
Abstract, declarative control overpartitioning in parallel functionalprograms:experiences with Caliban
Paul H J Kellyphjk@doc.ic.ac.uk(joint work with Frank Taylor, now with TECCLtd, London)

Department of Computing,Imperial College London, U.K.
September 1998

Experiences with Caliban 1/27

IntroductionSlogan:\Parallel programming by programmedpartitioning"� Suppose automatic parallelisation isn'tgood enough� The programmer has to decide how thedata and computation is distributed acrossthe processing elements? This is a software engineering problem? It needs a good programming language? We need to support abstraction andre-use

Experiences with Caliban 2/27

The fully-dynamic approach
� Futures (lazy task creation etc)� par, \sparking"� threads, fork� ParAl's \$on' operatorProcesses are generated one-at-a-time as thecomputation progressesHigher-level operators (pipelines, farms, arraysof processes etc) can easily be programmed,but the structure is not evident to theimplementation? If we can separate the partitioning from theprogram execution, we can exploit broaderknowledge when allocating resources? Start with fully static? Necessary precursor to semi-static

Experiences with Caliban 3/27

Compile-time vs run-timeProgrammed partitioning depends on:� the target machine: number of processors,communication vs computationperformance, memory capacity� the problem instance: size, shape of keydata structures� the evolution of the computation: e.g.where eddies, collisions or precipitationoccurSome information available at compile-time,some only later

Experiences with Caliban 4/27

Introducing Caliban
a,b

c,d,e

f

� This is expressed as an annotation (in facta Haskell data structure):Bundle [a,b] And Bundle [c,d,e] And Bundle [f]And (Arc a d) And (Arc a f)� The Bundle assertions specify that{ expressions a and b are allocated to thesame processor{ c, d and e to the same, presumablydi�erent processor{ and f to a third.{ The Arc a d assertion speci�es a link inthe task graph, either because aconsumes d or vice versa.
Experiences with Caliban 5/27

The process placement rule
� The moreover assertion speci�es theplacement of named expressions onto thetask graph.� The \process placement rule" (analogousto \owner computes" in HPF) speci�eswhere the computation of these expressionstakes place.? In the absence of any annotations, everyprocessor executes the entire program.Some arbitrarily-chosen processor's resultexpression is output.? The expression Bundle [x] asserts that x iscomputed on one processor only, and allnon-local references to x involvecommunication.

Experiences with Caliban 6/27

Communication
� For simplicity, we assume that placedexpressions such as x are of list type, andour implementation serialises such lists byevaluating and sending each element in itsentirety in turn.Explanation:� Caliban is based on the model of a staticnetwork of processes communicating viastreams of messages.� To support this, we require that in anannotation such as Bundle [x], the name xshould refer to an object which can betransmitted as a stream of messages.This raises various issues...� Isn't it unnecessarily restrictive?� Doesn't it interfere with the semantics?

Experiences with Caliban 7/27

Compute-ahead and strictness
� Evaluation proceeds in anticipation ofdemand, so that the producer of a streamcan operate in parallel with its consumer.� This \compute-ahead" is restricted by theavailability of bu�er space in the consumer(and, of course, by availability ofoperands).Streams are easy to compute ahead, becausethe consumer cannot choose what to demandnext

Experiences with Caliban 8/27

Threads: \bundling"
� In an assertion such as Bundle [a,b], twoexpressions are assigned to the sameprocessor.� We create a thread for each expression,each charged with computing elementsahead of demand and sending the values toeach of the consumer processors.In principle, these threads should bepre-emptively scheduled, so that evaluation ofall the expressions allocated to a processorproceeds even if one of the threads loops orblocks.

Experiences with Caliban 9/27

Strictness and semantics
� \Bundle" assigns a thread to evaluate theelements of the speci�ed stream in orderAn annotation may stop a working programfrom producing all its outputs:1. Threads are evaluated in advance ofdemand. If the stream turns out not to beneeded, may loop { but a consumer threadoughtn't be interfered with2. Stream elements are evaluated in order. Ifone element turns out not to be neededmay loop evaluating unwanted streamelement, so subsequent elements are neverreached3. If threads are not pre-emptively scheduled,one expression may wait forever forevaluation of another expression on thesame processor

Experiences with Caliban 10/27

Strictness and semantics - cont'dOne more reason an annotation may stop aworking program from producing all itsoutputs:4 To evaluate the annotation, the compilermay have to evaluate expressions whicharen't needed by the computation by itself{ the compiler may not terminate

Experiences with Caliban 11/27

Example: ray tracingA simple ray-tracer can be reduced to thefollowing Haskell program:ray trace scene viewpoint= map impact rayswhererays = generate rays viewpointimpact ray = fold earlier impactswhereimpacts = map (hit ray) scene
� hit ray obj tests whether a ray strikes agiven object in the scene, and if so, returnsdetails of the impact� earlier impact1 impact2 returns the �rstimpact struck by the rayThe closest impact to the viewpoint determinesthe colour of the pixel in the output.

Experiences with Caliban 12/27

First approach: using a processor farm
slave1 = map impact ray1

slave2 = map impact ray2

slave3 = map impact ray3

slave0 = map impact ray0

collector

Idea: de�ne a function to generate this pattern:
fan :: Stream ! [Stream] ! Placementfan s [] = NoPlacefan s (a:as) = (Bundle [a]) And (Arc a s) And (fan s as)the expression fan collector [slave0, slave1,slave2, slave3] yields the annotationBundle [slave0] And (Arc slave0 collector) AndBundle [slave1] And (Arc slave1 collector) AndBundle [slave2] And (Arc slave2 collector) AndBundle [slave3] And (Arc slave3 collector) AndNoPlace(\NoPlace" is the null annotation). \fan" iscalled an NFO - a network forming operator.

Experiences with Caliban 13/27

SkeletonsWe can de�ne a reusable function whichencapsulates the processor farm behaviour; weuse the fan operator to build its annotation:farm :: (a!a) ! [a] ! [a]farm func operands= farmed moreover fan farmed farmedwherefarmed = map func operands
� The assertion says that each element of thelist farmed is evaluated on a separateprocessor, and the results (the actual listfarmed) are collected onto a singleprocessor for output� The assertion is evaluated by the compilerto yield an annotation which places each ofthe slaves on a separate processor.� number of operands must be known

Experiences with Caliban 14/27

Using the parallel operator
ray trace scene viewpoint= farm impact rayswhererays = generate rays viewpointimpact ray = fold earlier impactswhereimpacts = map (hit ray) scene
This is unfolded by the compiler:ray trace scene viewpoint= farmed moreover fan farmed farmedwherefarmed = map impact raysrays = generate rays viewpointimpact ray = fold earlier impactswhereimpacts = map (hit ray) scene

Experiences with Caliban 15/27

If the viewpoint is known at compile-time, wecan calculate the list of rays:ray trace scene viewpoint= farmed moreover fan farmed farmedwherefarmed = map impact raysrays = generate rays viewpoint = [r0, r1, r2, r3]. . .Using the de�nition of map the compiler canconstruct the list of unevaluated processes:ray trace scene viewpoint= farmed moreover fan farmed farmedwhere[farmed0, farmed1, farmed2, farmed3] = farmedfarmed= [impact r0, impact r1, impact r2, impact r3]rays = generate rays viewpoint = [r0, r1, r2, r3]. . .The compiler can expand fan farmed farmedand build the static process network....
Experiences with Caliban 16/27

ray trace scene viewpoint= farmed moreoverBundle [farmed0] And (Arc farmed0 farmed) AndBundle [farmed1] And (Arc farmed1 farmed) AndBundle [farmed2] And (Arc farmed2 farmed) AndBundle [farmed3] And (Arc farmed3 farmed) AndNoPlacewhere[farmed0, farmed1, farmed2, farmed3]= [impact r0, impact r1, impact r2, impact r3]rays = generate rays viewpoint = [r1, r2, r3, r4]impact ray = fold earlier impactswhereimpacts = map (hit ray) scene
� You could have written the annotationabove manually� Caliban's compile-time symbolic evaluationallowed a more concise annotation

Experiences with Caliban 17/27

Aggregation by bundling
� The ray tracer above assigns one processorper ray� With many (or an unknown number of)rays, we want to allocate many rays toeach processor� It seems natural to use Bundle:farm :: (a!a) ! [a] ! [a]farm func operands= farmed moreover fan farmed slaveswherefarmed = map func operandsslaves = partition noOfProcessors farmedwhere partition n xs simply splits a list xsinto n sublists as equally as possible.

Experiences with Caliban 18/27

� So, if noOfProcessors is 2, farm f [x0, x1, x2,x3] expands tofarmed = map f [x0, x1, x2, x3]moreover Bundle p1 And (Arc p1 farmed) AndBundle p2 And (Arc p2 farmed) AndNoPlacewherep1 = [x0, x1]p2 = [x2, x3]� This is nice in that the code for thecomputation itself is completely unchanged

Experiences with Caliban 19/27

Problems with aggregation by bundling� Unfortunately, using bundling alone foraggregation has some serious practicalproblems! The compiler has to elaborate the entirelist of rays, rather than the list ofpartitions! There are many communicationmessages, one for each ray { we haveaggregated computation but notcommunication� Related to this:! The compiler has to know when to stopevaluating p1 and p2 { ourimplementation always evaluates placedexpressions to WHNF! So the �rst element of each list x0, x1,x2 and x3 is computed at compile-time(unless further input is required)
Experiences with Caliban 20/27

Aggregation by restructuringWe can �x most of the the problems bymodifying the computation to partitionexplicitly:rayTrace scene viewpoint= farm noOfProcessors impact rayswhererays = generateRays viewpointimpact ray = fold earlier impactswhereimpacts = map (hit ray) scenefarm :: Int ! (a!a) ! [a] ! [a]farm n func input= farmed moreover fan farmed slaveswherefarmed = unpartition slavesslaves = map (map func) jobsjobs = partition n input
Experiences with Caliban 21/27

Farmed ray tracer - performance

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

T
im

e
(s

ec
on

ds
)

No. of slaves

100x100 image, 20 objects, static farm, 2 element compute-ahead, 40 rays job size
Linear speedup

� The scene consisted on 20 simple objects� There were 100� 100 rays� MPI on the Fujitsu AP1000 at ImperialCollege (25MHz Sparc processors)� Implementation built on the Haskell�compiler and a version of the FCG projectback-end (with thanks to Pieter Hartel andothers)
Experiences with Caliban 22/27

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

S
pe

ed
up

No. of slaves

100x100 image, 20 objects, static farm, 2 element compute-ahead, 40 rays job size
Linear speedup

The graphs show execution time and speedupfor the explicitly-partitioned ray tracer:� A small further adjustment was made toavoid compile-time ray tracing� Compute-ahead was adjusted to avoidexcessive blocking� Rays were partitioned into groups of 40 formaximum performance
Experiences with Caliban 23/27

Summary
� MotivationControlling how a program is executed inparallel - declaratively� PromiseUse the power of the functional language,use powerful generic operators, re-useoperators from the computation� ImplementationUse partial evaluation to specialise theprogram for each target machine, andperhaps even each problem instance� Re-use, composition� ProblemsCompilation time, controlling partialevaluation, surprising e�ects ofdemand-driven execution

Experiences with Caliban 24/27

Discussion: dynamic vs static
! Can Caliban be extended to be moredynamic?{ Sure, we could interpret Bundle as a\spark"{ We lose the opportunity to scheduleaggregate process networks toprocessors(eg to ensure processes in a pipelinearen't allocated to the same processor){ We lose control over wherecommunication happens(so where a given expression iscomputed may depend on anon-deterministic race betweenevaluation and sparking)

Experiences with Caliban 25/27

Directions for further work
! Partial evaluation has lots of potential! Hybrid dynamic/static resource allocationis an interesting area! Caliban did not provide enough controlover evaluation order and communication

Experiences with Caliban 26/27

