Backwards-compatible
bounds checking for arrays
and pointers in C programs

Richard W M Jones and Paul H J Kelly
May 1997

Department of Computing
Imperial College, London



Intro:

e Most C and C++ bugs are due to
pointer or array bounds errors

e Even for C and C++, fairly good
tools have existed for some time
which catch bounds errors

e Most programmers don’t use them

2/2



Why poor take-up?

e Performance
e Convenience

e False positives
— unnecessary warnings

e False negatives
— uncaught errors

3/3



Performance

e Good enough to use bounds checking

in production code?

Some techniques are quite close
e Good enough for most software

development purposes?

Generally, programmers will accept
quite large overheads during
debugging

*x Problem:

Unlike ordinary arrays, C’s pointers
make it hard to mix checked code
with unchecked code

4/4



The bounds checking problem in C

e A pointer in C can be used in a context
divorced from the name of the storage
region for which it is valid, its intended
referent. So instead of

printf (A[n]);
we get
int A[10]; ... p = A;
. p +=1n; ... print(*p);

e To check whether *p is valid, we need to
find out which storage allocation it was

derived from

For example, consider

int A[10], B[10]; ... p = A
. p += 10 ... print(*p);

Here, p probably points to a valid region

but is improperly derived.

5/5



e We need to check that the storage region
has not been de-allocated, either explicitly

or by block exit

6/6



How todo it ...1

e Change pointer representation:

Structure pointer to provide

information about the intended
referent [S.C.Kendall, 1983,
J.L.Steffen, 1992]

e Add “guard” variables:

For each pointer variable or
parameter, add a “guard” variable
which provides information about
the intended

referent [Patil and Fischer, 1996]

x Problem:

Both fail to inter-operate with code
compiled without checking

E.g. consider function-typed
variables, virtual functions, and

7/7



call-backs.

8/8



How to do 1t ... 2

e¢ Maintain shadow bitmap:

Maintain a map indicating which
storage regions are valid. Update it
when stack allocations, malloc and
free occur. Augment each memory
access instruction with code to check
whether the address is

valid [Hastings and Joyce, 1992].

e Advantages:

Fairly efficient

Doesn’t require access to source
code, so can (must) be applied to all
constituents of application

e Problem:

False negatives - fails to flag accesses
to a valid region using an

9/9



improperly-derived pointer

10/10



Summarise requirements:

e Track intended referent for each
pointer

It i1s not good enough just to check
that accesses are to valid locations

e No change to pointer
representation

In order to inter-operate with
unchecked code without restriction,
no information can be bundled with

the pointer.

11/11



How to do it ... 3: the central idea

Invariant:

Assume all stored pointers are properly-derived
pointers to their intended referent

Implementation:

e Maintain table of valid storage
regions

— Initialise with global declarations;
update with stack and dynamic
allocation /deallocations.

— Given a pointer, find its intended
referent by searching the table

e Check address arithmetic expressions

— Check that the result refers to the same
storage region as the pointer from which
it was derived — i.e. that they have the
same intended referent. If not, an error

may have occured.

12/12



Note: all expressions yielding a pointer result

depend on exactly one original pointer.

13/13



Correctness

Theorem: all stored values of pointer type are
always properly-derived pointers to their

intended referent.

Proof sketch: By induction:

e Base case: start of computation

Initially, all statically-allocated storage
regions are in the object table. All
variables are uninitialised.

e Inductive step:

Computation can progress by:

— Assignments

— Allocations/de-allocations

— Block entry/exit

In each case we maintain the object table

to include all valid objects, and we check all

assignments to preserve intended referents.

14/14



Lemma: Given that intended referents are
preserved by address arithmetic, it is easy to
check uses of pointers.

15/15



Properties of the approach:

e What if a variable contains a pointer
which is not in the table?

— An optional warning can be issued
immediately

— The pointer may have originated from
unchecked code, so it may be valid to

proceed

— The pointer can be abused to clobber
other regions allocated in unchecked
code,

— We can check that it is not used to
derive a pointer to a known region, so

regions allocated by check code are safe.

This should never happen if all code is
checked.

16/16



Another property of the approach:

e Invalid address arithmetic is detected
before the result is used

— An optional warning can be issued
immediately.

— The pointer is replaced by a dummy so

that an error is flagged when it is used.

— Address arithmetic warnings are
sometimes unhelpful false positives.

— However, it is very useful to be able to
detect exactly where the invalid

operation occurred.

17/17



Another property of the approach:

e Fragile invariant
The result of invalid address arithmetic

must not be used to update a pointer.

e Because it may then have a different
intended referent, and will be assumed
valid.

18/18



A fly in the ointment

Some out-of-range pointers are legal

Example:

int *p;
int *A = (int *) malloc (100 * sizeof(int));
for (p = A; p < &A[100]; ++p)

*p = 0

e On exit from the loop, p points to A[100].

e The final ++p increments p beyond the
range for which it is valid, although the

resulting pointer is never de-referenced.

e According to the definition of permissible
pointer operations above, this would be
flagged as an error since p may now point
to a different object.

e According to the ANSI C standard, this
example is legal and further arithmetic on

p can be used to yield a valid pointer.

19/19



More on legal out-of-bounds
pointers

Example B:

int *p;
int *A = (int *) malloc (100 * sizeof(int));
for (p = A; p < &A[100]; ++p)
*p = 0
while (p > A) {
p—=1,
*p = 0

}

Example C:

int *p;
int *A = (int *) malloc (100 * sizeof(int));
for (p = &A[99]; p >= A; ——p)

*p = 0:

20/20



Solution

e Pad all storage regions by at least
one byte

So that, if the object is used as an array, a
pointer one item beyond the bound cannot
refer to different storage region.

e Cost is minimal, often zero due to word
alignment and malloc administration
records

e No problem for inter-operability since
checked module’s storage layout is freely
chosen.

21/21



.. . Except parameters

typedef struct {char A[24];} T;
void A(T p1, T p2)
{ inti;

char *q;

q = (char *)&pl;

putchar(*q); /* use pointer not subscripting */

t

printf(" &p2 = %d\n", &p2); /* use addr so in table */

for (i=0; i<48; i++,9++) /* no pointer comparison */

In certain extremely obscure circumstances,

false negatives can occur with parameters:

e We cannot change the storage layout for

passing parameters to unchecked code.
e This arises with:

— Adjacent parameters

— Whose size means there is no

intervening padding

— Both of whose addresses are used

22/22



— Which are traversed as arrays

— Using pointers, not subscripting

23/23



Implementation

Compile-time:

Modification to gcc
Inserts checking into abstract syntax tree

Don’t register an object if its address is

never used

Exploit gee’s support for C++
constructors/destructors to manage stack
allocation/deallocation on block entry/exit

List statically-allocated objecta for table

initialisation

Link-time:

Process unchecked modules’ binary to
locate statically-allocated storage

Run-time:

Object table implemented as splay tree

24/24



e Malloc/free modified to update table and
catch use of freed objects

e Optimised versions of memcpy, strcpy etc.

25/25



Performance

e Extremely robust
e Performance is not good
e Slowdown is highly variable

e Worst case 100X
But:

e Slowdown only for checked code
e Some simple optimisations will help a lot

— Loop invariants: repeated lookup of
same object

— Induction variables: course of values is
known and can be checked in loop
header

e We will characterise benchmark
performance when these optimisations have

been implemented.

26/26



Summary

Few bounds checkers for C avoid false
negatives by tracking intended referents

Only ours does so without changing the

pointer representation

This makes inter-operation with unchecked
modules, libraries, the OS, and devices

much more convenient

Performance is currently poor but could
get much better

Take-up is still surprisingly low

Further work:

Optimisation; intra-procedural,

inter-procedural

Improving run-time system, object table
data structure

Checking for accesses to uninitialised data

27 /27



e Checking bounds errors within storage

regions

28/28



References

[American National Standard for Information Systems, 1990]
American National Standard for Information Systems
(1990). Programming language C. Technical Report
ANSI X3.159-1989, ANSI Inc., New York, USA.

[Hastings and Joyce, 1992] Hastings, R. and Joyce, B.
(1992). Purify: fast detection of memory leaks and
access errors. In Proceedings of the Winter USENIX
Conference, pages 125-136.

[J.L.Steffen, 1992] J.L.Steffen (1992). Adding run—time
checking to the portable C compiler. Software —
Practice and Ezxperience, 22(4):305-316.

[Patil and Fischer, 1996] Patil, H. and Fischer, C.
(1996). Low-cost, concurrent checking of pointer and
array accesses in C programs. Software Practice and

Ezxperience.

[S.C.Kendall, 1983] S.C.Kendall (1983). Bcc: run—time
checking for C programs. In USENIX Toronto 1983
Summer Conference Proceedings. USENIX
Association, El. Cerrito, California, USA.

29/29



