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Abstract. DeepWeaver-1 is a tool supporting cross-cutting program
analysis and transformation components, called “weaves”. Like an as-
pect, a DeepWeaver weave consists of a query part, and a part which
may modify code. DeepWeaver’s query language is based on Prolog,
and provides access to data-flow and control-flow reachability analy-
ses. DeepWeaver provides a declarative way to access the internal struc-
ture of methods, and supports cross-cutting weaves which operate on
code blocks from different parts of the codebase simultaneously. Deep-
Weaver operates at the level of bytecode, but offers predicates to extract
structured control flow constructs. This paper motivates the design, and
demonstrates some of its power, using a sequence of examples including
performance profiling and domain-specific performance optimisations for
database access and remote method invocation.

Introduction Aspect-oriented programming tools, such as AspectJ [12], can be
used to implement performance optimizations. However, tools like AspectJ are
too weak, both to perform interesting optimizing transformations, and to capture
the conditions for their validity. Similar problems arise when using AspectJ for
static program analysis, e.g. to check usage rules for library code, or to detect
software defects. For many, this is a consequence of deliberate simplicity in the
aspect language design. This paper presents a prototype system which is powerful
enough to express complex analyses (and transformations) - yet, like an aspect
weaver, retains a declarative style by which some simplicity can be retained.
The tool is motivated and illustrated using a series of examples, including intra-
method performance profiling, and domain-specific optimizations for database
access and remote method invocation.

Example We begin with a very simple motivating example, a domain-specific
performance optimisation for Java code that uses the JDBC (Java Database
Connectivity) library. Consider this Java fragment:

ResultSet staff = statement.executeQuery("SELECT * FROM employees");

ResultSet clients = statement.executeQuery("SELECT * FROM customers");

... complex and messy code that uses clients but not staff ...



The first “executeQuery” call is redundant since its result set “staff” is never
used. With DeepWeaver-1, we can write a weave that eliminates such redundant
calls; see Figure 1.

The query part of the weave is a subset of ISO Prolog, with a rich set of built-
in predicates to query properties of Java bytecode. When the query succeeds,
the value bound to the weave’s parameters (in this case “ExecCall”) are passed
to the Java action.

weave removeSelect(CodeBlock ExecCall):

method("ResultSet Statement.executeQuery(String)", ExecMethod),

call(ExecMethod, _, ExecCall, _),

assignment(Result, ExecCall, _),

\+ reaching_def(Result, _, _).

{

System.out.print("Removing redundant SELECT at ");

System.out.println(ExecCall.method);

ExecCall.remove();

}

Fig. 1. A complete DeepWeaver-1 weave to locate and remove “executeQuery” calls
whose results could never be used. The Java action is triggered for each instance of the
Prolog variable “ExecCall” for which the query succeeds. The \+ operator is Prolog’s
“not”, and in this example it succeeds if no match for the “reaching def” predicate can
be found.

How it works: The first step in Figure 1 is to find “ExecMethod”, the body of
the “executeQuery” method. Then we find a call to this method, “ExecCall”.
Then we find the assignment of “ExecCall”s return value to a variable “Result”.
Finally, we check that no reaching definition for “Result” can be found - that is,
that the value returned by the “executeQuery” call is not used. Note that the
SQL query string (String) cannot induce side effects, so the transformation is
always valid, provided no exceptions are thrown.

1 Contributions

This paper introduces the DeepWeaver-1 language design, and illustrates its
power using selected examples. The key contributions offered include:

– JoinPoints are CodeBlocks: the query part of a weave binds the weave pa-
rameters to CodeBlocks, which are contiguous regions of bytecode. The ac-
tion part of the weave can then operate on these CodeBlocks, removing,
modifying or replacing them. We show that this simple idea is remarkably
effective.



– Structured control flow is rendered as predicates, which yield CodeBlocks.
Thus, we operate on a low-level intermediate representation, yet can analyse
code in structured, source-code terms - independently of source code details.

– Actions can operate on CodeBlocks from different parts of the codebase
– thus, weaves can be truly “cross-cutting”. The parameters bound by an
action’s query may refer to CodeBlocks gathered from disparate parts of the
codebase.

– DeepWeaver-1’s “interjections” provide a way for an action to inline ad-
vice before, after, around or instead of any CodeBlock. Interjections provide
typed templates which can be bound to free variables at the context of
use. Interjections can, furthermore, be specialised by replacing placeholder
method calls.

– We introduce, motivate and demonstrate these concepts by means of a series
of example applications. We conclude with a critical evaluation of the success
of the work.

2 Background

Our primary motivation has been to build performance optimisation tools, in
particular tools which embody domain-specific performance optimisation exper-
tise. We have found AspectJ a remarkably valuable tool for building extensible
profilers. We have also explored “domain-specific optimisation components” -
which apply performance optimizations automatically. Our experience has been
extremely positive: using AOP techniques has the potential to reduce dramati-
cally the complexity of such software. It has also been frustrating; our require-
ments stretch the capabilities of conventional aspect languages. This paper re-
ports on our first attempt to build a tool that does what we want.

We are not the first to explore these ideas. AspectJ extensions such as trace-
match [4] and dataflow pointcut [15] cover some of the same ground. Meanwhile
quite a number of tools have used Prolog or Datalog to query the codebase [9,
13, 18]. We review these and other work from the literature, and contrast them
to DeepWeaver-1, in Section 5.

3 The design of a deeper weaver

Program representation A key feature of our design is our decision to oper-
ate on a low-level intermediate representation (our implementation is built on
SOOT [17]). A common alternative is to work with the abstract syntax tree
(AST), and many successful tools do this [19, 7, 6, 8]. This supports transforma-
tion by pattern-matching and tree rewriting very easily. However, our experience
has been that more complex and interesting transformations are not easily ex-
pressed this way. Some support for this view will, we believe, be provided by
examples presented later in this paper.



weave loopWithNoYield(CodeBlock Loop):

method("* Thread.yield()", YieldMethod),

loop(Loop),

searchForCall(Loop, Loop, YieldMethod, TargetIfFound),

null(TargetIfFound).

{

System.out.print("Found a loop not broken by a yield() call in ");

System.out.println(Loop.method);

}

Fig. 2. This weave finds loops which are not broken by a call to the yield method
(as might be required in a non-pre-emptive threading context). The loop predicate
matches all loops, whether arising from Java’s while, do..while or for constructions.
The searchForCall predicate finds the targets of all calls to the specified method
between two points, and yields null if a path with no call exists.

Predicates capture control structure An AST makes it easy to match
structured control-flow constructs such as loops. However, you need a rule for
each loop type (or perhaps introduce a hierarchy of node subtypes). Using Prolog
(or Datalog) predicates to characterise loops accounts for this rather neatly. For
example, in Figure 2, the predicate loop matches all control-flow cycles.

CodeBlocks DeepWeaver predicates are used to identify program constructs,
which can then be operated on in the Java action part of the weave. This is
done using CodeBlocks. A CodeBlock is a contiguous, non-empty sequence of
bytecode.

Since Java only has structured control-flow, control flow constructs can be
represented faithfully as CodeBlocks.

To avoid the confusion caused by stack instructions, CodeBlocks are rep-
resented using the SOOT “Jimple” intermediate representation [17]. For many
common uses of DeepWeaver, the programmer need not be concerned with details
of the SOOT representation, and we discourage programmers from operating at
that level.

In the Java part of a weave, the programmer has access to the CodeBlocks
passed in from the Prolog query part. We have imposed no limit to the possi-
ble transformations that can be applied. However, there are common operators
which are “safe”, in that they cannot yield invalid bytecode control flow when ap-
plied to well-formed CodeBlocks1. These include cb.remove(), cb.interject-
Before() and cb.interjectAfter(). As we shall see in the next section, these
allow code to be inserted at any specified point.

1 In the current implementation, we do have some predicates that can create non-well-
formed CodeBlocks (such as the LHS of an assignment).



aspect counters

{ // table of counter variable ids for each method

static Hashtable counterLocals = new Hashtable();

// first, a weave to add a counter variable to all methods

weave addCounterVariable(SootMethod Method):

method("* *(..)", Method).

{

DeepWeaverClass targetClass = DeepWeaverClass.classFromMethod(Method);

Local myCounter = targetClass.insertLocalIntoMethod(Method,

IntType.v());

counterLocals.put(Method, myCounter);

}

// now, a template for the code to insert

interjection incrementCounter(int counter) {

counter += 1;

}

// Insert the code at each access to an object of class C

weave countAccesses(CodeBlock Access):

assignment(Access, Rhs, Assignment), type(Access, "C").

{

InterjectionPrototype incCode

= Interjection.getInterjectionByName("counters.incrementCounter")

.makePrototype();

// Create one-element parameter list for interjection

List params = new ArrayList();

Local myCounter = (Local)counterLocals.get(Access.method);

params.add(myCounter);

// Insert the parameterised interjection

Access.interjectBefore(incCode, params);

} }

Fig. 3. This aspect consists of two weaves, applied one after the other. The first adds
a counter variable to each method. The second inserts code to increment the counter
wherever an object of class C is updated. The interjection is a template whose bytecode
is inserted at each insertion point. It is parameterised with the id of the counter variable.



aspect placeholders {

interjection maybeCall() {

if (Math.random() < 0.5) {

Interjection.PLACEHOLDER_METHOD_FT(0);

} else {

System.out.println("Call omitted to reduce load");

} }

weave chickenOut(SootMethod Method, CodeBlock Target,

CodeBlock Location, List Params ):

method("static void C.*()", Method),

call(Method, Target, Location, Params).

{

InterjectionPrototype ip

= Interjection.getInterjectionByName("placeholders.maybeCall")

.makePrototype();

ip.replaceMethodCall(0, null, Method, Params);

Location.replace(ip, Params);

} }

Fig. 4. This example shows the use of an interjection placeholder method. This weave
rewrites calls to (static, void, parameterless) calls of class C, so they are omitted ran-
domly. The method being called, Method, is substituted into the interjection.

Interjections Interjections are templates for code that is to be inserted. A
simple example is shown in Figure 3. The body of the interjection is copied
directly at the specified location. Thus, in this example, it is the context’s copy
of the counter variable that is incremented. We discuss type safety of interjection
parameters in Section 4.3.

Structure of a DeepWeaver aspect A DeepWeaver aspect consists of a
sequence of weaves, together with definitions of interjections, helper predicates,
and helper methods in Java. Each weave consists of a Prolog “query” part,
followed by a Java “action” part.

The action part of a weave is executed once for each successful match of the
query part.

Weave composition Weaves are applied to the target program in the sequence
they appear in the aspect. Each weave is applied across the whole codebase,
before the next begins.

Actions change the codebase. To avoid chaos, updates to the codebase are not
executed immediately, during execution of the action. Instead, the implementa-
tion defers changes until all query matching has been completed. Thus, queries
always apply to a consistent, static view of the codebase — and CodeBlocks
always refer to what they were bound to.

Note that interjections provide a mechanism for “code quoting”. However, it
is substitution into quoted code that is often tricky in metaprogramming sys-



predicate columnUsed(CodeBlock Target, CodeBlock Column):

// Find program points where Target is used

reaching_def(Target, Use, false),

// Check that use is subject of a "get"

call("* ResultSet.get*(String)", Use, Location, ColumnArgs),

encloses(Location, Use),

// Get parameter value, i.e. column name

member(ColumnArg, ColumnArgs),

local_constant_def(ColumnArg, Column).

}

Fig. 5. To rewrite the “select” query to specify the columns needed, we need to track
down which columns will be accessed. We need to trace all possible control paths, and
find where the ResultSet is used. Each use involves a “get” method, whose parameter
is the name of the column being accessed. We need to collect all these names. It may
be that the ResultSet escapes (by being returned, or passed as a parameter) — in
which case we give up. Reaching def’s third parameter reflects whether the definition
escapes from the current method; set to “false” ensures the predicate fails if we are
unable to track down all the uses.

weave refineSelectQuery(CodeBlock QueryString, List Columns):

// Find JDBC execute() call site

method("ResultSet Statement.executeQuery(String)", ExecMeth),

call(ExecMeth, _, ExecCall, QueryStringLocal),

// Find variable to which result is assigned

assignment(Target, ExecCall, _),

// Find the query string (from the method’s constant pool)

member(QSLocal, QueryStringLocal),

local_constant_def(QSLocal, QueryString),

// Collect set of Column strings used to access the ResultSet

findall( Column, columnUsed(Target, Column), Columns ).

{

// (Assume for brevity that it is a SELECT * and Columns is not empty)

// Create new query String from list of Columns to select

// (definition omitted for brevity)

String newQuery = makeNewQuery(QueryString, Columns);

// Replace existing string constant with new query string

QueryString.replaceValue(StringConstant.v(newQuery));

}

Fig. 6. A weave to implement the “select *” optimisation. We use Prolog’s “findall”
to collect all the columns accessed, using the predicate in Figure 5.



tems. Figure 4 shows our current solution. The interjection calls a special static
method, Interjection.PLACEHOLDER METHOD FT(0). We replace this with the
method we need to call using “ip.replaceMethodCall(0, null, Method, Par-

ams)”. Each placeholder is numbered, from zero.

4 Evaluation

To evaluate the effectiveness of the DeepWeaver-1 design, we present two exam-
ple optimisations that we have developed. In section 4.3 we review the results of
these case studies.

4.1 The “Select *” optimisation

Many common tutorial introductions to using the Java Database Connectivity
(JDBC) library begin with code like this:

ResultSet r = s.execute("select * from employee");

while ( r.next() ) {

String col1 = r.getString("Name"); // Get column 1

}

This is inefficient; we found, for example, that with a 10-column table, it is about
twice as fast to select just the one column that is being used:

ResultSet r = s.execute("select Name from employee");

while ( r.next() ) {

String col1 = r.getString("Name"); // Get column 1

}

To implement this in DeepWeaver-1, we need to find the columns being ac-
cessed, as illustrated in Figure 5. The DeepWeaver predicate to do this collects
the set of parameters of get methods applied to the result set returned by the call
to the execute method. Figure 6 shows how this is used to rewrite the original
query to specify the columns needed.

4.2 The RMI Aggregation optimisation

Java’s Remote Method Invocation (RMI) mechanism is convenient but if used
carelessly results in unnecessary communication. Figure 7 illustrates the poten-
tial value of aggregating RMI calls. We have built several implementations of
this optimisation [21]. Correctness issues for the optimisation are quite subtle; a
formal analysis is given in [2].

Consider an RMI call A, followed by some intervening code, then a second
RMI call B. Our approach to RMI aggregation is to consider whether RMI call
A can be relocated so that it can be combined with the later call, RMI B.



void m(RemoteObject r, int a)

{

int x = r.f(a);

int y = r.g(a,x);

int z = r.h(a,y);

System.out.println(z);

}
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Fig. 7. A sequence of three method calls on a remote object “r” results in three call-
return round-trip network transactions. Furthermore, parameter “a” is transferred sev-
eral times, and also results “x” and “y” are returned unnecessarily. The aggregated
implementation suffers fewer network latencies and transfers less data.

predicate isAggregatableRMIPair(CodeBlock CallA, CodeBlock CallB,

List ParamA, List ParamB, CodeBlock ResultOfA):

// A and B are distinct RMI calls, and A precedes B:

call(RemoteMethodA, RemoteObjectA, CallA, ParamA),

type(RemoteObjectA, "java.rmi.Remote"),

precedes(CallA, CallB), CallA \= CallB,

call(RemoteMethodB, RemoteObjectB, CallB, ParamB),

type(RemoteObjectB, "java.rmi.Remote"),

dominates(A,B), post_dominates(B,A),

// If A or B is in a loop they’re both in the same one:

forall ( loop(Loop),

( ( encloses(Loop, CallA), encloses(Loop, CallB)

); // OR

( \+ encloses(Loop, CallA), \+ encloses(Loop, CallB)

) ) ),

// A’s result is not used before B

assignment(ResultOfA, CallA, _),

\+ ( reaching_def(ResultOfA, UseOfResult, _),

precedes(UseOfResult, CallB)

),

// Assignments between A and B do not have externally-visible effects:

\+ ( between(CallA, OnPath, CallB, false),

assignment(Lhs, Rhs, OnPath),

externally_visible(Lhs)

),

// No method or constructor calls can occur between call A and call B:

\+ ( between(CallA, Location, CallB, false),

call(Method, Target, Location, Params),

\+ side_effect_free_method(Method) ).

Fig. 8. A predicate to test the validity of RMI aggregation.



RMI Aggregation validity conditions The conditions under which this is
valid are encoded in Figure 8. In summary, this states:

– A and B are distinct RMI calls, and A precedes B.

– All paths to B go through A, that is, “dominates(A,B)”)

– All paths from A go through B (“post dominates(B,A)”)

– If A or B is in a loop they’re both in the same one.

Note that the forall predicate succeeds when all instances of Loop satisfy
the condition. In Prolog, “;” is logical “or”; recall that \+ is “not”).

– A’s result is not used before B

– Assignments on paths between A and B do not have externally-

visible effects. This is necessary for two reasons: firstly, another thread
might observe changes to externally-visible objects out-of-order relative to
the state of the remote server. Secondly, if call A throws an exception, the
intervening code will already have been executed — so we must ensure it
has no effects visible in or beyond the exception handler.

The “false” parameter to between ensures we find all assignments OnPath

that might be reached. The definition of “externally visible” could be
very sophisticated; a simple implementation would check that the LHS is a
local variable with no escaping uses prior to call B.

– No method or constructor calls can occur between call A and call

B – apart from those known to be side-effect free: This is required
because DeepWeaver’s analysis is currently not inter-procedural. In our pro-
totype implementation we treat simple String operations as side-effect free
in order to allow aggregation in the presence of simple code to prepare string
parameters.

This example has been simplified for presentation purposes. In particular we
have only considered the case where A returns a result but B does not.

RMI Aggregation implementation The conditions for validity of the RMI
aggregation optimisation, listed above, can easily be assembled to form a Deep-
Weaver predicate for the query part of the weave:

isAggregatableRMIPair(CallA, CallB, ParamA, ParamB,

ResultA, ResultB)

The action part of the weave is sketched in Figure 9. The code required to do this
is somewhat involved. First we delete call A. We need to identify any parameters
common to the two calls, and to check for where the result from call A is used as
a parameter to call B. We then need to construct the body and formal parameter
list for the aggregate call, which is inserted into the server class (if the target
object’s type is actually an interface, we need to insert the code into all classes
that implement it). Finally, we need to construct the actual parameter list for
the call to this new method, which replaces call B.



weave rmiResultForwarding(

CodeBlock CallA, CodeBlock CallB,

List ParamA, List ParamB,

CodeBlock ResultA, CodeBlock ResultB )

isAggregatableRMIPair(CallA, CallB, ParamA, ParamB, ResultA, ResultB).

{

...Remove call A.

...Create new server method, to implement the aggregated call.

...Insert it into each potential callee class.

...Replace call B with call to the new aggregated method.

}

Fig. 9. Outline of implementation of RMI aggregation. The implementation is too
complicated to include here, mainly due to the necessary manipulation of parameter
lists for the new aggregated method.

4.3 Evaluation: discussion

Performance: weave-time The time taken to apply a weave to a codebase
depends, of course, on the weave itself. To evaluate this, we created an artificial
benchmark generator creating simple candidates for the RMI aggregation op-
timisation. Applying the RMI aggregation weave to 100 such classes takes less
than 20 seconds.

It is quite possible to write predicates which are extremely inefficient (for
example, queries involving all control flow paths in a method). Although this
has not yet proven a serious concern, the worst-case behaviour could be very
poor.

Performance: execution time There is no performance overhead for code
inserted using interjections (for example in Figure 3 where interjected code in-
crements a counter). The bytecode is inlined directly. The performance imporve-
ment that can be achieved by changing the code base obviously depend on the
nature of the transformations specified by the Deepweaver actions. For example,
we have found that the “Select *” optimisation can easily yield a factor of two
reduction in query execution time (MS SQL Server, using one column from a 10
column table). The value of the RMI aggregation optimisation depends on the
network performance, and the amount of redundant data movement that can be
avoided. The performance improvements of the optimisation were evaluated in
our earlier work, which used a run-time framework with higher overheads [21].

The query language and program model DeepWeaver’s design centres on
the use of Prolog predicates to identify CodeBlocks within a low-level three-
address-code IR. Many interesting applications are expressed quite naturally
this way. Some are difficult. For example, a transformation that interchanges a
pair of nested loops: this is easy to express as rewriting in an abstract syntax
tree. With DeepWeaver the loop (excluding its body) is not a contiguous block.



Queries are not always easy to write or to understand. We are developing
idioms for common situations, and aim to support them with more built-in
operators – for example to express regular expressions over paths [11].

The separation between query and action parts can sometimes be awkward,
since some queries need to use Java (for example to query a software configura-
tion description). Also, actions commonly need to issue followup queries.

A key design decision was whether to build our own Prolog engine. The
alternative would be to export the code factbase into an external Prolog engine,
or to implement the Prolog primitives as calls from Prolog to Java. We made
this decision in order to retain control over query execution, and we plan to
explore query optimisation. The disadvantage is that our Prolog implementation
is partial, and there would be advantages in exploring the use of the full power
of Prolog, perhaps including constraint Prolog.

As it stands our Prolog implementation is very restrictive; we lack terms,
higher-order and non-declarative features.

The action language DeepWeaver resembles AspectJ (and is built as a pure
extension of the AspectBench compiler for AspectJ [3]). In AspectJ, the Java
“advice” is inserted at the selected joinpoint. In DeepWeaver, we don’t have a
joinpoint - we have a set of bindings for the query predicate’s parameters. This
is passed to the Java action part, which is executed at weave time.

This gives us considerable expressive power, which we need for complex ex-
amples like RMI aggregation. However it makes some tasks much more difficult
and more prone to error. A key area for enhancement is to introduce a more
refined type system that distinguishes different kinds of CodeBlock – essentially
we need to expose SOOT’s Jimple IR more explicitly.

The interjection mechanism DeepWeaver’s interjections provide a means to
create a bytecode template that can be parameterised and then inserted into the
codebase. A key weakness is that we cannot check that actual parameter types
match formal parameter types. Note also that interjections are naturally used in
a polymorphic way – this is what we need, for example, in the RMI aggregation
example, where the type of the aggregated method depends on the type of the
original methods. We also need to take care with exceptions: if interjected code
might throw an exception, the host code must be able to handle it.

Another weakness is that only interjections can be used as prototypes - we
commonly wish to move or duplicate CodeBlocks. To handle this we need to
account for a CodeBlock’s free variables and ensure inserted code’s variables are
bound properly.

5 Related Work

Query languages for code DataLog, a similarly restricted, declarative form
of Prolog, has been adopted by several projects. JQuery [20] and CodeQuest [9]



use it to query the Eclipse [16] IDE’s abstract syntax tree. CrocoPat [5] uses it
for design pattern recovery and metrics. Bddbddb [13] is closer to our work in op-
erating at the bytecode level, and supports intra- and inter-procedural dataflow
analyses. CrocoPat and bddbddb include substantial query optimisation.

Transformation and rewriting AspectJ [12] provides a join point model
for matching points in Java code, at which new code will be inserted before
and/or after. A code matching query is restricted, for comprehensibility reasons,
to various predefined code points (e.g. method call) but allows flexibility in
identifier and type matching. Aspicere [1] tries to work around the restrictions
in the joinpoint model when applied to C using a Prolog-like query language.

Many IDEs support refactoring program transformations initiated by the
user. JunGL [18] is an interesting refactoring scripting language, quite compara-
ble to DeepWeaver-1, that uses Datalog queries embedded within an ML-based
language.

TXL [6] and Stratego [19] are very general and powerful tools for source-
code transformation. They both provide a mechanism to specifying grammars,
pattern matching and rewriting. Stratego supports strategies to control rewrite
order, and dynamic rules for context sensitive rewrites.

Establishing the soundness of optimizing program transformations is an issue
that we have not dealt with formally in this paper. Soundness has been addressed
in other contexts, however, for example Rhodium [14], which is a domain-specific
language for specifying program analysis and transformation in the context of a
C-like intermediate language.

6 Conclusions and Further Work

DeepWeaver-1 is a prototype tool which shows considerable promise:

– It provides a delivery vehicle for domain-specific performance optimisation
components. DeepWeaver aspects package together a declarative statement
of the conditions for validity of an optimisation (the “query part”), with the
implementation of the transformation (the “action part”).

– DeepWeaver-1’s low-level IR, and the role of CodeBlocks as the focus for
queries, works remarkably well when combined with the power of a Prolog-
like query language. Prolog predicates allow structured control flow to be
captured where it is needed, whilst also supporting control-flow and data-
flow–based reasoning. These are often useful for characterising the validity
of optimisations.

– We have demonstrated the power of the approach using a small number of
application examples.

There remain many challenges in developing these ideas. We plan two major
directions for further work:



1. Enhancing the query language. We need to clarify the rendering of the IR in
the query language, and refine the type system. We also need to support user-
definable data-flow analyses in an elegant and expressive way (bddbddb [13]
is promising in this regard). Similarly, and likely by this means, we need
to handle inter-procedural analysis. Key to these is query optimisation. We
may also extend the query language conceptually to handle CodeBlocks with
holes, free variables, and to represent “slices” of dependent instructions.

2. Enhancing the static safety and expressiveness of the action language. Our
goal is to attain a statically-verifiable guarantee that a weave cannot generate
a “broken” codebase: basic safety properties such as stack balance, name
clashes, initialised and bound variables (see, for example, SafeGen [10]).
Central to this is to support type-checked parameterisation of interjections,
and to check that the free variables of cloned CodeBlocks are bound to
variables of the right type when they are interjected.
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1. Bram Adams and Tom Tourwé. Aspect orientation for C: Express yourself. In
AOSD SPLAT Workshop, 2005.

2. Alexander Ahern and Nobuko Yoshida. Formalising Java RMI with explicit code
mobility. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN confer-
ence on Object oriented programming, systems, languages, and applications, pages
403–422, New York, NY, USA, 2005. ACM Press.

3. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Bruno Dufour, Christo-
pher Goard, Laurie Hendren, Sascha Kuzins, Jennifer Lhotḱ, Ondrej Lhotḱ, Oege
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