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Abstract. We consider how to maintain the topological order of a di-
rected acyclic graph (DAG) in the presence of edge insertions and dele-
tions. We present a new algorithm and, although this has marginally
inferior time complexity compared with the best previously known re-
sult, we find that its simplicity leads to better performance in practice. In
addition, we provide an empirical comparison against three alternatives
over a large number of random DAG’s. The results show our algorithm
is the best for sparse graphs and, surprisingly, that an alternative with
poor theoretical complexity performs marginally better on dense graphs.

1 Introduction

A topological ordering, ord, of a directed acyclic graph G = (V, E) maps each
vertex to a priority value such that, for all edges x→y ∈ E, it is the case that
ord(x) < ord(y). There exist well known linear time algorithms for comput-
ing the topological order of a DAG (see e.g. [4]). However, these solutions are
considered offline as they compute the solution from scratch.

In this paper we examine online algorithms, which only perform work neces-
sary to update the solution after a graph change. We say that an online algorithm
is fully dynamic if it supports both edge insertions and deletions. The main con-
tributions of this paper are as follows:

1. A new fully dynamic algorithm for maintaining the topological order of a
directed acyclic graph.

2. The first experimental study of algorithms for this problem. We compare
against two online algorithms [15, 1] and a simple offline solution.

We show that, compared with [1], our algorithm has marginally inferior time
complexity, but its simplicity leads to better overall performance in practice.
This is mainly because our algorithm does not need the Dietz and Sleator or-
dered list structure [7]. We also find that, although [15] has the worst theoretical
complexity overall, it outperforms the others when the graphs are dense.

Organisation: Section 2 covers related work; Section 3 begins with the pre-
sentation of our new algorithm, followed by a detailed discussion of the two



previous solutions [1, 15]. Section 4 details our experimental work. This includes
a comparison of the three algorithms and the standard offline topological sort;
finally, we summarise our findings and discuss future work in Section 5.

2 Related Work

At this point, it is necessary to clarify some notation used throughout the re-
mainder. Note, in the following we assume G = (V, E) is a digraph:

Definition 1. The path relation, ;, holds if ∀x, y ∈ V.[x;y ⇐⇒ x→y∈ET ],
where GT = (V, ET ) is the transitive closure of G. If x;y, we say that x reaches
y and that y is reachable from x.

Definition 2. The set of edges involving vertices from a set, S ⊆ V , is E(S) =
{x→y | x→y ∈ E ∧ (x ∈ S ∨ y ∈ S)}.

Definition 3. The extended size of a set of vertices, K ⊆ V , is denoted ||K|| =
|K| + |E(K)|. This definition originates from [1].

The offline topological sorting problem has been widely studied and optimal
algorithms with Θ(||V ||) (i.e. Θ(|V |+|E|)) time are known (see e.g. [4]). However,
the problem of maintaining a topological ordering online appears to have received
little attention. Indeed, there are only two existing algorithms which, henceforth,
we refer to as AHRSZ [1] and MNR [15]. We have implemented both and will
detail their working in Section 3. For now, we wish merely to examine their
theoretical complexity. We begin with results previously obtained:

– AHRSZ - Achieves O(||δ||log||δ||) time complexity per edge insertion, where
δ is the minimal number of nodes that must be reprioritised [1, 19].

– MNR - Here, an amortised time complexity of O(|V |) over Θ(|E|) insertions
has been shown [15].

There is some difficulty in relating these results as they are expressed differently.
However, they both suggest that each algorithm has something of a difference
between best and worst cases. This, in turn, indicates that a standard worse-case
comparison would be of limited value. Determining average-case performance
might be better, but is a difficult undertaking.

In an effort to find a simple way of comparing online algorithms the notion
of bounded complexity analysis has been proposed [20, 1, 3, 19, 18]. Here, cost is
measured in terms of a parameter δ, which captures in some way the minimal
amount of work needed to update the solution after some incremental change. For
example, an algorithm for the online topological order problem will update ord,
after some edge insertion, to produce a valid ordering ord′. Here, δ is viewed as
the smallest set of nodes whose priority must change between ord and ord′. Under
this system, an algorithm is described as bounded if its worse-case complexity
can be expressed purely in terms of δ.



Ramalingam and Reps have also shown that any solution to the online topo-
logical ordering problem cannot have a constant competitive ratio [19]. This sug-
gests that competitive analysis may be unsatisfactory in comparing algorithms
for this problem.

In general, online algorithms for directed graphs have received scant atten-
tion, of which the majority has focused on shortest paths and transitive closure
(see e.g. [14, 6, 8, 5, 9, 2]). For undirected graphs, there has been substantially
more work and a survey of this area can be found in [11].

3 Online Topological Order

We now examine the three algorithms for the online topological order prob-
lem: PK, MNR and AHRSZ. The first being our contribution. Before doing this
however, we must first present and discuss our complexity parameter δxy.

Definition 4. Let G = (V, E) be a directed acyclic graph and ord a valid topo-
logical order. For an edge insertion x→ y, the affected region is denoted ARxy

and defined as {k ∈ V | ord(y) ≤ ord(k) ≤ ord(x)}.

Definition 5. Let G = (V, E) be a directed acyclic graph and ord a valid topo-
logical order. For an edge insertion x→y, the complexity parameter δxy is defined
as {k ∈ ARxy | y=k ∨ x=k ∨ y;k ∨ k;x}.

Notice that δxy will be empty when x and y are already prioritised correctly
(i.e. when ord(x) < ord(y)). We say that invalidating edge insertions are those
which cause |δxy| > 0. To understand how δxy compares with δ and the idea of
minimal work, we must consider the minimal cover (from [1]):

Definition 6. For a directed acyclic graph G = (V, E) and an invalidated topo-
logical order ord, the set K of vertices is a cover if ∀x, y ∈ V.[x;y ∧ ord(y)<
ord(x) ⇒ x ∈ K∨y ∈ K].

This states that, for any connected x and y which are incorrectly prioritised,
a cover K must include x or y or both. We say that K is minimal, written
Kmin, if it is not larger than any valid cover. Furthermore, we now show that
Kmin ⊆ δxy:

Lemma 1. Let G = (V, E) be a directed acyclic graph and ord a valid topological
order. For an edge insertion x→y, it holds that Kmin ⊆ δxy.

Proof. Suppose this were not the case. Then a node a ∈ Kmin, where a /∈ δxy

must be possible. By Definition 6, a is incorrectly prioritised with respect to some
node b. Let us assume (for now) that b;a and, hence, ord(a)<ord(b). Since ord
is valid ∀e∈E, except x→y, any path from b to a must cross x→y. Therefore,
y ; a and b ; x and we have a∈ARxy as ord(y)≤ ord(a)≤ ord(b)≤ ord(x). A
contradiction follows as, by Definition 5, a∈δxy. The case when a;b is similar.

In fact, Kmin = δxy only when they are both empty. Now, the complexity of
AHRSZ is defined in terms Kmin only and, thus, we know that δxy is not strictly
a measure of minimal work for this problem. Nevertheless, we choose δxy as it
facilitates a meaningful comparison between the algorithms being studied.



3.1 The PK Algorithm

We now present our algorithm for maintaining the topological order of a graph
online. As we will see in the coming Sections, it is similar in design to MNR, but
achieves a much tighter complexity bound on execution time. For a DAG G, the
algorithm implements the topological ordering, ord, using an array of size |V |,
called the node-to-index map or n2i for short. This maps each vertex to a unique
integer in {1 . . . |V |} such that, for any edge x→y in G, n2i[x] < n2i[y]. Thus,
when an invalidating edge insertion x→ y is made, the algorithm must update
n2i to preserve the topological order property. The key insight is that we can
do this by simply reorganising nodes in δxy. That is, in the new ordering, n2i′,
nodes in δxy are repositioned to ensure a valid ordering, using only positions
previously held by members of δxy. All other nodes remain unaffected. Consider
the following caused by invalidating edge x→y:

y a b c x

affected region

Here, nodes are laid out in topological order (i.e. increasing in n2i value
from left to right) with members of δxy shown. As n2i is a total and contiguous
ordering, the gaps must contain nodes, omitted to simplify the discussion. The
affected region contains all nodes (including those not shown) between y and x.
Now, let us partition the nodes of δxy into two sets:

Definition 7. Assume G = (V, E) is a DAG and ord a valid topological order.
Let x → y be an invalidating edge insertion, which does not introduce a cycle.
The sets RF and RB are defined as RF = {z ∈ ARxy | z = y ∨ y ; z} and
RB = {z ∈ ARxy | z=x ∨ z;x}.

Note, there can be no edge from a member of RF to any in RB , otherwise x→
y would a introduce a cycle. Thus, for the above graph, we have RF = {y, a, c}
and RB = {b, x}. Now, we can obtain a correct ordering by repositioning nodes
to ensure all of RB are left of RF , giving:

b x y a c

affected region

In doing this, the original order of nodes in RF must be preserved and likewise
for RB . The reason is that a subtle invariant is being maintained:

∀x∈RF .
[

n2i[x] ≤ n2i′[x]
]

∧ ∀y∈RB .
[

n2i′[y] ≤ n2i[y]
]

This states that members of RF cannot be given lower priorities than they
already have, whilst those in RB cannot get higher ones. This is because, for any



procedure add edge(x, y)
lb = n2i[y]; ub = n2i[x]; if lb < ub then dfs-f(y); dfs-b(x); reassign();

procedure dfs-f(n)
mark n as visited; RF ∪= {n};
forall n→w ∈ E do

if n2i[w] = ub then abort; //cycle
if w not visited ∧ n2i[w]<ub then dfs-f(w);

procedure reassign()
sort(RB); sort(RF ); L = ∅;
for i = 0 to |RB |−1 do w = RB [i]; RB [i] = n2i[w]; unmark w; push(w,L);
for i = 0 to |RF |−1 do w = RF [i]; RF [i] = n2i[w]; unmark w; push(w, L);
merge(RB , RF , R);
for i = 0 to |L|−1 do n2i[L[i]] = R[i];

Fig. 1. The PK algorithm. The “sort” function sorts an array such that x comes
before y iff n2i[x] < n2i[y]. “merge” combines two arrays into one whilst maintaining
sortedness. “dfs-b” is similar to “dfs-f” except it traverses in the reverse direction, loads
into RB and compares against lb. Note, L is a temporary.

node in RF , we have identified all in the affected region which must be higher
(i.e. right) than it. However, we have not determined all those which must come
lower and, hence, cannot safely move them in this direction. A similar argument
holds for RB . Thus, we begin to see how the algorithm works: it first identifies
RB and RF . Then, it pools the indices occupied by their nodes and, starting
with the lowest, allocates increasing indices first to members of RB and then
RF . So, in the above example, the algorithm proceeds by allocating b the lowest
available index, like so:

affected region

b x a cy

? ? ? ? ?

after this, it will allocate x the next lowest index, then y and so on. The algo-
rithm is presented in Figure 1 and the following summarises the two stages:

Discovery: The set δxy is identified using a forward depth-first search from
y and a backward depth-first search from x. Nodes outside the affected region
are not explored. Those visited by the forward and backward search are placed
into RF and RB respectively. The total time required for this stage is Θ(||δxy||).

Reassignment: The two sets are now sorted separately into increasing topolog-
ical order (i.e. according to n2i), which we assume takes Θ(|δxy |log |δxy|) time.
We then load RB into array L followed by RF . In addition, the pool of avail-
able indices, R, is constructed by merging indices used by elements of RB and



RF together. Finally, we allocate by giving index R[i] to node L[i]. This whole
procedure takes Θ(|δxy |log |δxy|) time.

Therefore, algorithm PK has time complexity Θ((|δxy|log |δxy|) + ||δxy||).
As we will see, this is a good improvement over MNR, but remains marginally
inferior to that for AHRSZ and we return to consider this in Section 3.3. Finally,
we provide the correctness proof:

Lemma 2. Assume D = (V, E) is a DAG and n2i an array, mapping vertices
to unique values in {1 . . . |V |}, which is a valid topological order. If an edge
insertion x→y does not introduce a cycle, then algorithm PK obtains a correct
topological ordering.

Proof. Let n2i′ be the new ordering found by the algorithm. To show this is a
correct topological order we must show, for any two vertices a, b where a→ b,
that n2i′[a] < n2i′[b] holds. An important fact to remember is that the algorithm
only uses indices of those in δxy for allocation. Therefore, z ∈ δxy ⇒ n2i[y] ≤
n2i′[z]≤n2i[x]. There are six cases to consider:

Case 1: a, b /∈ARxy. Here neither a or b have been moved as they lie outside
affected region. Thus, n2i[a]=n2i′[a] and n2i[b]=n2i′[b] which (by defn of n2i)
implies n2i′[a] < n2i′[b].

case 2: (a ∈ ARxy ∧ b /∈ ARxy) ∨ (a /∈ ARxy ∧ b ∈ ARxy). When a ∈ ARxy

we know n2i[a] ≤ n2i[x] < n2i[b]. If a ∈ δxy then n2i′[a] ≤ n2i[x]. Otherwise,
n2i′[a]=n2i[a]. A similar argument holds when b∈ARxy .

Case 3: a, b∈ARxy ∧ a, b /∈δxy. Similar to case 1 as neither a or b have been
moved.

Case 4: a, b∈δxy ∧ x;a ∧ x 6=a. Here, a reachable from x only along x→y,
which means y;a ∧ y;b. Thus, a, b∈RF and their relative order is preserved
in n2i′ by sorting.

Case 5: a, b∈ δxy ∧ b ; y ∧ y 6= b. Here, b reaches y along x→ y, so b ; x
and a;x. Therefore, a, b ∈ RB and their relative order is preserved in n2i′ by
sorting.

Case 6: x = a ∧ y = b. Here, we have a∈RB ∧ b∈RF and n2i′[a] < n2i′[b]
follows because all elements of RB are allocated lower indices than those of RF .

3.2 The MNR Algorithm

The algorithm of Marchetti-Spaccamela et al. operates in a similar way to PK
by using a total ordering of vertices. This time two arrays, n2i and i2n, of size
|V | are used with n2i as before. The second array i2n, is the reverse mapping
of n2i, such that i2n[n2i[x]] = x holds and its purpose is to bound the cost of
updating n2i. The difference between PK is that only the set RF is identified,
using a forward depth-first search. Thus, for the example we used previously
only y, a, c would be visited:



y a c

affected region

b x

To obtain a correct ordering the algorithm shifts nodes in RF up the order
so that they hold the highest positions within the affected region, like so:

cayxb

affected region

Notice that these nodes always end up alongside x and that, unlike PK,
each node in the affected region receives a new position. We can see that this
has achieved a similar effect to PK as every node in RB now has a lower index
than any in RF . For completeness, the algorithm is presented in Figure 2 and the
two stages are summarised in the following, assuming an invalidating edge x→y:

Discovery: A depth-first search starting from y and limited to ARxy marks
those visited. This requires O(||δxy||) time.

Reassignment: Marked nodes are shifted up into the positions immediately
after x in i2n, with n2i being updated accordingly. This requires Θ(|ARxy |)
time as each node between y and x in i2n is visited.

Thus we obtain, for the first time, the following complexity result for algo-
rithm MNR: O(||δxy || + |ARxy|). This highlights an important difference in the
expected behaviour between PK and MNR as the affected region (ARxy) can
contain many more nodes than δxy. Thus, we would expect MNR to perform
badly when this is so.

3.3 The AHRSZ Algorithm

The algorithm of Alpern et al. employs a special data structure, due to Dietz
and Sleator [7], to implement a priority space which permits new priorities to
be created between existing ones in O(1) worse-case time. This is a significant
departure from the other two algorithms. Like PK, the algorithm employs a for-
ward and backward search: We now examine each stage in detail, assuming an
invalidating edge insertion x→y:

Discovery: The set of nodes, K, to be reprioritised is determined by simul-
taneously searching forward from y and backward from x. During this, nodes
queued for visitation by the forward (backward) search are said to be on the



procedure add edge(x, y)
lb = n2i[y]; ub = n2i[x]; if lb < ub then dfs(y);shift();

procedure dfs(n)
mark n as visited;
forall n→s ∈ E do

if n2i[s] = ub then abort; //cycle
if s not visited ∧ n2i[s]<ub then dfs(s);

procedure shift()
L = ∅;
for i = lb to ub do

w = i2n[i]; // w is node at topological index i
if w marked visited then unmark w; push(w,L); shift=shift+1;
else n2i[L[w]] = i−shift; i2n[i−shift] = w;

for j = 0 to |L|−1 do

n2i[L[j]] = i−shift; i2n[i−shift] = L[j]; i= i+1;

Fig. 2. The MNR algorithm.

forward (backward) frontier. At each step the algorithm extends the frontiers
toward each other. The forward (backward) frontier is extending by visiting a
member with the lowest (largest) priority. Consider the following:

y a xb c

backward
frontier

forward
frontier

ed

Initially, the frontiers consists of a single starting node, determined by the in-
validating edge and the algorithm proceeds by extending each:

y a xb c

backward
frontier

forward
frontier

ed

Here, members of each frontier are marked with a dot. We see the forward
frontier has been extended by visiting y and this results in a, e being added and
y removed. In the next step, a will be visited as it has the lowest priority of any
on the frontier. Likewise, the backward frontier will be extended next time by
visiting b as it has the largest priority. Thus, we see that the two frontiers are
moving toward each other and the search stops either when one frontier is empty
or they “meet” — when each node on the forward frontier has a priority greater
than any on the backward frontier. An interesting point here is that the frontiers



may meet before RB and RF have been fully identified. Thus, the discovery stage
may identify fewer nodes than that of algorithm PK. In fact, it can be shown
that at most O(|Kmin|) nodes are visited [1], giving an O(||Kmin||log||Kmin||)
bound on discovery. The log factor arises from the use of priority queues to
implement the frontiers, which we assume are heaps.

The algorithm also uses another strategy to further minimise work. Consider

y a b xd c

where node a has high outdegree (which can be imagined as much larger). Thus,
visiting node a is expensive as its outedges must be iterated. Instead, we could
visit d, c, b in potentially much less time. Therefore, AHRSZ maintains a counter,
C(n), for each node n, initialised by outdegree. Now, let x and y be the nodes
to be chosen next on the forward and backward frontiers respectively. Then,
the algorithm subtracts min(C(x), C(y)) from C(x) and C(y) , extending the
forward frontier if C(x) = 0 and the backward if C(y) = 0.

Reassignment: The reassignment process also operates in two stages. The first
is a depth-first search of K, those visited during discovery, and computes a ceiling
on the new priority for each node, where:

ceiling(x) = min({ord(y) | y /∈K ∧ x→y} ∪
{ceiling(y) | y∈K ∧ x→y} ∪ {+∞})

In a similar fashion, the second stage of reassignment computes the floor:

floor(y) = max({ord′(x) | x→y} ∪ {−∞})

Note that, ord′(x) is the topological ordering being generated. Once the floor
has been computed the algorithm assigns a new priority, ord′(k), such that
floor(k) < ord′(k) < ceiling(k). An O(|Kmin|log|Kmin|) + |E(Kmin)|) bound
on the time for reassignment is obtained. Again, the log factor arises from the
use of a priority queue. The bound is slightly better than for discovery as only
nodes in K are placed onto this queue.

Therefore, we arrive at a O(||Kmin||log||Kmin||) time bound on AHRSZ [1, 19].
Finally, there has been a minor improvement on the storage requirements of
AHRSZ [21], although this does not affect our discussion.

3.4 Comparing PK and AHRSZ

We can now see the difference between PK and AHRSZ is that the latter has
a tighter complexity bound. However, there are some intriguing differences be-
tween them which may offset this. In particular, AHRSZ relies on the Dietz and



procedure add edges(B) // B is a batch of updates
if ∃x→y ∈ B.[ord(y) < ord(x)] then perform standard topological sort

Fig. 3. Algorithm DFS. Note that ord is implemented as an array of size |V |.

Sleator ordered list structure [7] and this does not come for free: firstly, it is
difficult to implement and suffers high overheads in practice (both in time and
space); secondly, only a certain number of priorities can be created for a given
word size, thus limiting the maximum number of nodes. For example, only 32768
priorities (hence nodes) can be created if 32bit integers are being used, although
with 64bit integers the limit is a more useful 231 nodes.

4 Experimental Study

To experimentally compare the three algorithms, we measured their performance
over a large number of randomly generated DAGs. Specifically, we investigated
how insertion cost varies with |V |, |E| and batch size. The latter relates to
the processing of multiple edges and, although none of the algorithms discussed
offer an advantage from this, the standard offline topological sort does. Thus,
it is interesting to consider when it becomes economical to use and we have
implemented a simple algorithm for this purpose, shown in Figure 3.

To generate a random DAG, we select uniformly from the probability space
Gdag(n, p), a variation on G(n, p) [12], first suggested in [10]:

Definition 8. The model Gdag(n, p) is a probability space containing all graphs
having a vertex set V = {1, 2, . . . , n} and an edge set E ⊆ {(i, j) | i < j}. Each
edge of such a graph exists with a probability p independently of the others.

For a DAG in Gdag(n, p), we know that there are at most n(n−1)
2 possible edges.

Thus, we can select uniformly from Gdag(n, p) by enumerating each possible
edge and inserting with probability p. In our experiments, we used p = 2x

n−1 to
generate a DAG with n nodes and expected average outdegree x.

Our procedure for generating a data point was to construct a random DAG
and measure the time taken to insert 5000 edges. We present the exact method
in Figure 4 and, for each data point, this was repeated 25 times with the average
taken. Note that, we wanted the number of insertions measured over to increase
proportionally with |V |, but this was too expensive in practice. Also, for the
batch experiments, we always measured over a multiple of the batch size and
chose the least value over 5000. We also recorded the values of our complex-
ity parameters |δxy|, ||δxy|| and |ARxy|, in an effort to correlate our theoretical
analysis. This was done using the same procedure as before, but instead of mea-
suring time, we traversed the graph on each insertion to determine their values.
These were averaged over the total number of edges inserted for 25 runs of the
procedure from Figure 4.

Non-invalidating edges were included in all measurements and this dilutes the
execution time and parameter counts, since all three algorithms do no work for



procedure measure acpi(V, E, B, O)
// measure, in B sized batches, O insertions over a DAG with V
// nodes and E edges and we assume O = cB, for some c.
edgeS = gen random acyclic edgeset(V, E + O);
overS = randomly select O edges from edgeS;

G = ({1 . . . V }, edgeS − overS);
startT = timestamp(); // start timing now

while overS 6= ∅
T = randomly select B edges from overS;
overS = overS − T ;
add edges(T, G);
randomly erase B edges from G;

return (timestamp() − startT )/O;

Fig. 4. Our procedure for measuring insertion cost over a random DAG. The algorithm
maintains a constant number of edges in G in an effort to eliminate interference caused
by varying V , whilst keeping O fixed. Note that, through careful implementation, we
have minimised the cost of the other operations in the loop, which might have otherwise
interfered. In particular, erasing edges is fast (unlike adding them) and independent of
the algorithm being investigated.
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Fig. 5. Experimental data on random graphs with varying |V |.
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Fig. 7. Experimental data for varying batch sizes comparing the three algorithms
against a DFS based offline topological sort



these cases. Our purpose, however, was to determine what performance can be
expected in practice, where it is unlikely all edge insertions will be invalidating.

The data, presented in Figures 5, 6 and 7, was generated on a 900Mhz Athlon
based machine with 1GB of main memory. Note, we have used some (clearly
marked) scaling factors to help bring out features of the data. The implemen-
tation itself was in C++ and took the form of an extension to the Boost Graph
Library. The executables were compiled using gcc 3.2, with optimisation level
“-O2” and timing was performed using the gettimeofday function. Our imple-
mentation of AHRSZ employs the O(1) amortised (not O(1) worse-case) time
structure of Dietz and Sleator [7]. This seems reasonable as they themselves state
it likely to be more efficient in practice.

4.1 Discussion

The clearest observation from Figures 5 and 6 is that PK and AHRSZ have
similar behaviour, while MNR is quite different. This seems surprising as we ex-
pected the theoretical differences between PK and AHRSZ to be measured. One
plausible explanation is that the uniform nature of our random graphs makes the
work saved by AHRSZ (over PK) reasonably constant. Thus, it is outweighed
by the gains from simplicity and efficiency offered by PK.

Figure 5: These graphs confirm our theoretical evaluation of MNR, whose ob-
served behaviour strongly relates to that of |ARxy|. Furthermore, we expected
the average size of ARxy to increase linearly with |V | as |ARxy| ≤ |V |. Like-
wise, the graphs for PK and AHRSZ correspond with those of ||δxy||. The curve
for ||δxy|| is perhaps the most interesting here. With outdegree 1, it appears to
level off and we suspect this would be true at outdegree 10, if larger values of
|V | were shown. We know the graphs become sparser when |V | gets larger as,
by maintaining constant outdegree, |E| is increasing linearly (not quadratically)
with |V |. This means, for a fixed sized affected region, |δxy| goes down as |V |
goes up. However, the average size of the affected region is also going up and,
we believe, these two factors cancel each other out after a certain point.

Figure 6: From these graphs, we see that MNR is worst (best) overall for
sparse (dense) graphs. Furthermore, the graphs for MNR are interesting as they
level off where |ARxy| does not appear to. This is particularly evident from the
log plot, where |ARxy| is always decreasing. This makes sense as the complexity
of MNR is dependent on both |ARxy| and ||δxy||. So, for low outdegree MNR is
dominated by |ARxy|, but soon ||δxy|| becomes more significant at which point
the behaviour of MNR follows this instead. This is demonstrated most clearly
in the graph with high outdegree. Note, when its behaviour matches PK, MNR
is always a constant factor faster as it performs one depth-first search and not
two. Moving on to |ARxy|, if we consider that the probability of a path exist-
ing between any two nodes must increase with outdegree, then the chance of
inserting an invalidating edge must decrease accordingly. Furthermore, as each
non-invalidating edge corresponds to a zero value of |ARxy| in our average, we



can see why |ARxy| goes down with outdegree. Another interesting feature of the
data is that we observe both a positive and negative gradient for |δxy|. Again,
this is highlighted in the log graph, although it can be observed in the other.
Certainly, we expect |δxy| to increase with outdegree, as the average size of the
subgraph reachable from y (the head of an invalidating edge) must get larger.
Again, this is because the probability of two nodes being connected by some
path increases. However, |δxy| is also governed by the size of the affected region.
Thus, as |ARxy| has a negative gradient we must eventually expect δxy to do
so as well. Certainly, when |ARxy| ≈ |δxy|, this must be the case. In fact, the
data suggests the downturn happens some way before this. Note that, although
|δxy| decreases, the increasing outdegree appears to counterbalance this, as we
observe that ||δxy|| does not exhibit a negative gradient. In general, we would
have liked to examine even higher outdegrees, but the time required for this has
been a prohibitive factor.

Figure 7: These graphs compare the simple algorithm from Figure 3, with
the offline topological sort implemented using depth-first search, to those we
are studying. They show a significant advantage is to be gained from using the
online algorithms when the batch size is small. Indeed, the data suggests that
they compare favourably even for sizeable batch sizes. It is important to realise
here that, as the online algorithms can only process one edge at a time, their
graphs are flat since they obtain no advantage from seeing the edge insertions
in batches.

5 Conclusion

We have presented a new algorithm for maintaining the topological order of a
graph online, provided a complexity analysis, correctness proof and shown it
performs better, for sparse graphs, than any previously known. Furthermore, we
have provided the first empirical comparison of algorithms for this problem over
a large number of randomly generated acyclic digraphs.

For the future, we would like to investigate performance over different classes
of random graphs (e.g. using the locality factor from [10]). We are also aware that
random graphs may not reflect real life structures and, thus, experimentation on
physically occurring structures would be useful. Another area of interest is the
related problem of dynamically identifying strongly connected components and
we have shown elsewhere how MNR can be modified for this purpose [17]. We
refer the reader to [16], where a more thorough examination of the work in this
paper and a number of related issues can be found. Finally, Irit Katriel has since
shown that algorithm PK is worse-case optimal, with respect to the number of
nodes reordered over a series of edge insertions [13].
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paper.
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