-independent run-time environment, called

Avelas, that allows us to formulate a robust and portable code generation algorithm. Our ex-

perimental evaluation shows that Avelas induces low run-time overhead and even substantial

speed-ups for wavefront-parallel programs compared to a state-of-the-art compile-time scheme

with no run-time support. We also claim that the low overhead of Avelas is a strong indication

that it can also be effective as a general-purpose programming model for manycore processors

as we demonstrate for a set of ParBoil benchmarks.
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Chapter 1

Introduction

For more than two decades, microprocessor performance grew exponentially as computer ar-

chitects could increase clock frequencies and exploit instruction-level parallelism with virtually

no impact on power dissipation and cost. Software could directly benefit from this since no

considerable changes (if any) to the source code were required in order to exploit the power

of newer and faster processors. This situation has changed significantly over the last 10 years

with parallelism becoming increasingly ubiquitous and memory-hierarchy-aware optimizations

a critical concern for high-performance software. A milestone in this paradigm shift was the

advent of manycore processors primarily represented by Graphics Processing Units (GPUs)

that have been developed to support massively data-parallel computations. In today’s era of

Big Data1, manycore processors are becoming vital for a growing number of applications that

require extremely fast or real-time processing of huge and complex data-sets. However, pro-

gramming these devices remains challenging even though the release of CUDA and OpenCL

– two high-level languages for general-purpose manycore programming – has helped manycore

processors to become widely adopted as mainstream software accelerators.

OpenCL and CUDA provide a reasonably high-level programming abstraction that enables a

wide range of developers to unlock the computing power of manycore chips. Nevertheless, sev-

eral machine-dependent performance aspects remain exposed to the OpenCL/CUDA paradigm

1Big data, is a term denoting data-sets so large and complex that require unconventional processing methods.
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2 Chapter 1. Introduction

which raises the question of performance portability – how can we write a program that runs fast

accross different manycore chips without the need to change. For example, an OpenCL/CUDA

programmer is responsible for managing the granularity of parallelism – the processing of data

in chunks of finite size that reflect the underlying finite compute and/or memory resources – as

well as the orchestration of data movement from off-chip main memory to on-chip scratchpad

memories – a process highly dependent on machine-specific resource trade-offs. Performing

these tasks very efficiently for one machine does not mean that the same program will run

fast on an other as well. The question of performance portability is particularly relevant to-

day as manycore processors become increasingly pervasive and diverse (from mobile devices to

high-performance computing clusters).

For sequential or even vector processors, performance portability is attainable today through

any modern retargetable optimizing and/or vectorizing compiler. However, manycore proces-

sors – or in fact any parallel processor – pose new and still largely unresolved challenges with

respect to performance portability. These challenges could be reduced into the management of

two main properties of a program namely parallelism and locality. Unlike scalar or vector opti-

mizations, parallelism and locality management can be effectively captured by high-level source

languages like OpenCL and CUDA. Consequently, source-to-source compilation appears to be

a highly convenient methodology for studying performance portability as it allows us to con-

centrate on parallelism and locality management without worrying about the source-to-binary

compilation path which is left to existing highly-efficient and trusted optimizing compilers.

In order to avoid the intractability of a generic strategy towards performance portability, i.e.

a strategy applicable to any possible program, this thesis concentrates on loop-programs and

more specifically to those loop-programs amenable to automatic parallelization based on the

polyhedral model (a set of programs also known as Static Control Programs or SCoPs). The

polyhedral model is a mathematical model of SCoPs that utilizes robust mathematical tools

for analysis and optimization. Apart from its intellectual appeal, it is also a mature automatic

parallelization technology used by popular commercial compilers like IBM’s XL compiler, GCC,

LLVM and the R-stream compiler. Even though restrictive, we believe that SCoPs represent a

decent subset of loop-programs found in several important high-performance applications and
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could also be considered a solid first step towards more generic approaches to performance

portability.

In this context, the contributions made by this thesis are the following:

Analysis and Optimization in the Polyhedral Model

Analysis and optimization in the polyhedral model has been an active area of research for more

than 20 years (it actually goes back to the modeling and optimization of systolic programs).

However, even though important advances have been made in this area, utilizing them in prac-

tice is hard as most polyhedral compilers are designed to be used as monolithic executables with

restrictive applicability and non-flexible behavior. As a result, we believe that there is a need

for a polyhedral framework that leverages existing advances in polyhedral analysis and opti-

mization yet provides a well-defined object-oriented API that is easily extensible/customizable

and also allows us to use and manipulate different components of the model intuitively in a pro-

grammable fashion. This thesis presents the design and implementation of the first polyhedral

framework that meets these requirements.

Code Generation

Even though code generation in the polyhedral model has been successfully addressed for se-

quential and OpenMP targets, the problem of CUDA or OpenCL code generation remains open.

It involves the task of partitioning and mapping a parallelized SCoP into an OpenCL/CUDA

execution environment as well as producing additional code for managing the on-chip memory

hierarchy. Even though recent efforts towards that direction have shown promising results,

this thesis presents a novel code generation algorithm that relies on a well-defined platform-

independent run-time environment, called Avelas. By using Avelas as our target source language

(instead of OpenCL or CUDA) we are able to simplify code generation to a large extent and

produce code that is platform-independent and thus can target a variety of manycore chips and

platforms – something that has not been attempted by any previous work that we know of.
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Performance Tuning

Relying solely on a single compilation step to produce high-performance OpenCL/CUDA code

requires compile-time knowledge of the hardware along with a performance model that utilizes

that knowledge in order to accurately estimate performance. An alternative is to iteratively

optimize a program in search for the best combination of optimization parameters – a process

widely known as auto-tuning. This thesis follows a third approach that relies on a single

compilation step that produces parameterized versions amenable to run-time auto-tuning. Such

approach allows us to decouple compilation from the performance tuning process and therefore

combine simple and portable code-generation with fast and effective performance tuning.

1.1 Thesis Outline

This thesis is divided into two main parts reflecting the two main concerns involved in source-

to-source compilation namely analysis and optimization (Part I) and code generation (Part II).

Chapter 2 precedes both parts as it introduced the technical background of the thesis. In

particular, the remainder of this document is organized as follows:

Chapter 2 introduces the general context of this thesis including terminology, notation and

an extensive coverage of related work. More specifically, it discusses the following four main

components of the thesis topic: (i) Manycore Processors (Section 2.1), (ii) Source-to-Source

Compilation (Section 2.2), and (iii) Static Control Programs (Section 2.3). The related work

section (Section 2.4) is divided into two parts. The first part (Section 2.4.1) presents previous

work focusing on source-to-source compilation of SCoPs targeting GPUs. The second part

(Section 2.4.2) covers general source-to-source compilation work that aims to raise the level of

abstraction for manycore programming. Finally Section 2.5 presents a list of specific technical

contributions made by this thesis along with a list of publications produced.
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Part I: Analysis and Optimization

This part focuses on the analysis and optimization phase of source-to-source compilation. In

our context this phase involves the polyhedral model – an analytical framework for analysis and

optimization of SCoPs. The primary objective of this phase is to perform machine-independent

automatic parallelization and locality optimization. In particular:

Chapter 3 presents an overview of the polyhedral model – the analytical framework that was

used for machine-independent automatic parallelization and locality optimization.

Chapter 4 presents the Pluto scheduling algorithm – a state-of-the-art algorithm for automatic

parallelization in the polyhedral model. Pluto can be used to expose parallelism at the finest

granularity and enable the loop-tiling transformation. In this thesis Pluto is used as the main

machine-independent loop optimizer. It is shown that in some cases the pluto algorithm can

be sensitive to the layout of dependence constraints and a simple solution is proposed.

Chapter 5 presents the RosePolly framework for polyhedral compilation. RosePolly is a novel

object-oriented API for polyhedral compilation based on the ROSE compiler infrastructure.

Part II: Code Generation

The code generation part focuses on mapping a parallelized SCoP into a GPU execution envi-

ronment and it is organized as follows:

Chapter 6 presents and evaluates a novel code generation mechanism for SCoPs. The proposed

method produces parametrically tiled and platform-independent code amenable to portable

run-time exploration of partitioning parameters, i.e. tile-sizes.

Chapter 7 presents and evaluates Avelas, a new programming model for manycore processors

inspired by Chapter 6.

Finally, Chapter 8 reflects on the contributions made by this thesis and concludes with sugges-

tions for future work.



Chapter 2

Background

This thesis is about source-to-source compilation of static control programs for manycore proces-

sors. In this chapter the technical background of this topic is presented after being decomposed

into the following counterparts:

• Manycore Processors – Section 2.1

• Source-to-Source Compilation – Section 2.2

• Static Control Programs – Section 2.3

In addition, Section 2.4 presents an extensive coverage of related work to date while Section 2.4.3

presents the motivation behind the chosen research avenue. Finally, Section 2.5 presents a list

of specific technical contributions made and a list of resulting publications (Section 2.5.1).

2.1 Manycore Processors

Manycore processors is an emerging class of hardware architectures primarily represented by

modern Graphics Processing Units (GPUs) that have been developed to support massively data-

parallel1 computations. In this section we are going to see how microprocessor performance

1Data-parallelism – as opposed to task-parallelism – enables the underlying hardware to execute the same
operations on multiple data items concurrently.

6
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scaled until the early 2000s and then halted (Section 2.1.1) and why manycore processors pro-

vide a viable solution to the performance scaling problem (Section 2.1.2). Finally, we are going

to see how manycore processors can be effectively programmed through the OpenCL/CUDA

paradigm (Section 2.1.3) and then how their performance potentials can be attained in practice

(Section 2.1.4).

2.1.1 Moore’s Law and Performance Scaling

Even though the physical properties of the logical building block of modern microprocessors

– the semiconductor transistor – were discovered in 19472, it wasn’t until the late 1950s that

we were able to combine them into integrated circuits. Less than 10 years later – in 1965

– Gordon Moore3 predicted the doubling of the amount of transistors on integrated circuits

every year [Moo65], heralding the advent of the silicon revolution [Bon98]. Although Moore’s

prediction was later adjusted to half the initial rate, the underlying linear trend was soon

apparent and became widely known as Moore’s Law.

A crucial observation pertaining Moore’s law is that increasing the transistor count of a micro-

processor does not necessarily correlate with performance – the amount of meaningful compu-

tation performed per time unit. As a result, scaling performance with the amount of transistors

became a critical objective. Initially, the primary avenues towards that goal was to increase the

clock frequency on one hand and to exploit instruction-level parallelism (ILP) [HP11] on the

other. Even though, power dissipation was an important obstacle to increasing clock speeds at

first, the emergence of CMOS4 technology in the early 1980s along with the scaling properties

of MOSFET5 [DGR+74] enabled us to scale clock frequencies proportionally to the transistor

count with practically no impact on power dissipation and cost [FM+11].

As processor performance began to grow throughout the 1980s and 1990s, a widening gap

2By John Bardeen, Walter Brattain and William Shockley for which they won the Nobel prize in physics in
1956.

3Three years later Gordon Moore co-founded NM electronics which later became Intel Corporation.
4Complementary Metal-Oxide-Semiconductor or CMOS, is an integrated-circuit fabrication technology

patented by Frank Wanlass in 1967.
5Metal-Oxide-Semiconductor Field-Effect Transistor or MOSFET, is the building block of modern CMOS

chips. It was invented by Dawon Kahng and Martin M. (John) Atalla at Bell Labs in 1959.
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Figure 2.1: Floorplan of the VIA Isaiah chip released in 2008. Most chips had a similar structure
in the early 2000s. Notice that computation is carried out by a small portion of the die – namely
the Floating Point and SIMD unit – located at the lower left section.

between processor demand for data and memory’s ability to deliver, gradually surfaced [WM95].

The solution came from integrating one or more levels of memory hierarchy to the chip as a way

of mitigating memory latency by automatically exploiting spatial and temporal locality. These

memory modules – known as L1, L2 or L3 caches – were managed by increasingly complex

hardware schemes [PH09], that began to occupy a large portion of die6 space. Figure 2.1 shows

how a microprocessor looked in the early 2000s. Note that by that time, the actual compute

unit of the chip was covering a small portion of the die area while the rest of the space was

covered by mechanisms designed to keep a single serial execution stream active for as long as

possible.

Up until the early to mid 2000s, microprocessor performance had sustained an exponential

growth that at the same time enabled software to directly benefit without the need to change.

Unfortunately, this growth was gradually disrupted primarily due to power dissipation con-

cerns [FM+11] while on the other hand, opportunities for instruction-level parallelism had

already reached the point of diminishing returns a few years earlier [HP11, HD04, AHKB00] –

around the late 1990s. The graph of Figure 2.2 shows how clock frequencies and ILP began to

6A small block of semiconducting material, on which a given functional circuit is fabricated
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Figure 2.2: CPU scaling graph indicating the end of performance scaling based on frequency
and ILP scaling. The Original data were collected and plotted by M. Horowitz, F. Labonte,
O. Shacham, K. Olukotun, L. Hammond and C. Batten. The dotted line extrapolations were
made by C. Moore [Moo11].

plateau (along with energy dissipation capacity) indicating the need for a potentially radical

new perspective [ABC+06].

A way around this performance-scaling bottleneck was provided by Chip Multiprocessors (CMPs).

In particular, the replication of a single processing core within the same chip could theoretically

maintain a linear scaling of performance, e.g., doubling of the transistor count means doubling

of processing cores. Such scaling though could only be attained in practice by explicitly ex-

posing and managing coarse-grained parallelism at the software level if such parallelism exists.

In other words, performance could no longer maintain the growth rates of the past without

considerable software intervention, i.e., programming effort.

Even though exploiting transistor densities with parallelism was proven beneficial before [CSB92,

ONH+96], power dissipation constraints remain a limiting factor for CMP scaling today, es-

pecially under 90nm7 fabrication. As a result performance scalability with transistor density

remained an open problem in the mid 2000s.

Today, the prevailing solution towards scalable performance comes from a class of hardware

configurations commonly known as heterogeneous systems. As shown in Figure 2.3 they con-

7Under 90-nm fabrication leakage current starts to affect overall chip power as explained by
Fuller et. al [FM+11].
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Figure 2.3: High-level view of a heterogeneous system consisted of n devices

sist of a Host CMP running an operating system and coordinating one or more independent

devices designed for specialized or general-purpose software acceleration. These devices reside

on the same computer node and they could be FPGA cards, Digital-Signal Processors (DSP)

or general-purpose Graphics Processors (GPUs). Their main design principle is to limit power

dissipation by simplifying the architecture of the chip and rely mostly on software for their

efficient utilization.

The emergence of heterogeneous systems today, indicates that the responsibility for performance

scaling is being increasingly shifted towards software which would in theory enable performance

to scale with transistor densities for the next 5-10 years [FM+11]. What remains to be seen is

whether software development for these devices will confirm such scaling projections in practice

and what would be the role of new programming environments and compilers in the process.

The subject of this thesis is to investigate the ways in which source-to-source compilation can

provide an answer to this question for a particular kind of devices namely general-purpose

manycore processors or GPUs. More specifically, we will be looking at performance portability

– how parallelism and locality can be effectively managed for a variety of GPU devices – for an

important subset of loop-programs and how source-to-source compilation can help us achieve it.
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Figure 2.4: (a) Die photo of the NVIDIA gtx680 graphics processor (b) The NVIDIA Kepler
architecture implemented by the gtx680 and carrying 1536 parallel compute cores.

2.1.2 Manycore Processors for General-Purpose Computing

The main design principle of heterogeneous devices is to limit power dissipation and attain bet-

ter scaling properties by reducing the architectural complexity. As such, manycore processors

exploit the increasing transistor densities with large numbers of simple compute cores and light-

weight on-chip memory hierarchies. Their design originates from graphics processors (GPUs)

which in the early 2000s began to support general-purpose compute capabilities. For the rest

of this document the term GPU will be used to denote manycore processors in general, as it is

more widely recognised and used in the literature. Figure 2.4 depicts a modern general-purpose

graphics processor chip along with the respective architectural design. Notice that the die area

dedicated to actual computation is now considerably larger compared to Figure 2.1 and consists

of several hundreds of parallel computing elements. It is clear that manycore chips are effective

in significantly reducing power dissipation while increasing computing power. Nevertheless,

whether the available theoretical peak performance can be exploited by the software and to

what degree is an open and multidisciplinary problem (e.g. from compilers, to languages and

high-performance computing).
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In general, manycore chips can be viewed as Single Instruction Multiple Data (SIMD) archi-

tectures. However, they are clearly distinguished from conventional SIMD machines as a single

instruction can span millions of data elements, each one representing an individual control path

or thread that is free to diverge. In order to describe this execution model, NVIDIA coined the

term Single Instruction Multiple Threads (SIMT) which is a more accurate characterization.

The first manycore GPUs with general-purpose compute capabilities surfaced in the mid 2000s.

However, they could only be programmed with low-level graphics-based languages (i.e. shading

languages) which discouraged non-graphics experts from using them. It was not until NVIDIA

released CUDA (Compute Unified Device Architecture) in 2006 that general purpose computing

with GPUs really started to take off. In addition, the first release of the OpenCL specifica-

tion two years later was another milestone as it enabled software portability across different

heterogeneous devices and platforms.

Today, CUDA and OpenCL can be easily used to exploit the full power of GPU devices.

Consequently, by targeting CUDA and/or OpenCL in a source-to-source compilation path we

can effectively study the potentials for performance portability by automating the management

of parallelism and locality through compile-time or run-time techniques. In fact this is the main

objective and focus of this thesis.

2.1.3 The CUDA/OpenCL Paradigm

The striking similarity between the OpenCL and CUDA programming models allow us to use

both terms interchangeably. Their primary difference lies in their implementation, i.e. CUDA is

defined as a high-level programming language implemented by NVIDIA’s proprietary compiler

while the OpenCL standard specifies a set of runtime library calls including a call to a JIT

(Just-In-Time) compiler that is supposed to produce the device-specific part of the code (the so-

called Device Code as we will see later on). In order to facilitate the generality of the definitions

presented and used in the rest of the thesis, the OpenCL terminology will be primarily adopted.

According to Gaster et al [GHK+11], OpenCL can be decomposed in four models: the platform
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Figure 2.5: OpenCL platform model of a single device.

model, the execution model, the memory model and the programming model. Note that the

same models are also evident in CUDA with negligible differences.

The platform model defines a central control processor called Host, that coordinates a vector of

parallel Devices as shown in Figure 2.3. This thesis is focused on a single device configuration

i.e. an OpenCL platform consisting of a single GPU device. Regardless of the type (e.g. GPU,

FPGA etc.) each OpenCL device is defined by a set of functionally independent Compute Units

and each Compute unit by a set of Processing Elements as illustrated in Figure 2.5. We will

refer to this abstract device model as the physical processor space of an OpenCL device. The

close resemblance between the OpenCL device model and the actual architecture of a GPU is

indicative of the importance of GPUs in heterogeneous computing systems.

According to the OpenCL execution model, each device executes a Device Code following a

data-parallel SIMT concurrency model (Single Instruction Multiple Threads). Device code

is written as special C-Style functions called kernels that are invoked by the Host. The

SIMT concurrency model indicates that a single Kernel is executed concurrently across a set of

threads called work-items . Work-items are organized into Work-Groups and work-groups into

an ND-Range according to the following definitions :

Definition 1. A Work-Group is a 3D organization of work-items defined by a tuple WG(x, y, z),

where x, y and z are ranges of work-items.

Definition 2. An ND-Range is a 3D organization of homogeneous work-groups defined as a

tuple NDR(x, y, z), where x, y and z are ranges of work-groups.

We will refer to this abstract execution model as the virtual processor space. Work-items,
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Figure 2.6: OpenCL execution and memory model.

work-groups and nd-ranges can be addressed from the device code through special index vari-

ables. We define these variables as :

wi Work-item ID that carries the work-item’s position within a Work-Group through a set of

coordinates wi.x, wi.y and wi.z.

wg Work-Group ID that carries the Work-Group position within an ND-Range through a set

of coordinates wg.x, wg.y and wg.z.

glw Work-Group ID that carries the global position of a Work-Group.

gli Work-item ID that carries the work-item’s global position within the Work-Group.

Each work-item associated with a specific kernel execution, is exposed to three levels of abstract

memory hierarchy. In particular, there is a Global Memory randomly accessed by all work-

items, a Local Memory with a work-group scope and a Private Memory dedicated to each

work-item separately. Figure 2.6 concisely depicts the OpenCL execution environment consisted

of the execution and memory models combined. Note that this is only an abstraction and does

not necessarily correspond to physical memory hierarchy levels. The actual physical mapping

of the OpenCL abstract memory hierarchy levels for a typical GPU is depicted in Figure 2.7

as part of an OpenCL device.

Evidently, the virtual processor space represents the available parallelism in a computation

that might not correspond to the actual physical processor space. This means that multiple
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Figure 2.7: A GPU device depicted as an OpenCL platform combined with physical memory
hierarchy levels.

Work-Groups might be allocated to a single compute unit at runtime hence share the respective

resources. Consequently, carefully weighing the resource usage of each work-group can have

a considerable impact on performance as it directly affects the compute unit’s capacity to

simultaneously execute multiple work-groups. This trade-off is quantitatively captured by the

occupancy metric defined in paragraph 2.1.4. An interesting demonstration of the importance

of this effect is presented by a recent study from Yang et al [YXM+12] that highlights the

importance of local memory usage in attaining high GPU performance. In particular, it was

shown that if work-groups release their local-memory resources right after they are done with

them – instead of holding them for their entire lifetime – then more work-groups will be able

to fit in a compute unit yielding much better performance.

2.1.4 Software Performance

The reduced architectural complexity of GPUs signifies the importance of software towards

realising their performance potential. This potential is mainly driven by the peak computing

throughput of the compute cores on one hand (can exceed 3 TFLOPS today), and the peak main

memory bandwidth (can reach up to 208 GB/sec). One of the key requirements in that respect

is the ability of software to dispatch massively data-parallel computations or in other words

issue instructions that operate on millions of data elements (i.e. threads) in a SIMT fashion. By

doing that, GPUs are able to minimize idle cycles by continuously switching between threads
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(i.e. work-items) waiting for resources and threads that are ready to be executed.

Having large amounts of data-parallel workloads though is typically not enough. One of the

earliest attempts to break down the main components of GPU performance was presented by

Ryoo et al [RRB+08] and led to the development of the ParBoil benchmark suite8. Soon after-

wards, Hong et al. [HK09] and Sim et al. [SDKV12] presented a comprehensive study showing

that GPU performance estimation requires detailed static and dynamic profiling information.

In particular, an analytical performance model was proposed based on two metrics: Compute

Warp Parallelism (CWP) and Memory Warp Parallelism (MWP) that measure the efficiency

in exploiting the available compute throughput and main memory bandwidth respectively.

In summary, the main components that influence those metrics (including the ones studied by

Ryoo et al.) are the following :

Occupancy The compute elements of a GPU are typically grouped into coarse-grained entities

known as SMs or Compute Units in a CUDA or OpenCL context respectively. These

entities contain scarce resources like register files (i.e. private memory) and local memories

and can carry up to a maximum number of active work-items i.e. work-items that can

be scheduled for execution at any time. Therefore, the resource usage of an individual

work-item need to be carefully weighed as it can limit the ability of an SM/Compute Unit

to carry active work-items. The ratio between a program’s actual active work-items and

the maximum amount of work-items possible defines a metric called occupancy and is

usually directly related to performance. Nevertheless, Volkov [Vol10] showed that better

performance can also be achieved at lower occupancy levels by exploiting instruction-

level parallelism (i.e. ILP) as we will see later. In principle, occupancy can be calculated

statically but a more precise value can be determined through runtime measurements as

the number of active work-items can fluctuate unpredictably.

Instruction-Level Parallelism (ILP) As we mentioned in Section 2.1.2, GPUs reduce power

dissipation by avoiding complex hardware mechanisms for exploiting ILP automatically

8http://impact.crhc.illinois.edu/parboil.aspx

http://impact.crhc.illinois.edu/parboil.aspx
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like out-of-order execution and branch-prediction schemes. Consequently, performance

is largely exposed to the ordering of instructions and on divergent control flow. The

impact of instruction ordering has been experimentally demonstrated by Volkov [Vol10]

and incorporated into the analytical performance model of Hong et al [HK09, SDKV12]

as well. According to Sim et al [SDKV12], estimating such impact requires analysis of

the respective machine code. From a user perspective, minimizing control overhead (i.e.

conditional branches) is a good high-level principle for maximizing ILP.

Synchronization On any parallel architecture, communication between parallel processing

elements requires some form of synchronization. The large number of active work-items

on GPUs indicates that synchronization can be particularly costly in terms of performance

and power consumption thus avoiding it if possible can be highly beneficial.

SIMD alignment The total number of work-items on a GPU is divided into equally-sized

chunks representing a strictly SIMD execution unit9. The importance of the SIMD exe-

cution unit lies on the alignment requirements imposed for exploiting spatial locality as

well as avoiding serialized work-item diversion in the presence of control-flow. In par-

ticular, main-memory data transfers can take advantage of hardware optimizations if

certain alignment requirements are satisfied e.g. coalesced accesses [Nvi11, RRB+08]. On

the other hand, if work-items diverge within a SIMD execution unit their execution is

serialized which reveals the sensitivity of GPU performance to control-intensive code.

Temporal Locality Temporal locality is typically exploited through hardware managed on-chip

caches. However, the first general-purpose GPUs relied completely on small software-

managed scratchpad memories10 (of about 16KB) that introduced an additional burden

to the software. This burden is partially alleviated on the latest GPUs as they incorporate

small non-coherent L1 and L2 caches as well. Even though hardware caching simplifies

software development, it also complicates the process of performance modeling as it re-

quires reverse engineering through microbenchmarking [WPSAM10]. On the other hand,

9The size of such unit is typically 32. It is called warp by NVIDIA and wavefront by AMD yet there is no
official term in the OpenCL standard.

10Note that these memories are reflected by the local memory abstraction of the OpenCL memory model as
shown in Figure 2.6.
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scratchpad memories are divided into banks that can result in bank conflicts if the same

bank is referenced multiple times within a SIMD unit. Such conflicts can serialize scratch-

pad memory requests thus need to be avoided through padding optimizations [Nvi11].

Special Function Units Expensive math operations like transcendentals and square roots

can be efficiently executed by dedicated units. Taking advantage of such capabilities can

have a positive impact on performance. However, utilizing special function units is not

necessarily a good thing as pointed out by Sim et al [SDKV12], since other compute

instructions are required to hide their latency.

Partition Camping Ruetsch and Micikevicius [RM09] demonstrated the importance of par-

tition camping for GPU performance. Partition camping is a phenomenon where multiple

main-memory requests are congested within a single main-memory partition. Avoiding

partition camping is achieved by rearranging the mapping layout of work-items to data.

Understanding and characterizing GPU software performance has also been studied by Bagh-

sorkhi et al [BDP+10], Bakhoda et al [BYF+09] and Che et al [CBM+09] with the latter work

leading to the development of the Rodinia benchmark suite11.

More specifically, Baghsorkhi et al. [BDP+10] proposes a technique for assisting iterative com-

pilation by providing accurate performance predictions that can be used to narrow-down the

tuning space. The proposed method is based on a weighed control-flow graph of a CUDA kernel

called Work-Flow Graph (WFG), that captures most of the GPU performance aspects we listed

here. Even though it is not as detailed as the most recent Sim et al. [SDKV12] approach, it

is a robust alternative that uses practical and trusted abstractions like WFG and PDG (i.e.

Program Dependence Graph [FOW87]) to model and evaluate CUDA kernels.

Bakhoda et al. [BYF+09] follows a rather different approach by attampting to implement a GPU

hardware simulator. As a result, this approach starts from a sophisticated yet well-defined

hardware structure and attempts to compute its behavior when executing a GPU program

written in NVIDIA’s virtual instruction set, i.e. PTX code. The question here is whether

11lava.cs.virginia.edu/Rodinia

lava.cs.virginia.edu/Rodinia
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the assumed hardware structure resembles the actual GPU hardware to a satisfactory degree

something that was not sufficiently supported by the paper. Instead, the paper was primarily

focused on the effect of specific hardware mechanisms to performance.

Finally, Che et al [CBM+09] follows an application-oriented analysis by proposing a set of GPU

benchmarks that stress different combinations of GPU performance bottlenecks.

2.2 Source-to-Source Compilation

A source-to-source compiler is a type of compiler that takes a high-level programming language

as input and produces an equivalent program written in another (or the same) high-level pro-

gramming language. This property is particularly convenient for our purpose because it allows

us to distinguish between high-level source transformations like loop transformations (e.g. loop

interchange, loop fusion, loop unrolling, loop tiling etc.) and automatic parallelization from

low-level concerns like scalar optimizations, instruction scheduling, register allocation etc. The

former are the kinds of high-level source transformations we can use for parallelism and locality

management while for the later low-level operations we can take advantage of existing highly

efficient vendor-specific source-to-binary compilers. For example in our context an NVIDIA

CUDA source-to-binary compiler or a vendor-specific OpenCL runtime can be used to produce

the final executable program.

Figure 2.8 depicts the structure of a source-to-source compilation system that can be character-

ized by three main components: (i) the front-end abstraction, (ii) the source-to-source compiler

infrastructure and (iii) the back-end abstraction. With respect to the front-end abstraction we

see that the more high-level it becomes the more restrictive it gets with respect to applicability.

For example a source-to-source compilation scheme that takes a very high-level source language

as input – like a domain-specific language – would be restrictive to a certain class of compu-

tations that can be expressed with such language. Static control programs are considered a

relatively high-level front-end abstraction as they are statically-analyzable loop-programs and

thus a restrictive class of programs. However, we believe that SCoPs represent an important
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set of loop-programs that can help us understand performance portability better and how to

proceed to more generic approaches.

With respect to the back-end abstraction, the more it relies on a run-time system the more

simple and portable our code generation algorithm becomes. The price we pay here is the

overhead induced by the run-time. This thesis proposes such a run-time system, called Ave-

las (Chapters 6 and 7), that enables us to formulate a robust and portable code generation

algorithm with very low overhead. In fact we show that in certain situations, i.e., execution of

wavefront parallelism, Avelas yields substantial speed-ups over a state-of-the-art compile-time

method with no run-time support.

Finally, a source-to-source compiler infrastructure is characterized by its Intermediate Repre-

sentation or IR. This IR is the main abstraction vehicle for analyzing the input source and

carrying the compile-time transformations and optimizations we want to apply to it. We will

now look at some of the most popular compiler infrastructures today along with their IR.

LLVM

Started as a research project at the University of Illinois at Urbana-Champaign [LA04], LLVM

has now become one of the most widely used open-source compiler infrastructure in the academia

and industry as well12. It utilizes a Static Single Assignment (SSA) intermediate representation

that comes with an extensible/customizable set of optimizations. Today, LLVM consists of a

production-quality front-end, called clang, that supports C/C++ and Objective-C/C++ and a

re-targetable back-end that generates machine-code and can also be used in a JIT fashion. In

case of high-level source-based transformations – the ones that we are particularly interested

in for reasons explained earlier – LLVM’s front-end infrastructure, i.e., clang, provides a set of

powerfull utilities for syntax-tree manipulation that are part of libclang.

12llvm.org

llvm.org
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ROSE

Unlike LLVM, ROSE [Qui00] was designed to be a high-level source-based transformation/op-

timization infrastructure similar to the most recent libclang. As a result, it uses an object-

oriented IR, called SAGE III, that facilitates high-level manipulation of the program’s syntax

tree. It was developed in Lawrence Livermore National Labs13 and today includes a large set

of optimization and analysis tools. ROSE was the compiler infrastructure chosen to be the

foundation of our research. In fact, the polyhedral framework presented in Chapter 5 has been

developed for ROSE and is now part of the ROSE distribution.

SUIF

The SUIF14 compiler [WFW+94] infrastructure is one of the earliest attempts to realise an

extensible compiler framework that facilitates diverse research on compiler analysis and opti-

mization. It is based on a combination of low-level and high-level IR primitives that include

loop, conditional statement and array access objects for automatic loop transformations, as

well as low-level instructions for robust back-end optimizations and code generation.

PoCC

The Polyhedral Compiler Collection or PoCC [PBB] is a research source-to-source compiler

based on the polyhedral model – a robust mathematical intermediate representation of loop-

programs. It can actually be viewed as a glue that brings together multiple independent

projects in polyhedral compilation through a common communication mechanism embodied by

the OpenScop intermediate form. It is implemented in C and therefore does not take advantage

of object-oriented programming. In Chapter 5 we propose an alternative polyhedral compiler

infrastructure that utilizes an object-oriented design for defining an intuitive API as opposed

to PoCC’s monolithic executable approach.

13rosecompiler.org
14suif.stanford.edu

rosecompiler.org
suif.stanford.edu
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Figure 2.8: Source-to-source compilation framework

Mercurium

Mercurium [BDG+04] is an academic framework developed at the barcelona supercomputing

center that currently supports C and C++. It is primarily used to support the nanos environ-

ment that implements OpenMP. The distinguishing characteristic of Mercurium is that its IR

is hidden behind a high-level transformation environment that operates directly at the source

through pragma declarations.

Cetus

Cetus [LJE04] is a research compiler framework developed at Purdue University. It is written

in Java, and it’s IR reflects the ANSI C syntax which in turn limits the extensibility of Cetus

to additional languages.
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2.3 Static Control Programs

Static Control Programs or SCoPs, are loop-based computations with statically determinable

control flow and data-access patterns. In other words, their behavior can be analyzed precisely

during compilation. Such programs are also called affine [ALSU07] as they meet the following

conditions :

Control Flow The only control structures allowed are for-loops and conditional branches.

Both must depend on affine expressions of outer loop indices and global symbolic param-

eters (i.e. problem sizes).

Data Accesses Array access functions must be affine expressions of outer loop indices and

global symbolic parameters. Scalar data are treated as 0-dimensional array accesses.

Static control programs, enable us to utilize the polyhedral model [Fea92b, Fea92b, ALSU07]

for robust analysis and optimization based on well-known mathematical tools like integer linear

programming solvers. They represent computation kernels with inherent data-parallelism that

constitute building blocks of several high performance computing applications. They typically

consist of a few computation statements associated with multidimensional loop-based execution

spaces. They can be exemplified by the polybench suit15 – the most well-known benchmark

suite of polyhedral programs.

The motivation for considering SCoPs as the class of programs we used to investigate perfor-

mance portability is that they allow us to evaluate a state-of-the-art technology for compile-time

automatic parallelization and locality optimization, i.e. the polyhedral model. We believe that

such strategy will help us understand the limits of compile-time analysis when it comes to

automatic parallelization and locality optimization since the polyhedral model offers a pow-

erfull analytical model of loop-programs – one of the dominant sources of data-parallelism in

imperative sequential programs.

15http://www.cse.ohio-state.edu/~pouchet/software/polybench

http://www.cse.ohio-state.edu/~pouchet/software/polybench
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2.4 Related Work

Source-to-source compilation for GPUs represents a large body of academic and industrial

research that this section attempts to cover. The work that is most relevant to this thesis will

be discussed in Section 2.4.1 and involves research on source-to-source compilation of SCoPs

targeting GPUs. Section 2.4.2 will be focusing on general source-to-source compilation work

aiming to provide some degree of performance portability and thus reduce programming effort

through higher abstraction layers. Finally, Section 2.4.3 presents the relation of this thesis to

previous work and highlights the motivation behind the research avenue followed.

2.4.1 From Static Control Programs to OpenCL/CUDA

Baskaran et al [BBK+08a, BRS10] presented the first attempt to realise a C-to-CUDA compiler

for SCoPs based on the Pluto scheduling algorithm [BR07, BBK+08b]. Similar frameworks later

followed originating from both industrial [LVM+10, ACE+12] and academic research [VCJC+13,

GCK+13]. More specifically, Verdoolaege et al. [VCJC+13] presented and evaluated the first

robust C-to-CUDA compiler based on the polyhedral model (PPCG) that was shown to produce

effective CUDA code for the entire polybench suite16 unlike any previous work. An experimental

evaluation showed that PPCG produces similar or slightly faster code than existing polyhedral

C-to-CUDA compilers [BRS10, ACE+12].

One of the performance bottlenecks associated with polyhedral C-to-CUDA compilation has

to do with wavefront parallelism or DOACROSS 17 loops. This issue was studied by Peng and

Jingling [DX11] in the context of a model-driven tile-size selection algorithm. In addition,

Grosser et al. [GCK+13] proposed a split-tiling mechanism that avoids wavefront parallelism

for a certain class of stencil computations.

Armin Größlinger [Grö09] showed that existing C-to-CUDA approaches do not utilize local

memory efficiently in cases where an outer sequential time loop executed by each CUDA thread

16http://www.cs.ucla.edu/~pouchet/software/polybench
17This term is used in the literature to denote wavefront-parallel iteration spaces.

http://www.cs.ucla.edu/~pouchet/software/polybench
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traverses the data elements of a local memory buffer. It was shown that a compile-time al-

gorithm based on polyhedral analysis tools can offer precise utilization of local memory by

evicting the data elements that are no longer needed by subsequent time steps. However, the

effectiveness of this method was only demonstrated for 1-dimensional problems. For higher

dimensional problems the cost of evicting data from local memory might be too high.

Yang et al [YXKZ10] presented an alternative source-to-source compilation scheme that was

not based on the polyhedral model even though the benchmarks used are SCoPs. In particular,

the input source is an already parallelized computation written as a naive CUDA/OpenCL

kernel that the compiler attempts to partition and optimize. The effectiveness of this method

was demonstrated for linear algebra kernels and compared against the respective CUBLAS18

methods. Even though this method offers superior performance compared to polyhedral ap-

proaches its weakness is the restrictive applicability since it can only be applied to a relatively

small subset of SCoPs, i.e. linear algebra computations.

It is important to highlight that all the approaches mentioned in this section rely entirely

on the compiler to directly produce CUDA or OpenCL code. Consequently, exploring the

resultant design space requires an empirical or model-driven iterative compilation search as

indicated by Baskaran et al [BBK+08a] and Yang et al [YXKZ10]. Such approach also leads

to a complex, platform-dependent and hard to maintain code generation algorithm. In this

thesis (Chapter 6) we propose an alternative source-to-source compilation path that relies on

a platform-independent run-time system which enables us to formulate a simple and portable

code generation method. Furthermore, the produced code is parametrically tiled which allows

us to avoid the cost of iterative compilation induced by all other methods.

2.4.2 Raising the Level of Abstraction

Raising the level of abstraction to ease the burden of parallel and memory hierarchy aware

programming has been an active area of research for many years. The emergence of manycore

processors introduced challenges that motivated new abstractions and the adaptation of existing

18https://developer.nvidia.com/cublas

https://developer.nvidia.com/cublas
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ones. With this survey we wish to identify alternative avenues towards performance portability

through source-to-source compilation and how our work relates to them.

One of the first attempts to raise the level of abstraction for GPU programming was made

by Ueng et al [ULBH08] with the introduction of CUDA-lite. The main focus of CUDA-lite

is the memory hierarchy of CUDA devices and how source-to-source compilation can be used

to automate their efficient utilization. In CUDA-lite, a set of declarative annotations guide a

compile-time analysis engine that identifies global memory access function and ensures their

proper alignment. They do that by promoting unaligned accesses to local memory in an aligned

fashion. The alignment requirement is then lifted when data reside in local memory. A very

similar idea was also pursued by Yang et al [YXKZ10] but with a more powerful analysis that

doesn’t depend on declarative annotations.

The hi-CUDA model proposed by David Han and Tarek Abdelrahman [HA09] uses a set of

declarative annotations to sequential code that guide a source-to-source compiler towards gener-

ating CUDA code. This concept is similar to CUDA-lite but with a less intelligent optimization

engine. In particular, hi-CUDA is not supposed to carry out any sophisticated optimizations

but simply to follow the instructions expressed by the annotations. In other words, it can be

considered as a simple and platform-independent alternative to CUDA.

A similar objective was pursued by Garland et al [GKZ12]. In particular, an efficiency-oriented

(as opposed to productivity-oriented) notation is proposed that facilitates a unified environment

across different heterogeneous devices. It is stated that such approach can be used for realizing

high-level abstractions or libraries similar to Thrust [BH11] – a principle that is very similar to

the motivation behind Avelas (Chapter 7) in the sense that it investigates a common platform-

independent layer that can be viewed as a back-end abstraction for source-to-source compilation.

Recently, Dubach et al [DCR+12] presented a compiler technology to support the Java-based

Lime language [ABCR10] for heterogeneous computing. The strength of the proposed system is

based on the properties of the underlying type system that enables the source-to-source compiler

to perform efficient management of the memory hierarchy without resorting to sophisticated

alias or dependence analysis.
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Recently as well, Bauer et al. [BTSA12] introduced a new programming model for heterogeneous

computing called Legion. Legion utilizes a runtime system that allocates and manages recursive

tasks each one associated with a logical region specifying a variety of data-access information

(e.g. data-access regions, privileges and coherence information). The effectiveness of Legion was

demonstrated for three applications executed on three multi-GPU clusters. In particular, it was

shown that Legion programs can achieve software and performance portability on scaling multi-

GPU clusters. However, the issue of single-GPU performance portability was not examined.

Along with the introduction of new abstractions for GPU programming, there has been a

considerable body of research focusing on adapting existing programming models to GPUs.

For example, Hong et al [HCC+10] investigated the feasibility of a mapReduce [DG08] im-

plementation for GPU targets by presenting a unified API, called mapCG, that serves as a

source-to-source back-end abstraction for mapReduce programs. Their work improves over

previous mapReduce implementations like Mars [HFL+08] and Phoenix [RRP+07] by reducing

the memory requirements of mapReduce and proposing ways of automating partitioning and

scheduling of execution between a CPU and a GPU. Similar work was also done by Chen et

al [CHA12].

Adapting OpenMP to support GPU targets has been comprehensively studied by Lee et

al [LE10, LME09] and shown to be a promising perspective. It was shown that direct translation

of existing OpenMP applications does not always yield good performance and as a result new

optimizations are needed especially for ensuring the proper SIMD alignment of global memory

accesses. Such optimizations were based on syntactic pattern-matching and loop transforma-

tions like parallel loop-swap and matrix transpose for regular applications, and loop collapsing

for irregular ones.

Klöckner et al [KPL+09] proposed pyCUDA – a high-level runtime system based on the python

scripting language that targets CUDA devices. This approach though focuses on runtime code-

generation mechanics without attempting to automate any analysis or optimization techniques.

Similar work has been demonstrated for Matlab by Fatica and Jeong [FJ07].

The feasibility of using a graph-based intermediate representation for efficient partitioning and
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scheduling of execution between a host CPU and a CUDA device, was investigated by Grossman

et al [GSBS11] by adapting Intel’s Concurrent Collections (CnC) programming model. More

specifically two extensions to CnC are proposed namely multithreaded steps and automatic

generation of data and control flow between CPU steps and GPU steps.

The effectiveness of directive-based languages has received considerable attention and resulted

in highly promising systems. A leading representative is the OpenAcc standard examined by

Wienke et al [WSTaM12] and Lee et al [LV12]. In fact Lee and Vetter [LV12] present an evalu-

ation of commercial and academic directive-based languages including PGI19, hmpp [DBB07],

OpenMPC [LE10], hi-CUDA [HA09] and R-stream [LVM+10]. Their study though did not

include Mint [UCB11], a specialized directive-based language for stencil computations that was

shown to be effective for simple stencil kernels.

This section concludes with a reference to domain-specific languages (DSLs). DSLs are spe-

cialized languages designed for certain kinds of computations and therefore leverage domain-

specific assumptions to assist analysis and optimization [VDKV00]. Datta et al. [DMV+08]

presented one of the first attempts to realise a DSL for stencil computations targeting mul-

tiple platforms including GPUs. It was shown that iterative compilation combined with a

DSL specification can yield performance portability across a variety of hardware. Holewinsky

et al. [HPS12] presented a DSL framework for simple stencils targeting OpenCL/CUDA and

performed tuning experiments for tile-size selection. The proposed method was based on an

overlapped tiling scheme introduced by Krishnamoorthy et al. [KBB+07] and also used by Meng

et al. [MS09] in the context of GPUs. Other projects on DSLs for manycore processors include

OP2 [MGR+12, BBL+12], Nikola [MM10], Obisidian [SCS10], FLAME [GGHVDG01] and the

work by Cartey et al. [CLdM12].

2.4.3 Conclusions and Motivation

An important observation from the literature survey of Sections 2.4.1 and 2.4.2 is that most

previous work relies solely on the compiler to produce the right code for a given GPU device.

19http://www.pgroup.com/resources/accel.htm

http://www.pgroup.com/resources/accel.htm
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In that case, performance portability can be achieved either through iterative compilation,

or through a single sophisticated compilation step. Perhaps the only exception is the work

from Holewinsky et al [HPS12] that proposes a method for run-time tile-size selection using

OpenCL as the target language thus aiming a variety of GPU devices. The main weakness of

this approach though is the very restricted applicability since it can only be applied on simple

stencil programs (e.g. Jacobi method or similar).

Using a platform-independent run-time layer – that exists between a high-level programming

abstraction and low-level GPU code – that acts as the target language for a source-to-source

compiler has been proposed in the past [GKZ12, HCC+10, HPR+08]. The main motivation here

is to simplify the code generation pass of source-to-source compilation and also make the source-

to-source compiler easily portable across targets. However, to the best of our knowledge, none

of the proposed run-times are used for run-time performance tuning. In other words, existing

run-time systems are not designed to handle parametric input thus rely on the compiler to

provide the exact execution parameters (e.g. partitioning parameters like work-group sizes and

local memory usage) or even make those decisions automatically.

In this thesis we present a novel source-to-source compilation path that generates parametri-

cally tiled GPU code for an important set of loop-programs, namely SCoPs. Such source-to-

source strategy allows us to avoid the cost of iterative compilation and thus attain performance

portability at low cost. Furthermore, we also propose a run-time system that simplifies code

generation and realizes a novel programming model that handles execution parameters and

local memory usage dynamically at run-time – something that has not been attempted before

by any work that we know of.

2.5 Thesis Contributions

This thesis makes the following specific contributions with respect to source-to-source compi-

lation for manycore processors :
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1. The design and implementation of an object-oriented polyhedral compiler framework is

presented, called RosePolly. Unlike similar work, RosePolly is designed as an API and

therefore clearly distinguishes a set of extensible/customizable object-oriented building

blocks for automatic parallelization and locality optimization of SCoPs.

2. A simple improvement to a well-known automatic parallelisation algorithm namely Pluto [BBK+08b]

is proposed. This improvement enables us to distinguish between ambiguous dependence

constraints that could lead to wavefront or fully parallel degrees of parallelism depending

on their layout in the global constraint matrix.

3. A new source-to-source compilation path is proposed that produces parametrically tiled

GPU code for static control programs (SCoPs). Such parameterized programs can be

used as platform-independent templates amenable to run-time performance tuning. In

the context of parametric GPU code generation this thesis makes the following individual

contributions:

• Develops a platform-independent run-time environment for effective mapping of

wavefront parallelism to GPUs.

• Proposes a simple loop vectorization algorithm that eliminates unecessary wavefront

parallelism resulted from inter-statement dependences.

• Introduces a dynamic local memory management scheme that enables run-time ex-

ploration of local memory usage through dynamic allocation of buffers.

4. Presents a preliminary investigation pertaining the feasibility of the parametric tiling run-

time system as a general purpose programming model for GPUs. We call this the Avelas

run-time system.

2.5.1 Publications

The research and technical contributions presented in this thesis resulted in the following pub-

lications :
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1. RosePolly: User’s manual – Technical documentation of the rosePolly framework publicly

available as part of the ROSE compiler infrastructure20 (/rose/projects/RosePolly/doc).

(Chapter 5)

2. More Definite Results from the Pluto Scheduling Algorithm – presented at the first inter-

national workshop on polyhedral compilation techniques (IMPACT 2011) in conjunction

with CGO 2011 (Chamonix France). (Chapter 4)

3. Parametric GPU Code Generation for Static Control Programs – International workshop

on Languages and Compilers for Parallel Computing (LCPC 2013). (Chapter 6)

20www.rosecompiler.org

www.rosecompiler.org
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Chapter 3

The Polyhedral Model

This chapter presents an overview of the polyhedral model, an analysis and optimization frame-

work for machine-independent automatic parallelization and locality optimization. After an

introduction and overview of the framework the main components of polyhedral compilation

are presented. These components are: (i) the domain (Section 3.3), (ii) the schedule or affine

transformation (Section 3.4), (iii) the memory access functions (Section 3.5) and (iv) the polyhe-

dral dependences (Section 3.6). Finally, Section 3.7 shows how these components can synthesize

a practical polyhedral compiler while Section 3.8 provides a table (Table 3.1) with the most

commonly used polyhedral libraries.

3.1 Introduction

The polyhedral model or affine transform theory [ALSU07] is an alternative to abstract syntax

trees (AST) that enables compilers to analyse and transform programs by utilizing robust

mathematical abstractions and libraries like systems of affine inequalities (i.e. Z-polyhedra),

integer linear programming, Fourier-Motzkin elimination etc. The syntax trees that can be

captured by the polyhedral model are called Static Control Programs or SCoPs and they are

essentially loop-based computation kernels with statically predictable control flow. In practice,

if we consider a high-level syntactic intermediate representation (IR) like the one used in ROSE

33
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(see Section 2.2) then SCoPs are restricted to arbitrary-nested for-loops that comply to the

SCoP restrictions of Section 2.3. However, Grosser et al [GGL12] showed that an SSA-based

compiler like LLVM (see Section 2.2) can lift these syntactic restrictions by operating on a

low-level representation where loop-based computations have a more generic definition.

One of the primary motivations for using the polyhedral model is to avoid a classic restriction of

ASTs with respect to program transformations namely the phase ordering restriction [GVB+06].

In particular, multiple AST transformations are typically performed as ordered sequences of

individual transformation steps each one relying on syntactic pattern-matching analysis. The

ordering of these steps becomes an important concern if we consider their impact on the size and

complexity of the AST. However, if we use a mathematical representation like the polyhedral

model, this concern goes away since we can represent/compose arbitrary sequences of transfor-

mations that can be applied in a single step. The example of Figure 3.1 shows an ADI kernel

(Alternating Direction Implicit) that has been analyzed and transformed using the polyhedral

model. Notice that a combination of loop fusion and loop skewing has been applied to the

original kernel simply through the affine functions of Figure 3.1b. These functions have been

derived from a sophisticated polyhedral scheduling algorithm called Pluto [BR07, BBK+08b]

that maximizes parallelism and locality through integer linear programming formulations.

3.2 Overview

The polyhedral representation of a SCoP (Static Control Program) consists of a list of com-

putation statements Si : i = 0, . . . , N each one carrying three main pieces of information

namely the domain DSi
, the schedule FSi

and the access functions Πij for each memory refer-

ence j = 0, . . . ,Mi of Si. The domain DSi
of each statement Si denotes an execution domain

through a finite set of affine inequalities i.e. a polyhedron. The schedule FSi
denotes an execu-

tion order through a multi-dimensional affine transformation from the original domain DSi
to a

new transformed one1 with a new lexicographic ordering. Evidently, finding schedules that lead

to better software performance is the main objective of a polyhedral compiler. These schedules

1Polyhedral transformations are not restricted to unimodular ones [Ram95, Bas04]
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for ( t = 0 ; t < TT ; t++ ) {

for ( i 1 = 0 ; i 1 < NN ; i 1++ ) {

for ( i 2 = 1 ; i 2 < NN ; i 2++ ) {

S0( t , i1 , i 2 ) : X[ i 1 ] [ i 2 ] = X[ i 1 ] [ i 2 ] − X[ i 1 ] [ i2 −1]∗A[ i 1 ] [ i 2 ] /B[ i 1 ] [ i2 −1] ;

S1( t , i1 , i 2 ) : B[ i 1 ] [ i 2 ] = B[ i 1 ] [ i 2 ] − A[ i 1 ] [ i 2 ]∗A[ i 1 ] [ i 2 ] /B[ i 1 ] [ i2 −1] ;

}

}

for ( i 1 = 1 ; i 1 < NN ; i 1++ ) {

for ( i 2 = 0 ; i 2 < NN ; i 2++ ) {

S2( t , i1 , i 2 ) : X[ i 1 ] [ i 2 ] = X[ i 1 ] [ i 2 ] − X[ i1 −1] [ i 2 ]∗A[ i 1 ] [ i 2 ] /B[ i1 −1] [ i 2 ] ;

S3( t , i1 , i 2 ) : B[ i 1 ] [ i 2 ] = B[ i 1 ] [ i 2 ] − A[ i 1 ] [ i 2 ]∗A[ i 1 ] [ i 2 ] /B[ i1 −1] [ i 2 ] ;

}

}

}

(a) Original program
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for ( t = 0 ; t < TT ; t++ ) {
for ( i 1 = 0 ; i 1 < NN ; i 1++ ) {

for ( i 2 = 1 ; i 2 < NN ; i 2++ ) {
S0( t , i1 , i 2 ) : X[ i 1 ] [ i 2 ] = X[ i 1 ] [ i 2 ] − X[ i 1 ] [ i2 −1]∗A[ i 1 ] [ i 2 ] /B[ i 1 ] [ i2 −1] ;

S1( t , i1 , i 2 ) : B[ i 1 ] [ i 2 ] = B[ i 1 ] [ i 2 ] − A[ i 1 ] [ i 2 ]∗A[ i 1 ] [ i 2 ] /B[ i 1 ] [ i2 −1] ;

}
}
for ( i 1 = 1 ; i 1 < NN ; i 1++ ) {

for ( i 2 = 0 ; i 2 < NN ; i 2++ ) {
S2( t , i1 , i 2 ) : X[ i 1 ] [ i 2 ] = X[ i 1 ] [ i 2 ] − X[ i1 −1] [ i 2 ]∗A[ i 1 ] [ i 2 ] /B[ i1 −1] [ i 2 ] ;

S3( t , i1 , i 2 ) : B[ i 1 ] [ i 2 ] = B[ i 1 ] [ i 2 ] − A[ i 1 ] [ i 2 ]∗A[ i 1 ] [ i 2 ] /B[ i1 −1] [ i 2 ] ;

}
}

}

(a) Original program

Figure 3.1: This is just some random shit

One of the primary motivations for using the polyhedral model is to avoid a classic restriction of

ASTs with respect to program transformations namely the phase ordering restriction [GVB+06].

In particular, multiple AST transformations are typically performed as ordered sequences of

individual transformation steps each one relying on syntactic pattern-matching analysis. The

ordering of these steps becomes an important concern if we consider their impact on the size and

complexity of the AST. However, if we use a mathematical representation like the polyhedral

model, this concern goes away since we can represent/compose arbitrary sequences of trans-

formations as a single affine transformation that can be applied in a single step. Furthermore,

with a polyhedral representation we are able to capture all the runtime instances of statements

as well as precise memory access information which is a property that admits to powerful and

robust analysis engines.

FS0 = (t+ i1 + i2, t+ i1, t+ i2, 0)

FS1 = (t+ i1 + i2, t+ i1, t+ i2, 0)

FS2 = (t+ i1 + i2, t+ i1, t+ i2 + 1, 1)

FS3 = (t+ i1 + i2, t+ i1, t+ i2 + 1, 1)

(b) Affine functions

for ( c1=1 ; c1<=2∗NN+TT−3 ; c1++ ) {

i f ( c1 <= NN−1 ) {

S0 (0 ,0 , c1 ) ;

S1 (0 ,0 , c1 ) ;

}

par for ( c2=max(1 , c1−NN+1) ; c2<=min( c1−1,NN+TT−2) ; c2++ ) {

i f ( c2 <= NN−2 ) {

S0 (0 , c2 , c1−c2 ) ;

S1 (0 , c2 , c1−c2 ) ;

}

i f ( c2 >= NN−1 ) {

S0( c2−NN+1,NN−1,c1−c2 ) ;

S1( c2−NN+1,NN−1,c1−c2 ) ;

}

par for ( c3=max( c1−NN+2,c1−c2+1) ; c3<=min( c1 , c1−c2+TT−1) ; c3++ ) {

S0(−c1+c2+c3 , c1−c3 , c1−c2 ) ;

S1(−c1+c2+c3 , c1−c3 , c1−c2 ) ;

S2(−c1+c2+c3−1,c1−c3+1,c1−c2 ) ;

S3(−c1+c2+c3−1,c1−c3+1,c1−c2 ) ;

}

i f ( c2 >= TT ) {

S2(TT−1,c2−TT+1,c1−c2 ) ;

S3(TT−1,c2−TT+1,c1−c2 ) ;

}

}

i f ( c1 <= NN+TT−2 ) {

par for ( c3=max(1 , c1−NN+2) ; c3<=min(TT, c1 ) ; c3++ ) {

S2( c3−1,c1−c3 +1 ,0) ;

S3( c3−1,c1−c3 +1 ,0) ;

}

}

}

(c) Transformed program

Figure 3.1: This example demonstrates the power of polyhedral compilation by showing how
a composition of complex transformations like loop fusion and loop skewing is captured by a
small set of affine functions.
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Figure 3.2: UML structure of the polyhedral model.

must respect a set of dependencies between memory accesses in order to ensure correctness of

the transformed SCoP.

The next four sections will discuss these concepts in more detail with an emphasis on the

data-structures used. Figure 3.2 depicts a UML view of the polyhedral model.

3.3 The Domain

Formally, if a statement S is surrounded by m loops then its execution domain is the convex

set of all vectors ~xS ∈ Zm that satisfy (3.1) where ~xS is the iteration vector of S, ~n a vector

of symbolic parameters and DS an integer coefficient matrix where each row of DS represents

an affine loop-bound expression. Clearly, since iteration vectors can only have integral values,

inequality (3.1) defines an integer polyhedron or in other words a Z-Polyhedron. The example

of Figure 3.3 shows a simple loop nest along with a set of 6 affine inequalities corresponding to

the loop bounds and conditionals surrounding S0.

DS ·


~xS

~n

1

 ≥ 0 (3.1)

This set of affine inequalities can be used to construct the execution domain DS0 of S0 shown

in Figure 3.3 (c). Note that the disjunctive conditional surrounding S0 results in a concave
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Figure 2.1: Basic UML structure of the polyhedral model

DS ·




xS

n
1


 ≥ 0 (2.1)

This set of affine inequalities can be used to construct the execution domain
DS0

of S0 shown in Figure 2.2c. Notice that the disjunctive conditional sur-
rounding S0 results in a concave Z-Polyhedron which is typically implemented
as a linked list of 2D integer matrices where each matrix represents a convex
Z-Polyhedron according to (2.1) and the entire domain is a disjunction of such
polyhedra (linked list) 2.

for ( i = 0 ; i < N ; i++ )
for ( j = 5 ; j < N−5 ; j++ )

i f ( i >= 5 | | j <= 10 )
S0( i , j )

(a)

(b) (c)

Figure 2.2: This example shows a syntactic form of a loop-nest (a), a finite set of
affine inequalities corresponding to that loop-nest (b), and the actual polyhedral
representation (c).

2Of course these implementation details are not exposed to the user by the RosePolly API
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(c)

Figure 3.3: This example shows a syntactic form of a loop-nest (a), a finite set of affine in-
equalities corresponding to that loop-nest (b), and the actual polyhedral representation (c).

Z-Polyhedron which can be implemented as a list of integer matrices with each matrix repre-

senting a convex Z-Polyhedron according to (3.1) and the entire domain being a disjunctive

list of such polyhedra.

3.4 The Schedule

The implicit execution order of all the points inside an execution domain is the lexicographic

one. For example iteration (0, 4) is executed before (1, 0) according to the original execution

domain of Figure 3.4. If we wish to change that order we would need to define an affine

transformation that would map each point to a new transformed domain effectively changing

the lexicographic order and as a result the execution order. Figure 3.4 shows an example of a

loop skewing transformation implemented as an affine transformation while Figure 3.5 shows a

loop fusion example.

Finding the right polyhedral transformations or schedules has been an active area of research

since the early 90s. Early approaches relied on a space-time view of a schedule where two differ-

ent algorithms were used for calculating a space mapping (machine independent parallelization

or time minimization) and time mapping (machine dependent placement for communication

minimization) respectively [Fea92b, Fea94, DV94, DR96]. Griebl [Gri04] later refined those
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Figure 3.4: Loop skewing in the polyhedral model.
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Figure 3.5: Loop fusion in the polyhedral model.

methods by introducing an index-set splitting technique – splitting a domain into multiple sec-

tions and deriving a schedule for each one separately – and a placement algorithm for distributed

memory machines.

Lim et al [LCL99, LL98, ALSU07] introduced a holistic view of the problem with a single

machine-independent scheduling algorithm that could find linearly independent partition map-

pings (i.e. affine transformations) that maximize the degree of parallelism and minimize com-

munication at the same time. This idea was extended by Bondhugula et al [BBK+08b, BR07]

with the introduction of the Pluto scheduling algorithm. A comprehensive and formal dis-

cussion of scheduling algorithms in the polyhedral model was recently presented by Darte et

al [DRVV00]. It is worth noting that machine-dependent scheduling algorithms targeting GPUs

have also been proposed by Baskaran et al [BBK+08a] and Cong et al [CZZ12]. The main moti-

vation for these algorithms is the huge performance benefit we can get if we derive an execution

schedule that yields coalesced global memory accesses. Later, Ueng et al [ULBH08] showed

that such approach can be avoided if we use coalesced global memory accesses to promote

uncoalesced data to local memory.
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for ( i = 0 ; i < N ; i++ ) {
for ( j = 0 ; j < N ; j++ ) {

S0 : . . . = A[ i ] [ j ] ;
S1 : A[ i +1] [ j +1] = . . . ;

}
}

(a)

(b) Read access (c) Write access

Figure 2.5: Example showing how array access functions are handled by the
polyhedral model

matrices. This representation allows us to perform precise dependence analysis
(see Section 2.4), temporal/spatial locality optimizations as well as scratchpad
memory management (and other forms of software managed memories). To the
best of our knowledge, this representation can only support multi-dimensional
array references of basic data types (e.g. integers, floats etc.) [8]. Note that
scalar variables can follow this definition if we think of them as arrays with zero
dimensionality.

2.4 Polyhedral Dependencies

A vital part of the polyhedral representation of a scop is a set E of polyhedral
dependence edges e ∈ E. Polyhedral dependencies are vital because they are the
main driving force of a polyhedral analysis engine. Their main difference from
conventional dependences is their ability to capture dependence edges between
run-time instances of statements thus giving us precise dependence information.
A polyhedral dependence e ∈ E is characterized by a dependence polyhedron
Pe consisted of the source and destination execution domains along with an
affine transformation that maps each destination (consuming) instance to the
corresponding source instance. Figure 2.6 shows an example of a dependence
polyhedron representing the true dependence between S0 and S1 of Figure 2.5.

2.5 Basic Polyhedral Compilation Flow

The typical polyhedral compilation flow consists of three main stages. The
first stage (front-end) is responsible for extracting the polyhedral model from a
syntactic representation of the program. The second stage analyses the program
and derives a new execution order through affine transformations (i.e. schedules)
as described in Section 2.2. Finally, the last stage (back-end) converts the
polyhedral model back to a syntactic tree or directly into the target source
code. Figure 2.7 depicts a generic polyhedral compilation flow.

There are two kinds of ways a program can enter the polyhedral compilation
flow. The user can annotate computation kernels or the entire program could
be analysed be the front-end in order to detect maximal program parts that

8
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(a) SCoP source (b) Read access (c) Write access

Figure 3.6: Example showing how array access functions are captured by the polyhedral model

An orthogonal approach to scheduling was pursued by Girbal et al [GVB+06], Pouchet et

al [PBB+10, PBB+11] and Vasilache et al [VBCG06] where schedules are derived through

iterative compilation combined with empirical or model-driven search.

This thesis focuses on the Pluto scheduling algorithm [BBK+08b, BR07] or simply Pluto which

is considered one of the most robust algorithms to date. A more detailed discussion will be

presented in Chapter 4.

3.5 Memory Access Functions

Memory access functions are affine transformations that map each point of an execution domain

to a point in the data space of the corresponding variable. Let Πij be an affine transform

representing the memory access function of an array reference j = 0, . . . , Ni of a statement

Si : i = 0, . . . ,M . Figure 3.6 shows an example of memory access functions interpreted as

affine transformation matrices. Note that scalar variables can follow this definition if we think

of them as arrays with zero dimensionality.

3.6 Polyhedral Dependencies

A vital part of the polyhedral representation of a SCoP is a set E of polyhedral dependence edges

e ∈ E. Polyhedral dependencies are vital because they comprise the main set of constraints

that restrict the space of valid scheduling functions. Their main difference from conventional

dependences [KA01, Wol90] is their ability to capture dependence edges between run-time
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instances of statements thus giving us a fine-grained characterization.

A polyhedral dependence e ∈ E is defined as a vector of affine functions ~he(~xsinke) mapping a

sink execution space characterized by ~xsinke ∈ DSsinke
to a source execution space characterized

by ~xsrce ∈ DSsrce
:

~xsrce = (he0(~xsinke), . . . , hed(~xsinke))

where d is the dimensionality of the source execution space. By putting those functions together

with DSsinke
and DSsrce

into a single integer matrix, we effectively form what is commonly

known as the dependence polyhedron Pe of dependence e ∈ E. Figure 3.7 shows an example of

a dependence polyhedron representing the true dependence between S0 and S1 of Figure 3.6.

In particular, the upper left section captures DSsinke
, the section right below the upper empty

section captures DSsrce
while the bottom section stores the mapping functions.

The dependence vector ev(e) associated with a dependence edge e ∈ E can be defined by the

following piecewise function:

ev(e) = (δe0 , . . . , δed),

δei =


1 if ~xsinke − hei(~xsinke) > 0,

0 if ~xsinke − hei(~xsinke) = 0,

−1 if ~xsinke − hei(~xsinke) < 0.

for i ∈ [0..d]

A dependence vector ev(e) can be implemented simply by appending each branch of δei to Pe and

subsequently testing Pe for emptiness using a polyhedral library (see Section 3.8). Differences in

the dimensionalities of hei(~xsinke) and ~xsinke can be eliminated by adding semantics preserving

one-time loops (i.e. dimensions) if necessary. The concept of dependence vectors will be useful



3.6. Polyhedral Dependencies 41

(a) Dependence polyhedron (b) Dependence edges (i− 1, j − 1) → (i, j)

Figure 2.6: This example shows how the true dependence between Π00 and Π10

of Figure 2.5 is represented in the polyhedral model

Figure 2.7: Basic polyhedral compilation flow.

satisfy the polyhedral model restrictions. In both cases one needs to evaluate a
syntax tree against these restrictions before proceeding to the model extraction
phase.

Currently there are two different flavours of polyhedral analysis found in the
literature. According to the first approach (fully-automatic) one tries to find an
optimal set of affine transformations out of all the legal ones [9, 7, 4] whereas
the second approach (semi-automatic) applies individual loop transformations
(e.g. loop interchange, loop skewing etc.) and validates the result against the
polyhedral dependencies of the program [11, 18]. Figure 3.1 depicts how this
generic flow is reflected on an existing polyhedral framework namely PoCC [14].

9

(a) Dependence polyhedron

i 

j 

(b) Dependence edges (i− 1, j − 1)→ (i, j)

Figure 3.7: This example shows how the true dependence between Π00 and Π10 of Figure 3.6 is
represented in the polyhedral model

in Chapter 6 as it provides a convenient abstraction of inter-tile dependences.

Polyhedral dependencies are derived from a dependence analysis algorithm which according to

Pugh and Wonnacott [PW95] can be either memory-based or value-based . The former kind

constructs a dependence edge for each pair of accesses that refer to the same memory location

and at least one of them modifies that location (i.e. performs a write operation). Evidently,

this approach is conservative as each access depends on the last write operation as opposed

to all preceding write operations. Therefore, this may lead to redundant dependences2 that

can degrade the performance of a scheduling algorithm (as more dependences correspond to

more optimization constraints for the scheduling algorithm to satisfy), but without affecting

the derived schedules. Nevertheless, memory-based dependence analysis is easier to implement

and faster to execute thus being a sensible approach in practice.

The latter kind (i.e. value-based dependence analysis) eliminates the redundant memory-based

dependences and keeps only those that don’t have intermediate writes. In other words it offers

precise dependence analysis also known as array data-flow analysis. The seminal work on value-

based dependence analysis was done by Pugh and Wonnacott [PW94] and Feautrier [Fea91],

while Griebl [Gri04] presented a pragmatic summarization and discussion along with a practical

dependence analysis algorithm.

2These dependences are also called transitive dependences
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Figure 3.9: Compilation flow and structure of the Polyhedral Compiler Collection or PoCC

3.7 Compilation Flow

A typical polyhedral compilation flow consists of three main stages. The first stage (front-end)

is responsible for extracting the polyhedral model (including dependence polyhedra) from a

syntactic representation of the program. The second stage optimizes the program and derives

a new execution order through affine transformations (i.e. scheduling) as described in Para-

graph 3.4. Finally, the last stage (back-end) converts the polyhedral model back to a syntactic

tree or directly into the target source code. Figure 3.8 depicts this structure, while Figure 3.9

shows how this generic flow is reflected on a real polyhedral compiler called PoCC3.

3.8 Polyhedral Libraries

What drives a polyhedral compilation engine is a set of polyhedral library functions provid-

ing fundamental abstractions and operations on systems of affine constraints like intersection,

3http://pocc.sourceforge.net

http://pocc.sourceforge.net
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Library Description
PolyLib Collection of binary and unary operations on vectors, matrices, lattices, poly-

hedra, Z-Polyhedra and unions of polyhedra. Does not include ILP solvers
(http://icps.u-strasbg.fr/polylib/).

PIPlib PIP stands for Parametric Integer Programming and is a library used for solv-
ing parametric integer linear programs. It is used in order to find the lexi-
cographic minimum (or maximum) in a set of integral points belonging to a
convex polyhedron (http://www.piplib.org/).

PPL The Parma Polyhedral Library provides abstractions for handling polyhedra
along with a rich set of operations. It also provides a parametric integer pro-
gramming solver based on an exact-arithmetic version of the simplex algorithm
(http://bugseng.com/products/ppl/).

Omega Similar to PPL and Polylib (http://www.cs.umd.edu/projects/omega/).
ISL Inspired by the Omega system, the Integer Set Library provides a complete set

of abstractions and operations on systems of affine constraints. It also includes
ILP solvers with min/max operations on polyhedra and an intuitive front-end
interface/parser system that enables users to utilize the library through a high-
level language (https://www.ohloh.net/p/isl).

CLooG It provides an extended qulere et al. [QRW00] algorithm for efficiently scan-
ning polyhedra with for-loops. In other words it provides the necessary
functionality for converting the polyhedral model back to a syntactic form
(http://www.cloog.org/).

Table 3.1: List of polyhedral libraries accompanied with a short description.

union, projection along with integer linear programming solvers (ILP), Fourier-Motzkin elimi-

nation etc. Table 3.1 presents a set of the most commonly used libraries with a short description.

http://icps.u-strasbg.fr/polylib/
http://www.piplib.org/
http://bugseng.com/products/ppl/
http://www.cs.umd.edu/projects/omega/
https://www.ohloh.net/p/isl
http://www.cloog.org/


Chapter 4

Automatic Parallelization: The Pluto

Scheduling Algorithm

The Pluto scheduling algorithm [BBK+08b, BR07] is a well-known algorithm for automatic

parallelization and locality optimization in the polyhedral model and is considered the default

machine-independent loop optimizer for the remainder of this thesis. It seeks linearly inde-

pendent affine transformations – or schedules – for each statement of a SCoP, such that total

communication is minimized1. This is achieved by constructing and solving systems of affine

constraints on schedule coefficients by means of integer linear programming (ILP) solvers. In

this chapter we are going to outline the basic concepts and architecture of the Pluto algorithm

and also show that in some cases Pluto can be sensitive to the layout of the scheduling con-

straints. More specifically, the sensitivity lies in the ordering of the unknown coefficients in the

constraint matrices or in other words in the ordering of their columns.

1Informally, in the context of Pluto scheduling, communication is the number of distinct loop iterations that
depend on a given loop iteration

44
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4.1 Pluto Scheduling

A 1-D affine transform of a statement S denoted by Φ(~xS) = h · ~xS – where ~xS is the iteration

vector of S and h a row vector – maps each runtime instance of S to a new hyperplane

instance on the transformed iteration space. Two run-time instances ~x1
S and ~x2

S of S where

Φ(~x1
S) = Φ(~x2

S) belong to the same hyperplane instance or in other words to the same loop

iteration of the transformed iteration space. Therefore, Φ(~xS) effectively represents a new loop

in the transformed space.

Obviously, in order to obtain such transforms we need to make sure that they do not violate

any of the dependencies E of the original program. In other words we need to make sure that

for each dependence e ∈ E the sink run-time instance ~xsink ∈ Pe is mapped to the same or

subsequent hyperplane instance than the source ~xsrc ∈ Pe. In the Pluto context these are called

permutability constraints or legality-of-tiling constraints and are formulated as follows:

Φ(~xsink)− Φ(~xsrc) ≥ 0, ∀~xsink, ~xsrc ∈ Pe, ∀e ∈ E (4.1)

An additional set of constraints comes from the need to minimize the distance between the

source and the sink of each dependence or in other words minimize communication. This is

done by introducing a cost function δe(~n) to (4.1) which is an unknown affine expression on the

symbolic parameters ~n of our SCoP. As a result we get the so called communication bounding

constraints that are formulated as follows:

δe(~n) ≥ Φ(~xsink)− Φ(~xsrc), ∀~xsink, ~xsrc ∈ Pe, ∀e ∈ E (4.2)

A crucial observation is that both (4.1) and (4.2) are not affine constraints simply because

the coefficients of both Φ(~x) and δe(~n) are unknown. In fact these are the coefficients we are

looking for thus we need to eliminate the iteration vectors ~xsink and ~xsrc and the vector of

symbolic parameters ~n from (4.1) and (4.2). In order to do that, Pluto utilizes the affine form

of a well known result from linear programming namely Farkas’ lemma [Sch98]. According to
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Feautrier [Fea92a] Farkas’ lemma states that an affine expression ψ(~x) is positive everywhere

in a domain Dψ if and only if it is the sum of the faces of Dψ (i.e. individual inequalities or

rows) each one multiplied by a non-negative multiplier. More specifically we have:

iff ψ(~x) ≥ 0 everywhere in Dψ then ψ(~x) ≡ λ0 +
∑
k

λk ·Dψ, for λ0, λk ≥ 0 (4.3)

We can now use Farkas lemma on (4.1) and (4.2) and get the following identity relations:

Φ(~xsink)− Φ(~xsrc) ≡ λe0 +
∑
k

λek · Pe, for λ0, λek ≥ 0 (4.4)

δe(~n) + Φ(~xsrc)− Φ(~xsink) ≡ λe0 +
∑
k

λek · Pe, for λ0, λek ≥ 0 (4.5)

Through simple algebraic manipulation – i.e. identification – we can now eliminate ~xsrc, ~xsink

and ~n from (4.4) and (4.5). Because each equality can be written as a pair of inequalities, after

the identification step and after eliminating all the farkas multipliers from (4.4) and (4.5) using

Fourier-Motzkin elimination, we end up with two sets of constraints which are the following:

Cp
e · ~y ≥ 0, where ~y> = [

Schedule Coefficients︷ ︸︸ ︷
a1 · · · an c] (4.6)

Cc
e · ~y ≥ 0, where ~y> = [

Cost Coefficients︷ ︸︸ ︷
p1 · · · pm w a1 · · · an c] (4.7)

where n is the number of dimensions for ~xsink (i.e. surounding loops), m the number of symbolic

parameters in our SCoP and w and c coefficients of constant terms. These constraints can

be easily combined into a global constraint matrix Cglobal that would also accumulate the

constraints from all dependence edges e ∈ E:



4.1. Pluto Scheduling 47

Cglobal · ~y ≥ 0, where ~y> = [

δe(~n)︷ ︸︸ ︷
p1 · · · pm w

ΦS1 (~xS1 )︷ ︸︸ ︷
a11 · · · a1n1 c1

· · ·︷︸︸︷
· · ·

ΦSN
(~xSN

)︷ ︸︸ ︷
aN1 · · · aNnN

cN ]

(4.8)

where N is the total number of statements in our SCoP and ni the dimensionality of statement

i ∈ [1..N ].

An integer linear programming solver (e.g. PIP [Fea88]) can now be used to acquire the lexico-

graphic minimum for ~y in (4.8). Since the coefficients of δe(~n) are in the leading minimization

positions the derived schedule coefficients are the ones that yield minimum communication i.e.

minimum coefficients for δe(~n). The Pluto algorithm though does not stop here because we

actually seek multi-dimensional schedules for each statement of our SCoP (i.e. at least as many

solutions for each statement as its dimensionality). Therefore, after getting the first solution,

Pluto appends the so called orthogonality constraints to the global constraint matrix Cglobal to

make sure that all subsequent solutions are linearly independent.

In order to construct the orthogonality constraints Pluto first derives the orthogonal sub-space

H⊥S of the solutions found so far (matrix HS) for a statement S which is defined as follows [LP93,

Pen55]:

H⊥S = I −H>S (HS ·H>S )−1 ·HS (4.9)

After obtaining the orthogonal sub-space H⊥S we need to make sure that the new solution has

a non-negative component in H⊥S . Pluto does that by appending the following constraints to

Cglobal:

∀i,H i⊥
S · ~hnewS ≥ 0 ∧

∑
i

H i⊥
S · ~hnewS ≥ 1 (4.10)

where i denotes individual rows of H⊥S and ~hnewS the coefficients of the new schedule dimension

for S. These constraints essentially state that there must be at least one row (i.e. basis vector)
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of the orthogonal sub-space H⊥S for which the dot product with the new solution is non-zero

and positive. Restricting the dot product to be positive is done for efficiency because taking

negative solutions into account would yield a combinatorial explosion that has no practical

benefit. Evidently, these constraints ensure linear independence between the new solution and

the already found ones.

Pluto also adds an extra set of constraints to avoid the trivial solution of all schedule coefficients

being zero. These are called non-trivial solution constraints and simply enforce Φ( ~xS) ≥ 1 for

each statement S.

Algorithm 1 presents the core structure of the Pluto scheduling algorithm – the result of putting

together all the components we have described so far. As we see the Pluto algorithm finds

linearly independent affine transforms (i.e. schedules) and stops when max(ni) – where ni is

the dimensionality of statement Si – solutions have been found and all dependencies are killed.

A dependence is killed by a 1-D affine transform Φ(~x) if the following condition holds:

Φ( ~xdest)− Φ( ~xsrc) > 0 (4.11)

If the condition in line 15 fails then the algorithm removes all satisfied dependencies so far

and tries again. If no solution was found in line 15 (i.e. bandSols = 0) then the algorithm

attempts to cut the dependence graph of the program into strongly-connected components (i.e.

scc) and add scalar dimensions to the schedules H before removing any killed dependencies.

These scalar dimensions correspond to the topological sort of the scc components.

In the next section we will show that sometimes the results we get from the ILP solver are

sensitive to the minimization order or in other words to the layout of ~y in (4.8).
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Algorithm 1 The core structure of the Pluto scheduling algorithm. The input E is the set of
polyhedral dependence edges of our SCoP.

1: procedure Pluto(E)
2: totalSols← 0 . Total number of solutions is zero
3: H ← 0 . Solution matrix initialized
4: ddg ← E . Construct data-dependence graph from E
5: ndeps← |E| . Number of unsatisfied dependences
6: while (totalSols < max(ni)) OR (ndeps 6= 0) do
7: Cglobal ← 0 . Initialize global constraint matrix
8: Cglobal ← legality-of-tiling(E) . Append permutability constraints
9: Cglobal ← Communication(E) . Append communication bounding constraints

10: Cglobal ← non-trivial . Append non-trivial solution constraints
11: bandSols← 0 . Counts the number of solutions in a band
12: if (H 6= 0) then . At least one solution has already been found
13: Cglobal ← orthogonality(H) . Append orthogonality constraints
14: end if
15: while (lexMin(Cglobal)) do . Invoke ILP solver
16: bandSols← bandSols + 1
17: H ← solution . Append solution to H
18: Cglobal ← orthogonality(H) . Append orthogonality constraints
19: end while
20: totalSols← totalSols + bandSols . Update global solutions counter
21: if (bandSols = 0) then
22: CutSCC(ddg,H) . Cut into strongly-connected components and update H
23: end if
24: updateDDG(H,ddg,E,ndeps) . Remove killed dependences from ddg and update ndeps and E
25: end while
26: end procedure

4.2 Resolving Ambiguous Constraints

Motivating Example

The problem manifests itself when there is a situation in which we have the same communication

cost δe(~n) (see 4.2) for more than one solutions therefore the minimization algorithm will pick a

solution according to the ordering of the schedule coefficients. The example of Figure 4.1 shows

two schedules for statement S0 that even though both have the same degree of parallelism the

second one has a fully parallel loop as opposed to the wavefront-parallel2 execution space of

the first schedule.

First of all, by laying out the constraints from both dependencies we realize that at the beginning

there is no possible solution that has zero communication i.e. there is no fully parallel loop.

2A wavefront-parallel execution space has no parallel loops per-se, but parallelism is possible through a
loop-skewing transformation. Such transformation will reveal an inner parallel loop. The price we pay is the
start-up and drain cost associated with the non-rectangular shape of the skewed iteration space.
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Figure 1: Schedule (a) is Φ(xS0
) = (j, i) and results in a pipeline parallel loop nest while schedule (b) is

Φ(xS0
) = (i, j) and results in one fully parallel loop.

Algorithm 2 Coefficient ordering algorithm

1: Let N be the total number of statements in the source
program

2: for all Statements Si, 0 ≤ i < N do
3: Let VSi a bit vector with size mSi initialized to �0
4: for all e ∈ E s.t. Sdest = Si do
5: if He = true then
6: VSi = VSi OR Ve

7: end if
8: end for
9: for each element j of VSi do
10: if VSi [j] = 0 then
11: Put coefficient aSj in leading minimization posi-

tion
12: end if
13: end for
14: end for

fore, Algorithm 2 will give us VS0
= [1, 0] and as a result we

will put aSj in the leading minimization position.

By applying this technique we can choose fully parallel de-
grees of parallelism instead of pipeline ones. However, as
we already mentioned this might not be the best strategy
depending on problem sizes and locality along a wavefront.
A wavefront for statement S on an m-dimensional loop nest
can be represented by the following hyperplane :

ΦwaveS
( �xS) =

m

� �� �
�
1 1 . . . 1

�
· �xS (8)

We can measure the volume of temporal locality within a
wavefront by counting the Read-after-Read (input) depen-
dences that satisfy the following condition :

ΦwaveSdest
( �xSdest

) = ΦwaveSsrc
( �xSsrc) (9)

We can then define empirical thresholds for the structure pa-
rameters and the temporal reuse along a wavefront to decide
whether pipeline parallelism would be better for a particu-

lar hardware architecture or not. Deriving these empirical
thresholds for different architectures requires experimental
investigation that could be subject for future research.

4. CONCLUSIONS

In this paper we showed that a widely used polyhedral schedul-
ing algorithm for automatic parallelization [4] [3] can some-
times be sensitive to the layout of the global constraint ma-
trix that we use to obtain our solutions. To overcome this
ambiguity we propose an empirical methodology based on
the direction of each dependence vector that tries to find
the right order for the unknown transformation coefficients.
The right order assumes that a fully parallel degree of paral-
lelism is usually better than a pipeline/wavefront one. How-
ever, we showed that the volume of temporal reuse along
a wavefront can be calculated enabling us to derive empir-
ical machine-dependent thresholds to make a more precise
decision.
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Figure 4.1: Schedule (a) is Φ(xS0) = (j, i) and results in wavefront parallelism while schedule
(b) is Φ(xS0) = (i, j) and results in one fully parallel loop.

Therefore at the first iteration of the algorithm the minimum communication cost is 1 and can

be obtained by two solutions: Φ( ~xS0) = i and Φ( ~xS0) = j i.e. minimum coefficients for i and j

for communication cost 1. By putting the coefficient of i (ai) before that of j (aj) in the global

constraint matrix the ILP solver will minimize ai first, giving as the answer ai = 0, aj = 1

or Φ( ~xS0) = j as the first solution. By adding the orthogonality constraints we then get the

Φ( ~xS0) = i as our second linearly independent solution. If we now reverse the order of ai and

aj we will get Φ( ~xS0) = i and Φ( ~xS0) = j. From Figure 4.1 we see that the order in which we

get these two solutions matters since Figure 4.1-(b) presents a sequential loop followed by a

parallel one while Figure 4.1-(a) presents a wavefront-parallel loop nest.

Of course, one cannot be certain about which one of the two possible solutions will turn out

to be better in practice. It is very likely that fully parallel loops will perform better in most

cases since wavefront parallelism comes with a start-up and drain cost. However, depending

on the problem sizes, wavefront parallelism might end up being equally good or even better if

it has better temporal or spatial locality along its wavefronts. In the next paragraph we show

a simple method to get the right order for the constraint coefficients that takes wavefront cost

and temporal locality into account.

Proposed Solution

The reason why the scheduling algorithm is unable to distinguish between these two solutions is

because both dependencies in Figure 4.1 have the same communication cost along each dimen-

sion i and j. The difference between them lies on their direction i.e. one of the dependencies
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extends into both i and j dimensions as opposed to the other one that extends along i only

(carried by only one of the two loops). By extracting and using this information we could be

able to determine the right order for the constraint coefficients and distinguish between pipeline

and fully parallel degrees of parallelism.

Let Sdest be the destination statement of a dependence edge e ∈ E. We define a bit vector ~Ve

with size min(mdest,msrc) (dimensionalities of Sdest and Ssrc) that would store the direction

information for e. We also store a boolean attribute He which is false if a dependence vector

extends along more than one dimension. In particular :

~Ve[i] =


1 if e extends along i,

0 if e doesn’t extend along i

, (4.12)

0 ≤ i < min(mdest,msrc)

He =


true if e is horizontal,

false if e is diagonal

(4.13)

Each dependence edge e ∈ E is represented by a dependence polyhedron Pe defined as follows :

Pe =

-�
mdest

-� -�
msrc (n+ 1)

6

?

6

?

msrc

L


Ddest

∅ Dsrc

∅

h transformation


·



~xSdest

~xSsrc

~n

1


= 0

≥ 0
(4.14)

By taking 4.14 into account we can use Algorithm 2 to populate the direction vectors for each e ∈ E.
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Algorithm 2 Direction extraction

1: for each e ∈ E do
2: Ve ← 0
3: bool He ← true
4: int count← 0;
5: for i = 0 to min(mdest,msrc) do
6: if Pe[L + i][mdest + i] + Pe[L + i][i] = 0 then
7: if ∃j 6= i, (mdest + i) s.t. Pe[L + i][j] 6= 0 then
8: Ve[i]← 1;
9: count++;

10: end if
11: else
12: count++;
13: end if
14: end for
15: if count > 1 then
16: He ← false
17: end if
18: end for

Upon construction of the global constraint matrix we can determine the order of the transform

coefficients for each statement using Algorithm 3.

Algorithm 3 Coefficient ordering algorithm

1: Let N be the total number of statements in the source program
2: for each Statement Si, 0 ≤ i < N do
3: Let VSi a bit vector with size mSi initialized to 0
4: for each e ∈ E s.t. Sdest = Si do
5: if He = true then
6: VSi

= VSi
OR Ve

7: end if
8: end for
9: for each element j of VSi do

10: if VSi
[j] = 0 then

11: Put coefficient aSj
in leading minimization position

12: end if
13: end for
14: end for

In our example we have two dependence edges e1 and e2 where Ve1 = [1, 1] and Ve2 = [1, 0]. Fur-

thermore, the first edge e1 is diagonal so He1 = false and He2 = true. Therefore, Algorithm 3

will give us VS0 = [1, 0] and as a result we will put aSj
in the leading minimization position.

By applying this technique we can choose fully parallel degrees of parallelism instead of pipeline

ones. However, as we already mentioned this might not be the best strategy depending on

problem sizes and locality along a wavefront. A wavefront for statement S on an m-dimensional

loop nest can be represented by the following schedule:
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ΦwaveS( ~xS) =

m︷ ︸︸ ︷[
1 1 . . . 1

]
· ~xS (4.15)

We can measure the volume of temporal locality within a wavefront by counting the Read-after-Read

(input) dependencies that satisfy the following condition :

ΦwaveSdest
( ~xSdest

) = ΦwaveSsrc
( ~xSsrc) (4.16)

We can then define empirical thresholds for the structure parameters and the temporal reuse

along a wavefront to decide whether pipeline parallelism would be better for a particular hard-

ware architecture or not. Deriving these empirical thresholds for different architectures requires

experimental investigation that could be subject for future research.

4.2.1 Conclusions

In this section it was shown that a widely-used polyhedral scheduling algorithm for automatic

parallelization [BBK+08b, BR07] can sometimes be sensitive to the layout of the global con-

straint matrix that we use to obtain our solutions. To overcome this ambiguity we propose

an empirical methodology based on the direction of each dependence vector that tries to find

the right order for the unknown constraint coefficients. The right order assumes that a fully

parallel degree of parallelism is usually better than wavefront parallelism. However, we showed

that the volume of temporal reuse along a wavefront can be calculated enabling us to derive

empirical machine-dependent thresholds to make a more precise decision.



Chapter 5

RosePolly :

Design and Implementation of an

Object-Oriented Polyhedral Framework

This chapter introduces RosePolly, a novel polyhedral compilation framework based on the

ROSE 1 compiler infrastructure. Unlike existing frameworks, RosePolly is designed as an object-

oriented API as opposed to a monolithic executable. This API is organized into three layers

of abstraction each one corresponding to a separate conceptual layer of the polyhedral model.

These layers are: (i) the compilation layer (Section 5.3), (ii) the polyhedral model layer (Sec-

tion 5.5) and (iii) the math layer (Section 5.6). In this chapter we are going to look into

each one of these layers separately and how all of them fit together into a uniform design that

encourages modular and customized use of polyhedral compilation technologies.

1www.rosecompiler.org
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5.1 Polyhedral Compilation in Practice:

Related Work and Motivation

Loopo2 and SUIF 3 were among the first practical polyhedral compilers that appeared in the

mid 90s. Both of them offered automatic parallelization for affine loop nests, i.e. SCoPs,

through their automatic scheduling algorithms [Len93, LCL99]. However, code generation in

the polyhedral model (i.e. converting scheduled polyhedra back into loops) was one of the

major combinatorial bottlenecks at the time that impeded these frameworks (and polyhedral

compilation in general) from being more widely used and researched.

It was not until the emergence of CLooG4 in the mid 2000s that loop optimization in the

polyhedral model started to become more practical and attractive. CLooG was the first robust

and freely available tool for code generation in the polyhedral model that later became the key

component in most polyhedral compilers. It is based on the Quillere et al. [QRW00] algorithm

for generating efficient loop nests from polyhedra but improves it by applying techniques for

avoiding code explosion and complexity issues.

One of the first attempts to utilize the CLooG code generation technology was the Pluto com-

piler [BR07]. Pluto is a robust and practical framework that implements the Pluto scheduling

algorithm (see Chapter 4) for automatic parallelization and locality optimization of SCoPs.

Pluto was shown to generate effective parallel and tiled code for SMP systems through OpenMP

and was later adopted by a well-known industrial compiler namely IBM XL compiler. However,

Pluto is a stand-alone source-to-source compiler that was not designed to be extensible. This

was the main design goal of PoCC 5.

The PoCC source-to-source compiler was designed to be a modular and extensible framework

that could connect pluggable independent modules together through a common intermediate

representation called ScopLib (recently replaced by an improved standard called OpenScop).

2www.infosun.fmi.uni-passau.de/cl/loopo
3suif.stanford.edu/
4www.cloog.org
5www.cs.ucla.edu/~pouchet/software/pocc

www.infosun.fmi.uni-passau.de/cl/loopo
suif.stanford.edu/
www.cloog.org
www.cs.ucla.edu/~pouchet/software/pocc
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The default PoCC modules include CLooG and Pluto as well as Clan for model extraction,

Candl for dependence analysis and LetSee [PBB+10] – an alternative polyhedral optimizer

that seeks optimal schedules through searching structured optimization spaces – as shown in

FIgure 3.9. PoCC was the first attempt of the polyhedral community to formulate a software

hub that would bring together independent projects on polyhedral compilation.

Polly6 was the first attempt to implement a polyhedral compiler as an LLVM optimization

pass. As such, Polly was designed to operate on an SSA intermediate form (i.e. LLVM-IR)

which eliminated important syntactic restrictions. However, we believe that since polyhedral

optimizations are primarily syntactic in nature (e.g. loop transformations and loop paralleliza-

tion), operating on an SSA form is a counter-intuitive strategy especially when it comes to

code generation for heterogeneous architectures like GPUs. Targeting such architectures can

be significantly easier and more portable if we operate on a higher syntactic level that leverages

programming models like CUDA. It is worth noting that a very similar framework was imple-

mented as a GCC optimization pass called GRAPHITE [TCE+10]. Just like Polly, GRAPHITE

operates on an SSA form called GIMPLE and as a result suffers from the same code generation

weakness in our opinion.

Perhaps the most robust and widely used polyhedral frameworks today is ISL [Ver10]. ISL

started as a polyhedral library offering functions for manipulating integer polyhedra. How-

ever, ISL today has been extended to support compilation operations like dependence analysis,

scheduling – providing Pluto and Feautrier [Fea92b] scheduling options – and code genera-

tion. In fact, ISL was used recently to develop a state-of-the-art source-to-source compiler

for automatic C-to-CUDA code generation for SCoPs [VCJC+13]. Furthermore, unlike most

frameworks, ISL was designed to be used as an API which facilitates easier and customized

development of polyhedral compilers and tools.

Efforts to realize production-quality polyhedral compilers were also made by Amini et al. [ACE+12]

and Leung et al. [LVM+10]. Both approaches support well-known automatic scheduling algo-

rithms like Pluto and Feautrier and code generation for heterogeneous architectures like GPUs

6polly.llvm.org

polly.llvm.org
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based on the CLooG code generation technology.

In this chapter we introduce RosePolly, an object-oriented polyhedral framework that was

designed to be a user-centric API that facilitates easy and customized compiler and tool devel-

opment – something very useful for our main research objectives. To the best of our knowledge

this is the first attempt to realize such an API for polyhedral compilation. By taking ad-

vantage of object-oriented design features like inheritance and polymorphism we believe that

extending and/or customizing existing polyhedral compilation technologies – or implementing

new ones – can become much easier. Such capability will allow users to reach their research

objectives faster and also acquire a better understanding of polyhedral compilation and what

each individual building block can do.

5.2 Overview: The 3-Layer Interface

RosePolly is an object-oriented polyhedral compilation API based on the ROSE 7 compiler

infrastructure. As a result it operates on a high-level syntactic intermediate representation (IR)

produced by the production-quality EDG8 front-end of ROSE. Such syntax-based IR allows us

to formulate source-to-source code generation methods that can leverage high-level languages

like CUDA for efficient GPU code.

Perhaps one of the most important properties of RosePolly is its design. In particular, it is

organized into three layers of abstraction as shown in the UML diagram of RosePolly (Fig-

ure 5.1) and in Figure 5.2 as a bottom-up stratification. With this design we can effectively

separate the polyhedral model (the new IR of our program) from the high-level compilation

primitives – like model construction, scheduling and code generation – and the low-level math

primitives like integer linear programming, operations on integer polyhedra etc. We believe

that this is a very good software engineering practice that allows us to maintain each layer

separately without affecting the other ones. For example, notice from Figure 5.1 that adding

a new compilation primitive (e.g. a new scheduling or code generation algorithm) is as simple

7www.rosecompiler.org
8www.edg.com

www.rosecompiler.org
www.edg.com
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Figure 4.1: A horizontal UML view of the 3-Layer interface of RosePolly

Figure 4.2: A vertical perspective of the 3-Layer interface of RosePolly. Addi-
tional user modules can be added to the first layer.

14

Figure 5.1: UML structure of RosePolly

Figure 4.1: A horizontal UML view of the 3-Layer interface of RosePolly

Figure 4.2: A vertical perspective of the 3-Layer interface of RosePolly. Addi-
tional user modules can be added to the first layer.

14

Figure 5.2: RosePolly structure as a bottom-up stratification of abstraction layers.

as implementing a new RosePollyModel sub-class that will utilize existing layer-1 and layer-2

functionality through well-defined interfaces. In the following sections we are going to look into

each layer in more detail (Sections 5.3-5.6).

5.3 Layer-1 – The Compilation Interface

This layer encompasses the high-level analysis and optimization passes that can be used to

construct a meaningful source-to-source compilation flow. Prerequisite to any of these passes

though is a valid polyhedral model of the input program which is captured by the RosePollyModel

class. Consequently, the first major component of layer-1 is the model extraction function or
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SgNode 

RosePollyBuildModel( SgNode * ) 

Flow-graph 
construction 

Evaluation 
Model 

Extraction 

Dependence 
Analysis 

RosePollyBuildModel( FlowGraph * ) 

Error-handling interface 

RosePollyModel yes yes 

no no 

Figure 5.3: The structure of the RosePolly model-extraction function.

in other words the function responsible for constructing RosePollyModel objects from ROSE

syntax trees. This function is depicted in Figure 5.3 and takes an SgNode pointer as input –

i.e. a pointer to a ROSE syntax-tree – and returns a RosePollyModel object provided that

a control-flow graph of the syntax tree can be constructed and the SCoP restrictions are not

violated.

The control-flow graph or CFG of the input program is an essential data-structure in this

process. In the context of RosePolly, the CFG is implemented by the FlowGraph class and

consists of three main types of nodes: the ForLoop node, the Conditional node and the

Statement node. Figure 5.4 shows an example of a SCoP with its corresponding FlowGraph

structure. Notice that ForLoop and Conditional nodes in the FlowGraph can be of type head

or tail. This feature can be very useful for FlowGraph traversals because it allows us to easily

navigate through the divergent control paths from either direction, i.e. forwards or backwards.

After obtaining a FlowGraph the RosePollyBuildModel method (Figure 5.3) evaluates it

against the SCoP restrictions of Section 2.3. This is done through a visitor-pattern traversal

of the FlowGraph. This traversal visits each node and invokes the right evaluation procedure

according to its type. The same mechanism is used for translating FlowGraph nodes into the

polyhedral model once the evaluation process succeeds. The per-node-type procedures for eval-

uation and model extraction are implementations of the RosePollyCustom interface defined as

follows:
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for ( i=0 ; i < n ; i++ )

i f ( i < m )

S1 ;

else

S2 ;

ForLoop 
Head 

Conditional 
Head 

Statement 
S1 

Statement 
S2 

Conditional 
Tail 

ForLoop 
Tail 

NULL 

NULL 

(a) (b)

Figure 5.4: The FlowGraph (b) of a simple SCoP (a). Each ForLoop and Conditional node
can be of type Head or Tail. This allows us to traverse the FlowGraph easily from any direction.

class RosePollyCustom {

public:

virtual bool evaluate_loop( ForLoop * loop ) =0;

virtual pollyDomain * add_loop( pollyDomain * d, ForLoop * loop ) const=0;

virtual bool evaluate_conditional( Conditional * cond ) const=0;

virtual pollyDomain * add_conditional( pollyDomain * d, Conditional * cond ) const=0;

virtual bool evaluate_access( AccessPattern * ap ) const=0;

virtual pollyMap * add_pattern( pollyDomain * m, AccessPattern * ap ) const=0;

virtual void add_params( vector<string> p ) =0;

}

The AccessPattern objects are attributes of the Statement node which is the base class of

the affineStatement node shown in the UML diagram of Figure 5.1. Therefore, every time a
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SgNode 

RosePollyBuildModel( RosePollyCustom *, SgNode * ) 

Flow-graph 
construction 

Evaluation 
Model 

Extraction 

Dependence 
Analysis 

RosePollyBuildModel( FlowGraph * ) 

Error-handling interface 

RosePollyModel yes yes 

no no 

RosePollyCustom 

Figure 5.5: The overloaded version of the RosePollyBuildModel method that takes an ad-
ditional RosePollyCustom argument that implements the evaluation and model extraction
policies.

Statement node is encountered the evaluate access and add pattern methods are invoked

for each one of the statement’s access patterns. Furthermore, the model extraction functions

take a Layer-3 pollyDomain object as an argument simply because these functions are going

to update (or access) the current state of the polyhedral domains (Section 3.3) represented by

the pollyDomain input.

The default RosePollyBuildModel function uses a default implementation of the RosePollyCustom

interface but the user can obviously customize the evaluation and modeling procedures by im-

plementing a new subclass or extend the default one. In this case the RosePollyBuildModel

class is overloaded to a new version that takes an additional RosePollyCustom argument as

shown in Figure 5.5.

Notice that dependence analysis is done within RosePollyBuildModel too and uses a visitor-

pattern traversal over the FlowGraph as well. The only difference though is that the FlowGraph

now contains affineStatement nodes as opposed to the generic ones we used to construct the

FlowGraph. Evidently, the affineStatement nodes – a subclass of the generic Statement

node – carry the polyhedral model of each statements execution space and access patterns

which are used by the dependence analysis algorithm. Our dependence analysis algorithm was

an adaptation of the one proposed by Griebl et al. [Gri04] which is a value-based algorithm.

However, we noticed that dependences like the true dependence S2→ S3 of Figure 5.6 cannot

be eliminated. Eliminating such dependences requires an additional post-processing step based

on Wonacott and Williams [PW94, PW95], that has not been examined by this thesis.
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for ( i=0 ; i < n ; i++ ) {

S1 : A[ i +1] = . . .

S2 : A[ i +2] = . . .

S3 : . . . = A[ i ]

}

Figure 5.6: The S2 → S3 true dependence cannot be elimitated by our dependence analysis
algorithm.

After obtaining valid RosePollyModel objects from the RosePollyBuildModel method the

user can use them to instantiate objects of subclasses that implement a specific optimization or

analysis policy. In other words, by inheriting the polyhedral model from the RosePollyModel

base class, subclasses may implement their own optimization or code generation strategy which

could be original, i.e. direct child of the RosePollyModel class, or an extension of an existing

one. For example the RosePluto and RoseCloog classes implement the Pluto and CLooG algo-

rithms for scheduling and code generation respectively. Both of these classes can be extended

to support an improved version of their algorithms or an extension to support GPU-specific

scheduling or code generation strategies.

Section 5.4 presents a usage example of Layer-1 objects. In this example we see that for

every (annotated) SCoP found in the input program, a RosePollyModel object is constructed.

Then, for each one of these objects two Pluto objects are constructed each one invoked with a

different fusion option (a Pluto-specific option). We then convert the derived schedules back

into syntactic form using a pair of RoseCloog objects to match the two Pluto ones per SCoP.

By comparing some cost function implemented by the Cloog class we can decide which one of

the two Pluto options is the best for our program. This example shows that RosePolly enables

us to build custom compilation flows very easily in a programmable fashion.

5.4 Layer-1 usage example

In the following usage example the SgProject object represents the entire syntax-tree of a

compilation unit while the frontend method embodies the ROSE EDG front-end. Evidently



5.4. Layer-1 usage example 63

the SgProject class is a subclass of SgNode.

int main( int argc, char * argv[] ) {

vector<string> argvList(argv,argv+argc);

SgProject * proj = frontend(argvList);

vector<RosePollyModel*> scops = RosePollyBuildModel(proj,ANNOTATED);

for ( int i = 0 ; i < scops.size() ; i++ ) {

/* The pluto object gets a complete copy of the polyhedral model (but no schedule) */

RosePluto * pluto = RosePollyBuildPluto( scops[i] );

/* Application of the Pluto algorithm with the MAX_FUSE option */

pluto->apply(MAX_FUSE);

/* cloog1 gets a copy of the pluto object including the derived schedules */

RoseCloog * cloog1 = RosePollyBuildCloog( pluto );

/* A new application of the Pluto algorithm overwrites any existing schedules */

pluto->apply(SMART_FUSE);

/* cloog2 now gets the new schedules derived with the SMART_FUSE option */

RoseCloog * cloog2 = RosePollyBuildCloog( pluto );

CloogOptions * opts = RoseCloog::init_default_options();

cloog1->apply(opts);

cloog2->apply(opts);

/* e.g. degrees of parallelism */

int metric1 = cloog1->get_metric();

int metric2 = cloog2->get_metric();

FlowGraph * graph = (metric1>=metric2) ?

cloog1->print_to_flow_graph() :

cloog2->print_to_flow_graph();

RoseCUDA * cuda = RosePollyBuildCUDA( graph );

/* more steps ... */

}

RosePollyTerminate();

}
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5.5 Layer-2 – The Polyhedral Model Interface

As we see from the UML diagram of Figure 5.1, layer-2 encompasses the main attributes of the

RosePollyModel class. More specifically we see that every RosePollyModel object consists

of a set of affineStatement objects, a set of affineDependence objects and a symbol table

that stores information about the data of the SCoP. Each affineStatement object has an

execution domain (see Section 3.3) and a schedule (see Section 3.4) captured by the layer-3

pollyDomain and pollyMap classes respectively. In addition, each affineStatement has a

set of accessPattern objects corresponding to the data accesses of the respective computa-

tion statement. On the other hand, affineDependence objects contain two affineStatement

objects, corresponding to a source and a sink statement, as well as a pollyMap object that

captures the dependence polyhedron of the dependence (see Section 3.6). The entries of the

symbol table are Datum objects each one containing accessPattern objects referring to specific

access functions found in the input program. Notice that the same accessPattern objects can

be accessed both from a given Datum as well as a given affineStatement. With such design

it is easy to reason about access functions from a global or a statement-wise perspective. Fur-

thermore, Datum objects carry unified global information about specific data something that

can be very useful in compiling for heterogeneous architectures like GPUs, where it is often

necessary to transfer data to and from device memory before and after the execution of a SCoP.

In particular, each Datum carries a flag that specifies whether the respective data object was

globally written to, read from or both and also a pollyMap (layer-3 object) that represents the

collective global footprint of the Datum.

5.6 Layer-3 – The Math Interface

The third and last layer is the one responsible for managing two fundamental concepts of the

polyhedral model, i.e., the concept of a Z-Polyhedron and the concept of an affine mapping (or

affine function). The former is captured by the pollyDomain class while the latter is captured

by the pollyMap class. Both of these classes provide methods for easy manipulation of affine
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constraints and utilization of important operations like lexicographic minimization (i.e. integer

linear programming or ILP) and Fourier-Motzkin elimination. In the current implementation

of RosePolly, the pollyDomain and pollyMap classes are wrapper classes around a third-party

polyhedral library9 that handles all the low-level implementation details (see Section 3.8). By

adding this layer of abstraction, we can effectively decouple the logic and semantics of our

compiler from low-level implementation details related to the mathematical background of the

polyhedral model – something that is outside the scope of our work.

First of all, the pollyDomain class represents a Z-polyhedron or in other words a domain

as we defined it in Section 3.3. Therefore, each affineStatement has a pollyDomain that

captures the execution domain of the respective computation statement. On the other hand,

the pollyMap class consists of an affine mapping (or affine function) and a domain in which

the mapping is valid. pollyMap is used by all Layer-2 objects as wee see in Figure 5.1. For the

affineDependence a pollyMap is used to capture the dependence polyhedron of the dependence

as defined in Section 3.6. For the affineStatement it is used to capture the schedule of the

statement (see Section 3.4) which could be the result of the Pluto scheduling algorithm. Finally,

for access functions and data (see Section 3.5), pollyMap represents their access functions.

Perhaps the most important concern with respect to the pollyMap and pollyDomain classes is

how we can efficiently manipulate the underlying systems of affine constraints while minimizing

the users exposure to library-specific implementation details. In RosePolly we provide two main

avenues for doing that as we see in Figure 5.7. The first avenue is based on a light-weight

matrix abstraction called simple matrix that is used to store constraint coefficients using the

built-in int data type and a well-defined matrix layout. However, in some cases it might be

necessary to handle rational coefficients or utilize a special feature found in some third-party

library. For cases like these we provide the integer map and integer set macros that expand

to library-specific data types. This feature enables the user to directly access and utilize the

underlying third-party library effectively bypassing the Layer-3 pollyMap and pollyDomain

abstractions.

9This library is currently the ISL library.
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pollyDomain 

pollyMap 

Polyhedral 

Library 

User 

Figure 5.7: Layer-3 interface to the underlying systems of affine constraints.

5.7 Conclusions

In this chapter we presented the design and implementation of RosePolly, an object-oriented

API for polyhedral compilation. To the best of our knowledge this is the first attempt to realize

such framework. By taking advantage of inheritance and polymorphism, RosePolly enables the

user to extend and customize existing polyhedral functionality very easily and therefore build

polyhedral compilers and tools fast. This was proven extremely helpful for our primary research

objectives as we will see in the next part of this Thesis. In particular, by using RosePolly we

were able to build important GPU-specific tools fast, something that would otherwise be a

rather slow and tedious process. Furthermore, we believe that this chapter will be very helpful

for the reader too since it would be straight forward to associate the theoretical polyhedral

concepts of Part II with the well-defined implementation design of RosePolly.
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Chapter 6

Parametric GPU Code Generation for

Static Control Programs

In Chapter 4, we saw how a static control program can be analyzed and automatically paral-

lelized in the polyhedral model using the Pluto scheduling algorithm. That is, we identified and

exposed parallelism at the finest granularity with respect to the SCoP execution spaces at hand

(i.e. domains), which is a machine-independent characterization that ignores the finite nature

of the underlying computing machine. Our task now is to partition parallelized SCoPs into

independent chunks of finite size (i.e. extract coarse-grained parallelism) and schedule those

chunks for execution on a GPU. In the context of OpenCL and CUDA this translates to the

definition of a uniform rectangular partitioning of the parallel execution space – embodied by

a work-group/nd-range configuration (Figure 2.6) – where each partition is subject to a fine-

grained distribution of resources that has a direct yet hard to estimate impact on performance

as we saw in Section 2.1.4.

This chapter presents and evaluates a code-generation scheme for producing parametrically

partitioned static control programs for GPU execution. This scheme allows us to search for the

right partitioning parameters at run-time and therefore avoid the cost of complex compile-time

performance models or iterative compilation. The proposed mechanism is based on parametric

tiling for producing parallel rectangular partitions of parametric size and a novel run-time

68
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system that manages GPU execution and local memory usage dynamically. An experimental

evaluation demonstrates the effectiveness of our approach for a variety of SCoPs from the

PolyBench suite1.

6.1 Introduction

One way to partition a SCoP for coarse-grained parallelism is by applying the well-known

loop-tiling transformation2 [WL91, LRW91, IT88] provided that it is semantics-preserving i.e.

it respects the data-access dependences of the program. In the polyhedral model, loop-tiling

can be effectively represented [BF03, LLL01, IT88, Gri04] as long as all tile sizes involved are

compile-time literals and therefore preserve the affine characterization of the program. On

the other hand, if tile sizes are parametric (unknown during compilation), we need to resort

to non-polyhedral parametric tiling methods. Such methods have been proposed for perfectly

nested loops [KRR+07, RKRS07] as well as arbitrary nested ones [KR, HBB+09].

However, the purpose of obtaining a tiled execution space (parametric or non-parametric) is

typically to optimize a program for locality assuming that the data accessed by each tile can fit

into higher levels of the memory hierarchy. Utilizing a tiling transformation for coarse-grained

parallelism requires additional steps in order to identify tiles that can be executed in parallel.

This can be exemplified by Figure 6.1 where even though the inner loop of the point execution

space of Figure 6.1(a) is always parallel, the respective rectangularly-tiled space of Figure 6.1(b)

has no parallel dimensions.

One of the fundamental properties of tileable loop nests, i.e., loop nests for which tiling is legal, is

that they always allow parallel execution of tiles through wavefront/pipeline parallelism [Wol86,

Wol89, Xue00]. For example in Figure 6.2 we see two tile-size configurations for a rectangularly-

tiled execution space. Each dashed line represents a wavefront instance and all tiles that lie on

the same dashed line (i.e. on the same wavefront instance) can always be executed in parallel.

1www.cs.ucla.edu/~pouchet/software/polybench
2An alternative method was proposed by Yang et al. [YXKZ10] based on thread-merging and block-merging

transformations of CUDA kernels.

www.cs.ucla.edu/~pouchet/software/polybench
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(a) (b)

Figure 6.1: (a) A rectangularly tiled iteration space where the inner loop is always parallel, (b)
The resultant tile-space where none of the tile dimensions are parallel. The large blue points
in (b) correspond to the rectangular tiles of (a).

(a) (b)

Figure 6.2: A rectangularly-tiled execution space using two different tile-size configurations.
The grey area represents the actual execution space and the black rectangles represent the
tiles.

The wavefront instances of course must be enumarated sequentially.

If tile-sizes are known during compilation then wavefronts of parallel tiles can be effectively

generated using polyhedral code generation for SMP [BBK+08b, BR07] as well as distributed

memory tragets [Gri04]. In the context of parametric tiling (also referred to as parameterized

tiling), Hartono et al. [HBRS10, HBB+09] showed that a run-time system can be used to

construct wavefronts of parallel rectangular tiles dynamically while Baskaran et al. [BHT+10]

proposed a relaxed Fourier-Motzkin elimination algorithm in order to produce parameterized

wavefronts of rectangular tiles at compile-time with no additional run-time support.

However, wavefront parallelism is not the only way of extracting parallel tiles. Krishnamoorthy

et al. [KBB+07] and Strout et al. [SCF+05] proposed alternative methods that can be applied

to simple stencil computations namely split-tiling and overlapped-tiling. The main weakness of
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these methods though is their restrictive applicability which is why we do not examine them

in more detail here.

With respect to GPU code generation, static partitioning (i.e., tile-sizes are known during

compilation) and generation of wavefront parallelism has been the dominant strategy [BRS10,

VCJC+13, ACE+12, DX11] with split-tiling [GCK+13] and overlapped-tiling [HPS12, MS09]

schemes also being proposed. To the best of our knowledge there hasn’t been any work that

generates parametrically tiled GPU code for SCoPs to date, which constitutes the primary

motivation for our work.

In Section 2.1.4 we saw that estimating the performance of GPU programs with reasonable

accuracy, requires a detailed software and hardware analysis that is directly exposed to the

partitioning of our program. This observation, combined with the diverse and evolving hardware

organization of modern GPUs, highlights the importance of finding the right set of partitioning

parameters for best performance through static (i.e. iterative compilation) or run-time tuning.

The benefits of performing such tuning at run-time (as opposed to iterative compilation), is

that we can minimize total compilation cost and enable fast design-space exploration across

GPU devices by a single parameterized program. Parametric tiling can realize these benefits as

it produces tiled loop nests with parametric tile sizes amenable to run-time tuning. However,

in order to implement a parametric tiling scheme for GPUs we need to address the following

technical challenges.

First, extracting and mapping parameterized wavefronts of parallel tiles for GPU execution can

lead to load imbalance if wavefronts are not mapped precisely to a rectangular GPU execution

environment. For example, in figure 6.3 we see a 3D execution space and the respective non-

rectangular wavefronts. Executing those wavefronts on a GPU normally requires a rectangular

over-approaximation that obviously leads to redundant allocations of resources both on the

tile and intra-tile space. For the later, such load imbalance can have a severe impact on

performance bacause it directly affects register and local memory utilization from redundant

thread allocations. In addition, the parametric nature of the produced code indicates the need

for a dynamic local memory management mechanism that would be able to allocate and use local
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(a) (b)

Figure 6.3: Examples of non-rectangular wavefronts for a 3D execution space.

memory buffers dynamically. In this chapter we provide an answer to these technical challenges

and formulate the first code generation algorithm for SCoPs that produces parameterized GPU

code amenable to run-time tuning.

Our compilation flow (Figure 6.4) begins with a SCoP that enters a pre-processing stage em-

bodied by an abstract polyhedral compilation framework (upper section of compilation flow)

consisting of a model extraction, scheduling and syntax recovery module as shown in Figure 6.4

and explained in Section 3.7. This framework is used to find combinations of loop-nest trans-

formations – in the form of affine scheduling functions – that enable tiling. For the remainder of

this chapter we are assuming that this first pre-processing step produces a tilable SCoP through

some automatic scheduling algorithm like Pluto (Chapter 4). This chapter is focused on the

lower section of the compilation flow graph of Figure 6.4 where we first produce a parametric

tile space and an intra-tile version of the input SCoP at compile-time (Section 6.2). We then

map the produced tile space to a GPU execution environment at run-time and use the intra-

tile version of our SCoP to produce the GPU device code (Section 6.3). Finally, we show how

we manage local memory usage dynamically by a combination of compile-time and run-time

methods (Section 6.4).
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GPU 
Mapping 
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Parametric 
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Figure 6.4: Code generation flow, where E is a set of polyhedral dependences, Φ a set of
multi-dimensional affine transformations and P a syntactic form of a tileable program.

6.2 Parametric Tiling

The proposed code-generation scheme relies on two independent pre-processing steps corre-

sponding to Sections 6.2.1 and 6.2.2. The first step (Section 6.2.1) utilizes well-known tech-

niques [BHT+10] for determining a parametric tile space for the input program in the form of

perfectly nested loops that scan a uniform space of rectangular tiles with parametric sizes like

the ones shown in Figure 6.2.

The second step (Section 6.2.2) focuses on the intra-tile space, i.e., on the rectangular execution

space enclosed within each tile. The objective of both steps is to expose coarse-grained and

fine-grained parallelism respectively either through wavefronts or through rectangularly parallel

loop dimensions if any (the trivial case).

6.2.1 The Tile Space

First of all, in order to ensure that tiling is a semantics preserving transformation, we define

the legality condition for tiling based on Section 3.6 definition of dependence vectors :

Definition 3. For a d-dimensional problem, tiling is a legal transformation iff δei ≥ 0 for all

dimensions i ∈ [1 . . . d] and for all dependences e ∈ E.

Definition 3 essentially states that tiling is not legal if there exists a dependence edge e ∈ E

that yields a non-lexicographically positive dependence vector [WL91].
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Tiling is usually enabled by a loop skewing transformation [Wol86] however, deriving the right

combination of loop transformations to enable tiling in the general case of arbitrary SCoPs can

be effectively achieved through polyhedral scheduling (see Chapters 3 and 4). Consequently,

let Φ : {φS1 . . . φSn} be a set of multi-dimensional affine transformations (i.e. schedules as per

Section 3.4) derived by a polyhedral scheduling algorithm (e.g. Pluto). Dependence vectors

are now defined for a transformed d-dimensional program as follows :

etv(e) = (δet0 , . . . , δetd),

δeti =


1 if φsinke [i](~xsinke)− φsrce [i](hei(~xsinke)) > 0,

0 if φsinke [i](~xsinke)− φsrce [i](hei(~xsinke)) = 0,

−1 if φsinke [i](~xsinke)− φsrce [i](hei(~xsinke)) < 0.

for i ∈ [0..d]

In case there is still a dependence edge e ∈ E with a negative component for etv(e), we can

attempt to find a set of innermost schedule dimensions, for which Definition 3 is satisfied.

Therefore, let dt ≤ d denote the innermost dimensions of φSi
for which tiling is legal across all

statements Si.

Given dt innermost tileable dimensions, we define Li : i ∈ [1 . . . dt] to be a set of perfectly

nested loops that scan a space of uniform rectangular tiles of parametric sizes. Each loop Li

will effectively represent a coordinate dimension and each tile will be uniquely identified by an

iteration vector ~t = [t1 ∈ L1, . . . , tdt ∈ Ldt ]. Given a set Li of tile loops, we can seek a subset

of rectangularly parallel tile loops LPi
: i ∈ [1 . . . dpar ≤ dt] that we can map directly into an

ND-range or resort to wavefront parallelism if dpar = 0. In the former case, let ST and STP

denote the sets of tile loops Li and rectangularly parallel tile loops LPi
respectively.

In the general case of arbitrary SCoPs we define ST as the set of tile loops needed to scan

the tiled convex hull of the dt innermost dimensions of the transformed execution space. We

begin by recovering the syntax of the input SCoP under Φ, thus getting a new syntactic tree P .
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Afterwards, we acquire the new transformed domains D′Si
for each statement in P and use a

polyhedral library (Section 3.8) to recover the convex hull DCH of the dt innermost dimensions

of all D′Si
. In case of imperfectly nested programs we add semantics preserving one-time-loops

(OTLs) on P prior to extracting D′Si
(see Figure 6.5 for an example of OTLs). Note that DCH

is a convex polyhedron by definition, thus represented by a single integer coefficient matrix.

Instead of transforming DCH into a syntactic form, we use a more appropriate data structure

that facilitates robust algebraic manipulation of non-affine loop-bounds. In particular, each row

of DCH is turned into a loop bound expression implemented as a list of symbolic polynomial

fractions as suggested by Baskaran et al. [BHT+10]. Let lbi and ubi denote the lower and

upper bound expressions respectively, for loop Li ∈ ST with i ∈ [1 . . . dt]. We now have a fully

permutable vector of polynomial expression pairs (each pair consisting of a lower and upper

bound expression) that we use to apply the following algebraic operations to get the final tiled

execution space ST :

Introduce tile coordinates Each coordinate xi of the original execution space DCH , is ex-

pressed in terms of tile coordinates ti, intra-tile coordinates ui and tile sizes Ti as follows :

xi = ti · Ti + ui, for 0 ≤ ui < Ti

Finally, ST takes the form :

ST : lbi ≤ ti · Ti + ui ≤ ubi, for i ∈ [1..dt]

Eliminate intra-tile coordinates The intra-tile coordinates ui can be eliminated by making

sure we include all non-empty tiles :

ST :

(
lbi ≤ ti · Ti + Ti − 1

ubi ≥ ti · Ti

)
, for i ∈ [1..dt]

Get final tile loop-bounds The resulting expressions require additional processing since the

tile coordinate variables appear as part of a product (i.e. ti · Ti) that prevents us from
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constructing tile loops. We overcome this by dividing all terms by Ti and since tile

coordinates can only take integer values, we enclose the resulting symbolic fractions into

floor 3 operators :

ST :

(
floor(lbi/Ti) + floor(1/Ti)− 1 ≤ ti

floor(ubi/Ti) ≥ ti

)
, for i ∈ [1..dt]

The introduction of floor operations has an important impact on the resulting tile loops.

In particular, they produce a number of empty tiles i.e. tiles that do not include any

valid points. In Section 6.3 we’ll show how empty tiles are eliminated simply by using

the expressions of the previous step as run-time conditional predicates.

From Definition 3 we know that all dt innermost dimensions of dependence vectors etv(e) are

either 0 or 1. A value of 1 indicates that there is an inter-tile dependence across the corre-

sponding tile dimension/loop. On the other hand, a tile loop Li ∈ ST is parallel and can be

mapped into an ND-Range if the following condition holds :

Definition 4. A tile loop Li ∈ ST with i ∈ [1..dt] is parallel iff δeti = 0 for all e ∈ E. Otherwise,

it is sequential.

Let STP be the set of loops that satisfy Definition 4 with Card(STP ) = dpar. If this set is

non-empty, i.e. dpar > 0, then the loops LPi ∈ STP can be mapped directly into an ND-range

while the remaining loops LSi ∈ ST ∧ LSi /∈ STP , if any, will be pushed into the device code

and executed sequentially by each thread. Otherwise, if no parallel tile loops can be found, we

resort to wavefront parallelism.

In theory, a wavefront can be modeled by a hyperplane of the tile space defined as :

W(~t) = I> · ~t, for ~t ∈ ST (6.1)

This hyperplane guarantees that all tile instances that belong to the same wavefront instance

are independent and thus can be executed in parallel. Formally :

3A floor operator returns the largest integer that is not greater than the actual result of the fraction.
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Definition 5. Let ~t and ~t′ be two valid tile instances. If W(~t) = W(~t′), then ~t and ~t′ are

independent and can be safely executed in parallel.

Proof. If we ignore the obvious case where ~t = ~t′, then according to Equation (6.1) in order for

W(~t) =W(~t′) to hold we have :

t1 + t2 + · · ·+ tdt = t′1 + t′2 + · · ·+ t′dt (6.2)

By rearranging the terms of (6.2) we have :

(t1 − t′1︸ ︷︷ ︸
∆1

) + (t2 − t′2︸ ︷︷ ︸
∆2

) + · · ·+ (tdt − t′dt︸ ︷︷ ︸
∆dt

) = 0 (6.3)

Since ~t 6= ~t′ then ∃i ∈ [1..dt] s.t. ∆i 6= 0. If ∆i > 0 then in order for (6.3) to hold there must

be an i′ ∈ [1..dt] s.t. ∆i′ < 0. Therefore, if there exists a dependence e ∈ E that involves ~t and

~t′ then δeti′ = −1 which contradicts Definition 3. Consequently, @e ∈ E that involves ~t and ~t′

thus they can be safely executed in parallel.

In practice, if we combine (6.1) with system ST of tile loops, and use Fourier-Motzkin elimination

to eliminate ~t from (6.1) and [ti+1 . . . tdt ]
4 from Li ∈ ST we could end-up with a wavefront system

of loops. However, the tile bounds of the Li loops involve parametric fractions of indeterminate

sign which makes the classic Fourier-Motzkin elimination algorithm inapplicable. In order to

overcome this problem we utilize the relaxed Fourier-Motzkin elimination algorithm proposed

by Baskaran et al. [BHT+10] and produce the desired system of wavefront loops :

4Innermost tile coordinates.
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W :lbw ≤ w ≤ ubw

SWT (w) :lbwi(w) ≤ ti ≤ ubwi(w), for i ∈ [1..dt]

Evidently, loops SWT (w) from the above system enumarate the tiles within each wavefront

instance w and can be executed in parallel while the wavefront loopW enumarates the wavefront

instances and is executed sequentially.

Algorithm

Input : A set of multi-dimensional schedules Φ : {φS1 . . . φSn}. A set of polyhedral depen-

dences E and a syntactic form of the program P that was recovered under schedules Φ with a

syntax-recovery tool.

Output : Sets ST and STP or sets W and SWT (w) with w ∈ W , depending on whether we re-

sorted to wavefront parallelism or not. All the returned sets are vectors of symbolic expressions

implemented according to [BHT+10].

Step 1 For each dependence edge e ∈ E get dependence vector etv(e) using schedules Φ.

Step 2 Based on dependence vectors etv(e) and Definition 3 determine the innermost tileable

dimensions of Φ (usually all of them). This step returns dt which denotes the number of

innermost tileable dimensions.

Step 3 Based on dependence vectors etv(e), determine which tileable dimensions are parallel

according to Definition 4. For this step, a bit vector ~p of size dt is used in order to flag

the parallel dimensions. The total amount of parallel dimensions is denoted by dpar.

Step 4 In case of imperfectly nested loops add semantics preserving one-time loops (OTLs)

to P and get a new syntactic tree P ′ in which all syntactic statement instances are

surrounded by the same number of loops (see Figure 6.5 for an example).
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Step 5 Acquire the new transformed domains D′Si
for each statement Si in P ′.

Step 6 Get the convex hull DCH of the dt innermost dimensions of all D′Si
. DCH is represented

by a single integer coefficient matrix.

Step 7 Convert DCH into a vector ST of symbolic polynomial expressions implemented ac-

cording to [BHT+10].

Step 8 If dpar = 0 go to Step 8.1. Otherwise go to Step 8.2.

Step 8.1 Invoke RSFME algorithm [BHT+10] and get W and SWT (w) from ST . Go to

Step 9.

Step 8.2 Remove all parallel tile dimensions from ST using ~p, and place into new vector

STP of parallel tile dimensions. Go to Step 9.

Step 9 If dpar = 0 return W and SWT (w). Otherwise, return ST and STP .

Implementation

Evidently, Algorithm 6.2.1 can be implemented with RosePolly (Chapter 5), even though an

existing implementation provided by PoCC was actually used for our experiments. In particular,

we can use method RosePollyBuildModel to get a RosePollyModel object from our input

SCoP effectively extracting the polyhedral model including the dependences E. Then we can

instantiate a RosePluto object and a RoseCloog object exactly like we see in the Layer-1 usage

Example of Section 5.4. After invoking the Pluto algorithm using RosePluto::apply we get

the schedules Φ as the pollyMap members of each affineStatement of RosePluto. Then we

can invoke RoseCloog::apply and RoseCloog::print to flow graph to get the transformed

program P . This means that RoseCloog can give us P in the form of a FlowGraph object and

therefore, adding the OTLs in step 4 can be as easy as adding ForLoop nodes in the P and get

P ′ as a new FlowGraph.

Acquiring the new transformed domainsD′Si
for step 5 can be done by invoking the RosePollyBuildModel

method with FlowGraph P ′ as an input (the inner grey box of Figures 5.3 and 5.5). Afterwards,
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the convex hull computation of step 6 can be implemented as a RosePollyModel::convex hull

method that invokes a Layer-3 pollyDomain::convex hull operation incrementally for pairs of

affineStatement objects. The result would be a Layer-3 pollyDomain object that represents

the convex domain. Finally we can request a simple matrix object from the convex domain

that we can then use to construct our symbolic polynomial expressions for step 7.

6.2.2 The intra-Tile Space

The situation within each tile appears to be simpler as it is just a rectangular execution space.

Nevertheless, in order to preserve the legality of tiling we need to respect the multi-dimensional

schedules Φ embodied by the transformed syntax P ′. Furthermore, we need to identify paral-

lelism within each tile as well, which might come from parallel intra-tile dimensions or wavefront

parallelism.

In either case, parallel intra-tile points will be captured by a work-group configuration and

executed by the device code in a SIMT fashion. Since the respective work-group configuration

will inherently respect the tile bounds of the parallel intra-tile dimensions, we only need to

replace the respective syntactic loop bounds of P ′ with if-guards and adjust non-parallel loop

bounds to be :

SIseq : max(lbi, ti · Ti) ≤ xi ≤ min(ubi, ti · Ti + Ti − 1) (6.4)

The result is a transformed syntax tree Pintra that will be used to produce the device code

(Section 6.5).

In the case of wavefront parallelism the situation is rather straightforward. In particular, since

the intra-tile space is essentially a rectangular bounding box with Ti extents across each dimen-

sion i ∈ [1..dt] the wavefront loops can be generated for the intra-tile space with hyperplane (6.5)

using a polyhedral code-generation tool [Bas04, QRW00, Che12]. We can then wrap these loops

around P ′ and replace all but the outer wavefront loop with if-guards. Figure 6.5 shows how
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this process can be applied to the ADI benchmark from the polybench suite5. In Section 6.3

we’ll see that the wavefront conditions can actually be hoisted to the host code and evaluated

once using an automatic run-time mechanism. Therefore, Pintra in case of intra-tile wavefront

parallelism, is actually produced by replacing all loops in P ′ with if-guards (Figure 6.5(b)).

WI(~u) = I> · ~u, for 0 ≤ ui < Ti and i ∈ [1..dt] (6.5)

Sometimes, the derived schedules φSi
∈ Φ for an input SCoP, will result in a maximally fused

target loop-nest in an attempt to minimize sequential execution overhead. However, in a GPU

execution context this approach is not always ideal as we see from the Jacobi-2d example of

Figure 6.6. In particular, we notice that the schedules derived from the Pluto scheduling algo-

rithm (Chapter 4), resulted in a maximally fused program, where inter-statement dependences

carried by the space dimensions φSi
[1] and φSi

[2], prevent the respective space loops (i.e. loops

i and j) from being parallel. This situation forces us to resort to wavefront parallelism on the

intra-tile space as well. However, avoiding an intra-tile wavefront – if possible – can be highly

beneficial because the lightweight nature of GPU cores, makes them particularly vulnerable to

the additional control overhead incurred by wavefront parallelism.

In order to overcome this problem, we propose Algorithm 4 which is applied on Φ prior to acquir-

ing P , in order to eliminate such inter-statement dependences. More specifically, Algorithm 4

utilizes a directed dependence graph – where the vertices of the graph are the statements of

the input SCoP – in order to extract strongly connected components. The strongly connected

components are then decoupled by inserting scalar dimensions to all φSi
∈ Φ corresponding to

the respective component identification number scc[i] of each statement – a process similar to

classic loop vectorization algorithms [AK87]. Figure 6.6 (c) shows the result for the Jacobi-2d

example. Note, that Algorithm 4 does not alter the affine transformations per se, but only the

fusion structure of the program in an attempt to avoid wavefront parallelism.

An important observation from Algorithm 4 is the following: if the condition of line 5 is false,

5www.cs.ucla.edu/~pouchet/software/polybench

www.cs.ucla.edu/~pouchet/software/polybench
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for ( c0 = 0 ; c0 <= T−1 ; c0++ ) {

for ( c1 = c0 ; c1 <= c0 ; c1++ ) { // OTL

for ( c2 = c0+1 ; c2 <= c0+N−1 ; c2++ ) {

S1 ; S2 ;

}

}

for ( c1 = c0+1 ; c1 <= c0+N−1 ; c1++ ) {

for ( c2 = c0+1 ; c2 <= c0+N−1 ; c2++ ) {

S3 ; S4 ; S5 ; S6 ;

}

for ( c2 = c0+N ; c2 <= c0+N ; c2++ ) { //OTL

S7 ; S8 ;

}

}

}

i f ( c0 >= 0 && c0 <= T−1 ) {

i f ( c1 >= c0 && c1 <= c0 ) { // OTL

i f ( c2 >= c0+1 && c2 <= c0+N−1 ) {

S1 ; S2 ;

}

}

i f ( c1 >= c0+1 && c1 <= c0+N−1 ) {

i f ( c2 >= c0+1 && c2 <= c0+N−1 ) {

S3 ; S4 ; S5 ; S6 ;

}

i f ( c2 >= c0+N && c2 <= c0+N ) { //OTL

S7 ; S8 ;

}

}

}

(a) (b)

for ( w = 0 ; w <= T0+T1+T2−3 ; w++ ) {

// Wavefront c o n d i t i o n s

i f ( c0 >= 0 && c0 >= w−T1−T2+2 && c0 <= w && c0 <= T0−1 ) {

i f ( c1 >= 0 && c1 >= w−c0−T2+1 && c1 <= T1−1 && c1 <= w−c0 ) {

// Recover g l o b a l c o o r d i n a t e s

c0 += t0 ; c1 += t1 ;

c2 = t2 + (w−c0−c1 ) ;

// Compute k e r n e l

i f ( c0 >= 0 && c0 <= T−1 ) {

i f ( c1 >= c0 && c1 <= c0 ) { // OTL

i f ( c2 >= c0+1 && c2 <= c0+N−1 ) {

S1 ; S2 ;

}

}

i f ( c1 >= c0+1 && c1 <= c0+N−1 ) {

i f ( c2 >= c0+1 && c2 <= c0+N−1 ) {

S3 ; S4 ; S5 ; S6 ;

}

i f ( c2 >= c0+N && c2 <= c0+N ) { //OTL

S7 ; S8 ;

}

}

}

}

}

// Synchron i ze

}

(c)

Figure 6.5: (a) Recovered syntax under pluto scheduling amended with OTLs (i.e. P ′), (b) All
for-loops are replaced with if-guards (i.e. Pintra) (c) The sequential wavefront loop and parallel
wavefront conditions are wrapped around Pintra to produce the final ADI syntax.
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for ( t=0; t<T; t++ ) {

for ( i =2; i<N−1; i++ )

for ( j =2; j<N−1; j++ )

S1 ( t , i , j ) ;

for ( i =2; i<N−1; i++ )

for ( j =2; j<N−1; j++ )

S2 ( t , i , j ) ;

}

for ( t=0; i<T; t++ ) {

for ( j=2t+2; j<2t+N−1; j++ )

S1 ( t , 2 , j−2t ) ;

for ( i=2t+3; i<2t+N−1; i++ ) {

S1 ( t , i−2t , 2 ) ;

for ( j=2t+3; j<2t+N−1; j++ ) {

S2 ( t , i−2t−1, j−2t−1);

S1 ( t , i−2t , j−2t ) ;

}

S2 ( t , i−2t−1,N−2);

}

for ( j=2t+3; j<2t+N; j++ )

S2 ( t ,N−2, j−2t−1);

}

for ( t=0; t<N; t++ ) {

for ( i=2t+2; i<2t+N−2; i++ )

for ( j=2t+2; j<2t+N−2; j++ )

S1 ( t , i−2t , j−2t ) ;

for ( i=2t+3; i<2t+N−1; i++ )

for ( j=2t+3; j<2t+N−1; j++ )

S2 ( t , i−2t−1, j−2t−1);

}

φS1 : (t, 2t+ i, 2t+ j) φ′S1
: (t, 0, 2t+ i, 2t+ j)

φS2
: (t, 2t+ i+ 1, 2t+ j + 1) φ′S2

: (t, 1, 2t+ i+ 1, 2t+ j + 1)

(a) (b) (c)

S1(x1, x2, x3) :b[x2][x3] = 0.2 · (a[x2][x3] + a[x2][x3 − 1] + a[x2][x3 + 1] + a[x2 + 1][x3] + a[x2 − 1][x3])

S2(x1, x2, x3) :a[x2][x3] = b[x2][x3]

Figure 6.6: (a) The original Jacobi-2d kernel, (b) Transformed Jacobi-2d kernel using the Pluto
scheduling algorithm [BBK+08b], (c) Proposed fusion structure derived from Algorithm 4.

then the rest of the scheduling dimensions are unfused and marked parallel. Therefore, in order

to ensure correctness of the respective parallel program, a decoupling of strongly connected

components imposed by line 6, must be accompanied by intra-tile synchronization in between

those components. This is exemplified by the final version of Pintra for the Jacobi-2d kernel

shown in Figure 6.7.

Algorithm

Input : A set of multi-dimensional schedules Φ : {φS1 . . . φSn} and a set of polyhedral depen-

dences E.

Output : A syntactic tree Pintra representing the device code for our scop.

Step 1 Use E to construct a directed dependence graph ddg where each node is a statement

and each edge represents a dependence e ∈ E.

Step 2 Use ddg from Step 1 along with E and Φ as input to Algorithm 4. Get a set of new

schedules Φ′ in return along with vector mark specifying parallel intra-tile dimensions.
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Algorithm 4 Elimination of intra-tile dependences that can result in unnecessary intra-tile
wavefront. Let ddg be the directed dependence graph of a d-dimensional program derived from
a set of polyhedral dependence edges e ∈ E each involving a source (srce) and a sink (sinke)
statement.

1: procedure intraDepElimination(Φ,ddg,E)
2: scc[1 . . . n]← ddg . Calculate scc with well-known algorithms
3: mark[1 . . . d]← parallel . All loops marked parallel
4: for each i ∈ [1..d] do
5: if (@e ∈ E for which scc[srce] = scc[sinke]) then
6: CutScc(i,scc) . Add scc values to Φ on position i
7: return mark
8: end if
9: if (isParallel(i,Φ)=false) then

10: mark[i] = non-parallel
11: update E,ddg and scc . Remove satisfied dependences
12: if (E = �) return mark . Exit if no dependences left
13: end if
14: end for
15: return mark
16: end procedure

for ( t=max(0 , t1 ∗T1 ) ; t<min(N, t1 ∗T1+T1−1); t++ ) {

i f ( i>=2t+2 && i<2t+N−1 )

i f ( j>=2t+2 && j<2t+N−1 )

S1 ( t , i−2t , j−2t ) ;

// Synchronizat ion

i f ( i>=2t+2 && i<2t+N−1 )

i f ( j>=2t+2 && j<2t+N−1 )

S2 ( t , i−2t , j−2t ) ;

// Synchronizat ion

}

Figure 6.7: Final version of Pintra for the Jacobi-2d kernel. The time loop was marked sequential
thus modified accordingly, while the parallel space loops were turned into if-guards.
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Step 3 Use a syntax recovery tool to recover the syntax under Φ′ and get syntactic tree P .

Step 4 Invoke Algorithm 6.2.1 using P and get P ′ amended with OTLs in return.

Step 5 If mark indicates the existence of parallel intra-tile dimensions go to Step 5.1. Oth-

erwise go to Step 5.2.

Step 5.1 Based on syntactic pattern-matching, locate the for-loops in P ′ that corre-

spond to the parallel intra-tile dimensions indicated by mark and replace them with

if-guards. Modify the remaining for-loops according to (6.4). The result would be

Pintra. Go to Step 6.

Step 5.2 Replace all for-loops with if-guards and get Pintra as a result. Go to Step 6.

Step 6 Return Pintra

Implementation

First of all, steps 1 and 2 including Algorithm 4 can be implemented as private RosePluto

methods that are invoked as part of the main RosePluto::apply method or as indepen-

dent public methods of the RosePluto class. For step 3 we simply instantiate and use a

RoseCloog object just like we did for Algorithm 6.2.1 and showed in the Layer-1 usage ex-

ample of Section 5.4. Finally, because P ′ is in the form of a FlowGraph object returned

by the RoseCloog::print to flow graph method, steps 5.1 and 5.2 can be implemented as

visitor-pattern traversals over P ′ that simply replace ForLoop nodes with Conditional nodes

whenever necessary.

6.3 GPU Mapping

The GPU mapping process involves the task of mapping parallel tiles and parallel intra-tile

points into the virtual processor space of an OpenCL device, embodied by the ND-Range and

Work-Group configurations. We already mentioned in the introduction of this chapter that the
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GPU mapping process is going to take place at run-time, i.e. it will rely on a run-time system

that is inherently decoupled from the compiler. Two fundamental concepts in this run-time

system are the Tile-Bucket and the Thread-Bucket defined as follows:

Definition 6. A Tile-Bucket is denoted by BT and contains the coordinates of all parallel tile

instances to be mapped into an ND-Range and it is of size BTsize(w) = |SWT (w)| or BTsize =

|STP | for wavefront or rectangularly parallel tile spaces respectively.

Definition 7. A Thread-Bucket is denoted by BI and contains the coordinates of all parallel

intra-tile points to be executed by each work-group.

Each bucket is populated dynamically at run-time by the host and then transferred into concur-

rent (i.e. shared) data structures residing in a thread-visible memory level (e.g. global memory)

where each bucket entry (i.e. tile or intra-tile coordinate) can be recovered from the device

code using the built-in index variables, i.e., glw and gli as we defined them in Section 2.1.3.

With respect to the tile-bucket, in Section 6.2.1 we defined our parallelized tile space as a

vector of loop-bound expressions derived from rectangularly-parallel tile dimension – STP – or

wavefront parallelism – STW (w). These loops can now be executed in any order from the host

environment and populate the tile-bucket BT with tile coordinates according to Algorithm 5.

Note that the chosen execution order will effectively define the layout of the mapping. This

layout could be an arbitrary permutation of the parallel tile loops or a more complex layout

like a diagonal reordering to avoid partition camping [RM09]. In Chapter 7 we will show that

defining the mapping layout at the host – rather than the device – has surprising benefits in

programmability and debugging with negligible run-time overhead.

Algorithm 5 also includes two main optimizations i.e. empty tile elimination and full tile

separation. In line 2 we use the intra-tile coordinate elimination conditions from Section 6.2.1

to eliminate all empty tiles resulted from the rounded parametric fractions used to generate the

tile loop bound expressions. On the other hand, in lines 4-8 we use the following conditions in

order to perform full tile separation :
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Algorithm 5 Population of tile-bucket BT with full-tile separation and empty-tile elimination.

1: procedure PopulateTileBucket(~t,BT ,BTsize) . Host Code
2: if (~t is not an empty tile) then . Emptiness conditions
3: BT [BTsize]← {t1, . . . , tdpar

}
4: if (~t is not a full tile) then . Fullness conditions
5: BT [BTsize]← is partial
6: else
7: BT [BTsize]← is full
8: end if
9: BTsize ← BTsize + 1

10: end if
11: return BT , BTsize

12: end procedure

dpar∨
i=1

((ti · Ti < lbi) ∨ (ubi < ti · Ti + Ti − 1)) (6.6)

Notice that condition (6.6) might only be partially fulfilled by a given tile. However, at this stage

we only distinguish between complete and no fulfillment of (6.6) and thus consider two versions

of Pintra (see Algorithm 6.2.2), one representing partial tiles (Pintra without modifications) and

one representing full tiles (Pfullintra where all if-guards are removed except for those corresponding

to OTLs).

On the intra-tile level, if the number of parallel transformation dimensions dpar ≤ dt is non-zero

(see mark vector of Algorithm 4), then we have a dpar-dimensional rectangle containing parallel

execution instances that can be mapped directly into a Work-Group (without the use of thread-

buckets).

In case of intra-tile wavefront parallelism, bucket BI is split into multiple buckets, each one

corresponding to a wavefront instance w ∈ WI and containing the parallel execution instances

of w. Therefore, BI is defined as BI [WIsize][BIsize] with WIsize and BIsize being defined as

the maximum number of wavefronts and the maximum number of points within a wavefront

respectively. Both WIsize and BIsize are symbolic expressions depending on tile sizes and are

empirically hard-coded into the run-time system for 2D and 3D tiles.

Notice that BIsize reflects the maximum number of intra-wavefront points across all wavefront

instances. We will use it for the Work-Group configuration (see Section 6.3.1) as it denotes the
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total amount of work-items per Work-Group. This means that for wavefront instances with

fewer intra-wavefront points, we will inevitably have idle work-items. These work-items can

be identified by a negative coordinate since all valid intra-tile coordinates are non-negative by

default.

The intra-tile wavefront loop nest can be generated for the intra-tile space by hyperplane (6.5)

using a polyhedral code generation tool [Bas04, QRW00, Che12]. The generated loop nest will

include an outer wavefront loop and an inner nest of dt − 1 loops that will place intra-tile

coordinates in wavefront bucket BI [w] for each wavefront instance w ∈ WI . Currently, these

loop-nests have been hard-coded into the run-time system for 2D and 3D tiles.

6.3.1 1D or 2D Configuration

After completing the bucket population process we can proceed with the definition of a Work-

Group and ND-Range configuration based on the total number of entries in each bucket.

For the ND-Range configuration the simplest approach is to create a 1D configuration defined

as follows :

NDR(BTsize, 1, 1) (6.7)

However, the extent of each ND-Range dimension is typically associated with a maximum

allowable value (e.g. 65536 for CUDA platforms). Consequently, if BTsize gets too large we

might have to define a 2D configuration in order to respect the maximum extent limits. For

that we can use a simple factorial algorithm to derive a parameter fBT and our final 2D ND-

Range configuration becomes :

NDR(fBT ,
BTsize
fBT

, 1) (6.8)

For the work-group configuration we can use the same method to get a 2D configuration as
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follows :

WG(fBI ,
BIsize
fBI

, 1) (6.9)

If however, we have up-to two parallel intra-tile dimensions we can simply produce the following

work-group configurations :

WG(T1, T2, 1) or WG(T1, 1, 1) (6.10)

Throughout our experimental evaluation presented in Section 6.5 we only considered 1D work-

group and nd-range configurations except for the programs that had a 2D rectangularly parallel

intra-tile space amenable to a direct mapping based on (6.10).

6.4 Local Memory Management

According to the OpenCL execution model (Figure 2.6), each Work-Group is associated with

a software managed memory space – called Local Memory – that physically resides in each

compute unit (Figure 2.7). Because each work-group essentially represents a tile in the tile

bucket BT , we seek a way of defining and managing local memory buffers in order to exploit

intra-tile locality.

Since the total amount of work-groups is typically larger than the amount of compute units,

local memory can be shared among multiple active work-groups. If the collective demand for

local memory exceeds its physical capacity, the number of active work-groups per compute unit

is reduced. This effect highlights the tight balance between locality and parallelism exemplified

in Figure 6.8. In particular, we see that if the number of local memory buffers per work-group is

reduced, then the number of active work-groups can be increased. On the other hand, if the local

memory usage of a single work-group exceeds the physical capacity then the kernel invocation

will fail completely. In an auto-tuning environment where tile-sizes can take arbitrary values
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Figure 6.8: This figure highlights the trade-off between parallelism and locality. In particular,
using one less buffer per work-group can activate one more work-group per compute-unit.

with a direct impact on buffer sizes, this situation can unnecessarily restrict the auto-tuning

space. We overcome this problem by introducing an other run-time mechanism based on the

concept of Buffer Buckets :

Definition 8. A Buffer-Bucket denoted by BB, is a collection of abstract local-memory buffers

accompanied by a kernel descriptor mapping the respective buffer-bucket to a specific device

function.

Each buffer-bucket is characterized by a tunable capacity parameter called Local Memory Win-

dow Lw, that effectively represents the per-work-group availability of local memory. By intro-

ducing Lw we can dynamically control the number of local memory buffers per-work-group.

In particular, local memory buffers can be added to a buffer-bucket at run-time as long as its

contents do not exceed Lw. If the Lw limit is reached the respective buffer-bucket is closed

and no more additions can be performed. An obvious side-effect of this is that the order in

which we add buffers to a buffer-bucket matters. For example, adding a series of small buffers

and then a bigger one might have a different effect than adding the bigger buffer first and then

the smaller ones. Furthermore, each addition is accompanied by a kernel descriptor mapping

the contents of the respective buffer-bucket to a specific kernel function. The complete process

is outlined by Figure 6.9. Notice that the kernel invocation in line 8 requires a buffer-bucket

argument that specifies the kernel function to call and the total amount of local memory to be
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1: initBufferBucket(BB ,Lw,Kernel(0))
2:
3: addBuffer(BB ,B1,Kernel(1))
4: addBuffer(BB ,B2,Kernel(2))

5:
...

6: addBuffer(BB ,Bn,Kernel(n))

7:
...

8: invoceKernel(BB ,BT ,BI)

Fig. 4. Mechanism for adding n buffers Bi : i ∈ [1..n] to a buffer-bucket BB which is
subsequently used for the kernel invocation. Note that the device code specified by the
Kernel(0) descriptor will not use any of the buffers.

Algorithm 2 blabla

1: initBufferBucket(BB ,Lw,Kernel(0))
2:
3: addBuffer(BB ,B1,Kernel(1))
4: addBuffer(BB ,B2,Kernel(2))

5:
...

6: addBuffer(BB ,Bn,Kernel(n))

7:
...

8: invokeKernel(BB ,BT ,BI)

kerneln−1 will use the best n − 1 buffers according to their rank, etc. In other
words, buffers are added incrementally according to their rank and if the addition
of buffer Bi : i ∈ [1..n] results in exceeding Lw then all subsequent additions will
fail and the kernel using i− 1 buffers – indicated by the Kernel(i− 1) descriptor
– will be invoked. The ranking of the candidate local memory buffers is based
on temporal-reuse, group-reuse and self-spatial reuse.
Each buffer entry contains the total size of the respective buffer and a set of

parameters that are transfered to read-only constant memory and then used by
pre-defined data-movement procedures to move data in and out of the buffers.
More details on this will be discussed in Section 5.2.

5.1 Buffer Definition

Let Fi be the multi-dimensional access function of array i, ignoring any constant
terms. Furthermore, let Ct

i be a set of integers denoting the absolute distance
between the maximum and the minimum constant terms across all textual refer-
ences to array i for each dimension. We define buffer Bi of i to be the rectangular
bounding box of Fi enlarged by the elements of C

t
i along each dimension, and

characterized by two sets of symbolic expressions namely the footprint origins
Oi(t,T ) and the footprint extents Ei(T ), where t and T denote the vectors of
tile coordinates and tile sizes respectively. Figure 5 illustrates how buffer BA

Figure 6.9: Mechanism for adding n abstract buffers Bi : i ∈ [1..n] to a buffer-bucket BB
which is subsequently used for the kernel invocation. Note that the device code specified by
the Kernel(0) descriptor will not use any of the buffers.

allocated dynamically. In other words a buffer-bucket constructs an execution environment in

which the contained buffers are available for use.

The dynamic local memory management policy that we are proposing ranks the set of candidate

local memory buffers and then utilizes the buffer-bucket abstraction and population mechanism

(Figure 6.9) to construct an execution environment. This implies that n + 1 kernel versions

are needed, where n is the total amount of buffers – kerneln will use all n buffers, kerneln−1

will use the best n − 1 buffers according to their rank etc. In other words, buffers are added

incrementally according to their rank and if the addition of buffer Bi : i ∈ [1..n] results in

exceeding Lw then all subsequent additions will fail and the kernel using i−1 buffers – indicated

by the Kernel(i− 1) descriptor – will be invoked. The ranking of the candidate local memory

buffers is based on the following criteria [ALSU07] :

Temporal Reuse An array access exhibits sufficient temporal locality iff the rank of its access

function is less than the dimensionality of the statement carrying the access.

Amount of Group-Reuse The total number of textual references to the same array with the

same access function without considering any constant terms.

Self-Spatial Reuse This is more commonly known in recent HPC literature as global memory

access coalescing and indicates whether an access function accesses a contiguous section

of memory or not.



92 Chapter 6. Parametric GPU Code Generation for Static Control Programs

Each buffer entry contains the total size of the respective buffer and a set of parameters that

are transferred to read-only constant memory and then used by pre-defined data-movement

procedures to move data in and out of the buffers. More details about that will be discussed

in the following sections.

We now proceed to explain how each abstract buffer entry is defined.

6.4.1 Buffer Definition

Let Fi be the multi-dimensional access function of array i, ignoring any constant terms. Fur-

thermore, let Ct
i be a set of integers denoting the absolute distance between the maximum and

the minimum constant terms across all textual references to array i for each dimension if i. We

define buffer Bi of i to be the rectangular bounding box of Fi enlarged by the elements of Ct
i

along each dimension, and characterized by the following parametric expressions :

Footprint Origins A set of parametric expressions denoted by Oi(~t, ~T ) for an array i, –

where ~t and ~T the vectors of tile coordinates and tile sizes respectively – that represent

the lexicographically minimum value of the access function Fi for each dimension under

the domain of the tile DT (~t) defined as :

DT (~t) : ti · Ti︸ ︷︷ ︸
t′i

≤ xi ≤ ti · Ti︸ ︷︷ ︸
t′i

+Ti − 1 for i ∈ [1..dt] (6.11)

Evidently, the origin expressions depend on the tile coordinates and specify the position

of the buffer elements in global memory.

Footprint Extents A set of parametric expressions – depending only on tile sizes – denoted

by Ei(~T ) for an array i, that represent the extent of the buffer’s bounding box along each

dimension. It is defined as the difference between the lexicographically minimum and

maximum value of the access function Fi along each dimension under DT (~t), incremented

by the entries of Ct
i .
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f o r ( x0 =0; x0<T ; x0++ )
f o r ( x1=x0 +1; x1<x0+N−2; x1++ )

f o r ( x2=x0+x1 +1; x2<x0+x1+N−2; x2++ )
A[ x1−x0 ] [ x2−x1−x0 ]= (A[ x1−x0−1][x2−x1−x0−1]+
A[ x1−x0−1][x2−x1−x0 ]+A[ x1−x0−1][x2−x1−x0+1]+
A[ x1−x0 ] [ x2−x1−x0−1]+A[ x1−x0 ] [ x2−x1−x0 ]+
A[ x1−x0 ] [ x2−x1−x0+1]+A[ x1−x0 +1 ] [ x2−x1−x0−1]+
A[ x1−x0 +1 ] [ x2−x1−x0 ]+A[ x1−x0 +1 ] [ x2−x1−x0 + 1 ] ) / 9 ;

E1

E2

[O1,O2]

E1

E2

[O1,O2]

C2
tot

C1
tot

FA = {x1 − x0, x2 − x1 − x0} OA = {t1 − t0 − T0 + 1� �� �
O2

, t2 − t1 − t0 − T1 − T0 + 2� �� �
O1

} E�
A = {E2 + Ctot

2 , E1 + Ctot
1 }

Ct
A = {2, 2}, Cn

A = {1, 1} EA = {T1 + T0 − 1� �� �
E2

, T2 + T1 + T0 − 2� �� �
E1

}

(a) (b) (c)

Figure 7. (a) A skewed Seidel-2d kernel (b) The access footprint of array A ignoring the constant terms (c) The footprint of array A if we
take the constant terms into account.

Footprint Origin It is a parametric expression denoted by Oi for
an array i, that represents the lexicographically minimum value
of the access function Fi for each dimension under the domain
of the tile.

Footprint Extents It is a global parametric expression – depend-
ing only on tile sizes – denoted by Ei for an array i, and rep-
resent the extent of the footprint’s bounding box along each di-
mension. It is used to allocate the local memory buffers and is
defined as the difference between the lexicographically mini-
mum and maximum value of the access function Fi along each
dimension under the domain of the tile.

First, our code generation algorithm produces an API move-in
call shown in Algorithm 3 for 2D accesses (similar methods are
provided for 1D and 3D accesses). Notice that Algorithm 3 assumes
that the size of the work-group i.e. BIsize, is smaller than the total
number of elements in the buffer and larger than the width of the
buffer. If the latter assumption does not hold we simply round the
BIsize at runtime to match it. Furthermore, note that the layout of
the available threads is rearranged for each buffer according to lines
bla-bla.

Algorithm 3 The default move-in procedure provided by the run-
time environment for a 2D array i that occupies a wi × hi section
of global memory.
1: bw ← ((E1 +wu− 1)/wu) ·wu � Padded buffer width
2: bh ← E2 � Buffer height
3: Stride ← BIsize/bw
4: procedure MOVEIN2D(Oi,Cn

i )
5: t1 ← wi.x mod bw
6: t2 ← wi.x/bw
7: gl1 ← Oi.1 + t1
8: gl2 ← Oi.2 + t2
9: if (gl1 − Cn

i .1 < wi) and (gl1 − Cn
i .1 ≥ 0) then

10: while (gl2 − Cn
i .2 < hi) and (t2 < bh) do

11: if (gl2 ≥ 0) then
12: buffer[t2][t1] = global[gl2 − Cn

i .2][gl1 − Cn
i .1]

13: end if
14: gl2 ← gl2 + Stride
15: t2 ← t2 + Stride
16: end while
17: end if
18: end procedure

If we now take the constant terms of the access into account
(Figure 7(c)) the bounding box is enlarged according to Ct. The

Algorithm 4 The default move-out procedure provided by the
runtime environment for a 2D array i that occupies awi×hi section
of global memory.
1: bw ← ((E1 +wu− 1)/wu) ·wu � Padded buffer width
2: bh ← E2 � Buffer height
3: Stride ← BIsize/bw
4: procedure MOVEOUT2D(Oi,Cn

i ,Fi)
5: t1 ← wi.x mod bw
6: t2 ← wi.x/bw
7: gl1 ← Oi.1 + t1
8: gl2 ← Oi.2 + t2
9: if (gl1 − Cn

i .1 < wi) and (gl1 − Cn
i .1 ≥ 0) then

10: while (gl2 − Cn
i .2 < hi) and (t2 < bh) do

11: if (gl2 ≥ 0) and (t1 < E1) and (Fi) then
12: global[gl2 − Cn

i .2][gl1 − Cn
i .1] = buffer[t2][t1]

13: end if
14: gl2 ← gl2 + Stride
15: t2 ← t2 + Stride
16: end while
17: end if
18: end procedure

actual footprint and its magnification due to Ct will only concern
us in the move-out API Algorithm 4. Notice that the move-out
algorithm differs from its move-in counterpart only by argument Fi

which is the condition that would effectively restrict the move-out
procedure to operate only on the actual footprint instead of the
entire bounding box. In practice, Fi is a conjunction of conditions
on buffer coordinates and is characterized by the convex union of
the following set of affine transformations (for a d-dimensional
access) applied to the buffer domain 4.

FA(i) ={FA.1, . . . ,FA.i+ Ct.i, . . . ,FA.d} for i ∈ [1..d]

FA(d+ 1) ={FA.1 + Ct.1, . . . ,FA.d+ Ct.d}

The calculations for the footprint conditions F can be carried
out by deriving the footprint of each of the above access functions
for the buffer domain with a polyhedra scanning tool and then get
the convex union with a polyhedral library.

4 The buffer domain is a tile domain for which Oi = 0 across all dimen-
sions.
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Figure 6.10: (a) A skewed Seidel-2d kernel (b) Buffer view of the access footprint of A if we
ignore all constant terms (c) Buffer view of the access footprint of A if we consider all constant
terms.

Notice that we only consider a single access function for each array implying that we ignore any

arrays that have multiple linearly-independent access functions for any dimension. Figure 6.10

illustrates how buffer BA is defined for the Seidel-2D kernel of 6.10(a), based onOA, EA and Ct
A.

Finally, given the total number of available threads BIsize, the buffer extents Ei, and a set of

padding factors Pi, Algorithm 6 can be used to populate BB with a 2D buffer entry identified

by a set of 7 parameters; the buffer extents Ei, the padded buffer extents E ′i, a buffer-specific

thread layout captured by a width and a height parameter thiw and thih respectively and the

total amount of elements in the buffer Etotal. When the buffer-bucket population process is over,

all these parameters are transferred to read-only constant memory where they can be accessed

by the parametric data-movement procedures discussed in Section 6.4.2. It is in this algorithm

(line 12) that we can increase the number of threads in order to accelerate the data-movement

process – an optimization similar to the one proposed by Bauer et al. [BCK11]. More details

about that will be discussed in the following section.

6.4.2 Moving Data into and out of the Buffers

In the previous section we saw how the abstract buffers are defined and submitted into buffer-

buckets for subsequent utilization. Now we are going to discuss how these buffers are utilized
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Algorithm 6 Algorithm for adding a buffer entry to a buffer-bucket BB.
1: procedure AddBuffer2D(BB ,BIsize,Ei,Pi)
2: if (BB is closed) then . Lw has been exceeded by previous addition
3: return
4: end if
5: E′

i[1]← pad(Ei[1], Pi[1]) . Round height to be a multiple of Pi[1]
6: E′

i[2]← pad(Ei[2], Pi[2]) . Round width to be a multiple of Pi[2]
7: Etotal ← E′

i[1] · E′
i[2] . Total elements in buffer

8: BBbytes ← BBbytes + Etotal . Total bytes to be dynamically allocated
9: if (BBbytes > Lw) then

10: Close BB and return . No more additions allowed
11: end if
12: Adjust BIsize according to Etotal or E′

i[2] . Optional
13: if (E′

i[2] > BIsize) then
14: thi

w ← BIsize
15: else
16: thi

w ← E′
i[2]

17: end if
18: thi

h ← BIsize/thi
w

19: BB ← {Ei, E
′
i, th

i
h, th

i
w, Etotal} . Add the buffer entry

20: BBsize ← BBsize + 1 . Increment the buffer count
21: return
22: end procedure

by the run-time system.

Since the buffer extents as well as the work-group configuration are parametric, the movement

of data in and out of the buffers needs to be parametric as well, i.e., data movement is carried

out without any knowledge about the work-group and the buffer extents. For example, lets

assume that tile sizes are known at compile-time. This means that the buffer and work-group

extents are compile-time literals. If this is true then the compiler can take advantage of this

knowledge and optimize the data movement code at compile-time. If for example a buffer has

exactly the same extents as the respective work-group then the compiler can simply generate

a single data-movement statement that is executed by each thread, i.e. all data items in the

buffer are transfered in parallel. However, in our context this is not possible simply because

tile sizes are parametric and therefore unknown at compile-time. Consequently, we propose

a set of generic data movement methods in the form of run-time API functions that operate

without knowing the buffer and work-group layouts. In particular, for a 2D array we propose

Algorithms 7 and 8 for moving data in and out of the buffers respectively. In both algorithms

we use two loops (lines 4 and 6) because we assume that the work-group extents are always

smaller than the buffer extents which is the most general case.
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Algorithm 7 The basic move-in procedure for a 2D buffer Bi executed on the device code by
each thread.

1: procedure MoveIn2DGeneric(Oi,C
n
i ,Bi,bi)

2: l1 ← wi.x/thi
w, l2 ← wi.x mod thi

w . Recover new thread layout
3: g1 ← Oi[1]− Cneg

i [1] + l1, g2 ← Oi[2]− Cneg
i [2] + l2 . Recover global position of buffer

4: while (g1 < bi[1]) and (l1 < E′
i[1]) do . Height traversal

5: if (g1 ≥ 0) then
6: while (g2 < bi[2]) and (l2 < E′

i[2]) do . Width traversal
7: if (g2 ≥ 0) then
8: buffer[l1][l2] = global[g1][g2]
9: end if

10: g2 ← g2 + thi
w

11: l2 ← l2 + thi
w

12: end while
13: end if
14: g1 ← g1 + thi

h

15: l1 ← l1 + thi
h

16: end while
17: end procedure

Algorithm 8 The basic move-out procedure for a 2D buffer Bi executed on the device code
by each thread.

1: procedure MoveOut2DGeneric(Oi,C
n
i ,Bi,bi,Fi(t1, t2))

2: l1 ← wi.x/thi
w, l2 ← wi.x mod thi

w . Recover new thread layout
3: g1 ← Oi[1]− Cneg

i [1] + l1, g2 ← Oi[2]− Cneg
i [2] + l2 . Recover global position of buffer

4: while (g1 < bi[1]) and (l1 < Ei[1]) do . Height traversal using original buffer height
5: if (g1 ≥ 0) then
6: while (g2 < bi[2]) and (l2 < Ei[2]) do . Width traversal using original buffer width
7: if (g2 ≥ 0) and (Fi(l1, l2)) then
8: global[g1][g2] = buffer[l1][l2]
9: end if

10: g2 ← g2 + thi
w

11: l2 ← l2 + thi
w

12: end while
13: end if
14: g1 ← g1 + thi

h

15: l1 ← l1 + thi
h

16: end while
17: end procedure



96 Chapter 6. Parametric GPU Code Generation for Static Control Programs

Evidently this approach is not ideal because the two loops in lines 4 and 6 yield a considerable

overhead. In order to avoid this overhead we can dynamically (at run-time) enforce a specific

work-group layout that will allow us to eliminate one or both of these loops. This can be done in

line 12 of Algorithm 6 by increasing the number of work-items in the work-groups, if necessary,

in order to enforce a specific relation between the work-group and the buffer. This will enable us

to use faster data movement methods for the price of potentially more work-items that are not

used for computation. In fact, for most SCoPs in practice we can guarantee that the condition

of line 13 in Algorithm 6 is true without increasing the number of work-items which allows us

to eliminate the loop of line 6 at no cost. An additional optimization for Algorithms 7 and 8

takes advantage of the full-tile separation mechanism of Algorithm 5. In particular the bounds

conditions in lines 4, 5, 6 and 7 can be avoided if we are dealing with a full tile.

If line 12 of Algorithm 6 does lead to an increase in work-items then we need to make sure

that the additional work-items do not interfere with our computation (because we are only

using them for data movement). For that purpose we map the extra threads to −1 entries in

the thread bucket (just like we do for intra-tile wavefronts) and protect our computation with

special if-guards that filter away threads with negative thread-bucket entries. Keep in mind

that for intra-tile wavefronts this filtering is already in place and embodied by the wavefront

conditions (Figure 6.5(c)).

The main difference between the move-in and move-out procedures lies on line 7. In particular,

the condition of line 7 is amended with Fi(~li), a conditional expression that depends on the

buffer coordinates ~li and restricts the move-out procedures to operate only on the elements that

have actually been written by the respective tile (the grey area in Figure 6.10). Therefore, in

order to determine Fi(~li) we need to examine the write accesses of the program.

Let Ni be the total number of textual references to array i that perform a write operation and

Cj
iwrite

the constant term for each reference j ∈ Ni. Additionally, if we solve Oi = 0 for ~t and

replace ~t in (6.11) with the solution, we end up with the domain of the buffer :
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DTi ·


~li

~T

1

 ≥ 0 (6.12)

where ~li is the vector of buffer coordinates and ~T the vector of tile sizes. Each write operation

j ∈ Ni can now be expressed in terms of ~li by using a polyhedral code generation tool (e.g.

CLooG) to scan DTi under the affine transformation F jiwrite
defined as :

F jiwrite
= Fi + (Cj

iwrite
− Cn

i ) (6.13)

The final solution is the convex hull DCHi
of all F jiwrite

: j ∈ [1..Ni] under DTi which is the

collective footprint of all write operations to buffer Bi, expressed in terms of ~li. In order to

retrieve the solution and construct the conditional expression Fi(~li), we first need to convert

the syntax trees produced by the polyhedral code generation tool back into matrix forms and

then perform the convex hull operation. Finally, we convert the resultant convex hull matrix

DCHi
into the symbolic expression Fi(~li) and use it as an argument to the respective move-out

procedures. The complete process is summarized by the following Algorithm:

Algorithm

Input : The set of polyhedral access functions F of the program. The symbolic name of an

array i.

Output : A conditional expression Fi(~li) that would restrict move-out procedures to operate

only on the elements of array i that where actually written by the respective tile.

Step 1 Using the symbolic name of i retrieve Fi and Cn
i from F .

Step 2 Determine Cj
iwrite

for each write reference j ∈ [1..Ni] of i, where Ni the total number

of textual references to i that correspond to a write operation.



98 Chapter 6. Parametric GPU Code Generation for Static Control Programs

Step 3 Calculate the origin expressions Oi of i using Fi and (6.11).

Step 4 Solve the system Oi = 0 for ~t and substitute ~t in (6.11) with the solution to get the

buffer domain DTi .

Step 5 Construct the affine transformations F jiwrite
for each write access j ∈ [1..Ni] using basic

matrix manipulation.

Step 6 Use a polyhedral code generation tool (e.g. CLooG) to scan DTi under each write

transformation F jiwrite
: j ∈ [1..Ni].

Step 7 Process the syntax trees produced by Step 6 and create the footprint domains Dj
Fi

for each write access j ∈ [1..Ni] of array i.

Step 8 Use a polyhedral library to get the convex hull of all Dj
Fi

: j ∈ [1..Ni] denoted by DCHi
.

Step 9 Construct one conditional expression for each row in DCHi
and omit the ones that

don’t involve more than one coordinate variables.

Step 10 Construct a conjunction of all conditions from Step 9 and return the resultant con-

ditional expression.

Implementation

First of all, the access functions of the program F can be retrieved in the form of AccessPattern

objects for each Datum in a RosePollyModel symbol table. Because each Datum has a symbolic

name, we can simply get the AccessPattern objects that belong to a Datum with name i. We

can then group all AccessPattern objects based on whether they are write or read patterns

and concentrate on the write ones. Afterwards, we can get the pollyMap objects of the write

patterns and request a simple matrix that represents the actual access function. We know

that in these simple matrices the last column is the constant term of the access function so

from that column we can extract Cn
i and Cj

iwrite
(Steps 1 and 2).

For Step 3, extracting the origin expressions for i is simple. We first get a simple matrix

from any AccessPattern of i and ignore any values on the last column. We then replace any
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positive entries with t′i (i.e. ti ·Ti) and negative entries with −t′i−Ti + 1 (i.e. −ti ·Ti−Ti + 1).

Obviously in order to do such substitutions we need to adjust our simple matrix by adding

columns for the tile sizes and tile coordinates. The origin expressions for i are now captured

by a simple matrix object.

In Step 4 we can construct a pollyMap from the simple matrix of step 3 and invoke a linear

equation solver in order to get the solution of Oi = 0. We now construct a new simple matrix

that will represent the domain of the buffer DTi by substituting the solution of Oi = 0 to (6.11)

again by manipulating simple matrix objects.

For steps 5, 6 and 7 we can easily construct simple matrix objects for each F jiwrite
: j ∈ [1..Ni].

and DTi (we already have DTi from step 4) and then instantiate pollyMap and pollyDomain

objects respectively that we can supply to RoseCloog in order to get pollyDomain objects

back representing Dj
Fi

. Notice that RosePolly allows us to hide the details of this transition

behind the RoseCloog class. As a result, we do not need to worry about invoking CLooG,

and manipulating syntax trees or any cloog-specific data structure that would contaminate

our implementation with third-party code. Getting the convex hull for step 8 is now a simple

incremental invocation of the pollyDomain::convex hull method.

Finally for steps 9 and 10 we can create our symbolic conditional expressions by examining the

simple matrix that represents the convex hull of step 8. In particular, for each row we can

construct a syntax tree of an inequality with all non-zero entries in that row being placed on

the left hand side and zero on the right hand side. We can then create the final disjunction of

all the individual row conditions.

6.5 Putting It All Together

By putting all the pieces together we can formulate a complete GPU code-generation algorithm

for static control programs. This algorithm would produce two pieces of code: (i) the GPU

mapping code that runs on the host side, and (ii) the n+1 kernels (where n is the total number

of local memory buffers) that are executed on the device. Figures 6.11 and 6.12 show the
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a generic form of the produced host and device code both of which provide a clear outline of

the respective code generation algorithms.

Algorithm 9 bla.
1: Host-Code
2: InitBufferBucket(BB ,Lw,Kernel(0))
3: InitThreadBucket(BI)
4: if (Intra-tile wavefront) then
5: SetIntraWave(BI ,dt)
6: else
7: SetRectangularLayout(BI ,T1,. . . ,Tdpar

)
8: end if
9: AddBuffer(BB ,BIsize,E1,P1,Kernel(1))

10:
...

11: AddBuffer(BB ,BIsize,En,Pn,Kernel(n))
12: if (Tile wavefront) then
13: for each w ∈ W do
14: for each loop Lwi in SWT (w) do
15: PopulateTileBucket(BT ,ti ∈ Lwi)
16: end for
17: InvokeKernel(BT ,BI ,BB)
18: end for
19: else
20: for each loop Li in STP do
21: PopulateTileBucket(BT ,ti ∈ Li)
22: end for
23: InvokeKernel(BT ,BI ,BB)
24: end if

All capitalized functions in Figures 6.11 and 6.12 constitute the platform-independent runtime

environment 6 that supports the inspector-executor mechanisms as well as the data-movement

procedures and the tile/intra-tile recovery methods that reside on the device code. In particular,

the latter are using the built-in glw and gli index variables to access the tile and thread-bucket

entries which have been transferred to concurrent data structures by the host code. More

specifically, the tile-bucket entries are stored in global memory and the thread-bucket entries

are stored in image-memory while the buffer-bucket entries are stored in constant memory. The

condition in Line 23 of the intra-tile wavefront code simply checks whether the corresponding

thread-bucket entry is negative or not. The same condition is found on non-wavefront device

code as well in case we have increased the number of threads to facilitate more efficient data-

movement procedures.

The simplicity and robustness of the code generation algorithm indicates that manual code

6Currently supporting CUDA targets.

Figure 6.11: Template of the produced host-code.

templates of the produced host and device code both of which provide a clear guide for the

code generation algorithms.

All capitalized functions in Figures 6.11 and 6.12 constitute the platform-independent run-

time environment6 that supports the GPU mapping mechanisms as well as the data-movement

procedures and the tile/intra-tile recovery methods that reside on the device code. In particular,

the latter are using the built-in glw and gli index variables to access the tile and thread-bucket

entries which have been transferred to concurrent data structures by the host code. More

specifically, the tile-bucket entries are stored in global memory and the thread-bucket entries

are stored in image-memory while the buffer-bucket entries are stored in constant memory. The

condition in Line 29 of the intra-tile wavefront code simply checks whether the corresponding

thread-bucket entry is negative or not. The same condition is found on non-wavefront device

code as well in case we have increased the number of threads to facilitate more efficient data-

movement procedures.

6Currently supporting CUDA targets.
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5.5. Code Generation and Implementation 85

1: Rectangularly Parallel Intra-Tile Execution
2: RecoverTileCoordinates
3: RecoverIntraTileCoordinates � The parallel ones
4: for each sequential tile loop do
5: Synchronize
6: MoveIn(1,O1,C

neg
1 ,b1)

7:
...

8: MoveIn(n,On,C
neg
n ,bn)

9: Synchronize
10: if (ValidThread) then � Optional
11: if (FullTile) then

12: Pfull
intra(n) � Computation with n buffers

13: else
14: Pintra(n) � Computation with n buffers
15: end if
16: end if
17: Synchronize
18: MoveOut(1,O1,C

neg
1 ,b1,F1)

19:
...

20: MoveOut(n,On,C
neg
n ,bn,Fn)

21: end for
22:
23: Intra-Tile Wavefront Execution
24: RecoverTileCoordinates
25: MoveIn(1,O1,C

neg
1 ,b1)

26:
...

27: MoveIn(n,On,C
neg
n ,bn)

28: for each intra-tile wavefront instance w do
29: if (ValidThread) then
30: RecoverIntraTileCoordinates
31: if (FullTile) then

32: Pfull
intra(n) � Computation with n buffers

33: else
34: Pintra(n) � Computation with n buffers
35: end if
36: end if
37: Synchronize
38: end for
39: MoveOut(1,O1,C

neg
1 ,b1,F1)

40:
...

41: MoveOut(n,On,C
neg
n ,bn,Fn)

Figure 6.12: Template of the produced device code.
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The complete code generation algorithm has not been implemented yet. For our experimental

evaluation we produced GPU code manually based on the code templates of Figures 6.11

and 6.12. As a result, various components had to be acquired independantly and then assembled

together into the final form of the code. More specifically, for Algorithm 6.2.1 we used an

existing implementation provided by PoCC (called ptile) while Algorithms 4 and 6.4.2 were

implemented using RosePolly as we described in the respective implementation sections.

6.6 Experimental Evaluation

The purpose of our experimental evaluation is to assess the following two main properties of

our code generation method:

• In the presence of rectangularly-parallel tile and intra-tile spaces that do not require

wavefront parallelism, we would like to evaluate the overhead induced by our run-time

system. Such study will also tell us to what extent we can use run-time tuning as a

substitute of iterative compilation.

• In the presence of wavefront parallelism, we would like to assess the effectiveness of our

run-time system in mapping wavefronts of tile and intra-tile points on a GPU execution

environment.

For both experiments we compared our solution to a state-of-the-art compile-time method

with no run-time support called PPCG [VCJC+13](version c7179a0). PPCG utilizes polyhedral

analysis and code-generation for producing statically tiled CUDA code, i.e., tile-sizes are known

at compile-time. In both systems, the Pluto [BBK+08b, BR07] scheduling algorithm is used to

enable tiling through affine transformations. Furthermore, in order to isolate the performance

effect of our run-time system we disabled privatization on all experiments; an optimization –

provided by default on PPCG – that utilizes registers to perform loop unrolling, an operation

equivalent to thread-merging [YXKZ10]. This will not affect our evaluation since privatization

is an independent optimization that can be investigated in a separate study.
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Compute Processing Local Peak Peak Compute Compute CUDA
Units Elements Memory Bandwidth Performance Capability

(Cores) (KB) (GB/s) (GFLOPS-SP)
GTX 280 10 240 16 141.7 622.1 1.3 4.2
GT 540M 2 96 48 28.8 258 2.1 4.2
GTX 580 16 512 48 192 1581 2.1 4.2
M2070 14 448 48 150 1030 2.0 4.2.9
K20c 13 2496 48 208 3524 3.5 5.0.35

Table 6.1: Compute and memory characteristics of the GPUs used in the experimental evalu-
ation.

Our experiments were conducted on a variety of NVIDIA GPU devices spanning from the early

GTX 280 with 1.3 compute capability to the latest high-end K20c with 3.5 compute capability.

Table 6.1 shows a complete list of the GPUs used along with a set of key attributes.

With respect to our first assessment, we used the well-known matrix-multiplication example

as a representative of rectangularly-parallel programs. On the other hand we used 5 stencil

programs from the polybench suite7 for our second assessment. In particular, we used the ADI

and Seidel-2d benchmarks that utilize the thread-bucket mechanism for intra-tile wavefront

execution and the Jacobi-1d, Jacobi-2d and fdtd-2d benchmarks that utilize Algorithm 4 to

avoid intra-tile wavefronts.

In most of our graphs we used normalized metrics (i.e. execution time for first assessment and

GFLOP performance for our second assessment) simply because the absolute values offer no

value to our study. In fact, normalized values are more convenient because the reader can make

relative percantage-based comparisons easily. The reasons why we do not use aboslute values

are the following:

• For our first assessment we want to measure the run-time overhead of our system and the

correlation between run-time and compile-time tuning. We do not evaluate (or propose)

any novel optimization for this kind of programs and therefore we do not anticipate

speed-ups. In fact, we could use any optimized implementation of matrix-multiply in our

experiment (e.g. from CUBLAS8) but we chose PPCG because our primary objective is

to evaluate the potential for performance portability through a complete source-to-source

compilation path.

7www.cs.ucla.edu/~pouchet/software/polybench/
8developer.nvidia.com/cuBLAS

www.cs.ucla.edu/~pouchet/software/polybench/
developer.nvidia.com/cuBLAS
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• As opposed to our first assessment, in our second one we do want to evaluate a new

optimization, i.e. the tile-bucket and thread-bucket mechanisms for executing wavefront

parallel programs on GPUs. In this case we do not care about absolute performance be-

cause PPCG is the state-of-the-art source-to-source method for automatically generating

GPU code for wavefront parallel SCoPs. To the best of our knowledge there is no better

alternative to date.

The results are grouped based on GPU model and they can be distinguished into two kinds of

graphs per GPU. The first kind is related to our first assessment and includes six line graphs

per GPU: (a), (b), (c), (d), (e) and (f). In four of these graphs (i.e., graphs (a), (c), (e) and (f))

each point represents the normalized execution time for a single tile-size configuration (each

point comes from an average of 10 runs) while two additional graphs (i.e., graphs (b) and (d))

are used to show the relative run-time overhead for each tile-size configuration along with the

overall average overhead.

The second kind is related to our second assessment and consists of a single bar diagram

per GPU, showing the best performance found within a given search space of tile-sizes. The

additional bars per benchmark shown in those diagrams show the respective performances when

using less local memory buffers (the far right bar denote the performance when no buffers are

used) in an attempt to highlight the importance of exploring the locality/parallelism trade-off

discussed in Section 6.4.

We now proceed to discuss the conclusions with respect to our two assessments.

Assessment 1 : Run-time overhead and correlation between compile-time and run-

time tuning

For our first assessment graphs (a) and (c) demonstrate the correlation between our method

(ptileGPU line) and ppcg accross a set of tile-size configurations without and with local memory

utilization respectively. On the other hand, graphs (e) and (f) show the effect of using thread-

buckets. By using thread-buckets to carry intra-tile coordinates we are able to evaluate two
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main properties of our system: (i) the cost of using the thread-bucket mechanism, (ii) the

effectiveness of the thread-bucket mechanism in enabling data-movement optimizations. More

specifically, if we use thread-buckets then we are able to increase the number of threads beyond

the ones needed for computation. The additional threads can then be used to optimize the

data-movement procedures by eliminating both loops in Algorithms 7 and 8. The remaining

graphs (b) and (d) show the relative run-time overhead for each configuration point of graphs

(a) and (c) respectivelly as well as the average overhead (dashed red line).

For each experiment our tile-sizes ranged from 8 to 32 with a stride of 4 for each of the 3

dimensions of matrix-multiplication. This yielded a total of 343 configuration points for each

experiment arranged lexicographically. Because the number of configurations was very large

we removed some of them from the graphs – with no impact on our conclusions – in order to

make them more easily readable. The configuration points we removed were the following:

• Size 8, 12, 20 and 28 for the innermost tile loop.

• The pairs of (20,16) (24,16) (28,16) (32, 16) tile sizes for the two inner tile loops (16 for

the innermost).

• The pairs of (28,24) and (32,24) tile sizes for the two inner tile loops (24 for the innermost).

Of course, in the calculation of the average overhead – shown as a red dashed line in graphs

(b) and (d) – we considered the entire range of tile-sizes including the ones we removed from

the graphs for clarity.

Our first conclusion with respect to graphs (a) and (c) is that our run-time tuning method

(ptileGPU line) correlates with the iterative compilation method – embodied by the ppcg line

– to a satisfactory degree. In other words it can be considered reasonable to avoid iterative com-

pilation and use our method for run-time performance tuning instead. In fact, Table 6.2 shows

that the time saved for searching 343 configurations that use shared memory is considerable.

Perhaps the most striking exceptions are the following:



106 Chapter 6. Parametric GPU Code Generation for Static Control Programs

• Configurations 6, 21, 37, 51, 64, 75 and 84 on graph (c) of GTX 280

• Configurations 89 and 104 on graph (a) of K20c

These configurations could be the starting point of a more detailed study that would help us

attain a better understanding of the differences between the two tuning methods.

With respect to the induced run-time overhead, graphs (b) and (d) show that the relative run-

time overhead exhibits a normal flactuation around the average which is not always low. In

fact, it reaches 30.1% on the GTX 280 and 10.3% on the K20c. Understanding the source of

this overhead and attempting to minimize it could be the subject of future work. An interesting

observation towards that direction is that the average overhead increases if we move from graph

(b) to (d). This effect was actually expected since the parametric nature of the data-movement

procedures makes them conservative and therefore less efficient (this effect is not so clear on

the GT 540M for reasons that are not yet fully understood). Consequently, minimizing the

average overhead for graph (d) could be achieved by improving the efficiency of the built-in

data movement procedures. Finally, it is worth noting that in some cases (GTX 580 and K20c)

the average overhead on graph (b) is negative which could be attributed to the performance

improvement due to the run-time full-tile separation optimization.

If we now move to graphs (e) and (f) it is clear that the additional cost of using thread-buckets

dominates the performance of our run-time method making it significantly slower than ppcg.

However, on the fourth graph we see that much of that performance loss is recovered if we

enable local memory. Strangely though, the unrolling optimization for the data-movement

procedures appears to have a negligible impact on performance (i.e. the green and blue lines

almost coincide) which is apparent across all GPUs of our experiment.

Assessment 2 : Effectiveness of run-time system in mapping tile and intra-tile

wavefronts

For the second assessment we present one bar diagram for each device showing the best perfor-

mances found within a given search space. These search spaces were not equivalent between the
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two methods, i.e., compile-time and run-time simply because each method embodies a different

strategy in mapping the respective wavefronts. For example, in all benchmarks used in our

experiments PPCG (the compile-time method) did not tile the outer-most (time) loop in order

to minimize tile wavefronts or completely avoid wavefronts for the Jacobi and fdtd benchmarks.

For all our benchmarks we used the same search space we used for matrix multiplication i.e. tile

sizes ranging from 8 to 32 with a stride of 4. The only exception was the Jacobi-1d benchmark

where we observed a clear linear increase in performance as the outer (time) tile size increased

up to 225. Such exploration was not possible for PPCG simply because the outer time dimension

was not tiled. This effect was not observed in the rest of the benchmarks primarily because

of the effect of local memory in performance. In particular, on those benchmarks (i.e. ADI,

Jacobi-2d, fdtd-2d and Seidel-2d) local memory buffers increase proportionally in size along

each dimension as the time-tile size increases. Consequently, large time-tile sizes have a clear

negative impact on occupancy as well as data-movement cost.

By looking at all the bar diagrams it is clear that our run-time system is effective in mapping

tile and intra-tile wavefronts on GPUs. Furthermore, the additional bars per-benchmark show

that in some cases using fewer local memory buffers yield better performance as we expected

and already explained in Section 6.4.

More specifically we see that for Jacobi-2d, using 2 buffers is never beneficial. In fact, for the

GT540M and GTX580 it is better if we don’t use local memory at all. This observation doesn’t

mean that local memory buffers do not yield a performance improvement in general, i.e. for

all tile-size configurations. Instead it means that for some combination of tile-sizes using one

or no local memory buffers results in the best performance within our search space. There are

two main reasons for this. First of all the buffer definitions for Jacobi-2d include a coefficient

of 2 (this coefficient is a result of the loop skewing transformation performed by Pluto in order

to enable tiling) for the time-tile size along each dimension. This means that if we increase

the time-tile size local memory usage puts a considerable pressure on occupancy and data-

movement cost. Secondly, the data-movement associated with array B is largely redundant

because only a few elements of B are actually communicated between wavefronts thus moving
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the entire footprint of B in and out of local memory is wasteful to a large degree. Since array

B is ranked second against array A the blue bar clearly shows that redundantly moving B in

and out of local memory hurts performance. This could be avoided with a precise polyhedral

analysis of B similar to [Grö09], an overlapped tiling method [HPS12, KBB+07] or a split-tiling

method [GCK+13]. The first one has not proven yet to be efficient for 2D problems while the

later two are restrictive to a small subset of SCoPs.
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Figure 5.12: dgemm 2k

(a) No local memory used. Worst execution time 0.702sec.
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Figure 6.13: Performance profiles and relative overhead of matrix-multiplication on GTX280
for a 2k×2k×2k problem without using thread buckets. Each point of (a) and (c) is normalized
with worst execution time. The dashed red lines of (b) and (d) represent the global average
run-time overhead for the entire configuration space.
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(c) With local memory. Worst execution time 0.612sec.
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Figure 6.13: Performance profiles and relative overhead of matrix-multiplication on GTX280
for a 2k×2k×2k problem without using thread buckets. Each point of (a) and (c) is normalized
with worst execution time. The dashed red lines of (b) and (d) represent the global average
run-time overhead for the entire configuration space.
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Figure 5.12: dgemm 2k

(e) No local memory used. Worst execution time 2.573.
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Figure 6.14: Performance profiles of matrix-multiplication on GTX280 for a 2k × 2k × 2k
problem using thread buckets. Each point of (a) and (b) is normalized with worst execution
time.
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Figure 6.15: Best performances found after tile-size search on GTX280. Performances are
normalized with the best performance found which was 17.08 GFLOPs for Jacobi-1d. The ADI
benchmark does not include a red bar because the respective PPCG code yielded incorrect code
(out-of-bounds access).
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(a) No local memory used. Worst execution time 2.909sec.
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Figure 6.16: Performance profiles and relative overhead of matrix-multiplication on GT540M
for a 2k×2k×2k problem without using thread buckets. Each point of (a) and (c) is normalized
with worst execution time. The dashed red lines of (b) and (d) represent the global average
run-time overhead for the entire configuration space.

(b) Relative overhead for each configuration point of (a). Average overhead 6.6%.
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(c) With local memory. Worst execution time 2.467sec.
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Figure 6.16: Performance profiles and relative overhead of matrix-multiplication on GT540M
for a 2k×2k×2k problem without using thread buckets. Each point of (a) and (c) is normalized
with worst execution time. The dashed red lines of (b) and (d) represent the global average
run-time overhead for the entire configuration space.
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(e) No local memory used. Worst execution time 8.342sec.
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Figure 6.17: Performance profiles of matrix-multiplication on GT540M for a 2k × 2k × 2k
problem using thread buckets. Each point of (a) and (b) is normalized with worst execution
time.
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Figure 6.18: Best performances found after tile-size search on GT540M. Performances are
normalized with the best performance found which was 4.13 GFLOPs for Jacobi-1d.
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(a) No local memory. Worst execution time 0.261sec.
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Figure 6.19: Performance profiles and relative overhead of matrix-multiplication on GTX580
for a 2k×2k×2k problem without using thread buckets. Each point of (a) and (c) is normalized
with worst execution time. The dashed red lines of (b) and (d) represent the global average
run-time overhead for the entire configuration space.

(b) Relative overhead for each configuration point of (a). Average overhead −8.4%.
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(c) With local memory. Worst execution time 0.234sec.
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Figure 6.19: Performance profiles and relative overhead of matrix-multiplication on GTX580
for a 2k×2k×2k problem without using thread buckets. Each point of (a) and (c) is normalized
with worst execution time. The dashed red lines of (b) and (d) represent the global average
run-time overhead for the entire configuration space.



114 Chapter 6. Parametric GPU Code Generation for Static Control Programs

5.7. Conclusions 91

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100

N
or

m
al

iz
ed

E
xe

cu
tio

n 
Ti

m
e

Configuration

ppcg
ptileGPU

(a) no local memory and no thread-bucket

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100

N
or

m
al

iz
ed

E
xe

cu
tio

n 
Ti

m
e

Configuration

ppcg
ptileGPU

(b) with local memory and no thread bucket

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100

N
or

m
al

iz
ed

E
xe

cu
tio

n 
Ti

m
e

Configuration

ppcg
ptileGPU

Figure 5.16: dgemm 2k

(e) No local memory used. Worst execution time 0.927sec.
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(f) With Local memory and unrolling optimization. Worst execution time 0.731sec.

Figure 6.20: Performance profiles of matrix-multiplication on GTX580 for a 2k × 2k × 2k
problem using thread buckets. Each point of (a) and (b) is normalized with worst execution
time.
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Figure 5.17: performance histogram

Figure 6.21: Best performances found after tile-size search on M2070. Performances are nor-
malized with the best performance found which was 25.11 GFLOPs for Fdtd-2d.
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(a) No local memory. Worst execution time 0.333sec.
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run-time overhead for the entire configuration space.
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(c) With local memory. Worst execution time 0.191sec.
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(e) No local memory. Worst execution time 1.856sec.
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Figure 6.23: Performance profiles of matrix-multiplication on K20c for a 2k× 2k× 2k problem
using thread buckets. Each point of (a) and (b) is normalized with worst execution time.
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Figure 6.24: Best performances found after tile-size search on K20c. Performances are normal-
ized with the best performance found which was 33.03 GFLOPs for Fdtd-2d.

Search times

GTX280 GT540M GTX580 K20c
ppcg ptileGPU ppcg ptileGPU ppcg ptileGPU ppcg ptileGPU

matMul 3261s 133s 8778s 783s 575s 95s 7659s 1237s

Table 6.2: Tile-size search times
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6.7 Conclusions

In this chapter, we presented a code generation algorithm that produces parametrically tiled

GPU code for effective run-time tuning of SCoPs. The technical challenges addressed by our

approach are the following :

• Extracting and mapping parametrically tiled wavefronts for GPU execution can lead

to load imbalance if wavefronts are not mapped precisely to the rectangular execution

space of GPUs. To address this challenge we introduced a run-time system based on the

concepts of Tile Buckets and Thread Buckets.

• The parametric nature of the produced code indicates the importance of a dynamic local

memory management mechanism that would be able to allocate and use local memory

buffers dynamically. For that purpose we introduced the concept of Buffer Buckets, i.e.,

buckets of abstract local memory buffers that are populated dynamically by a run-time

system. These buffer buckets are combined with a set of predefined parametric data-

movement procedures provided in the form of API methods.

Our experimental evaluation showed that in the case of rectangularly-parallel programs (in

cases where wavefront parallelism can be avoided), the produced parametrically tiled GPU

code performs well enough to allow us to avoid the cost of iterative compilation for perfor-

mance tuning. This means that even though our method induces run-time overhead that

sometimes can be relatively high (e.g. on the GTX 280) nevertheless, it remains a good predic-

tor of PPCG [VCJC+13] – a state-of-the-art compile-time method – as indicated by the close

correlation between the lines of graphs (a) and (c). On the other hand, we showed that the

proposed run-time is very effective in mapping wavefronts of parallel tiles and intra-tile points

as well as managing local memory dynamically. In particular, it was shown to be clearly faster

than PPCG for all 5 stencils programs we used for our second assessment.



Chapter 7

Beyond Static Control Programs : The

Avelas Runtime System

This chapter introduces the Avelas runtime system, a platform-independant environment that

realizes a novel execution model for manycore processors. It begins with an overview of the

system (Section 7.1) followed by a description of the main technical components involved

(Sections 7.2 through 7.4). Finally, a preliminary experimental evaluation of the system is

presented that examines its feasibility as a general purpose execution model or as a target ab-

straction for source-to-source compilation. Our results show that this is a promising perspective

that motivates further research.

7.1 Overview

The Avelas runtime system is an attempt to realize the theoretical concepts of tile, thread and

buffer buckets that were introduced in Chapter 6 along with a set of procedures that facilitate

their intuitive and platform-independent manipulation. However, it can also be viewed as

an alternative execution/programming model for manycore processors that enables dynamic

management of the execution environment as shown in Figure 7.1. In particular, we see that

a set of dynamically managed objects is used to specify the execution space as opposed to the

118
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Entry 0 

Entry 1 
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• i buffers 

Kernel(N) 
• All buffers 

Multiple kernels available 

Figure 7.1: Overview of the Avelas execution model.

strictly rectangular configuration of the OpenCL/CUDA paradigm. These objects – the Tile

Bucket, Thread Bucket and Buffer Bucket – contain entries that after being transferred to the

device memory can provide generic index information to each work-group and work-item. In the

case of buffer buckets, the entries carry information associated to specific local memory buffers

and are used by data movement procedures. In Figure 7.1 we also see that buffer buckets carry

a kernel descriptor as well, which is used to specify the device code to be executed by a kernel

invocation (Section 6.4 describes the intuition behind this mechanism which will be detailed in

Section 7.4).

In other words, the Avelas runtime system serves two main purposes. First of all, the tile

bucket and thread bucket abstractions alleviate the restrictions imposed by the CUDA/OpenCL

paradigm for strictly rectangular execution spaces. When the actual execution space of a pro-

gram is non-rectangular (e.g. triangular or skewed), a rectangular CUDA/OpenCL mapping

will lead to redundant allocation of resources in addition to the overhead involved in determin-

ing valid execution points. Secondly, the buffer bucket abstraction enables us to manage the

allocation of local memory buffers dynamically from the host, which in turn facilitates run-

time exploration (as opposed to compile-time exploration) of the locality/parallelism trade-off

discussed in Section 6.4 and illustrated by Figure 6.8.
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7.2 The Tile Bucket

A Tile Bucket corresponds to a cuda/opencl grid but without the restriction of a strictly

rectangular definition. Instead, it is populated dynamically by entries, each one corresponding

to a work-group and each one carrying a flexible vector of elements that uniquely identifies

the owning work-group. As opposed to the built-in index variables of cuda/opencl (e.g. the

blockIdx vector in CUDA) the elements of each tile bucket entry can carry program-specific

information that is not restricted in type and are not related to a layout. In fact, this paradigm

enables us to alter the layout of work-groups dynamically from the host without changing the

device code. This is possible simply by altering the order in which entries are being added to

the bucket. As a consequence, the device code is cleaner and the programmer doesn’t need

to reverse engineer the respective cuda/opencl nd-range mapping in order to retrieve the right

positioning information (see example of Figure 7.4). On the other hand, by calculating work-

group-wide values at the host once (instead of calculating them redundantly by each thread)

and then retrieving them from the device code, we might be able to improve compute efficiency

and energy consumption for the price of the bucket entry retrieval overhead. In fact, this

particular trade-off will be the subject of our experimental evaluation presented in Section 7.7.

The procedures provided by the Avelas runtime to allocate and manipulate tile buckets are the

following :

tileBucket * alloc_tile_bucket( int offset, int dims, int alloc_size=65536 );

void populate_tile_bucket( tileBucket * B, int tag, int n, ... );

void consolidate_tile_bucket( tileBucket * tb );

void free_tile_bucket( tileBucket * tb );

To better understand these methods lets look at the minimal example of Figure 7.2. In this

example we see a bucket containing 5 entries each one having 3 elements or dimensions – the

number of dimensions is specified by the dims and n arguments to the alloc tile bucket

and populate tile bucket methods respectively. This setting corresponds to an nd-range

consisting of 5 work-groups each one corresponding to a bucket entry. We also see that each
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E(0,1) E(0,0) E(0,2) 
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Figure 7.2: Structure of a tile bucket consisting of 5 entries each one carrying 3 elements.
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device_bucket[0] device_bucket[1] device_bucket[2] 

alloc_size Each entry accessed using glw 

tag(0) tag(1) tag(2) tag(3) tag(4) 

device_arbiter 

Figure 7.3: Storage layout of a tile bucket.

entry is coloured based on a tag attribute. This distinction can be useful in cases where we

want a given set of work-groups to execute a distinct version of the computation (e.g. full

tile separation) or a distinct computation altogether (e.g. different versions of an algorithm or

completely different algorithms). In Figure 7.3 we see the storage layout for the tile bucket

along with the device pointers provided by the tileBucket data structure. These pointers

can be used from the device code to access the tile bucket either as a flattened 1-dimensional

array (using pointer device bucket[0] only) or as distinct vectors per dimension (using all

device bucket pointers). In the former case the alloc size parameter is transferred to a

constant memory position specified by the offset parameter and then used as the storage

stride between the entry dimensions.
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A tileBucket object is instantiated with the alloc tile bucket method which is respon-

sible for allocating the host and device memory required to accommodate the bucket entries

as well as the arbiter vector. After a series of invocations to populate tile bucket the

consolidate tile bucket procedure is called in order to make the necessary transfers from

host to device memory. Finally, all resources are released with the free tile bucket method.

The example of Figure 7.4 shows how the diagonal reordering optimization proposed by Ruetsch

et al. [RM09] for matrix transpose can be implemented using tile-buckets. The TILE BUCKET

preprocessor macro is defined as follows:

TILE_BUCKET(I,VAR) __shared__ int VAR; VAR = BT_##I[glw];

It is clear that the device code has been greatly simplified since it has been decoupled from the

blockIdx layout. This layout is now specified at the host code which makes it easier to debug

and to alter dynamically without affecting the device code. Furthermore, several compute

operations including two modulus and one division have been removed from the device code

and performed once per work-group by the host.

7.3 The Thread Bucket

Similar to the concept of a tile bucket, a Thread Bucket provides an alternative abstraction

to the rectangular work-group configuration of the cuda/opencl paradigm. However, unlike

tile bucket entries, each thread bucket entry is not uniquely owned by each thread but shared

among threads of different work-groups. Therefore each thread bucket entry uniquely identifies

a thread within a work-group for each individual work-group. In the case of non-rectangular

work-group spaces, such abstraction can be highly beneficial as it avoids the allocation of redun-

dant resources (e.g. registers) as well as the control overhead associated with the rectangular

overapproximation of the parallel execution space. Another useful observation has to do with

the scalability of thread buckets. In particular, unlike nd-ranges, work-groups have a relatively

low thread capacity limit (e.g. on an NVIDIA GPU with 2.1 compute capability, this limit
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/∗ Device Code ∗/

g l o b a l void t ransposeDiagona l ( f loat ∗odata ,

f loat ∗ idata , int width , int height , int nreps )

{

s h a r e d f loat t i l e [ TILE DIM ] [ TILE DIM+1] ;

int blockIdx x , b lockIdx y ;

// d i a g ona l r e o r d e r i n g

i f ( width == height ) {

blockIdx y = blockIdx . x ;

b lockIdx x = ( blockIdx . x+blockIdx . y)%gridDim . x ;

} else {

int bid = blockIdx . x + gridDim . x∗blockIdx . y ;

b lockIdx y = bid%gridDim . y ;

b lockIdx x = (( bid /gridDim . y)+blockIdx y)%gridDim . x ;

}

int xIndex = blockIdx x ∗TILE DIM + threadIdx . x ;

int yIndex = blockIdx y ∗TILE DIM + threadIdx . y ;

int i ndex in = xIndex + ( yIndex )∗width ;

xIndex = blockIdx y ∗TILE DIM + threadIdx . x ;

yIndex = blockIdx x ∗TILE DIM + threadIdx . y ;

int index out = xIndex + ( yIndex )∗ he ight ;

/∗ Computation ∗/

}

/∗ Host Code ∗/

dim3 gr id ( g1 , g2 ) ;

dim3 threads ( t1 , t2 ) ;

transposeDiagonal<<<gr id , threads>>>

( d odata , d idata , s i z e x , s i z e y , NUM REPS) ;

/∗ Device Code ∗/

g l o b a l void t ransposeDiagona l ( f loat ∗odata ,

f loat ∗ idata , int width , int height , int nreps ,

int ∗ BT 0 , int ∗ BT 1)

{

s h a r e d f loat t i l e [ TILE DIM ] [ TILE DIM+1] ;

TILE BUCKET(0 , b lockIdx x )

TILE BUCKET(1 , b lockIdx y )

int xIndex = blockIdx x + threadIdx . x ;

int yIndex = blockIdx y + threadIdx . y ;

int i ndex in = xIndex + ( yIndex )∗width ;

xIndex = blockIdx y + threadIdx . x ;

yIndex = blockIdx x + threadIdx . y ;

int index out = xIndex + ( yIndex )∗ he ight ;

/∗ Computation ( remains t h e same ) ∗/

}

/∗ Host Code ∗/

t i l eBucke t ∗ BT = a l l o c t i l e b u c k e t ( 0 , 2 ) ;

for ( int i = 0 ; i < g2 ; i++ ) {

for ( int j = 0 ; i < g1 ; j++ ) {

i f ( width == height ) {

val1 = j ; va l2 = ( i+j )%gridDim . x ;

} else {

temp = j + gridDim . x∗ i ; va l1 = temp%gridDim . y ;

va l2 = ( ( temp/gridDim . y)+val1)%gridDim . x ;

}

popu l a t e t i l e bu ck e t (BT,0 , 2 ,

va l2∗TILE DIM , val1∗TILE DIM ) ;

}

}

c o n s o l i d a t e t i l e b u c k e t (BT) ;

dim3 threads ( t1 , t2 ) ;

transposeDiagonal<<<BT−>con f ig , threads>>>

( d odata , d idata , s i z e x , s i z e y , NUM REPS,

BT−>dev i ce bucket [ 0 ] , BT−>dev i ce bucket [ 1 ] ) ;

(a) Original according to [RM09] (b) Using a tile-bucket

Figure 7.4: Diagonal reordering with and without tile-buckets.
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is 1536 and 2048 for devices with 3.x compute capability) which reflects the inherent resource

limitations of compute units. This indicates that thread buckets can have a bounded storage

footprint that in turn enables us to utilize less scalable yet faster memory modules like constant

or image memory1. Currently, thread buckets are stored in image memory in order to exploit

the 2D locality optimizations available by the hardware.

The provided methods are the following :

threadBucket * alloc_thread_bucket( int id );

void set_rectangular_thread_layout( threadBucket * B, int padding, int n, ... );

int set_wavefront_thread_layout( threadBucket * B, int padding, int n, ... );

void consolidate_thread_bucket( threadBucket * tb );

void free_thread_bucket( threadBucket * tb );

Note that the methods for constructing a rectangular and a wavefront bucket are fixed and can

be used for any program. Also the id argument provided to the alloc thread bucket method

distinguishes between multiple threadBucket objects. Furthermore, the padding parameter is

used to pad the total number of allocated threads in case we want to match the hardware’s

allocation granularity (e.g. 32 for NVIDIA GPUs). In both set rectangular thread layout

and set wavefront thread layout methods, the n argument denotes the dimensionality of

each entry or the dimensionality of the respective bounding box.

Since thread buckets are stored in image memory, the user does not need to worry about

modifying the kernel arguments (this was necessary for the tile buckets) as the image memory

declarations are handled automatically by the runtime and the respective objects are readily

available from the device code through the following preprocessor macro :

THREAD_BUCKET(I,J,D,VAR)

In particular, we define a small 2D space of 2D image objects (currently a 4x4 space). The I

and J arguments are used to specify a particular image memory object while the D argument

1Also known as texture memory.
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E(1,0) E(1,1) E(1,2) 

E(2,0) E(2,1) E(2,2) 

gli 

D 

Image Object (I,J) 

Figure 7.5: Structure of a thread bucket object residing in off-chip image memory.

is used to access the rows of a given object. For a given row of a given 2D image object the

built-in gli index variable is used to access each column entry. Figure 7.5 depicts the storage

layout for a given 2D image object.

In the case of wavefront parallelism, the I argument is the id of the respective bucket, the J

argument specifies the dimension of the entry, D denotes the wavefront instance and VAR the

name of the private variable that holds the J dimension of the gli entry of the D wavefront

instance.

In the case of rectangularly parallel work-groups, the I argument is always 0, the J argument

denotes the id of the thread bucket, D identifies the dimension of the entry and VAR is the name

of the private variable that holds the D dimension of the gli entry of the J thread bucket.

7.4 The Buffer Bucket

In Section 6.4 we introduced the theoretical concept of a Buffer Bucket – a bucket of parametric

buffer information that is dynamically managed according to the usage model of Figure 6.9. In

this section we will discuss how buffer buckets were implemented as part of the Avelas runtime

system. Unlike tile and thread bucket entries, each buffer bucket entry carries a specific list of

parameters that are used by the data-movement procedures. In addition, each buffer bucket

holds a kernel descriptor that identifies the device code to be executed. The purpose of this

is to enable us to dynamically adjust the number of local memory buffers available to the
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computation and in order to achieve that we need to have multiple versions of the device code

each one corresponding to a particular set of local memory buffers.

The methods provided by the Avelas runtime system for instantiating, populating and deallo-

cating buffer buckets are the following :

bufferBucket * alloc_buffer_bucket( int offset, void * kernel,

int max_size, int L1_size );

void submit_buffer( int type, size_t type_size, threadBucket * BI,

bufferBucket * BB, bool guard, void * kernel, int dim, ... );

void consolidate_buffer_bucket( bufferBucket * bb );

void free_buffer_bucket( bufferBucket * bb );

In order to allocate a bufferBucket object we can use the alloc buffer bucket method. The

offset parameter is similar to the one used by alloc tile bucket, i.e., distinguishes between

multiple bufferBucket objects. The kernel argument should be a pointer to a device code

that doesn’t use any local memory buffers. The max size argument initializes the local memory

window or Lw as defined in Section 6.4. Finally, the L1 size argument is associated with an

experimental feature that manages the partition of local memory into software managed and

hardware managed cache (the ability to control this partition is only available on NVIDIA

GPUs to date).

The submit buffer method is essentially an implementation of Algorithm 6 with a few ad-

ditional arguments. First of all, the type argument is used to control line 11 of Algorithm 6

and can be STRICT (no additional threads), FLAT (work-group threads are guaranteed to match

the width of the buffer – this is used to eliminate the width traversal of line 6 in Algorithms 7

and 8), HALF (work-group threads are guaranteed to match half of the buffer – this is used to

fully unroll the data-movement traversals), FULL (work-group threads are guaranteed to match

the entire buffer – this is used to eliminate all data-movement traversals). Evidently, if type is

not STRICT then the thread bucket argument BI will be modified accordingly. The guard argu-

ment is used to predicate the buffer submission method with a potentially dynamic condition

(e.g. add only those buffers that have the exact same width). Finally, kernel is a pointer to
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the respective device function while the remaining argument list consists of extent and padding

factor pairs for each dimension i ∈ [1..dim].

After a series of invocations to submit buffer, the consolidate buffer bucket method is

used to transfer all entries to constant memory. In particular, the Avelas runtime system

maintains one constant memory vector for each entry parameter (i.e. 7 vectors for the 7

parameters added as per line 18 of Algorithm 6) and the host to device transfer starts from

position offset and transfers buffer count elements where buffer count is the total number

of buffer added to the bucket.

7.5 Experimental Evaluation

We now present a preliminary experimental evaluation that examines the effectiveness of the

tile-bucket mechanism in substituting various nd-range configurations. Our experiments in-

volved four CUDA benchmarks from the parboil benchmark suite [SRS+12] and are conducted

on three GPU devices: the GT540M, M2070 and K20c cards as described in Table 6.1. Table 7.1

lists the four parboil benchmarks used along with a set of parameters related to the experiment.

The datasets of Table 7.1 are part of the datasets provided by the parboil framework while all

the benchmarks used for our experiments correspond to the cuda base2 versions.

The four benchmarks were chosen to represent different execution settings each one with a

different combination of kernel invocations, work-groups per invocation and entry dimensions

(i.e. elements/entry). Even though this set is not extensive, nevertheless it provides a good

mix of configurations for our preliminary study. First of all, the bfs benchmark involves a large

number of invocations each one using 7.3 work-groups on average. In such setting the kernel

invocation cost dominates the overall execution time thus the tile-bucket mechanism adds a

significant overhead without any obvious benefit. This is confirmed by the results of Table 7.2

where the cost of using tile-buckets yields more than three times slower execution time. Our

second benchmark (cutcp) has a much smaller number of invocations with each invocation

2The parboil benchmark suite provide a number of different implementations for each benchmark including
cuda base, cuda, opencl base and more.
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dataset Kernels invocations work-groups work-groups elements/entry
(Total) (Total) (Average) (Average)

bfs 1M 1 1999 14674 7.3 1
cutcp large 1 26 70304 2704 7
histo large 4 10000 3670000 367 2.5
mri-gridding small 1 1 262144 262144 11

Table 7.1: List of benchmarks and the corresponding execution scenarios. All bencharks listed
correspond to the respective cuda base version The fifth column denotes the average number
of work-groups per kernel invocation.

GT540M M2070 K20c
Avelas Original Avelas Original Avelas Original

bfs 0.44 0.17 0.52 0.15 0.57 0.17
cutcp 4.28 4.25 0.74 0.76 0.30 0.29
histo 198.6 200.2 64.1 63.2 62.0 61.48
mri-gridding 4.11 4.01 0.65 0.63 0.37 0.39

Table 7.2: Average kernel execution time in seconds with less than 1% variability.

involving 2704 work-groups on average. The histo benchmark involved the largest number of

kernel invocations with only 2.5 values stored per tile-bucket entry on average. Finally, the

mri-gridding benchmark involved a single yet large kernel invocation with 262144 work-groups

and 11 values stored per tile-bucket entry. Because the total number of work-groups for the

mri-gridding benchmark exceeds the limit for a 1D nd-range configuration we used a simple

factorial algorithm in order to create a 2D configuration out of the total amount of tile-bucket

entries.

From Table 7.2 we see that the tile-bucket mechanism had a negligible impact on performance

which in some cases was positive e.g. mri-gridding on K20c, histo on GT540M and cutcp

on M2070. The bfs benchmark was an exception with the observed performance degradation

attributed to the large volume of very small kernels each one executing 7.3 work-groups on

average. In general, these results are encouraging because even though tile-buckets did not

provide a consistent performance improvement, nevertheless they simplified the device code

by decoupling it from the mapping layout. This was particularly obvious on mri-gridding as

shown in Figure 7.6. Such simplification can have positive implications on programmability and

debugging considering that programmers don’t need to reverse engineer the mapping layout or

debug complex thread-invariant calculations within the device code.



7.5. Experimental Evaluation 129

const int f l a t I d x = threadIdx . z∗blockDim . y∗blockDim . x+

threadIdx . y∗blockDim . x+threadIdx . x ;

// f i g u r e out s t a r t i n g po i n t o f t h e t i l e

const int z0 = blockDim . z ∗( b lockIdx . y/( g r i d S i z e c [ 1 ] / blockDim . y ) ) ;

const int y0 = blockDim . y∗( b lockIdx . y%( g r i d S i z e c [ 1 ] / blockDim . y ) ) ;

const int x0 = blockIdx . x∗blockDim . x ;

const int X = x0+threadIdx . x ;

const int Y = y0+threadIdx . y ;

const int Z = z0+threadIdx . z ;

const int x l = x0−c e i l ( c u t o f f c ) ;

const int xL = ( x l < 0) ? 0 : x l ;

const int xh = x0+blockDim . x+cu t o f f c ;

const int xH = (xh >= g r i d S i z e c [ 0 ] ) ? g r i d S i z e c [0]−1 : xh ;

const int y l = y0−c e i l ( c u t o f f c ) ;

const int yL = ( y l < 0) ? 0 : y l ;

const int yh = y0+blockDim . y+cu t o f f c ;

const int yH = (yh >= g r i d S i z e c [ 1 ] ) ? g r i d S i z e c [1]−1 : yh ;

const int z l = z0−c e i l ( c u t o f f c ) ;

const int zL = ( z l < 0) ? 0 : z l ;

const int zh = z0+blockDim . z+c u t o f f c ;

const int zH = ( zh >= g r i d S i z e c [ 2 ] ) ? g r i d S i z e c [2]−1 : zh ;

const int idx = Z∗ s i z e x y c + Y∗ g r i d S i z e c [ 0 ] + X;

(a)

TILE BUCKET(0 , t1 )

TILE BUCKET(1 , t2 )

TILE BUCKET(2 , z0 )

TILE BUCKET(3 , y0 )

TILE BUCKET(4 , x0 )

TILE BUCKET(5 , xL)

TILE BUCKET(6 ,xH)

TILE BUCKET(7 , yL)

TILE BUCKET(8 ,yH)

TILE BUCKET(9 , zL )

TILE BUCKET(10 ,zH)

const int f l a t I d x = threadIdx . z∗ t1+

threadIdx . y∗ t2+

threadIdx . x ;

const int X = x0+threadIdx . x ;

const int Y = y0+threadIdx . y ;

const int Z = z0+threadIdx . z ;

const int idx = Z∗ s i z e x y c + Y∗ g r i d S i z e c [ 0 ] + X;

(b)

Figure 7.6: The section of the device code of mri-gridding affected by the use of tile-buckets.
(a) Original cuda base parBoil version and (b) Avelas version using tile-buckets.
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7.6 Related Work

The Sequoia programming language [FHK+06] is a high-level abstraction designed to facili-

tate memory-hierarchy aware programming. It is based on a platform-independent runtime

environment [HPR+08] that enables effective mapping of Sequoia programs to diverse memory

hierarchies (e.g. distributed memory clusters and Cell BE processors). Even though a GPU

implementation of the runtime is available, it is an early prototype that has not been pub-

licly evaluated yet. One of the main differences between the Sequoia runtime and the Avelas

runtime is that the former does not provide abstractions that are tunable at runtime like the

bucket abstractions provided by Avelas. Instead, an abstract hardware model is provided as

a template to guide the Sequoia compiler statically [RPH+08]. Furthermore, unlike Avelas,

Sequoia was not designed with manycore processors in mind hence its effectiveness on GPUs

remains unclear.

In addition to Sequoia, there has been a large body of industrial and academic research dedi-

cated to raising the level of abstraction for manycore processors (Section 2.4.2). However, to the

best of our knowledge none of this work enables dynamic layout and local memory management.

7.7 Conclusions

This chapter presented the Avelas runtime system; a platform-independent environment that

realizes a novel execution model for manycore processors based on the tile-, thread- and buffer

bucket concepts introduced in Chapter 6. A preliminary experimental evaluation showed that

the tile-bucket mechanism provides a promising abstraction that facilitates simpler device code

(that is also easier to debug) and enables dynamic management of the work-group layouts.
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Conclusions

This thesis examined the issue of performance portability for manycore processors (GPUs), i.e.

the ability of software to perform well on a variety of GPU devices. Even though high-level

languages like OpenCL and CUDA allow us to unlock the computing power of GPUs, they are

still inherently exposed to machine-dependent resource trade-offs. As a result, getting the full

potential out of our hardware requires careful and explicit management of resources that is not

guaranteed to work well on every device. Source-to-source compilation can help us mitigate

this problem by realizing higher levels of abstraction mapped to the lower-level OpenCL or

CUDA languages. By doing that we are able to automate the explicit management of resources

exposed to OpenCL and CUDA and therefore attain performance portability.

First of all, in order to address the issue of performance portability an important decision needs

to be made. In particular, a certain domain of programs needs to be chosen, for which perfor-

mance portability can be a tractable and well-defined problem. Proposing a method that works

well for every program is an unrealistic task simply because it implies that every possible pro-

gram behavior can be understood equally well by the same unified theory. Even if this becomes

a realistic scenario sometime in the future, our responsibility today is to understand individual

classes of programs reasonably well in order to figure out how we can then move towards a more

general approach. That said, our study was focused on a class of loop-programs, i.e. Static

Control Programs or SCoPs, for which we can leverage elegant mathematical abstractions and

131
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tools for analysis and optimization (i.e. the polyhedral model). Even though SCoPs represent

a restrictive set of programs, we believe that it is nonetheless an important and large enough

set to deserve our attention.

Once we have decided about the class of programs we are going to concentrate on, we then need

to set out a strategy. In practice, there are two main strategies towards performance portability

regardless of the class of programs we choose to focus on. We can either rely on a single sophis-

ticated compilation step (static or JIT) that would be responsible for producing the right code

for a given device, or compile our program multiple times (i.e. iterative compilation) and pick

the optimal instance for our hardware – a process widely known as auto-tuning (a combination

of both methods is possible too). In this thesis we investigate a third approach. In particular,

we showed that for a certain class of loop-programs, i.e. SCoPs, we can combine a single com-

pilation step – for machine-independent automatic parallelization and parametric tiling – with

a run-time system that allows run-time tuning of our parametrically tiled loop-program thus

avoiding the cost of iterative compilation. Consequently, we claim that performance portability

is attainable for SCoPs at low cost, by utilizing parametric tiling and a novel run-time system

in order to decouple the compiler from the performance tuning process. Our claim is supported

by an experimental study showing that our source-to-source compilation method and run-time

system can match the performance of a state-of-the-art compile-time method (with no run-

time support) to a satisfactory degree and can also yield significant performance speed-ups for

wavefront-parallel SCoPs.

Furthermore, it was shown that the run-time system we developed (called Avelas) can actually

be effective as a general purpose programming model as well. A preliminary experimental study

showed that Avelas yields very low overhead when used to implement a set of four ParBoil

benchmarks while offering surprising benefits in terms of programmability and debugging. In

particular, by decoupling the thread layout from the device code using tile bukets, Avelas offers

a very convenient programming abstraction where the programmer does not need to reverse

engineer the data layout from the thread layout. Instead, the mapping of threads to data takes

place at the host which is easier to understand and debug since it is a sequential single-threaded

operation.
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However, the evaluation of Avelas presented in this thesis was only a first step. In order to

derive more definitive conclusions we would need to do a more extensive evaluation of the

system, which constitutes one of our primary objectives for the future. More specifically, we

would like to investigate the effectiveness of the thread-bucket and buffer-bucket mechanisms

in implementing a variety of GPU applications. These applications might include large-scale

high-performance computing applications with irregular control behavior and access patterns.

In addition, we would like to evaluate alternative implementation strategies for all three bucket

mechanisms like the use of constant memory for storing the thread buckets or the use of special

hardware optimizations wherever possible. We also believe that Avelas can be a concrete first

step towards a new programming language for GPUs that would be low-level enough to exploit

the full potential of GPUs while at the same time high-level enough to not be tied to specific

machine-dependent and/or platform-dependent implementations. Implementing this language

would always yield a parameterized code amenable to run-time tuning.

Finally, one of the fundamental properties of SCoPs is that they can be analyzed and optimized

using the polyhedral model. This allows us to apply powerful automatic parallelization and

tiling techniques, like the Pluto scheduling algorithm, and use well-known mathematical tools

– like ILP solvers, linear programming etc – to reason about memory access patterns and data

movement. Exploiting these technologies though requires a practical polyhedral framework.

This thesis introduced such a framework, RosePolly, an object-oriented API for polyhedral

compilation. The main motivation behind the development of RosePolly was to develop a

modular and flexible API that would allow us to customize existing polyhedral technologies

like Pluto and CLooG and also build custom stand-alone tools easily. This was proven a

valuable asset for our primary research objectives as it helped us implement key algorithms from

Chapter 6 (i.e. Algorithms 4 and 6.4.2). However, the early development stage of RosePolly did

not allow us to implement the complete compilation flow proposed in Chapter 6. We believe

that a complete implementation would have helped us crystalize the essential requirements for

our system and therefore provide a simpler and more easily understandable Chapter 6. In

addition, an extensive experimental evaluation across the entire polybench suite would have

been possible and would have provided stronger evidence for our position.
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8.1 Future Research and Development

Here are a few pragmatic suggestions for further research and development:

• Completion of the development and testing of RosePolly.

• A completed RosePolly framework would allow us to implement the entire compilation

flow proposed in Chapter 6.

• Utilize the completed compiler to apply the proposed scheme on the entire polyBench

suite.

• Development of an OpenCL implementation for the Avelas run-time system that would

enable a more extensive experimental evaluation across a larger set of devices.

• Investigate alternative implementation choices for the Avelas run-time.

• Formulation of GPU performance models that would drive a run-time auto-tuning system.

• Development and evaluation of a new programming language for GPUs that would be

based on the Avelas system and produce parameterized code amenable to run-time per-

formance tuning.
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