
M-Tree: A Parallel Abstract Data Type forBlock-Irregular Adaptive ApplicationsQ. Wu1, A.J. Field and P.H.J. KellyDepartment of ComputingImperial College of Science, Technology and Medicine180 Queen's Gate, London SW7 2BZ.Email: ajf, phjk@doc.ic.ac.ukAbstract. This paper describes an abstract data type called M-Tree| a generalization of a quadtree which captures both the data struc-ture and computational structure common to many adaptive problemsin science and engineering. It is equipped with a rich set of access func-tions including higher-order operators describing commonly used com-putational patterns in parallel adaptive computations. This provides auniform high level abstraction of a wide range of applications includingadaptive mesh re�nement and adaptive particle simulation and thus en-ables such applications to be constructed systematically and e�ciently.We present examples in which an M-tree is used to solve both an adap-tive heat-ow problem and N -body particle simulation. The structuredabstraction of commonly-occurring computation patterns in the applica-tion provides us with the opportunity to investigate various approachesto load balancing and communication minimization using caching andother techniques. These optimizations are applicable to other problemswith a similar structure.1 IntroductionIn this paper we present an abstract data type called \M-Tree", a hierarchicaldata structure which is used for organizing block-irregular computations gener-ated by recursive domain decomposition. The M-Tree captures both the datastructures and computational structures common to many adaptive problems inscience and engineering. It is equipped with a rich set of access functions includ-ing higher-order operators describing commonly-used computational patterns inparallel adaptive computations. This provides a uniform high level of abstractionfor a wide range of parallel applications including adaptive mesh re�nement andadaptive particle simulation. Thus, with an e�cient parallel implementation ofthe M-tree data structure and its operators, a wide variety of such applicationscan be constructed systematically.Without a suitable layer of abstraction, users have to deal with both theapplication's problems, and maintenance of the tree data structure itself. This1 Qian Wu is now with CHAM, 40 High Street, Wimbledon Village, London, UK.



problem becomes more serious for e�cient parallel solutions since performanceconsiderations such as load balancing and communications minimization haveto be taken into account during construction and manipulation of the dynamictree structure.The relationship between M-tree applications and our current implementa-tions is illustrated in Fig. 1.
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ImplementationFig. 1. Relationship between M-tree applications and our current implementations.In this paper we aim to demonstrate the power and versatility of the ap-proach, and to demonstrate that M-Tree leads to clear and succinct solutionswithout compromising performance. We have studied a number of applicationsof the M-Tree and present here two examples of its use: a simple heat con-duction problem, and an implementation of the Barnes-Hut N -body particlesimulation algorithm. We show that the structured abstraction of commonly-occurring computation patterns in the application provides the opportunity toinvestigate various approaches to load balancing and communication minimiza-tion using caching and other techniques. These optimizations are applicable toother problems with similar structure.Overview of this paperIn Section 2 we present the basic concepts of the M-tree and its programmingstyle. In Section 2.2 we present a simple example of its use. We then presentan N -body simulation as a case study in Section 3. The implementation of theM-tree is presented in Section 4. Section 4.3 shows the performance bene�ts of



some of our optimisations. Section 5 places our work in the context of relatede�orts, and Section 6 concludes with directions for developing this research.2 The M-Tree abstract data typeThe M-Tree is designed to support a wide range of applications. The commonbasis is a regional mesh tree in which each node represents a region of the domainand its subtrees are subregions overlaying the region of the parent node. Thecommon computational patterns we need to support include the following:{ parallel computation upon a group of nodes on the tree{ exible dynamic recursive decomposition{ control for dynamic expansion and contraction over the tree{ access to neighbouring regions, whatever their level of decomposition and{ e�cient support for hierarchical treatment of long-range interactionsAn M-Tree is a regional mesh tree in which the degree of each nonleaf nodeis Rx in the x-dimension, Ry in the y-dimension and Rz in the z-dimension.Each node represents a region of the domain and its subtrees are subregionsoverlaying the region of the parent node. Thus a tree is called a quadtree whenRx = Ry = 2; and Rz = 1. It can be regarded as a generalization of quadtreerepresenting a class of hierarchical data structures whose common property isthat they are based on the principle of recursive decompositions of space [17].The simpli�ed de�nition of a mesh tree can be described using the followingC code:struct MeshTree {int status;struct Region domain;struct NeighbourTree** NbTrees;struct MeshTree* parent;MeshTree newlevel[rx][ry][rz];NodeType* vdata;}wherestatus indicates if the current node is childless,domain includes the upper and lower bounds of geographic range,Nbtrees is the internal link to a list of the adjacent nodes,parent is the internal link to the parent node,newlevel are the internal links to the subtreesNodeType is the user-de�ned node-based variable type.This representation is internal to the ADT and so need not be understood bythe applications programmer.



2.1 The M-tree's OperatorsThe operations over an M-Tree can be divided into �rst-order and higher-orderoperators. The �rst-order operators perform basic query and update on eachnode of the M-Tree. The higher-order operators abstract commonly-used pat-terns of parallel adaptive computations. They are higher-order in the sense thatthey are parameterized by user-de�ned functions for local and global computa-tion. We present a brief overview of these operators as follows:1. Tree construction:MT Init:uses a user-de�ned partition operation to distribute global data to ini-tialize the M-Tree.2. Computational operators - leaf-based:MT Map Leaf:applies a user-de�ned region-based operation to each leaf node in parallel.The local operation is accompanied by a communication stencil, so thatthe function can access neighbouring elements.MT Reduce Leaf:performs reduction for all leaf nodes in parallel.Ex comm Leaf:provides communication among all leaf nodes, according to a speci�edstencil.MT Bcast Leaf:broadcasts to all leaf nodes in parallel.MT Map Leaf Env:applies a user-de�ned region-based operation to each leaf node in parallelwith respect to a global environment parameter. The local operation isaccompanied by a �lter function that restricts the range of the global en-vironment (the environment is often the M-Tree as a whole, and the �lterfunction speci�es which subnodes are needed for each leaf computation).3. Computational operators - level-based:MT Map Level:applies a user-de�ned region-based operation to each node on a givenlevel in parallel, using a stencil as above.MT Reduce Level:performs reduction for all nodes on a given level in parallel.Ex comm Level:provides communication among all nodes on a given level.MT Bcast Level:broadcasts to all nodes on a given level in parallel.4. \All-at-once" tree operators:MT Up Pass:traverses the M-tree level-wise from the bottom up and applies user-de�ned operations to leaf and internal nodes.



MT Down Pass:traverses the M-tree level-wise top-down and applies user-de�ned oper-ations to leaf and internal nodes.MT Adaptive:updates the grid hierarchy, as required, for example after application-dependent error analysis.MT Gather:collects the elements of the M-Tree into a user-speci�ed data structure.2.2 Example: adaptive-mesh Jacobi solver for heat ow problemWe consider a simple heat conduction example to illustrate how the M-tree isused in programming a continuum system. Consider a material being heated byboundary temperature di�erence or an internal hot spot. The two-dimensionalsteady-state thermal conduction with no internal heat generation is governed byLaplace's equation, @2T@x2 + @2T@y2 = 0: and boundary condition equations. Such asystem of partial di�erential equations can be solved by numerical discretization.The di�erence equations can be obtained as:T t+1i;j = 14(T ti+1;j + T ti�1;j + T ti;j�1 + T ti;j+1)With a suitable grid and a set of �nite di�erence equations, the approximationat each grid point can be achieved by an iterative linear equation solver. Thesolver computes an initial state of the grid and then applies the �nite di�erenceequation iteratively until a certain convergence condition is met. For this simpleexample, we use the Jacobi method [16]. The global temperature distributionis then approximated by computing the di�erence equations of the subregions.Regions where accuracy is not satisfactory may be re�ned further. Such an ap-proximation involves the interaction between subgrids and the global grid in away similar to the multigrid method [16]. That is, the coarse grid is interpolatedto form the initial state of the re�ned subgrids.The implementation using an M-Tree is shown in Figure 2. The tree is cre-ated from the initial domain using MT Init parameterized by a user-de�ned Cfunction, decompfun, which speci�es how the initial domain is decomposed andpartitioned among the processors.Jacobi relaxation is applied repeatedly until convergence is achieved or thenumber of iterations exceeds maxconv. Each relaxation iteration uses Ex Comm Leafto exchange halo boundary between the leaf nodes. The user de�ned functionnode to temp extracts the boundary temperature values to be communicated,and the interpolation/un-interpolation functions intp and unintp are used forboundaries on di�erent re�nement levels. MT Map Leaf is then applied, using theuser-supplied Jacobi function relax temp, which operates the regular grids atthe tree's leaves.If convergence is not achieved, MT Map Leaf is used to interpolate and ini-tialize a �ner mesh on each leaf. A similar Jacobi relaxation procedure is thenapplied to each leaf node's re�ned mesh.



MT Init(TAG MESH, buffer, domain, decompfun);for (outer iter=0; outer iter<maxiters; outer iter++) f/* first relaxation on all leaf nodes */for (iter=0; iter<maxconv; iter++) fEx Comm Leaf(node to temp, intp, unintp);MT Map Leaf(relax temp);/* until converges or exceeds maxconv */gif(not convergent) f/* interpolate each leaf to a finer mesh */MT Map Leaf(intpt temp);for (iter=0; iter<maxconv; iter++) fEx Comm Leaf(node to finertemp, intp, unintp);MT Map Leaf(relax finertemp);/* until converges or exceeds maxconv */g/* get global maximum truncation error */MT Reduce Leaf(MAX, calc trunc error, &m);/*broadcast to all leaf nodes to set refinement tag */MT Bcast Leaf(set tag, m);MT Adaptive(refinefun, intpt, unintpt);gg Fig. 2. Heat Transfer ExampleMT Reduce Leaf uses the user-de�ned function calc trunc error to esti-mate the truncation error from the di�erence between the original mesh andthe �ner mesh, and �nd where this is maximum. MT Bcast Leaf is used to tagthe nodes where re�nement is needed. Finally MT Adaptive re�nes the taggedregions using the user-de�ned interpolation functions.3 Application to particle simulationThe application we consider here is the Barnes-Hut algorithm [1] for modellingthe behaviour of interacting particles in space; there are similar applicationsin, for example, molecular biology, plasma physics and uid mechanics. Thealgorithm is based on the observation that, while forces from nearby particlesmust be considered separately, forces from a group of particles far enough awaycan be approximated as one equivalent particle. In three dimensions it uses anoct-tree to store particle information or the collective particle information in thesubcubes. The same problem can be cast in two dimensions|the structure is



then a quad-tree. Each particle calculates the forces acting on it by queryingthe hierarchical quadtree/oct-tree. Figure 3 shows how the oct-tree Barnes-Hut... set up initial global particles, global domain ...for (iter=0; iter<maxiter; iter++) f/* create oct-tree from global particles by recursive subdivision of the domain* the tree is attened in the order indicated by partifun and then* partitioned/distributed to all processors*/MT Init(TAG PARTICLE, global particles, global domain, partifun);/* compute center of mass of each cube in the oct-tree, starting from the leaves*/MT Up Pass(centermass);/* calculate accelerations for each leaf's particle list. The list of particles or cells* considered is computed by searching the entire oct-tree (the \environment"), but* using critical radius test to prune out cells su�ciently distant to be* treated as a single large mass*/MT Map Leaf Env(critical radius test, calculate accelerations, rootkey);/* update position & velocity of each particle by leapfrog integration based* on its calculated acceleration*/MT Map Leaf(update body);/* Collect the particles from the tree back into global particles*/MT Gather(global particles, global domain);gFig. 3. Implementing the Barnes-Hut algorithm for the N -body problem (simpli�ed)algorithm is implemented using M-Tree operators. The code shown is slightlysimpli�ed and we have omitted initialization details.The algorithm has three main stages:Partition: recursively decompose the particle region into eight subregions.In Figure 3 this is implemented by MT Init;Mass: each internal node calculates its center of mass using information prop-agated upwards from its subtrees.This is handled by the MT UP Pass operator. Its parameter, centermass, isthe name of a function which computes the center of mass for each nodeof the tree by combining information about the mass distribution of thesubtrees;Potential/Force Calculation: For each particle, traverse the tree searchingfor particles which must be considered. Prune the traversal by approximat-



ing a subtree as a single mass if it lies su�ciently far away. This is han-dled by MT Map Leaf Env. The \environment" is the root of the octree it-self. The \�lter" function critical radius test returns the list of particlesand approximated subtrees which need to be considered for a given particleMT Map Leaf Env maps calculate accelerations to each particle with a�ltered portion of global tree, to compute the resultant forces.Update: MT_Map_Leaf is used to apply update_body to every particle, to up-date its position according to the forces acting upon it.Finally, the results are collected and, in the next iteration, a new M-Tree isconstructed reecting the updated positions.4 Implementation of the M-Tree for particle applicationsFor portability, the M-tree is implemented as a C library based on MPI[9]. Inthe current prototype implementation there are separate implementations formesh-based problems and particle-based problems, although it should be stressedthat a common implementation is quite possible by enriching the higher-orderoperators of the ADT with additional parameters. For simplicity we describe theimplementation as it currently stands.In the mesh-based problems, the most commonly-used computation pat-terns are mainly among blocks on the same level or on neighbouring levels. Theparticle-based problems tend to involve computation and communication amongtreenodes located on all levels. For example in Barnes Hut algorithm, each leafnode needs to compute with a subset of whole tree as its interaction list. Inorder to achieve e�cient access to randomized treenodes, a hashing scheme isused which is discussed in the following section. In what follows we focus on thedetails of the particle-based M-tree implementation and its performance.4.1 ImplementationParticle-based solvers are not mesh-based in the sense that a number of discreteparticles form a domain according to their positions and they cannot be mod-elled by variables on gridded points in the domain as in a continuum system.Most of the solvers use the hierarchical structure of the domains to improvethe computational complexity. The M-Tree o�ers the control over such hierar-chically structured particle space. In applications such as the N -body problem,each body is inuenced by all the other bodies. Thus to calculate the inuenceon each body, the interactions between the body and all the other bodies mustbe considered. The computational pattern in this kind of application tends toaccess the global data structure from each particle, pruning where possible. Thisleads to an unpredictable access pattern and dynamic load imbalance which arethe main issues for parallelization.The particle simulation libraries are implemented using a hashing schemesimilar to the technique proposed by Warren and Salmon [14]. In this scheme



each treenode has a unique key de�ned according to its hierarchical coordinates.Each key corresponds to some physical data inside the domain of each treenode.A hash table is used to map the key to the memory location holding this data.This key space is convenient for tree traversals where a node is accessed directly,without going via its parent; this is needed in some fast N -body algorithms suchas the Fast Multipole Method.The M-tree is attened and partitioned by a user-de�ned ordering function.In our test case a Peano-Hilbert ordering [17] is used to achieve maximumlocalityand load balancing. In this partitioning scheme, each process initially stores thoseparticles for which it is responsible which tend to have maximum intersectionof their interaction sets. These local particle sets are a subset of the attenedM-tree and thus stored spatially in Peano-Hilbert order. A software cachingscheme is used to minimize the extra message passing for the shared overlappinginteraction sets. Whenever a non-local tree node is read, it is also inserted intointo the local hash table as subsequent references can be satis�ed locally. Thevariable cacheline size of each remote access can be used to further optimize theoverall performance as described below.4.2 OptimizationsVarious optimization approaches have been used in the implementation of theM-tree operators for particle simulation. For example, theMT Map Leaf Envoperator is implemented by traversing the globalM-tree in depth-�rst order sincethe partition and load balancing scheme maintains maximum locality. Messagepassing occurs whenever a non-local tree node is encountered. When replyingto request messages from other processors, instead of sending just the requestedtreenode, a contiguous package of treenodes (a cache line) can be sent. Thisscheme is based on a cache coherence protocol which exploits the controlledupdate discipline of the data structure to make e�cient use of high-bandwidthhigh-latency message passing platforms [2]. The optimization is based on thestatistical likelihood that further treenodes stored adjacently will be accessedlater either by the current particle or by other particles on the same processor.The scheme reduces the number of separate messages at the risk of wastingbandwidth on data which is not eventually used. In Figure 4, a 8192-body testshows that using a cache line size of 50 treenodes almost doubles the speedupobtained using a cache line size of 5.4.3 PerformanceOur implementation is currently only in prototype form, but some initial per-formance results are available for the Barnes-Hut algorithm. Our experimentalwork has used the 128-processor Fujitsu AP1000 at Imperial College. Figure 5shows overall time and speedup for di�erent problem sizes up to 16384 particles.The optimal performance for smaller problems are tested using smaller cachelinesize because of the small number of local treenodes when scaling up to 128 pro-cessors. It shows that performance continues to improve with large numbers of
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Fig. 5. Overall Speedup (left graph) and Overall Time (right graph)5 Related workThis project is a further development of our earlier work on skeletons and alge-braic program transformation [12, 8]. The skeletons approach aims at building



up a general framework for structured parallel programming based on the ideaof abstracting commonly-used computation patterns as higher-order functions.This work concerns applications where there is rich domain knowledge and henceplenty of scope for abstraction and optimization. Here we have focussed on theunderlying distributed data structure, whose dynamic nature involves importantand complex factors which have not properly been addressed in theoretical workup to now. Recent developments like S�udholt's Data Distribution Algebras [18]indicate some of the potential. There are several comparable attempts to buildgeneral-purpose support for adaptive computations [5, 10, 4].Using data abstraction to capture commonly-occurring computation formswith a class of application have been well studied, in particular for irregularand dynamic applications. Such systems includes LPARX [13] and DAGH [15].LPARX provides parallel abstraction for dynamic arrays. The mechanism hideslow-level implementation details and provides tools for data distribution, parti-tioning and mapping, parallel execution and interprocessor communication. Thedynamic array supported by LPARX forms one level of data partition and theuser has to maintain explicit control over multi-level hierarchy. The idea of col-lective communication has been widely adopted to enhance the compositionalityof concurrent processes. Co-ordination systems such as Archetype [7] and PCN[11] and parallel languages such as CC++ [6] all provide abstractions of collectivecommunication.6 Conclusions and further workWe have presented the design for a generic package which captures a class of ir-regular and adaptive algorithms. The user of the package can avoid much of thedi�culty of programming such applications, and rely on a well-tested and care-fully optimized implementation of the key data structure. The library providesreusability and eases programming real applications. Since the library is generic,there are potential overheads compared with a hand coded particle simulationcode [3], which we are currently quantifying.Directions for further work include:{ Further optimization, including the use of a more e�cient hash function,and �nding the optimal cache line size.{ Production of a generic M-Tree implementation capturing the domain-dependentbehaviour of di�erent adaptive applications by enriching the higher-orderADT operators with additional parameters{ Further application studies, in particular multigrid solvers and time-varyingadaptive-mesh problems such as uid ows.{ Developing a theory for algebraic transformation of M-Tree programs, forexample to capture fusion of tree traversals.Acknowledgements: This work was supported by the UK Engineering and Phys-ical Sciences Research Council under grant number GR/J 87015. We would also
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