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Abstract. We present an automated run-time optimisation framework that can
improve the performance of distributed applications written using Java RMI whilst
preserving its semantics.
Java classes are modified at load-time in order to intercept RMI calls as they
occur. RMI calls are not executed immediately, but are delayed for as long as
possible. When a dependence forces execution of the delayedcalls, the aggre-
gated calls are sent over to the remote server to be executed in one step. This
reduces network overhead and the quantity of data sent, since data can be shared
between calls. The sequence of calls may be cached on the server side along with
any known constants in order to speed up future calls. A remote server may also
make RMI calls to another remote server on behalf of the client if necessary.
Our results show that the techniques can speed up distributed programs signifi-
cantly, especially when operating across slower networks.We also discuss some
of the challenges involved in maintaining program semantics, and show how the
approach can be used for more ambitious optimisations in thefuture.

1 Introduction

Frameworks for distributed programming such as the Common Object Resource Broker
Architecture (CORBA) [9] and Java Remote Method Invocation(RMI) [12] aim to pro-
vide a location-transparent object-oriented programmingmodel, but do not completely
succeed since the cost of a remote call may be several orders of magnitude greater
than a local call due to marshalling overheads and relatively slow network connections.
This means that developers must explicitly code with performance in mind, leading to
reduced productivity and increased program complexity.

The usual approach to optimising distributed programs in general has been to op-
timise the connection between the communicating hosts, fine-tuning the remote call
mechanism and the underlying communication protocol to cutthe overhead for each
call to a minimum. Although this leads to a general speed-up,it does not help the per-
formance of programs that are slow due to their structure (e.g. using many fine-grained
methods instead of a few coarse-grained methods). Our approach towards solving this
problem has been to consider all communicating nodes as partof one large program,
rather than many disjoint ones.

We delay the execution of remote calls on the client for as long as possible until a
dependency on the delayed calls blocks further progress. Atthis point, the delayed calls
are executed in one step, after which the blocked operation may proceed. By delaying



the execution of remote calls, we build up a knowledge of the context in which calls
were made on the client. This enables us to find opportunitiesfor optimisations between
calls that would have been lost had the calls been executed immediately.

1.1 Contributions

– We present an optimisation tool which can improve performance of Java/RMI ap-
plications by combining static analysis of application bytecode with run-time opti-
misation of sequences of remote operations. This tool operates on unmodified Java
RMI applications, and runs on a standard JVM.

– By aggregating sequences of remote calls to the same server,the total number of
message exchanges is reduced. By avoiding redundant parameter and result trans-
fers, total amount of data transferred can also be reduced. When calls to different
servers are aggregated together, results can be forwarded directly from one server
to another, bypassing the client in some cases.

– We show how run-time overheads can be reduced by caching execution plans at the
servers.

– We demonstrate the use of the tool using a number of examples.

The framework presented here provides the basis for a programme of research
aimed at extending aggressive optimisation techniques across distributed systems, and
deploying the results in large-scale industrial systems. We conclude with a discussion
of the potential for the work, and the challenges that remain.

1.2 Structure

We begin in Section 2 with a discussion of related work. We then cover the runtime
optimisation framework used to implement our optimisations at a high-level in Section
3. We proceed to cover the optimisations performed in Section 4, and the challenges
involved in maintaining the semantics of the original application in Section 5. We then
present some performance results in Section 6 and finish off with some suggestions for
future work in Section 7 and conclude in Section 8.

2 Related Work

Most work on optimising RMI has concentrated on reducing therun-time overhead
of each remote call by reducing the amount of work done per-call or by using more
lightweight network protocols. Examples include the UKA serialisation work [14],
KaRMI [13], and R-UDP [10]. Similar work has been done on CORBA by Gokhale
and Schmidt [7].

Asynchronous RPC [11, 15] aims to overlap client computation with communica-
tion and remote execution, replacing results with ‘promises’, which block the client
only when actually used.

A more ambitious approach is the concept of caching the stateof a remote-object
locally [10]. This works well provided that most operationson cached objects are reads.



However, a write operation incurs high penalties for all users of the cached object,
since the client has to wait for invalidation of all copies ofthe object to finish before
proceeding. The first request for invalidated data will alsoincur an extra delay as the
server fetches it from the client that performed the last update.

A later implementation of remote-object caching [5] implements the notion ofre-
duced objectswhere only a subset of the remote-object state is cached on the server.
The subset that is cached depends on the properties of the invoked methods — e.g. if
a called method only accesses immutable variables, then those variables can be cached
on the client without needing to deal with consistency issues.

Neither of these approaches to RMI optimisation conflict with our aggregation op-
timisations, and although we have not done so ourselves, these optimisations could
theoretically be combined. It may be argued that our optimisations are made redundant
under certain circumstances (e.g. if the aggregated calls are cached locally).

The concept of aggregating numerous small operations into asingle larger operation
is very old, and appears in numerous other contexts, especially in the hardware domain.
In the context of RPC mechanisms, concepts such as stored procedures in database sys-
tems or commands in IBM’s San Francisco [3] project are also capable of aggregating
calls, but these are explicit mechanisms. Implicit call aggregation is much rarer and
harder to implement. One example would be the concept of batched futures [2] in the
Thor database system.

3 The Veneer Framework

The RMI optimisations are based on top of Veneer, which is a generalised framework
that we have developed for the purpose of easing the development of run-time optimisa-
tion techniques. This framework is written in standard Java, using the BCEL [4] library
for bytecode generation and the Soot [16] library for program analysis. Veneer is not
tied to any particular JVM implementation, which is essential since it is likely be used
in a heterogeneous environment. We refer to Veneer as a ‘virtual JVM’, since it behaves
like a highly configurable Java virtual machine, without actually being one.

The framework presents a simplified model of the Java run-time environment, work-
ing with what appears to be a simple interpreter, called anexecutor. A basic executor is
shown in Figure 1, which executes a method with no modifications whatsoever.

When a method that we are interested in is called, control passes to our executor
instead of the original method. The executor is initialisedwith anexecution plan, which
is essentially a control-flow graph of the method, with executable code-blocks forming
the nodes. The executor sits in a loop which executes the current block, then sets the
current block to the next block in line to be executed.

The power of this framework lies in the fact that the plan is a first-order object that
we can change while the executor is still running, effectively modifying the code that
will be executed. The executor has full control over the process of method execution
between blocks, such that we can perform operations such as jumping to arbitrary code-
blocks, modifying local variables or timing operations if necessary.

We minimise the interpretive overhead by delegating as muchwork as possible to
the underlying JVM, and by making the code-blocks as coarse as possible. There is also



an option to permit blocks to run continuously without returning to the executor, though
certain block types will always force a return.

The mapping of byte-code to code-blocks in the plan and the methods affected by
our framework are determined by a plug-in policy class. The policy class also contains
numerous call-back methods that are invoked on certain events, such as the initial load-
ing of a class.

public class BasicExecutor extends Executor{
public int execute() throws Exception {
while (block != null

&& !lockWasReleased()) {
int next = -1;

try {
next = block.execute(this);
block = plan.getBlock(next);

} catch (ExecuteException e) {
// Pass control to exception handler
block = plan.getExceptionHandler(e);

// Propagate exception if no handler
if (block == null)
throw e.getException();

locals[1] = e.getException();
}

}

return next;
}

}

Fig. 1. Structure of a basic executor

4 Optimisations

In this section we detail the RMI optimisations that have been implemented. The exam-
ples used to illustrate the optimisations are deliberatelysimplified for clarity.

4.1 Call Aggregation

Delaying calls to form call aggregates is the core techniqueupon which this project is
based. It is an important optimisation in its own right, and furthermore can also open up
further optimisation opportunities. For example, consider the following code fragment:



void m(RemoteObject r, int a) {
int x = r.f(a);
int y = r.g(x);
int z = r.h(y);

System.out.println(z);
}

This program fragment incurs three remote method calls, with six data transfers.
However, for this example, we can do better:

– Since all three calls are to the same remote object, they can be aggregated into a
single large call, such that the number of times that call overhead is incurred is
reduced to one (see Figure 2).

– x is returned as the result of the call tof from the remote server, but is subsequently
passed back to it during the next call. The same occurs with the variabley. If the
values ofx andy were retained by the remote object between remote method calls,
then the number of communications could be reduced from six to four.

– The variablesxandyare unused by the client except as arguments to remote calls on
the remote object from which they originated.x andy may therefore be considered
as dead variables from the client’s point of view, and there is no need for their value
to be passed back to the client at all, thereby further reducing the total number of
remote transactions down to just two messages with payloadsof sizeint.

Client

f

g

h

Server

With call
aggregation

No call
aggregation

Fig. 2. Example of call aggregation

Client-side Implementation We have created a Veneer policy that only affects meth-
ods that are statically determined to contain potentially remote method calls. Calls
are deemed to be potentially remote if they are invoked via aninterface, and have
java.rmi.RemoteException or one of its super-classes on the throw list. A
run-time check is later used to ensure that the potential remote call is actually re-
mote. Note that it is not sufficient just to check that the receiver of the call implements



java.rmi.Remote since the object could be invoked directly instead of via RMI,
and some remote calls may be missed if we are supplied with a non-remote interface
that is actually a remote object that implements a remote child of our interface.

The client runs under the control of the Veneer framework using this policy. If the
executor encounters a confirmed remote call during the course of execution, then it
places the call within a queue and proceeds to the next instruction. Sequences of ad-
jacent calls to the same remote object are grouped together into remote plans. Remote
plans also contain metadata regarding the calls, such as variable liveness and data de-
pendencies. Calls to other remote objects will not force execution unless the target of
the call is defined by a previous delayed call, leading to a control dependency. However,
even this condition is relaxed by server forwarding, detailed in Section 4.2.

When a non-remote block is encountered with delayed calls remaining in the queue,
a decision has to be made whether or not to force execution of the calls. In general, it
is safe to execute the current block without forcing if thereare no dependencies be-
tween the current instruction and the delayed operations. If dependencies exist or if it
is impossible to tell, then we must force execution.

We detect data dependencies by noting attempts to access data returned by RMI
calls. Since the results of RMI calls are constructed by deserialising the data returned
by the server, there can be no other references to the returned data except for the local
that the result of the remote call was placed in. We thereforeregard local code that
accesses locals that should contain the results of RMI callsas being dependent on the
delayed calls.

This scheme is rather conservative, such that even simple assignments from one lo-
cal variable to another can force the execution of the delayed plans. We hope to improve
this in the future using improved static analysis. Also, it cannot detect indirect data de-
pendencies — for example, if the RMI call modifies a remote database which the client
proceeds to access using another API, then that access will go unnoticed.

When executing local code in the presence of delayed remote calls, we must ensure
that the variables used by the delayed calls are not overwritten or modified by the local
code. This is done by making a copy of all locals supplied to the delayed calls that may
be touched by the local code.

On forcing execution, the queue of delayed remote plans is traversed, with plans
being sent one-by-one, along with the set of data used by the plan, to the corresponding
remote proxyon the server-side via standard RMI invocation to be executed. The proxy
call may either return successfully or throw an exception.

If the call returns successfully, then the variables definedby the plan that are still
live are copied back into the locals set of the executing method. If an exception was
thrown, then the executor goes through the normal process offinding a handler for the
exception within the method, and propagating it up the call chain if one is not found.

The same Veneer policy also runs a remote proxy server on startup, which first
registers itself in a naming service via JNDI. The proxy keeps track of all remote objects
present on the JVM by inserting a small callback into the constructors of all remote
classes at load time1.

1 This may lead to a potential security hole since this may occur before the remote object has
been exported for remote access



Clients obtain handles to proxies using the standard namingservices via JNDI.
When a client first encounters a new remote stub, it broadcasts it to all known prox-
ies. The proxy that handles the remote object denoted by the stub will identify itself.
Remote plans containing calls on that stub will subsequently be sent to the identified
proxy. The stub-to-proxy mapping is cached on the client forspeed.

Remote plans sent to the proxy are executed by an executor, which simply executes
the calls one-by-one. The calls are made directly on the remote object rather than via
another RMI invocation. However, care must be taken due to the semantic differences
between local and RMI calls (see Section 5.1).

When finished, the proxy only sends the variables that are live in the client program
at the point where execution was forced. The live set is calculated using the metadata
supplied with the remote-calls.

4.2 Server Forwarding

Server forwarding takes advantage of the fact that servers typically reside on fast con-
nections, whilst the client-server connection can often beorders of magnitude slower.
Consider this sequence of calls:

x = r1.f();
y = r2.f();
z = r3.f(x,y);

The first two methods invoked onr1 and r2 are returning objects that are subse-
quently used as arguments to a method on another remote object r3. In this situation,
the client is acting as a router for messages betweenr1, r2 andr3. It would be better for
r1 andr2 to communicate withr3 directly, such that no constraints are set as to which
path is taken between the two servers. Also, ifx or y are dead, then they need not be
returned to the client.

Forwarding is also necessary for efficient aggregation of factory patterns. e.g.

a = r.newObject();
b = a.f();

Without forwarding in place, we would need to force after thecall tonewObject
becausea is used as the receiver for the next remote call — without knowing the value
of a, we would not where to send the remote plan, or what object to invokef on.

Implementation Server forwarding is implemented on top of call aggregationin a pre-
processing step just before execution on the remote proxies, by grouping remote plans
on differing remote objects together. When a remote proxy encounters a plan that is
handled by another remote proxy, it will forward the plan onto that proxy automatically.

At present, the remote plans are composed of straight-line sequences of remote calls
to the same object bundled together. We will refer to these units ascall clusters. We use
the following heuristics to decide when to group clusters with differing destinations:

– Plans that are delivered to the same remote proxy should be grouped together



x = r1.f()

y = r2.f()

z = r3.f(x,y)

y = r2.f()x = r1.f()

z = r3.f(x,y)

z = r3.f(x,y)y = r2.f()x = r1.f()

a)

b)

c)

Fig. 3. Implementation of call forwarding: a) Arcs are placed between the calls to r1–r3 and r2–r3
(due to data dependence) and r1–r2 (due to co-location), b) Current cluster is the call to r1 — we
append the call to r2 due to the r1–r2 arc, c) Current cluster is the call to r2 — we prepend the
call to r3 due to the r2–r3 arc

– Plans that are data dependent on one another should be grouped together

We aim to achieve these goals whilst preserving the relativeordering of the calls.
First, we build up a graph from the list of call clusters, withan arc between nodes that
have a data-dependence or share a remote proxy. We then process the delayed-plan list
in order, cluster-by-cluster.

We start by checking if there is an arc from the current cluster to its immediate
successor. If there is, then we append it to the current plan.If there is not, then we
check for an arc between the parent of the current cluster andthe successor, appending
to the parent plan if there is. We repeat the process until thecheck either succeeds, or
there are no more parents left to check. At that point, the process is repeated with the
successor cluster as the current plan. This process repeatsuntil we have processed all
the clusters.

When a remote plan B is appended to a remote plan A, a check is first made as to
whether plan A is a call cluster. If it is, then a new plan is created and plans A and
B inserted into it, in that order, as children, taking the place of the original plan A.
If not, then B is inserted as the youngest sibling of A (i.e. B will be executed after
anything already in A will be). The overall effect is that theplans form a multi-rooted
tree structure, with call clusters appearing at the leaves.Plans that contain other plans
are always sent to the handler of the oldest (i.e. first to be executed) sub-plan.

The algorithm currently gives equal priority to arcs due to co-location and those
due to data-dependencies. It is possible to prioritise one type of arc by processing all
instances of that type first when traversing through the planhierarchy, followed by the
other type.

We illustrate the process in Figure 3 using the previous example, assuming thatr1
andr2 are targeted at the same proxy server.



4.3 Plan Caching

These optimisations incur a substantial overhead due to factors such as:

– Overhead of the Veneer runtime
– Maintenance of dependence information for delayed calls
– Pre-processing for server-forwarding
– Transmission of remote plans and metadata

We can reduce some overhead by caching plans on both server and client sides.
Instead of building up remote plans by delaying calls as we encounter them, we replace
the remote calls with the remote plans built up by delaying those calls previously. When
the executor encounters these, it can simply place it directly onto the remote plan queue
with minimal overhead.

We can only do this for adjacent clusters of remote calls rather than the merged
remote plans because the pattern of remote calls might not occur next time. For exam-
ple, consider Figure 4. During the first iteration,r.f, r.g andr.h will be aggregated, but
it would not be valid to replacer.f with the aggregated call because the next iteration
would result inr.f, r.g andr.i being aggregated. However, it is safe to replacer.f andr.g
with the aggregate since these always occur together.

We can also take advantage of the fact that the server has seenthe plan before to
implement a form of data compression. The server can keep a cached copy of the plans
that it receives, returning an identifier associated with the cached plan to the client.
The client from that point can simply use the identifier to refer to the plan, rather than
sending the entire plan every time.

for (int i = 0; i < 1000; i++) {
r.f();
r.g();
if (i % 2 == 0)

x = r.h();
else

x = r.i();
System.out.println(x);

}

Fig. 4. Example of a loop that results in a different remote plan on every iteration

Client-side Implementation On the client side, we maintain a list of newly constructed
call clusters. After the plans are executed, the clusters are incorporated into the method
plan, such that for each cluster, all paths leading to the first call in the cluster are re-
routed to the cluster, and the successor of the cluster set tothe successor of the last call
in the cluster. The embedded remote clusters are delayed similarly to remote calls when
encountered, though without the processing required to construct the plan.



After a plan is executed, a list of cache IDs is returned by theserver proxy. Cache
IDs associated with call clusters are assigned directly to the embedded remote clusters.
The cache IDs belonging to compound plans (plans consistingof clusters and other
compound plans) are stored in a global cache, which associates acache patternwith a
cache ID. The cache pattern is generated by traversing the children plans of the current
plan pre-order, adding the cache ID of the plans encounteredas we progress.

The cache IDs for all plans are stored as a hash-map from remote server to the cache
ID for that server. In all plans, we retain a handle to the lastremote server used and the
cache ID associated with that server. If the plan is invoked again on the same server, we
can re-use the cache ID and avoid a hash-map lookup.

When the plans have been grouped and are about to be sent to theserver, we attempt
to send cache IDs in preference to the entire plan whenever possible using the following
algorithm, starting at the root of the tree:

– If the plan is an embedded cluster, we use the associated cache ID from the embed-
ded cluster directly.� If the cache ID is found, then that is used in place of the plan� If there is no cache ID, then we must send the entire plan

– If the plan is compound, we:

1. Compute the cache pattern of the plan
2. Lookup the cache ID in the global cache� If a cache ID is found, then it is used in place of the plan� If no cache ID is found, then we:

1. Repeat the algorithm for each child of the plan
2. If there is a cache ID for the child, then use that in place ofthe child plan

Server-side Implementation On the server side, the remote proxy maintains a cache
of encountered plans, indexed by an integer identifier. If a remote plan containing un-
cached entities is executed, we cache the uncached items andreturn an array of cache
IDs for the overall plan. Since the remote plan forms a tree structure known by both the
server and client during the call, cache IDs are returned to the client as a flat array of
integers by performing a pre-order traversal of the remote plan, returning the cache IDs
as the nodes are encountered. The client uses this information to allocate the correct
IDs to the correct clusters.

5 Maintaining Semantics

The optimisations may have changed some of the application semantics due to the dif-
ference between executing calls remotely and locally. In this section, we identify and
suggest solutions to some of the problems that arise.



5.1 Differences between Local and Remote Calls

A local call and a remote call differ in the way that they pass objects as parameters.
Local calls receive their parameters by reference, whereasremote calls receive them by
copy. Consider the following code fragment, wherer is a remote object:

a = r.f(x);
b = r.g(x);

Since the arguments to the call are marshalled, using local reference semantics, this
would be equivalent to:

x’ = x.clone();
a = r.f(x’);
x’’ = x.clone();
b = r.g(x’’);

Note that whateverf does tox0 is not propagated tox orx00, and similarly the effects
of g onx00 are not propagated tox. However, by aggregating calls, the original code is
transformed to the equivalent of:

x’ = x.clone();
a = r.f(x’);
b = r.g(x’);

Now, although the effects off andg on x0 still do not affectx, the effect off onx0 will affect the functioning ofg. It is therefore only safe to aggregate the two calls
without copying the parameter if we can be sure thatf does not change the value of its
parameter.

An additional complication is the fact that marshalling preserves sharing between
objects. For example, consider the following code:

x.a = y;
r.f(x, y);
r.g(x, y);

If we denote the arguments received byf asx0 andy0, and those received byg asx00 andy00, then under conventional RMI, the following properties should hold:x0 6= x00 (1)y0 6= y00 (2)x0:a 6= x00:a (3)x0:a = y0 (4)x00:a = y00 (5)

This rules out copying the arguments separately, since the sharing relationship de-
noted by equations 4 and 5 would be broken.
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Fig. 5. Effect of sharing under object marshalling — this sharing structure cannot be maintained
by copying the parameters one at a time

Copying Using Serialisation An easy way to properly copy parameters to a method
call is for the server to construct an array containing the variables needed for the next
call, serialise it, immediately deserialise the byte-stream into a new array, and supply
the new array to the call.

Although this technique also incurs an extra cycle of serialisation and deserialisa-
tion, it is still somewhat more efficient than the simpler technique of using RMI calls
locally on the server side since it avoids the overhead incurred by going through the
stub and skeleton.

Avoiding Argument Copying An argument to a remote method call need not be copied
if any of the following are true:

– The argument is immutable
– All objects reachable via the argument are dead after the call
– The method is guaranteed not to modify the argument

We have currently implemented some simple checks for a subset of the first two
conditions. We specifically check for common object types that are known to be im-
mutable, such as instances ofjava.lang.String.

We also introduce the notion of ‘flat-types’, which are typesthat do not contain any
references. These include common types such as arrays of primitive types such asint.
If only flat-types are used for the current and subsequent calls, then if an argument is
dead and is not aliased by any other argument (which can be done simply by checking
if any of the other arguments are equal to it), then we can safely avoid copying the
argument.

5.2 Call-backs

When using Java RMI, it is perfectly possible for a client to act as a remote server, and
vice-versa. This creates the possibility for a call-back mechanism, where a call by the
client to the server will result in the server calling the client. This can create consistency
problems when delaying calls.

Consider a scenario where the servers has managed to obtain a stub to a clientc
that also acts as a server (see Figure 6). Whenc callss.f(x), s makes use of the stub
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Fig. 6.The callback problem

to call the methodc.r, which has the effect of modifying the object referenced locally
onc by x. Since RMI calls are synchronous, ifg(x) is subsequently called, the value
of x should have been changed.

This causes a problem when aggregating calls, since the value of x that is sent to
the server and subsequently operated on byg will be that of the unchanged object.
However, since the clientc generally does not know how the servers is implemented,
it cannot tell in advance ifs will modify x via f or not. If we ignore the problem, then
g will end up using the old value ofx.

A Possible LoopholeIt could be argued that we could simply ignore the problem dueto
the Java memory model in the absence of explicit synchronisation. In the Java language
specification [8], the example in 7 is given:

class Simple {
int a = 1, b = 2;

void to() { a = 3; b = 4; }
void fro() {

System.out.println("a=" + a +
", b=" + b);

}
}

Fig. 7. Example to illustrate behaviour of threads accessing shared memory in the absence of
synchronisation (from Java language specification)

If to andfro are called from different threads, thena may equal 1 or 3 andb may
equal 2 or 4 independently. This is true even iffro executes afterto has finished, since
there is no obligation forto to write its changes back into main memory immediately
without the use of synchronisation.

Since a callback must execute in a different thread from the original caller (since
the caller is blocked by the unfinished RMI call), the effectsof the callback might not



be immediately noticeable by the caller, in theory. In practice this does not happen due
to the implementation of RMI flushing the updates to main memory, but the RMI speci-
fication [12] itself does not mandate this — in fact, it does not mention synchronisation
issues at all.

Proposed Solution If we wish to ensure that the effects of callbacks are visible, then
we can modify the existing protocol to do so. There are two main approaches to solving
the problem — by update and by invalidation.

In the update protocol, we need the client to detect when a callback has occurred.
This can be done by associating a unique session ID that is associated with the remote
plan. This session ID is carried along with the plan to the remote proxy, and to any
subsequent remote calls that the proxy may make. Now, if the server calls the client
remotely, the client will be able to detect that it is a callback since the session ID will be
known to the client. If this happens, then the client sends anupdated copy of the vari-
ables associated with the session ID to the server before returning from the remote call.
The server should use the fresh copy of the variables after the current call is finished.

If an invalidation protocol is used, then the server must inspect the methods being
called. If a remote method may result in a callback, then the method is executed anyway,
and an exception is thrown back to the client containing information regarding how
far execution has progressed. The exception notifies the client of a potential callback
situation, such that the client may resend the portion of theremote plan after the method
that resulted in a callback, along with an up-to-date copy ofthe used variables.

6 Experimental Evaluations

We have tested our optimisations with two examples. The firstexample is a simple,
synthetic benchmark to illustrate the potential of the optimisations. The second is an
example of a naively written program found in the wild that may benefit from our
optimisations.

The tests were performed using the Linux version of the Sun JDK version 1.4.101,
across a Fast Ethernet network (ping time is 0.1 ms, measuredbandwidth is 10.03 MB/s)
and over the Internet via a slow ADSL connection (ping time is98 ms, measured band-
width is 10.7 kB/s). The client machine in all tests was an Athlon XP 1800+ based PC.
The server for the Ethernet test was a 650MHz Intel Pentium-III PC, whilst the server
for the ADSL test was a dual-processor 700MHz Pentium-III PC.

For each test, 3 trials of 1000 iterations were performed, and the mean taken as the
result.

6.1 Vector Arithmetic

We have evaluated our framework using a simple synthetic benchmark in which the
server object provides a single method takes two equal-sized arrays of typedouble,
adds them together, and returns the resulting array. In order to test aggregation, the
client application executes a sequence of remote calls of the form:



tmp1 = r.add(v0, v1);
tmp2 = r.add(tmp1, v2);
result = r.add(tmp2, v3);

This benchmark enables us to easily observe the effect of ouroptimisation frame-
work as we vary the size of the data, the number of calls aggregated and various param-
eters of the framework.

We have tested a baseline configuration with no aggregation occurring, and con-
figurations containing from 2–5 aggregated calls. For each configuration, we vary the
vector size from 1 to 1024 doubles, doubling the vector size at every step. We test on
both the Ethernet and ADSL connections.

We show the results before and after applying the framework on the benchmark pro-
gram. We have also provided results for a ‘hand-optimised’ version of the tests (where
we provide manually aggregated methods on the server and make the client call these
methods) for comparison purposes.

Results As can be seen in the results in Figures 8(a)–9(e), the optimisations generally
result in an overall speedup whenever any aggregation occurs. The exceptions occur
when an Ethernet connection is used, with two aggregated calls and argument size of
less than 400 bytes. This is due to overhead.

In the baseline case with no aggregation occurring, a slowdown will occur due to
the same overhead being occurred but without any compensating speedup from call
aggregation. This is easily observable in the Ethernet test, but is not evident in the
ADSL test due to the overhead being orders of magnitude smaller compared to the
communication times.

If we compare the hand-optimised versus the automatically optimised results for
the tests on the Ethernet network, there is a discrepancy of about 0.5 ms per call,
which is mainly due to interpretive overhead from the Veneervirtual JVM and the
call-delaying/plan-building mechanism. However, this overhead remains constant, and
is therefore all but invisible when operating across the Internet via ADSL, since it has
much greater latencies and is subject to variations that could easily eclipse the 0.5 ms
overhead.

6.2 The MUD Example

The MUD (Multi-User Domain) example [6] is a more realistic example that contains
call aggregation possibilities. The main candidate for optimisation occurs in thelook
method of theMudClient class (shown in Figure 10), which retrieves a description
of the room and its contents.

This benchmark has 7 aggregated calls with a modest payload —around 100 bytes
of textual information in total. We have written a test harness that calls this routine
repeatedly, recording the average time per call. Caching and server-side argument du-
plication have been enabled.
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Fig. 8.Results for the vector arithmetic example running on a Fast Ethernet network with varying
levels of call aggregation
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Fig. 9. Results for the vector arithmetic example running over the Internet via a slow ADSL
connection with varying levels of call aggregation



String mudname = p.getServer().getMudName();
String placename = p.getPlaceName();
String description = p.getDescription();
Vector things = p.getThings();
Vector names = p.getNames();
Vector exits = p.getExits();

Fig. 10.Code for thelook method of the MUD example

Results As can be seen in Table 1, the MUD example shows a slight slowdown when
operating with an Ethernet network, but a large speedup withoperating over the Inter-
net.

Table 1.Table of results for the aggregation optimisation applied to the MUD example

Time taken to execute Without With Speedup
look (ms) optimisationoptimisation
Ethernet 5.4 5.8 0.93
ADSL 759.6 164.9 4.61

The speedup is lower than what we might expect from the vectors benchmark with
a similar number of aggregated calls. This is partly becausethere is very little vari-
able sharing occurring between calls — the sole instance is that betweengetServer
and getMudName, where the result ofgetServer is used as a receiver for the
getMudName method, and is then discarded without ever reaching the client. This
is in contrast to the vectors example, where each call uses the result of its predecessor.

We show a breakdown of the time taken to execute thelook method in Table 2.
As can be seen, the majority of the time in both cases is spent in client-server com-
munication. However, on the Ethernet network, the additional overheads on the client
and server side are responsible for about a third of the overall time, while the propor-
tion of time due to overheads is insignificant by comparison when using ADSL (since
the overhead remains constant while the communication times have increased). If we
could minimise the overheads, then we could achieve as much as a 50% speedup when
operating on an Ethernet network.

7 Future Work

Some ideas we have for enhancing the RMI optimisation further are:

– By aggregating calls, we effectively build up knowledge regarding a small portion
of the client. This knowledge may enable one to perform some inter-procedural
optimisations that are valid for that sequence of calls onlyby inlining the calls on
the server side. The caching facility could serve to cache the optimised code along
with the plan.



Table 2. Table showing a percentage breakdown of the time spent executing 1000 iterations of
thelook method in the MUD example

Factor EthernetADSL
(%) (%)

Remote methods 0.62 0.06
Uncached RMI communication 0.78 0.35
Cached RMI communication 60.51 97.92
Client-side overhead 20.60 0.91
Server-side overhead 15.21 0.61
Argument copying overhead 2.29 0.15

– As mentioned in Section 4.1, the mechanism to detect data-dependencies triggers
too easily. We intend to strengthen this with the aid of escape analysis [17], such
that copying the return value of RMI calls into other data structures does not trigger
a force unless that structure is visible from outside the current thread of execution.

– At present, loops are effectively unrolled as a remote plan is built up. It may be
possible to export the entire loop structure to the server inorder to decrease the size
of the remote plan.

– Instead of considering simple ‘flat-types’ to decide when toavoid copying argu-
ments, we can extend the ideas to fully-fledged balloon-types [1] to allow an arbi-
trary level of type-nesting, provided there are no externalreferences.

8 Conclusion

This paper presents an attempt to extend the scope of run-time optimisation to dis-
tributed systems. Conventional optimising compilers, andoptimising virtual machines,
focus on each node in a system individually. This work explores optimisations which
span the nodes of a distributed system. This raises many issues — including security,
the potential for failure, and run-time binding of clients to servers.

We have presented a prototype tool which optimises Java RMI applications. The
tool is based on a powerful framework, essentially a ‘virtual’ JVM, which allows the
run-time system to re-order blocks of application code subject to data dependence meta-
data generated by static analysis. We use this to implement two optimisations of RMI
applications: call aggregation, and call forwarding. These, in turn, lead to further opti-
misations, such as eliminating data transfer across the network for data passed between
aggregated calls.

We present performance results for simple examples which demonstrate the perfor-
mance potential for these optimisations. We also show preliminary results for a more
substantial application, which demonstrate that optimisation opportunities do arise in
real systems.

Our prototype implementation is based on a very powerful experimental framework,
and this incurs some run-time overheads which we hope to reduce in time. There is
enormous scope for more powerful analysis and more ambitious optimisations.
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