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Compilers usually compile code

This talk is about compiling data

Examples:

Convolutions on an analogue SIMD image sensor

Block-panel matrix-multiply: GiMMiK and libxsmm

The “topological” optimisation

Steiner points

Keeping a whole matrix in registers

Tiling

Re-ordering

Beyond:

Matrix factorisation

Matrix approximation

Training for convenient values
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Cameras produce images for humans, 

not machines
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http://personalpages.manchester.ac.uk/staff/p.dudek/papers/carey-cnna2012.pdf

SCAMP 5 focal-

plane sensor 

processor

• 256x256 SIMD processor 
array

• Light sensor on every 
processor

• Ca.170 transistors per 
processor

Piotr Dudek and 
colleagues at 
Manchester 
University
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http://personalpages.manchester.ac.uk/staff/p.dudek/papers/carey-cnna2012.pdf

Piotr Dudek and 
colleagues at 
Manchester 
University
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SCAMP 5 focal-

plane sensor 

processor

• Seven registers holding 
analogue values

• Computation by moving 
charge

• Addition is easy

• No multiply 

• North-east-west-south 
data movement





Basic instruction set (of interest)

Shift image x

Shift image y

Add two images

Subtract two images

Scale image by 1/2

Take absolute value of image

8• How to do convolution filters on SCAMP 5?

• For image filtering

• As a component in image processing algorithms

• Notably CNNs



We can add/subtract 

repeatedly – so we 

can multiply by a 

constant
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Convolution filters on SCAMP 5

Easy filters



11

Convolution filters on SCAMP 5

Harder filters



We can divide by two repeatedly
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Convolution filters on SCAMP 5

Harder filters – still easy
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Convolution filters on SCAMP 5

Hard filters



We can approximate
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Convolution filters on SCAMP 5

Hard filters – easy again



15

We can approximate – D-digit binary weights

With CNNs, we can train for representable weights



Filters often have repeated terms

We implement multiplication using 

summations – so there are lots of 

common subterms

We can shift intermediate values to save 

redundant computation
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Our compiler takes a convolution as 

input, and generates optimised code 



Simple motivating (extreme) example 

5x5 Box:
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Naively: 25 
additions

6 additionsThomas Debrunner, Sajad Saeedi, and Paul H. J. Kelly. 2019. AUKE: Automatic Kernel 
Code Generation for an Analogue SIMD Focal-Plane Sensor-Processor Array. ACM 
TACO 15, 4, Article 59 (January 2019), 



GiMMiK and libxsmm
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Peter Vincent, Freddie Witherden, Brian Vermeire, Jin Seok Park, 
and Arvind Iyer. 2016. Towards green aviation with python at 
petascale. In Proceedings of the International Conference for High 
Performance Computing, Networking, Storage and Analysis (SC 
’16). IEEE Press, Article 1, 1–11.

Shortlisted for Gordon Bell Prize

Our motivation: CFD using 
PyFR

Flux reconstruction – roughly, 
high-order discontinuous-
Galerkin finite element

18,000 K20X GPUs on Titan. 
195 billion DOFs, achieved 13.7 
DP-PFLOP/s (58.0% peak 
accelerator DP-FLOP/s). 
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Flux reconstruction is 
dominated by block-panel 
GEMM:

C = A * B

Where A is small (<100x100) and 
compile-time constant

And sometimes sparse

And highly structured

Precise structure depends on PDE 
and discretisation

Full unrolling works really well

All the zeroes disappear

GiMMiK generates CUDA code for 
the matrix multiply

We evaluate using a large suite of 
matrices found in PyFR
applications

p5-gauss-legendre-lobatto-m132:

36x36: 2592 elements, 384 non-zeros

32 distinct constants

p5-williams-shunn-m0:

21x18: 378 elements, all non-zero

63 distinct constants
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Speedup of GiMMiK’s
kernels over cuBLAS, 

Achieved percentage of 
the peak floating-point 
rate 

Achieved percentage of 
the peak memory 
bandwidth

The metric of interest is 
represented through 
the size and colour 
intensity of the data 
points. Speedups 
smaller than 1 are 
denoted with crosses. 

Double precision on 
Tesla K40c.
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GiMMiK—Generating bespoke matrix multiplication 
kernels for accelerators: Application to high-order 
Computational Fluid Dynamics.  BD Wozniak, FD 
Witherden, FP Russell, PE Vincent, PHJ Kelly.  
Computer Physics Communications 202, 12-22
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This idea was re-implemented 
in Intel’s open-source libxsmm
library

Libxsmm is a library for 
specialized dense and sparse 
matrix operations as well as for 
deep learning primitives such 
as small convolutions

Libxsmm includes a specialised 
JIT compiler to generate highly-
optimised, vectorised, 
specialised code for each 
matrix/convolution (really fast –
low 100s of microseconds)

https://github.com/hfp/libxsmm
Alexander Heinecke, Greg Henry, Maxwell Hutchinson, 
and Hans Pabst. 2016. LIBXSMM: accelerating small 
matrix multiplications by runtime code generation. In 
Proceedings of the International Conference for High 
Performance Computing, Networking, Storage and 
Analysis (SC ’16). IEEE Press, Article 84, 1–11.

p5-gauss-legendre-lobatto-m132:

36x36: 2592 elements, 384 non-zeros

32 distinct constants

p5-williams-shunn-m0:

21x18: 378 elements, all non-zero

63 distinct constants
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https://github.com/hfp/libxsmm


More small-matrix 

optimisations
Registerise the A matrix:

In common PyFR cases, the number of 
distinct non-zeroes is small

Small enough to keep in registers

Prototype implementation in libxsmm

Especially if you use all the lanes of the 
vector registers

Prototype implementation, no results yet

So the A matrix incurs no memory 
accesses at all
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Common subexpressions:

In common PyFR cases, the 
number of distinct non-zeroes 
is small

And they recur within the same 
column

These result in redundant 
multiplies

But we have FMA instructions 
so eliminating multiplies 
doesn’t help

Until we see more of them?
3838

p5-gauss-legendre-lobatto-m132:

36x36: 2592 elements, 384 non-zeros

32 distinct constants

p5-williams-shunn-m0:

21x18: 378 elements, all non-zero

63 distinct constants
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More small-matrix 

optimisations



The “topological” optimisation  idea 
Build a graph with a vertex for 
each inner product in the GEMM

Fully-connected

Edge a-b weighted with the 
estimated cost of computing b 
having just computed a

Cost may be reduced if some
redundancy of some kind can 
be exploited

Construct a minimum 
spanning tree of this graph 
to find an optimal execution 
strategy

Steiner variant: add vertices if 
they reduce the total

39

Robert C. Kirby, Anders Logg, L. Ridgway Scott, and Andy R. Terrel. 2006. Topological 
Optimization of the Evaluation of Finite Element Matrices. SIAM J. Sci. Comput. 28, 1 
(January 2006), 224–240. DOI:https://doi.org/10.1137/050635547



Conclusion We usually think of compilers as 
operating on code

We have seen a couple of examples 
where it’s profitable to build a compiler 
whose only input is data

This idea applies not just to specific 
data values, but to any exploitable 
structure in the data

Structured sparsity

Symmetries

Meshes

Matrix approximation
40

For this we need a 
language for 
describing the 
exploitable 
structure



Structure in unstructured meshes

41
Wael Al-Jishi, Crystal: Identifying and leveraging structure in quad meshes. MEng thesis, Imperial College 2014 


