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Chapter 1IntrodutionThe two aims, on the one hand for highly-parallel hardware, and on the other for easyand speedy reation of high-quality software, are seen by many to be diretly antitheti.J.P. Ekert wrote, when arguing for parallel data transfer and arithmeti in omputers ofEDVAC's generation, thatThe arguments for parallel operation are only valid provided one applies themto the steps whih the built in or wired in programming of the mahine oper-ates. Any steps whih are ontrolled by the operator, who sets up the mahine,should be set up only in a serial fashion. It has been shown over and overagain that any departure from this proedure results in a system whih is fartoo ompliated to use [Ek46℄.The quest to overturn this wisdom, whih had been learned \over and over again" in1946, has oupied a large portion of the omputer siene ommunity sine then. Whyis parallel programming diÆult?� Performane: The performane of a parallel program is diÆult to optimise|ounting the number of instrutions is no longer good enough, beause some of theinstrutions may be exeuted simultaneously.� Portability: There are many more ways in whih two parallel omputers may di�er,and these an mean that quite di�erent algorithms are suitable for di�erent targetarhitetures.� Determinay: The order of events during parallel program exeution is almostalways indeterminate. The program's output is determinate only if it is writtenarefully.All of these problems do arise to some extent when programming sequential omputers,but in the general ase of parallel omputing they are epidemi.1.1 Funtional programmingThe main subjet of this book is the interesting and powerful lass of funtional pro-gramming languages. The reason for hoosing suh a language is the ease with whih1



suh programs an be manipulated algebraially, and the bulk of the book is devoted tointroduing and demonstrating this in ation.It is through algebrai manipulation of programs that the problems of parallel pro-gramming are addressed. We retreat from the hope that a single program will serve forall the di�erent parallel omputers we might wish to use, and instead begin with a singlespeifying program. Versions for di�erent target arhitetures an then be derived by theappliation of a toolbox of mathematial transformations to the spei�ation, leading toversions tuned to the various mahine strutures available. The transformation pathwaysan then be re-used when modi�ations to the spei�ation are made.1.2 Loosely-oupled multiproessorsParallel programming is muh simpli�ed if we an assume that interproessor ommu-niation is very eÆient, as in a shared memory multiproessor. This book is aboutprogramming a muh larger lass of omputers for whih suh simplifying assumptions donot hold. In general, there are two distint problems in mapping a parallel program ontoa omputer: partitioning and mapping. The most important simplifying assumption oftenmade is to avoid mapping, and assume that performane is independent of where proessesare plaed. The lass of loosely-oupled multiproessors is de�ned to haraterise arhite-tures where this assumption is not valid: a loosely-oupled multiproessor is a olletionof proessing elements (PEs), linked by an interonnetion network with the property thatommuniation between \neighbouring" PEs is muh more eÆient than ommuniationbetween non-neighbours. Depending on the interonnetion network's topology, there aremany varieties of suh an interonnetion network. The important feature is that not allPEs are loal to one another, so that proess plaement is important to program perfor-mane.The importane of this lass of arhitetures is that they are easy and inexpensive tobuild on a large sale. It is not, therefore, surprising to �nd quite a number of loosely-oupled multiproessors on the market and in use. Examples inlude Meiko's ComputingSurfae, Parsys's Supernode and Intel's iPSC.In arhitetures of this kind the full generality of the software design problems forparallel omputers beome apparent. We �nd that data ommuniation is often a primaryomputational resoure, and that muh of the algorithm design e�ort is aimed at reduinga program's ommuniations demands. Several examples are given of how this an bedone using program transformation. The tehniques have appliation to other parallelarhitetures inluding more losely-oupled mahines and SIMD omputers.1.3 Neighbour-oupled multiproessorsA neighbour-oupled multiproessor is a more idealised abstrat omputer arhiteture,and is introdued here as an experiment. A neighbour-oupled multiproessor is a loosely-oupled multiproessor, where eah PE is very losely oupled to its neighbours, so loselythat the programmer an assume that a PE an read and write its neighbour's memoryas quikly as its own. 2



We shall return to this abstrat arhiteture later in the book to examine whether itallows useful simpli�ations.1.4 A reader's guideThe book onsists of the following omponents:� Chapter 2. Funtional Programming: This hapter introdues funtional pro-gramming from �rst priniples. The programming language is presented by meansof examples. Simple tehniques are given for manipulating programs to modify theirstruture while retaining the same input/output mapping. These are augmented bya handful of indution rules for proving generi properties about programs.The language is based on Miranda1 and Haskell (a publi-domain language designfor whih a spei�ation is in preparation [HWA+88℄).� Chapter 3. Sequential and Parallel Implementation Tehniques: The aimof this hapter to sketh how our funtional language might be ompiled to runeÆiently on a onventional omputer, and to examine how this sheme (graphredution) might be extended for a tightly-oupled multiproessor.� Chapter 4. Speifying and Deriving Parallel Algorithms: This hapter ex-amines how parallelism and inter-proess ommuniation are manifest in a funtionalprogram sript. Horizontal and vertial parallelism are identi�ed and examples aregiven in the form of divide-and-onquer and pipeline algorithms respetively. Themain emphasis in this hapter is the development of program transformation teh-niques. Examples are given of introduing pipeline parallelism, and of transforminga divide-and-onquer algorithm into a yli \proess network" program. This isillustrated by appliation to a simple ray traing program.� Chapter 5. Distributed Parallel Funtional Programming: We an writeprograms for whih a good plaement onto a loosely-oupled multiproessor an bemade. This hapter applies a delarative programming language approah to atuallyspeifying this plaement. It inorporates abstration mehanisms to give onisemappings for regular arhitetures and algorithms. The notation is illustrated withseveral examples.� Appendix A. Proofs and Derivations: This appendix gives proofs and deriva-tions whih would have luttered the presentation given in hapter 4. Althoughquite dense later on, the earlier material in this hapter is quite tutorial in natureand might be read onurrently with Chapter 4 by those more interested in programderivation and veri�ation than in parallel programming.� Appendix B. Common De�nitions: This appendix lists widely-used funtionde�nitions for easy referene.1Miranda is a trademark of Researh Software Ltd.3



� Appendix C. Programming in a real funtional language: The funtionallanguage used in this book is not quite ompatible with any ommonly-availablelanguage implementation. This appendix lists the small (and quite innouous) dif-ferenes from Miranda in order to aid a reader who wishes to experiment.Eah hapter ends with some pointers for the interested reader towards other books,artiles and researh papers whih might be of interest.
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Chapter 2Funtional ProgrammingThis hapter gives a tutorial introdution to funtional programming as employed in thisbook. It deals with the programming language, funtional programming tehniques, andthe mathematial transformation and veri�ation of funtional programs. Finally, a reviewof the suess of the funtional approah is given.2.1 The programming languageThe funtional language used in this book is representative of a lass of programminglanguages, rather than being any one in partiular. We will, however, stik as loselyas possible to the notation used in [BW88℄. Their exellent book is reommended tothe reader needing a more detailed and introdutory guide to funtional programming.Apart from some minor typographial details, whih are summarised in Appendix C, thelanguage employed is a simple subset of Miranda.To summarise its main features, the language is:� Funtional: a program omprises an expression, and a set of equations de�ningfuntions, values and types required to give the expression meaning.� Higher-order: a funtion an appear anywhere where a value an appear, notablyas a parameter to a funtion, or as its result.� Curried: a funtion expeting two parameters is normally de�ned so that the pa-rameters may be provided one-by-one, so that it may be speialised to its �rstparameter by simple appliation.� Lazy: a funtion's parameter is evaluated only when its value is needed for theprogram to produe its next item of output (and then it is evaluated only one).� Typed: a program an never fail at run-time due to a type error. Types are inferredautomatially, at ompile-time, and are heked against optional type delarationswhen present.
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2.2 EquationsA program, alled a sript, de�nes types, funtions and values by means of equations. Newtypes an be de�ned in terms of old ones by type equations. For example,Date == (Day, Month, Year)de�nes a new type, Date whose elements are tuples of length three, omprising elementsof the types Day, Month and Year. An example of an element of the type might bebirthday = (18, 8, 61)This mehanism is often used just to give a synonym for a built-in type suh as the numbersNum, as in these de�nitions:indexde�nitions!of type synonymsDay == NumMonth == NumYear == NumPrie == Num(To simplify matters we will not distinguish di�erent kinds of numbers here). Types whosevalues may take one of several forms an be de�ned using a simple notation derived fromthe BNF language for de�ning grammars1. For example:Class ::= FIRST j SECONDTiket ::= PLATFORM jSINGLE Class Date Prie Destination jRETURN Class Date Prie Destination PeriodAs with a grammar, suh types an be reursively de�ned:indexde�nitions!of data typesListOfNum ::= NIL j CONS Num ListOfNumAn element of the type ListOfNum is either the empty list, denoted by NIL, or is built froma number and another element of the ListOfNum type. CONS and NIL serve to distinguishthe two ases, and are alled onstrutors. Throughout this book, onstrutors will bewritten in upper ase to distinguish them from other variables.Data types may have type variables, given names �, �,  et., strong polymorphi Forexample we an de�ne a list of objets of arbitrary type by writingList � ::= NIL j CONS � (List �)The type for a list of numbers an now be referred to simply as List Num. A list ofharaters would have the type List Char. We an de�ne the type variable Destination bywriting1A glossary of symbols is olleted in Appendix B.6



Destination == List CharWe an de�ne a variable with this type by writing, for example,home = CONS 'A' (CONS 't' (CONS 'h' (CONS 'e' (CONS 'n' (CONS 's')))))However, beause they are so useful, we use a speial notation for lists, in whih [ ℄ denotesthe empty list NIL, and where : is an in�x version of CONS. Thus the de�nition of homeis: home = 'A' : 't' : 'h' : 'e' : 'n' : 's' : [ ℄We an take this further and write the elements of a list inside square brakets. Hene,home = ['A', 't', 'h', 'e', 'n', 's'℄A list of haraters, has, of ourse, the obvious shorthand:home = \Athens"Lists an be de�ned reursively. For example,sawtooth = 1 : 2 : 3 : 4 : 5 : sawtoothde�nes the in�nitely-long listsawtooth = [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, . . . ℄Notie how this mirrors the idea of a ommuniations hannel, or a wire in a digital system.The list models a sequene of values in time, and : an be read as \followed by". Suhlists|often alled \streams"|give us the power to express the behaviour of a proess asa funtion mapping a stream to a stream.De�nitions an be parameterised. For example, the equationfrom n = n : ( from (n + 1) )de�nes from n to be the list of integers starting from n. More generally, funtions (likefrom) are de�ned by more than one equation:exp 0 x = 1exp (n+1) x = x � (exp n x)In this book we will be areful to write suh de�nitions so that at most one left-hand sidean possibly math any partiular expression. For this reason, unless the �rst parameterof exp is restrited to the natural numbers (i.e. the integers � 0), a better way to writethe de�nition above is: 7



exp n x = 1, if n = 0exp n x = x � (exp (n�1) x), if n > 0The Boolean expressions are alled guards, whih must be satis�ed before the orrespond-ing equation an be applied. They must be mutually-exlusive. The keyword otherwise isa shorthand for the guard whih sueeds when all others fail2.Funtions over data types an be de�ned using pattern-mathing on the LHS. Forexample, the funtion map is de�ned below by two equations, one for the two possibleforms its list parameter may take:map f [ ℄ = [ ℄map f (x:xs) = (f x) : (map f xs)map applies its funtion parameter f elementwise to its list parameter. We an summariseits behaviour informally by writingmap f [a1, a2, . . . an℄ = [f a1, f a2, . . . f an℄or even,map f [ . . . ai . . . ℄ = [ . . . f ai . . . ℄To illustrate map in use, we must supply it with a single-parameter funtion. We an use+ as a pre�x operator by enlosing it in parentheses, so that(+) 3 5 = 3 + 5By writing (+) 3 we denote the funtion whih adds 3 to its parameter (a tehnique alledpartial appliation, or sometimes urrying, after the logiian H.B. Curry). Thus,map ((+) 3) [1, 2, 5, 10, 20, 50, 100℄ = [4, 5, 8, 13, 23, 53, 103℄and similarly,map ((�) 3) sawtooth = [3, 6, 9, 12, 15, 3, 6, 9, 12, 15, 3, 6, 9, 12, 15, 3, 6 . . . ℄Construtors an be urried in just the same way as an ordinary funtions. For example,map (CONS `f') [\lame", \lies", \airy"℄ = [\ame", \ies", \fairy"℄(remembering that \� � �" is shorthand for a list of haraters.)2A omplete programming language would inlude a shorthand allowing equations to be prioritised, toallow overlapping equations and non-exlusive guards to be used. See Appendix C, setion C.2
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2.2.1 Types and Type ChekingWe employ a strongly-typed language, that is, type errors annot our at run-time.Type spei�ations are optional, and we will usually give them. If not provided by theprogrammer, a variable's type is inferred automatially from its de�nition and use.A ompiler an infer automatially, for example, that sawtooth is a list of numbers.We an provide its type spei�ation expliitly as follows:sawtooth :: list NumFor \::" read \has the type". The list type is expressed in a natural shorthand: [Num℄denotes the type list Num.It is easy to see that the partial appliation (+) 3 is a funtion from numbers tonumbers. We an assert this by writing a type spei�ation:(+) 3 :: Num ! NumBeause it is applied to 3, we an infer the type for (+):(+) :: Num ! (Num ! Num)As another example, take the append funtion (in�x version \++"), whih joins two liststogether:append [a1, a2, . . . an℄ [b1, b2, . . . bn℄ = [a1, a2, . . . an, b1, b2, . . . bn℄Nowappend [a1, a2, . . . an℄ [b1, b2, . . . bn℄ :: [�℄therefore the partial appliation of append to its �rst parameter only must have the typeappend [a1, a2, . . . an℄ :: [�℄ ! [�℄and therefore append itself should have the type spei�ationappend :: [�℄ ! ( [�℄ ! [�℄ )In general, if f is a funtion whih takes n parameters, with types �, � . . .  , and returnsa result of type !, its type is:f :: � ! � !  ! � � � !  ! !For onveniene, we assume that ! assoiates to the right, so to understand this typespei�ation, re-insert the missing brakets:f :: � ! (� ! ( ! � � � ! ( ! !)) � � � ))9



This notation may seem slightly ounter-intuitive, but arises quite naturally from the needto assign a type to a partial appliation.Beause the! operator is not assoiative, brakets are neessary when parameters arethemselves funtions. For example, from the de�nition of map the ompiler infers the typespei�ationmap :: (� ! �) ! [�℄ ! [�℄As with the de�nition of the list type, type variables � and � show where a onsistentsubstitution with atual types an be made. The funtion map takes two parameters, afuntion (type � ! �) and a list (type [�℄). It returns a list, of type [�℄.While type spei�ations are not stritly neessary, and even in strongly-typed lan-guages an still be optional, they will always be given from here onwards.2.2.2 Blok struture: where lausesIt is often useful to abstrat a subexpression to avoid writing it twie. For example:f :: Num ! Num ! Numf a x = b + x � (b + x � (b + x � b))whereb = a � a + 1Note that� A where lause an be assoiated with the right-hand side of an equation.� The sope of a where lause (i.e. the extent of the sript over whih its de�nitionsare to be applied) is de�ned to be the right-hand side of the equation to whih it isattahed.� A where lause may omprise several de�nitions of funtions and values, but maynot introdue new types.2.2.3 The layout ruleWe employ a simple rule to avoid ambiguity in where lauses: the right-hand side of anequation must remain stritly to the right of the equation's \=" sign|even if it spills overonto several lines. This rule applies to equations nested inside where lauses as well asat the top-level. For example:tiket :: TiketReturnTo :: Destination ! Date ! Class ! TiketAwayDay :: Tiket ! Tiket
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tiket = AwayDay (ReturnTo \Buxton" today SECOND)whereReturnTo dest date lass = RETURN lass date ReturnPrie dest periodwhereReturnPrie = (PrieOf dest) � 2period = 90AwayDay (RETURN lass date prie dest period)= RETURN lass date (prie � redution) dest 1whereredution = 2/3It is very rare indeed that deeply-nested where lauses are desirable or neessary.Ordinary systems of de�nitions are valid where lauses, and may be reursive. Notethat as well as funtions, it is often also useful to de�ne values reursively, an examplebeing sawtooth as given above.2.2.4 RedutionIf there is any doubt about the value an expression should have, one an always alulate it.We apply the equations whih make up the sript to simplify the expression, suessivelyreplaing an instane of an equation's LHS by the orresponding RHS. Let us take a simpleexample without the list shorthand:map ((+) 3) (1 : (2 : (5 : 10 : [ ℄)))Now the seond of the two equations de�ning the map funtion an be applied, sine itsleft-hand side mathes the parameter value supplied. We bind f to ((+) 3), x to 1 and xsto (2 : (5 : 10 : [ ℄)), and substitute in the right-hand side to yield(((+)3)1)| {z } : (map ((+) 3) (2 : (5 : 10 : [ ℄)))We all an expression whih mathes some left-hand side a reduible expression, or redexfor short. The resulting expression ontains several redexes, of whih the �rst (marked bythe brae) is an appliation of the built-in addition operator:(((+) 3) 1) = 4so we have4 : (map((+)3)(2 : (5 : 10 : [ ℄)))| {z }(by onvention, the brae marks the expression next to be rewritten). At this point, weknow that the �rst element of the list is 4. To �nd the next element, re-apply the equationde�ning map: 11



4 : (((+)3)2)| {z } : (map ((+) 3) (5 : 10 : [ ℄))That is:4 : 5 : (map((+)3)(5 : 10 : [ ℄))| {z }Now we know the seond element is 5. Repeat to �nd the third and fourth:4 : 5 : (((+)3)5)| {z } : (map ((+) 3) (10 : [ ℄))= 4 : 5 : 8 : (map((+)3)(10 : [ ℄))| {z }= 4 : 5 : 8 : (((+)3)10)| {z } : (map ((+) 3) [ ℄)= 4 : 5 : 8 : 13 : (map((+)3)[ ℄)| {z }= 4 : 5 : 8 : 13 : [ ℄The �nal redution made use of the �rst equation de�ning map. There are no more redexes:the expression is in normal form.Notie that during redution the equations are not treated symmetrially: an instaneof an RHS is not rewritten to the orresponding LHS. A redution proess whih inludessuh steps may fail to terminate when it should, although it annot derive inorret results.Redution forms the basis for most implementations of funtional programming lan-guages, and after extensive optimisation it an be done very eÆiently indeed.2.2.5 Pattern mathing and redution orderAt eah stage during redution, several equations may apply to the expression at the sametime. If we are to use redution to de�ne the meaning of an expression, there are someimportant questions to answer. Does it matter in what order the redutions are performed?How do we make sure the redutions we do ontribute to the result, rather than to anexpression whih is ultimately disarded? Fortunately, the theory of suh systems givesus some very strong properties. We must, however, obey the mutual exlusion rule forwriting equations: of all the equations de�ning a variable, at most one may ever apply.Thus, we annot writeeither x y = xeither x y = ynorSpeialCase 818 = TRUESpeialCase 242 = TRUESpeialCase n = FALSEWith guards the responsibility rests with the programmer to ensure mutual exlusion; ingeneral, the ompiler annot verify that a de�nition like12



f x = TRUE, if g1 xf x = FALSE, if g2 xis allowable.Provided mutual exlusion is satis�ed, the following properties hold:� Conuene: No matter what order we apply appliable equations to an expression,it is always possible to reah the expression's normal form, if it has one. It isimpossible to redue an expression to two di�erent normal forms. This property issometimes alled the Churh-Rosser property.� A general normalisation strategy: If an expression has a normal form, it an befound by the following strategy:1. Identify the outermost reduible funtion appliation. This onsists of a knownfuntion identi�er, say f, and zero or more parameters p1, p2 . . . pn. The pa-rameters need not be known.2. Test the appliation against eah of f's de�ning equations. Eah of the testsis performed in parallel, evaluating parameters as neessary. At most one willterminate signaling suess. The other tests may terminate signaling failure, ormay fail to terminate. One a winning test has been identi�ed, the other testproesses an be abandoned. Thanks to the mutual exlusion rule, we knowthat their an be only one suessful test.(A reduible funtion appliation is a funtion identi�er applied to as many param-eters as appear in the funtion's de�ning equations).A good ompiler an analyse the patterns onerned and avoid having to rae parallelproesses. A sequential san an be used instead. Most pratial funtional languagesonly allow patterns whih an be sequentialised in this way.2.2.6 More de�nitions to think aboutBefore moving on to program transformation, here are some simple de�nitions to illustratethe language in use. The de�nitions of these and other handy \building bloks" areolleted in Appendix B.List projetorsBeause they model a sequene in time, lists are a fundamental onept in funtionalprogramming, espeially in this book. Extensive use will be made of these two funtionsto deompose them:
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hd :: [�℄ ! �tl :: [�℄ ! [�℄hd (x : xs) = xtl (x : xs) = xsThe funtions hd and tl are alled the projetors of the list data type, and satisfy theequationfor all as 2 [�℄, as 6= [ ℄:as = (hd as) : (tl as)We an prove this (informally) using the equations de�ning hd and tl by making thesubstitution (whih makes the assumption that as does evaluate to some known list),b : bs = asgiving usb : bs = (hd (b : bs)) : (tl (b : bs))Using the equations de�ning hd and tl this follows immediately.Generalising \+" over listsIt is natural to generalise an operator like + to add orresponding elements of a pair oflists of numbers. If we have, for example,(+) :: Num ! Num ! Numand two lists of numbers,as = [a1, a2, a3, . . . an℄bs = [b1, b2, b3, . . . bn℄we would want the result of generalising + to lists to bemap2 (+) as bs = [(+) a1 b1, (+) a2 b2, (+) a3 b3, . . . (+) an bn℄That is,map2 (+) as bs = [a1+b1, a2+b2, a3+b3, . . . an+bn℄This funtion map2 is de�ned by the equations
14



map2 :: (� ! � ! ) ! [�℄ ! [�℄ ! [℄map2 op (a : as) (b : bs) = (op a b) : (map2 op as bs)map2 op [ ℄ [ ℄ = [ ℄It is alled map2 beause it is a natural extension of map to funtions of two parameters.Our next de�nition is a generalisation of funtion appliation to lists of funtions andlists of parameters:ply :: [(� ! �)℄ ! [�℄ ! [�℄ply [ ℄ [ ℄ = [ ℄ply (f : fs)(x : xs) = (f x) : (ply fs xs)A very alert reader might realise thatply = map2 applywhereapply f x = f xWe an verify that this is so by substitutingop = applyin the de�nition of map2. This yields a de�nition idential in struture to the expliitde�nition of ply, exept that map2 apply now appears where ply did.InsertionAn important family of operations (often alled folding or, onfusingly, redution) onerninserting an operator between adjaent pairs of elements of a list. Suppose op is an in�xoperator akin to +. An intuitive de�nition of suh an insertion funtion might beinsert (op) base [ ℄ = baseinsert (op) base [a1, a2, a3, � � � aN℄ = a1 op a2 op a3 � � � op aNThis is ambiguous in general, sine we have not spei�ed the braketing to be applied inthe RHS|we have left some freedom in the redution order. This makes no di�erene ifop is assoiative:for all a, b, a op (b op ) = (a op b) op The list joining operator ++ is assoiative, for example, but subtration is not. Stritly,addition of integers is assoiative only if it is implemented orretly for values of arbitrarysize. If overow an our, the order in whih a list of numbers is added an a�et theresult. Note that all assoiative funtions have the type15



� ! � ! �An assoiative funtion must take parameters of the same type as eah other and as itsresult. Thus, the type of insert isinsert :: (� ! � ! �) ! � ! [�℄ ! �When the funtion being inserted is not assoiative, we must hoose an ordering forthe brakets. There are two sensible options: we an assoiate the operator to the left orto the right. We de�ne variants of insert for eah option. For example,insertleft (op) base [a1, a2, a3, a4, a5, a6℄= (((((base op a1) op a2) op a3) op a4) op a5) op a6andinsertright (op) base [a1, a2, a3, a4, a5, a6℄= a1 op (a2 op (a3 op (a4 op (a5 op (a6 op base)))))For non-assoiative operators, it is more ommon to use the usual pre�x form of funtionappliation, so thatinsertleft f base [a1, a2, a3, a4, a5, a6℄= f (f (f (f (f (f base a1) a2) a3) a4) a5) a6andinsertright f base [a1, a2, a3, a4, a5, a6℄= f a1 (f a2 (f a3 (f a4 (f a5 (f a6 base)))))Their de�nitions areinsertleft :: (� ! � ! �) ! � ! [�℄ ! �insertleft f base [ ℄ = baseinsertleft f base (a : as) = insertleft f (f base a) asandinsertright :: (� ! � ! �) ! � ! [�℄ ! �insertright f base [ ℄ = baseinsertright f base (a : as) = f a (insertright f base as)(In insertleft notie how the base parameter is used to aumulate the result so far). Beausethe funtion f need not be assoiative, the types of its parameters need not be the same.For insertleft it must be 16



f :: � ! � ! �while for insertright it must bef :: � ! � ! �In either ase, base is needed to form a \seed" value from whih to build a result of theright type.Here are a handful of examples. With assoiative operators we an use insert and leavethe hoie of insertleft or insertright or whatever free. To sum the elements of a list, writesum :: [Num℄ ! Numsum as = insert (+) 0 as = insertleft (+) 0 as = insertright (+) 0 asTo join up all the lists in a list of lists, writejoin :: [[�℄℄ ! [�℄join as = insert (++) [ ℄ asTo reverse a list, tryreverse :: [�℄ ! [�℄reverse as = insertright postpend [ ℄ aswherepostpend a as = as ++ [a℄The intuition behind insertleft's operation is that the result is formed by repeatedly buildingon the base using suessive elements of the list, starting from the end. For example,suppose we want to ount the frequeny of ourrene of integers between 0 and range ina list, in order to build a histogram. De�nehistogram :: Num ! [Num℄ ! [Num℄histogram range data = insertleft InrementBuket EmptyBukets datawhereEmptyBukets = repliate range 0InrementBuket bukets n = MapElement ((+) 1) n buketsEmptyBukets is a list of range zeroes, onstruted using repliate:
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repliate :: Num ! � ! [�℄repliate 0 x = [ ℄repliate (n+1) x = x : (repliate n x)InrementBuket bukets n adds one to the nth element of the list of frequenies bukets. Ituses the more general-purpose funtion MapElement,MapElement :: (� ! �) ! Num ! [�℄ ! [�℄MapElement f 0 (x : xs) = (f x) : xsMapElement f (n+1) (x : xs) = x : (MapElement f n xs)Bird and Wadler give an exellent overage of the insertion funtions, whih they all foldland foldr, in their textbook [BW88℄.2.2.7 ReurrenesWe have now seen a ouple of ways of apturing ommon omputational strutures in ourfuntional notation, but it is still not obvious how to express simple alulations suh asthose omputed by loops in an imperative language. There are several ways of doing this,but here we are going to introdue an \idiom"|a lear and ommonly-understood way toexpress iteration. The idiom is developed by means of two examples: the alulation of theFibonai numbers, and the appliation of the Newton-Raphson method to the alulationof square roots.Example: the Fibonai numbersThe nth Fibonai number is de�ned by a reurrene relation:�b 0 = 1�b 1 = 1�b n = (�b (n�-1)) + (�b (n�2)), if n � 2This mathematial de�nition serves as a omputational de�nition, and when exeuted givesthe desired result. It does take a very long time when given larger parameters beauseeah reursive invoation of �b realulates many values already omputed elsewhere. Toonstrut a more sensible program we need to make sure that these values are saved forre-use. Let's build them into a list, �bs, so that the nth element of �bs ontains �b n. Thelist is de�ned by the equations�bs sub 0 = 1�bs sub 1 = 1�bs sub n = (�bs sub (n�1)) + (�bs sub (n�2)), if n � 2where sub is the list indexing operator, 18



(a : as) sub 0 = a(a : as) sub (n+1) = as sub nThis de�nition of �bs is not quite a valid de�nition in our language, beause of the use ofsub on the left hand side. One approah might be to extend the language to allow it, buta simple de�nition makes this an unneessary luxury. De�negenerate :: (Num ! �) ! [�℄generate f = map f (from 0)(reall that from n omputes the list of integers starting from n). Informally,generate f = [f 0, f 1, f 2, � � �℄Now, we an de�ne the list of Fibonai numbers by writing�bs = generate NextFibwhereNextFib 0 = 1NextFib 1 = 1NextFib n = (�bs sub (n�1)) + (�bs sub (n�2)), if n � 2All that remains is to pik out the Fibonai number we wanted in the �rst plae,�b n = �bs sub nNotie, of ourse, that only a limited number of elements of �bs need to be alulatedbefore �b n is found.Example: Newton-Raphson approximationThe Fibonai example orresponds to a for loop in an imperative language, beause thenumber of iterations (n) is �xed beforehand. The Newton Raphson example orrespondsto a while loop in an imperative language, where the number of iterations is determinedby testing some ondition at eah iteration.To alulate the square root of a using the Newton-Raphson method, we solve theequation x2 � a = 0by de�ning a funtion f x = x2 � a, and its derivative, f' x = 2 � x, and forming the seriesde�ned by x0 = x=2xi+1 = xi � f(xi)f 0(xi) = xi + a=xi2(x=2 is just an initial guess). Translating this into the programming notation, usinggenerate, gives 19



xs = generate NextEstimatewhereNextEstimate 0 = x/2NextEstimate (i+1) = ((xs sub i) + a/(xs sub i))/2The square root is the limit of the series, de�ned to be the value of xi suh thatj(xi � xi�1)=xij � �for some given value of �. We an �nd this value by de�ning a funtion until,until :: (Num ! Bool) ! [Num℄ ! Numuntil prediate xs = selet (map prediate (from 0)) xswhereselet (FALSE : tests) (x : xs) = selet tests xsselet (TRUE : tests) (x : xs) = xThis funtion �nds the �rst element of xs whih satis�es prediate. Now the square rootfuntion as a whole is given bysqrt a = until onverges xswhereonverges 0 = FALSEonverges (i+1) = abs( ((xs sub (i+1)) � (xs sub i))/(xs sub(i+1)) ) � �xs = generate NextEstimatewhereNextEstimate 0 = a/2NextEstimate (i+1) = ((xs sub i) + a/(xs sub i))/2This expresses the iteration rather neatly, keeping quite lose to the original mathematis.A partiularly pleasing feature is that if a more omplex solution sheme were employedwhih involved referenes to xi�2 and xi�3, for example, very little hange is required.There does in fat remain one ineÆieny in this idiom: the list indexing operationsub must step through the list to �nd the nth element, and as this is done at eah iterationanew a great deal of unneessary work is involved. For reasonable uses of sub in suhreurrenes, this an be removed by a straightforward program transformation whih isshown in setion 4.5.1 and in Appendix A, setion A.3. We assume that this is done bythe ompiler.IterationWhen eah suessive state depends only on the previous state, an espeially simple formof reurrene applies. De�ne
20



iterate :: (� ! �) ! � ! [�℄iterate f x = x : (iterate f (f x))so thatiterate f x = [x, f x, f (f x), f (f (f x)), f (f (f (f x))), . . . ℄We will see later that it is sometimes useful, partiularly when looking for parallelism,to transform iterate into a irular form:iterate f x = outputwhereoutput = x : (map f output)The de�nition of a variable in terms of itself may seem surprising. Compare it with this(somewhat onvoluted) de�nition of the fatorial funtion:fa :: Num ! Numf :: (Num ! Num) ! Num ! Numfa x = f fa xwheref g x = 1, if x = 0= x � (g (x � 1)), if x > 0Just as a funtion an be de�ned reursively, so an any other value. One an think ofthis as an aspet of \equal rights" for all the programming language's objets.2.2.8 Vetors and matriesA vetor is similar to a list, but is designed for eÆient aess and onstrution. A matrixis a two-dimensional array with similar properties. Higher-dimensional arrays an be builtfrom vetors of vetors, matries of matries et.The size of a vetor v is represented by a number n, and its elements are indexed v sub0 . . . v sub (n�1), just as with lists. A vetor an be reated by the funtion MakeVetor:MakeVetor :: Num ! (Num ! �) ! <�>MakeVetor bound f = <f 0, f 1, f 2, . . . , f (bound�1)>The bound of a vetor an be found using the funtion VetorBound:VetorBound <�> ! NumThe size of a matrix m is represented by a pair of numbers, MatrixBounds m = (xBnd,21



yBnd), and its elements are indexed in a similar way:� m sub (0,0), m sub (1,0), . . . m sub (xBnd�1,0),m sub (0,1), m sub (1,1), . . . m sub (xBnd�1,1),...m sub (0,yBnd�1), m sub (1,yBnd�1), . . . m sub (xBnd�1,yBnd�1) �A matrix is reated using the funtion MakeMatrix:MakeMatrix :: (Num, Num) ! ((Num, Num) ! �) ! ���and is de�ned so thatMakeMatrix (xBnd,yBnd) f= � f (0,0), f (1,0), . . . f (xBnd�1,0),f (0,1), f (1,1), . . . f (xBnd�1,1),...f (0,yBnd�1), f (1,yBnd�1), . . . f (xBnd�1,yBnd�1) �Example: integration by Simpson's ruleA vetor or matrix an be de�ned using a reurrene in exatly the same way we used alist earlier. This funtion integrates f(x) over the range a! b using Simpson's rule witha step length h:integral f a b h = MakeVetor ((b�a)/h) NextElementwhereNextElement 0 = 0NextElement n = (integral sub (n�1))+ (h/3)� ((f (x�h))+ 4�(f x)+ f (x+h)), if n � 1wherex = n�h + aThis de�nition reomputes f three times at eah point, and we an use the same tehniquewe used with �b to avoid it by introduing a list:
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integral f a b h = MakeVetor ((b�a)/h) NextElementwhereNextElement 0 = 0NextElement n = (integral sub (n�1)) +(h/3)� ((fs sub (n�1))+ 4�(fs sub n)+ (fs sub (n+1))), if n � 1fs = generate fnwherefn n = f (n�h + a)There is no problem mixing generate'd lists and MakeVetor'ed vetors in the same reur-rene. The di�erene between them is that the spae oupied by a vetor is used as longas any element is referred to, while early parts of a list whih are no longer needed anbe relaimed. Generally, a list is a better hoie if all that is required for output is the�nal state, but a vetor is good for when the entire ourse of values is to be presented asoutput.Matries an also be de�ned by reurrenes, in many interesting ways. For example,in applying the Gauss-Seidel method to the solution of linear simultaneous equations, amatrix is built whose \South" and \West" boundary is de�ned independently, but whoseinternal elements depend on their South and West neighbours. This omes out very easily:GaussSeidel f a= MakeMatrix (Bound, Bound) NextElementwhereNextElement (0,0) = aNextElement (0,y) = a, if y 6= 0NextElement (x,0) = a, if x 6= 0NextElement (x,y) = f (NewMatrix sub (South (x,y)))(NewMatrix sub (West (x,y))), if x � 1 ^ y � 1where f depends on the equations being solved. South and West alulate neighbours'oordinates from the present oordinate:South (x,y) = (x,y�1)West (x,y) = (x�1,y)This example is interesting beause it is very lose to the original mathematis, and ishighly parallel. Computation an proeed in a \wavefront", whih marhes diagonallyaross the matrix. Coding the algorithm in an imperative language is rather awkwardbeause the matrix must be sanned in the right order to ensure that values are de�nedbefore they are used. Writing an imperative parallel version is harder still. This and otherexamples are the subjet of an exellent artile on delarative sienti� programming byArvind and Ekanadham [AE88℄.
23



Funtion ompositionFuntions are obviously important in funtional programming|but what an one do witha funtion? A fundamental operation on funtions is to ompose them, to form anotherfuntion whih applies �rst one funtion, and then the other. It should be possible todedue preisely what ompose must do from its type spei�ation:ompose :: (� ! ) ! (� ! �) ! � ! Its de�nition isompose f g = hwhereh x = f (g x)Though more explanatory, this is preisely equivalent toompose f g x = f (g x)The in�x form of ompose is written \Æ":(f Æ g) x = f (g x)Composition is learly assoiative:(f Æ g) Æ h = f Æ (g Æ h)This is easily shown by providing the missing parameter x, and then reduing. The LHSis ((f Æ g) Æ h) x| {z } = (f Æ g) (h x)| {z }= f (g (h x))and the RHS is(f Æ (g Æ h)) x| {z } = f ((g Æ h) x)| {z }= f (g (h x))as expeted.The purpose of \Æ" is to allow us to build funtional objets without having to introdueparameters expliitly. This is taken one step further by the next example.Combinators and ombinator abstrationThe funtion \Æ" passes only one parameter at a time. It is sometimes useful to pass morethan one, and this requires a generalisation of funtion omposition:24



ÆÆ :: (�1 ! �2 ! ) ! (� ! �1) ! (� ! �2) ! � ! f ÆÆ g1 g2 = hwhereh x = f (g1 x) (g2 x)An interesting early result in the theory of funtional programs is that these funtionsallow us to express arbitrary funtions without referring to variables at all. For example,the funtion f de�ned byf x = (log x) / ((sqrt x) � (2 � x))is equivalent tof = (/) ÆÆ log((�) ÆÆ sqrt((�) 2) )(we assume for onveniene here that \ÆÆ" binds more tightly than appliation). To seethat this is so, let us provide the missing parameter and apply redution:f x = ( (/) ÆÆ log((�) ÆÆ sqrt((�) 2) )) x| {z }= (/) (log x)( ((�) ÆÆ sqrt((�) 2) x) )| {z }= (/) (log x)((�) (sqrt x)(2 � x) )= (log x) / ((sqrt x) � (2 � x))It is possible to �nd an algorithm, alled a ombinator abstration algorithm, whih sys-tematially transforms any de�nition to remove variables, introduing operators like \ÆÆ"(alled ombinators) instead. This is frequently useful in program transformation, and, aswe shall see in Chapter 3, it is a ommon ompilation tehnique.Classial works use a more fundamental set of ombinators, alled S K and I:S a b  = a  (b )K a b = aI a = a 25



It happens thatS a b  = apply ÆÆ a b whereapply f x = f xField and Harrison [FH88℄ and Glaser, Hankin and Till [GHT84℄ both give good introdu-tions.2.3 Equational ReasoningWe have already seen some simple arguments about funtions like hd, tl, map2 and ply.These employed the straightforward approah of using the equalities given in the programsript to rewrite expressions. This equational way of reasoning about funtional programsderives its basis from the redution mehanism by whih the meaning of an expression isalulated: it is really only ontrolled, symboli evaluation of the program.We examine the tehnique more losely by means of an example, whih we draw fromthe rih algebra of equalities between funtions like map, map2 and ply. We will prove thatfor all op 2 � ! � ! ,as 2 [�℄,bs 2 [�℄:map2 op as bs = ply (map op as) bsWe begin by de�ning a new funtion map2', a name for the form on the RHS:map2' op as bs = ply (map op as) bsNow instantiate this equation for the ases of the parameters as and bs, that is speialisethe equation for partiular forms of parameters. Begin with when both as and bs areempty:map2' op [ ℄ [ ℄ = ply (map op [ ℄) [ ℄Now apply redution (sometimes alled unfolding when used in program transformation)to the RHS. Use the de�nitions of map and ply:map2' op [ ℄ [ ℄ = ply (map op [ ℄)| {z } [ ℄= ply [ ℄ [ ℄| {z }= [ ℄Next we take the ase where both are lists of one or more elements:
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map2' op (a : as) (b : bs) = ply (map op (a : as)) (b : bs)Now we apply some redution to the RHS, using the equations for map and ply:map2' op (a : as) (b : bs) = ply (map op (a : as))| {z } (b : bs)= ply ((op a) : (map op as)) (b : bs)| {z }= (op a b) : (ply (map op as) bs)| {z }In the RHS of this equation is an instane of the RHS of the equation we used to de�nemap2'. We an use that equation to rewrite the equation above tomap2' op (a : as) (b : bs) = (op a b) : (map2' op as bs)This step, alled folding, used an equation bakwards, from RHS to LHS. As was notedearlier, omputations whih use suh steps may not always terminate when they should.Thus, this transformation is not guaranteed to preserve termination properties orretly|an independent proof is needed, whih would normally use the tehnique of indution,whih is introdued in setion 2.5. We do, of ourse, retain the guarantee that when theprogram does terminate it yields the expeted answer.The result of these instantiations and simpli�ations is a new pair of equations on-erning map2':map2' op [ ℄ [ ℄ = [ ℄map2' op (a : as) (b : bs) = (op a b) : (map2' op as bs)This de�nition of map2' is idential in struture to the de�nition of map2, and we antherefore onlude that, indeed,map2' = map2that is,map2 op as bs = ply (map op as) bsNote that we used four kinds of step in this argument: de�nition (of funtion map2'),instantiation (of map2' for empty and non-empty lists parameters), folding and unfold-ing. Similar steps whih will be used later inlude inlude abstration (introdution of awhere lause), laws, meaning the appliation of ready-proven equalities, and anellation.Canellation is simply the rule that if, for all parameters x,f x = g xthen we an infer that f = g |in fat this is the de�nition of equality for funtions. Wewill often use it in de�ning funtions. For example, one might write27



sum as = insert (+) 0 asBy anellation this is equivalent tosum = insert (+) 0Together, these rules onstitute a very powerful transformation tehnique and we shalluse it extensively. It was pioneered in Darlington and Burstall [Dar82℄, where it is alledthe fold/unfold system. A great deal of work has been done on providing automatedsupport to hek and manage suh derivations. Very powerful automati tehniques existwhih an derive many useful results without human intervention. Furthermore, while theneed to assure the preservation of orret termination behaviour remains in general, it ispossible to show that many forms of derivation are ompletely valid despite the use offolding.Beause of the problem of assuring termination orretness, equational reasoning mustbe supplemented by indution tehniques. In fat, it often turns out to be easier to performa omplete veri�ation by indution rather than �nd a forward derivation. The next fewsetions develop a very simple basis for using indutive arguments of various kinds.2.4 Partial funtions and partial data struturesSeveral of the de�nitions given so far have been reursive: an objet is de�ned in termsof itself. Whenever this ours, the possibility exists that the objet's value has not beenproperly de�ned. When one applies redution to �nd the value of suh an objet, wemay never reah the normal form. This setion introdues the ideas neessary to framequestions about the termination of funtional programs, whih an beome quite subtlewhen, for example, in�nitely-long lists are onsidered.A partiularly useful way to address the problem is to introdue a speial symbol, ?(alled \bottom"), the arhetypial non-terminating omputation, whih an be expressedin the funtional language simply by the equation? = ?We onsider all non-terminating omputations, and all omputations with an unde�nedresult, to be equal to ?. This presumption is valid as long as we onsider only the resultof the omputation (its extensional properties), and not the manner of its exeution (itsintensional properties).Of ourse we annot always tell whether a partiular expression is equal to ?. As anexample, we might try to write a program to �nd whether my telephone number appearsin the deimal expansion of e:FindSubList MyPhoneNumber DigitsOfewhereDigitsOfe = [2, 7, 1, 8, 2, 8, . . . ℄ 28



The rôle of ? is to provide the algebrai language to ask suh questions.2.4.1 StritnessFor example, one interesting question to ask of an N-parameter funtion f is whether, whenwe make the i'th parameter ?, the result has to be ? too. More formally the question iswhetherf x1 . . . xi�1 ? xi+1 . . . xN = ?for all xj, j 6= i. If so, f is said to be strit in its i'th parameter: either� f x1 . . . xi�1 xi xi+1 . . . xN = ?always, or� f must use its i'th parameter to produe its result.If f is not strit in its i'th parameter, it annot make use of its i'th parameter in formingits result.The pratial import of this is that if f is strit in parameter i, then when reduing anappliation of f to atual parameters e1 to eN ,f e1 . . . ei�1 ei ei+1 . . . eNparameter ei an be redued before the appliation of f, or in parallel with it, while stillretaining the guarantee that the normal form will be found if it exists.Powerful tehniques exist for stritness analysis based on the tehnique of abstratinterpretation [HBJ88℄, and this o�ers the prospet of highly parallel redution. Seesetion 3.1.5 for more details.2.4.2 ReursionAnother use of ? is to lend a mathematial meaning to reursive de�nitions, and to forma basis for the indution tehniques we will introdue later in the hapter.It is quite straightforward to give a mathematial semantis to non-reursive de�nitions,but a reursive de�nition has to be unravelled into an in�nitely large expression before itloses its reursive nature. Using ?, however, we an approximate to the semantis of areursive de�nition as losely as neessary.Firstly, let us de�ne our notion of approximation (onsider funtions over numbersonly): the funtion f approximates the funtion g (written f v g) if and only iffor all xf x = g x _ f x = ?(where _ denotes logial \or"). For example, if we have the de�nitions
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f x = ? g 1 = a h 1 = ag 3 =  h 2 = bh 3 = Funtions g and h yield ? exept where de�ned otherwise. Nowf v g v hsine h is onsistent with g, but is de�ned for more parameter values. All funtions aremore de�ned than f, whih is unde�ned for all parameters.Now suppose we have a reursively-de�ned funtion r,r x = . . . r . . . r . . .in whih r appears one or more times on the RHS. Let us abstrat r from the RHS:r x = body r xwherebody r' x' = . . . r' . . . r' . . .The funtion body aptures the ontents of the \. . . ", but allows us to manipulate thereursive all expliitly. The primed symbols r' and x' are new variables. De�ner0 x = ?andr1 x = body r0 xthat is,r1 = body r0Clearly, r0 v r1. The funtion r1 is not muh use: it is unde�ned on all but the simplestinput values. However, we an extend it by iterating again:r2 = body r1and again,r3 = body r2Thus,
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ri = bodyiwherebodyi x = body ( body � � � body| {z }i times ( ? ) � � � )We an generate a list of all these iterates:[r0, r1, r2, r3 � � � ℄ = iterate body ?For any given input x there is some integer n suh thatrn x = r xNotie that the iterations form an inreasing hain, alled the Kleene hain:r0 v r1 v r2 v � � � v ri � � �The meaning of r itself is just the limit of this hain as i tends to in�nity:r = limi!1 ribeause then the equationri = body ri�1will atually hold. This limit is, therefore, the solution of the equation we used to de�ner in the �rst plae.Tehnially, r is alled the least �xed point of body, beause r is the least-de�ned funtionwhih is unhanged by the transformation body. For a more formal treatment of thismaterial the reader is referred to [Sh86℄.2.4.3 Partial data struturesA partial list is a �nitely-long list whih ends with ? instead of [ ℄. For example,1 : ?1 : 2 : ?1 : 2 : 3 : ?1 : 2 : 3 : 4 : ?are partial lists of numbers. When in�nite lists were �rst introdued earlier in this hapter,attention was drawn to the analogy with a ommuniations hannel, on whih values aretransmitted periodially|or even sporadially|but inde�nitely. A partial list representsa hannel on whih a few elements are sent, but then is silent forever. It is impossibleto distinguish a partial list from a longer one simply by omputing its value, beause oneannot tell when to give up waiting for the next value to appear.Just as with funtions, there is a useful notion of approximation for partial lists: l1 v31



l2 if and only ifl1 = ? _ (hd l1 v hd l2 ^ tl l1 v tl l2)This is sometimes alled the pre�x ordering beause l1 v l2 if and only if l1 is an initialpre�x of l2 and ends in ? (or is atually equal to l2). Under this ordering, it should belear that? v 1 : ? v 1 : 2 : ? v 1 : 2 : 3 : ?Just as with the reursive funtion r, we an give a meaning to a reursively-de�ned list l,l = . . . l . . . l . . .by onsidering suessive iterates starting from ?. This time, let us take a onreteexample:�bs = 1 : 1 : (map2 (+) �bs (tl �bs))We abstrat out the reursive referene to �bs:�bs = body �bswherebody �bs' = 1 : 1 : (map2 (+) �bs' (tl �bs'))Now we an enumerate the �rst few iterates, and use redution to �nd their values:�bs0 = ?�bs1 = body �bs0 = 1 : 1 : (map2 (+) �bs0 (tl �bs0))| {z } = 1 : 1 : ?�bs2 = body �bs1 = 1 : 1 : (map2 (+) �bs1 (tl �bs1))| {z } = 1 : 1 : 2 : ?�bs3 = body �bs2 = 1 : 1 : (map2 (+) �bs2 (tl �bs2))| {z } = 1 : 1 : 2 : 3 : ?�bs4 = body �bs3 = 1 : 1 : (map2 (+) �bs3 (tl �bs3))| {z } = 1 : 1 : 2 : 3 : 5 : ?�bs5 = body �bs4 = 1 : 1 : (map2 (+) �bs4 (tl �bs4))| {z } = 1 : 1 : 2 : 3 : 5 : 8 : ?and so on. As before, we an easily generate a list of all these iterates:[�bs0, �bs1, �bs2, . . . ℄ = iterate body ? 32



and the limit of this series,�bs = limi!1 �bsisatis�es the original reursive equation used to de�ne �bs.The value of an element of this series, �bsi, say, denotes the result of an un�nishedomputation. Thus we an think of the ? whih appears in, for example,�bs5 = 1 : 1 : 2 : 3 : 5 : 8 : ?as meaning \not yet" instead of \never". This should provide further support for theanalogy between lists and ommuniations hannels.2.5 IndutionIn this setion the most powerful tehnique for reasoning about funtional programs ispresented. Proof by indution over the natural numbers should be familiar from shoolmathematis. We will introdue some slight variations, all ultimately reduible via om-putational indution (below) to indution over natural numbers.2.5.1 Computational indutionThe most fundamental form of indutive argument about a funtional program's behaviouris based on the number of iterations in the Kleene hain of approximations to a reursively-de�ned value. Suppose we have some reursive de�nition:x = . . . x . . . x . . .Using the ideas from the previous setion, we havex = limi!1 f x0, x1, x2, . . . gand we need to show that some property P holds for x. It is easy to show P xi for all i:Base ase: show that P ?.Indutive step: show that, given P xi, P xi+1 holds.This establishes P xi for all i, but does not automatially imply that P holds for the limit,x, whih is what atually interests us. Fortunately it is valid for a very large lass of\admissible" prediates.2.5.2 Admissible prediatesA prediate P is admissible if it is hain omplete: P is de�ned to be hain omplete ifwhen P holds for every element of a Kleene hain it holds for its limit. That is,33



x0 v x1 v x2 v � � �andP x0 ^ P x1 ^ P x2 ^ � � �impliesP ( limi!1 f x0, x1, x2, . . . g )We will �nd that all the program properties we are interested in are admissible, beausethe assertion that any two expressions are equal is hain omplete. An example of anon-hain-omplete prediate is a test whether a list is partial.A more mathematial treatment of this material inluding the haraterisation of alass of admissible prediates is to be found in [MNV73℄.2.5.3 Partial strutural indutionThis is by far the most ommonly-used indution method. Just as omputational indutionapplies when reursion is used in a funtion or value's de�nition, strutural indution dealswith reursion in data types, as, for example is found in the de�nition of lists given earlier:List � ::= NIL j CONS � (List �)More generally, suh de�nitions de�ne tree-like strutures, for example:Tree � ::= LEAF � j NODE (Tree �) (Tree �)Just as with data value reursion, we an unravel this data type de�nition into its Kleenehain, starting with the type ontaining only unde�ned elements, whih we will all f?g:Tree0 � ::= f?gTree1 � ::= LEAF � j NODE (Tree1 �) (Tree0 �)::= LEAF � j NODE f?gf?gTree2 � ::= LEAF � j NODE (Tree1 �) (Tree1 �)::= LEAF � j NODE (LEAF � j NODE f?gf?g)(LEAF � j NODE f?gf?g)...This suggests an indution shema for showing that P x for all x 2 Tree �:Base ase: show that P ?.Indutive step: Given that 34



for all x 2 Treei �:P xshow thatfor all x 2 Treei+1 �:P xProvided P is admissible, this shema proves P for any hoie of � in Tree �: it subsumesthe proofs for Tree [Char℄, Tree (Tree Num) et.We an improve the shema above substantially by observing that the indutive step isalways proved for eah ase of the data type separately, and that the non-reursive ases(suh as NIL and LEAF �) are more properly moved into the base-ase sine they do notrequire the indutive assertion. The simpli�ed shema for partial strutural indution onTrees is as follows:Base ases: 1. Show that P ?.2. Show thatfor all x 2 �P (LEAF x)Indutive step: Given that P t1 and P t2, show thatP (NODE t1 t2)The partial indution shema for lists isBase ases: 1. Show that P ?.2. Show that P [ ℄.Indutive step: Given that P xs, show thatfor all x 2 �:P (x : xs)Notie that just as with omputational indution, we require that P be admissible to inferfrom suh a proof that P holds for an in�nitely-large struture.
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2.5.4 Total strutural indutionThere are many useful properties whih hold for all �nite, total (i.e. not partial) elementsof a data type. An example isfor all as, bs 2 [�℄, FiniteAndTotal as:reverse (as ++ bs) = (reverse bs) ++ (reverse as)wherereverse :: [�℄ ! [�℄reverse [ ℄ = [ ℄reverse (x : xs) = (reverse xs) ++ [x℄Reall that \++" is the in�x form of append, the funtion whih joins lists. We assumethe arhetypal non-admissible prediate FiniteAndTotal, whih holds for only those �nitelists ending in [ ℄. The property obviously fails for in�nite and partial lists:reverse ([1,2,3, � � �℄ ++ bs) = ? 6= (reverse bs) ++ (reverse [1,2,3, � � �℄)A partial strutural indution proof of this property fails in its base ase, quite reasonably,beausereverse (? ++ bs) 6= (reverse bs) ++ (reverse ?)For suh proofs, the total strutural indution shema is useful. Here is the version for[�℄:Base ase: Show that P [ ℄.Indutive step: Given that P xs, show thatfor all x 2 �:P (x : xs)This establishes P for all �nite and total elements of [�℄. For total strutural indution,we drop the ? part from the base ase, and no longer require that P be admissible.A partiularly ommon use of total strutural indution is over the natural numbers.These an be de�ned as a data type:Nat ::= ZERO j SUCC NatFor example the natural number 3 would be writtenSUCC (SUCC (SUCC ZERO))However, this data type inludes suh elements as36



(SUCC (SUCC (SUCC (SUCC (SUCC (SUCC (SUCC (SUCC( � � � )) � � � )) = 1andSUCC (SUCC (SUCC ?))whih might be thought of as \at least 3". Clearly, for most purposes we mean to dealwith the �nite, total natural numbers. Their total indution shema isBase ase: Show P ZERO.Indutive step: Given P n, show that P (SUCC n).It is often fruitful to think of the �nite and total elements of a data type as a distintsubtype, and we might use some notation to that e�et in type spei�ations, as inreverse :: [�℄! ! [�℄!where the \!" suÆx indiates that the funtion requires a �nite, total list to produe aresult, and that the result it produes is �nite and total.In general, it is not stritly neessary to base a total strutural indution argument ona data type. Any struture will suÆe, provided a well-founded ordering an be imposedon it. A well-founded ordering is an ordering relation, say �, on a set, say A, suh thatthe set ontains no in�nitely long dereasing hain of elements� � � a4 � a3 � a2 � a1 � a0The ordering may be a partial one: for some elements a and b, it may be that neithera � b or b � a holds. Using it we an state the general version of the strutural indutionpriniple:To prove that: P x for all x 2 A where � is a well-founded ordering on A,Base ase: Show that P x for all minimal elements x of A, that is for all x 2 A suh thatthere is no x' � x.Indutive step: Given that P x' for all x' � x, show that P x.Note that we an in fat assume P for all values smaller than x; this extends the indutionshemata given so far.2.5.5 Reursion indutionThis �nal tehnique is arguably not an indution argument at all. In using the limit ofthe Kleene hain to give a meaning to a reursively-de�ned variable, we argued that if ris de�ned by the reursive equation
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r = body rwherebody r' = . . . r' . . . r' . . .and[r0, r1, r2 � � � ℄ = iterate body ?thenr = limi!1 riis a solution to the reursive de�nition of r beause at the limit,ri = ri�1However, we may be able to �nd a solution by other means. For example, let us de�nethe funtion triangle over the natural numbers:triangle :: Num ! Numtriangle n = 1, if n = 1triangle n = n + (triangle (n�1)), if n > 1We an use the Kleene hain to �nd the result of applying triangle to any partiularparameter by unravelling far enough. However, there is a non-reursive solution to theseequations:triangle2 n = n�(n+1)/2To verify that this is so, we an see whether the equations de�ning triangle are indeedsatis�ed when we substitute triangle2 for triangle. Is it true thattriangle2 n = 1, if n = 1triangle2 n = n + (triangle2 (n�1)), if n > 1 ?Unfolding triangle2 throughout gives:n�(n+1)/2 = 1, if n = 1whih is trivially satis�ed, andn�(n+1)/2 = n + ((n�1)�((n�1)+1))/2, if n > 1We use arithmeti laws to simplify this:
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n�(n+1)/2 = n + ((n�1)�n)/2= (2�n + ((n�1)�n))/2= (2�n + n2 � n)/2= (n + n2)/2= n�(n+1)/2This ompletes the proof that triangle2 satis�es the equations de�ning triangle.This means that when triangle x is de�ned, triangle2 x must also be de�ned, and mustgive the same result. This is not quite the same as proving that for all x, triangle x =triangle2 x, beause triangle2 x may be de�ned when triangle x is not. This happens in ourexample when x < 1.To be more preise, what reursion indution veri�es is thatfor all x 2 Numtriangle x v triangle2 xThis is just the de�nition of v on funtions:triangle v triangle2If triangle had been de�ned for all of its domain type, we ould immediately infer thattriangle2 = triangle. Indeed, if we modify triangle's type spei�ation totriangle :: Nat ! Natso that triangle is a total funtion, then, over this restrited domain type, triangle2 mustbe equal to it.The reursion indution prinipleFrom this example we derive the following proof shema: given a system of reursiveequations de�ning f, and a value f' whih satis�es these equations, infer thatf v f'Commonly, the proof of atual equality is unneessary.Note that a simple form of reursion indution was used earlier (page 27) to assertthat beause map2' and map2 are de�ned by equations of the same struture, they are thesame.2.6 Why Funtional Languages?Having introdued funtional programming and given a very brief guide to transformationand veri�ation within the funtional style, we onlude this hapter with a review of thesuess and generality of the approah. 39



Funtional languages are very often de�ned by default: they lak assignment. Theyare of interest here for positive, rather than for negative reasons. The prohibition ofassignment does not prevent the onstrution of evolving data strutures, but the inter-dependenies between operations, whih arise when hanges to data must be propagatedbetween operations, must be made expliit. It is not proven that prohibiting assignmentalways simpli�es programming, although the examples where the funtional approah failslead one to onlude that a neater solution than simply re-introduing assignment is pos-sible (see [ASS85℄ pg. 290 for a disussion).Foregoing expliit assignment removes a major soure of programming errors by lettingthe mahine arrange re-use of memory ells. Assignment is a means of informing theomputer that a value is no longer required, and that the ell holding it is to be re-usedfor holding the new value given. In a funtional language, the programmer is relieved ofany onern for the lifetime of values, and the timing of destrutive overwriting of the ellsontaining them. This is an important abstration from the housekeeping needed with vonNeumann programming. It is also a big step towards avoiding unneessary onealmentof a program's parallelism, sine programmed memory re-use introdues spurious pointsof synhronisation between omputations whih might otherwise proeed in parallel.2.6.1 Referential TransparenyThe �rst positive reason for onsidering funtional languages is that funtional programsare easier to reason about than imperative ones. This should have beome lear from theexamples in this hapter.In a funtional program, any pair of expressions whih are syntatially the same aresemantially the same, sope rules allowing. This property, \referential transpareny", is aorollary of the prohibition of assignment|without assignment, expression evaluation anhave no side-e�ets, so di�erent evaluations of the same expression must yield the sameresult. Referential transpareny means that a program's sript an be treated as a systemof equations, and the equational form of reasoning familiar from algebra is appliable.2.6.2 Higher-Order FuntionsAnother bene�t of the funtional approah is the ease and leanliness with whih higherorder funtions an be de�ned. Generally, no speial syntax is needed to de�ne or ma-nipulate funtions whose parameters or values are also funtions. Moreover, algebraiproperties suh as referential transpareny still hold; there is no ontext sensitivity prob-lem for higher-order funtions, as there is with dynamially-soped languages suh as(some dialets of) Lisp.2.6.3 Polymorphi Type ChekingStrong typing in traditional languages destroys the usefulness of higher-order funtions byinsisting that a separate de�nition be written for eah di�erent parameter type ombina-tion, even if the funtion need not know its parameters' types. For example, the ontextof \map" above implies that its type is 40



map :: (line ! line) ! ([line℄ ! [line℄)This type would onit with many other likely uses of \map", resulting in a type errorunder a strong type disipline like Pasal's [JW75℄.Polymorphi type heking enables a single, generi funtion to be written instead. Thegeneri funtion is assigned a type expression detailing the minimum struture requiredfor type onsisteny:map :: (� ! �) ! ([�℄ ! [�℄)If the usage of the funtion is then onsistent with the funtion's type expression, run-timetype errors an be guaranteed never to our.An objet's ontextually-implied type is onsistent with its generi type expressionif the implied type an be obtained from the generi type expression by a onsistentsubstitution of type variables by sub-expressions of the ontextual type.Polymorphi type inferene and heking are not on�ned to funtional languages,but reet the importane of higher-order funtions to the expressive power of funtionallanguages.2.6.4 Delarative CompletenessViewing a funtional program as a system of reursive equations leads to a delarativereading, where the meaning of the program is taken to be the mathematial solution ofthe equation system. Our language has a very valuable ompleteness property: the redu-tion of an expression by rewriting terms aording to the program's equations, using thegeneral normalisation strategy, is guaranteed to yield a result if a result is mathematiallydedueable. This leads to a view, taken in [HOS85℄, where a suitable funtional languageis regarded as a logi programming language based on equations (in ontrast to relations,as in Prolog). The equational nature, ombined with the ompleteness property, suggeststhat funtional languages have a fundamental importane.2.7 Why Not Funtional Languages?There are problems with funtional languages. A seletion are listed here.2.7.1 Lak of Expressive Power.Serious problems have been enountered with extensions of funtional languages to expressinterative resoure management. Finding language onstruts to express the kind ofnon-determinism needed is quite easy, and several examples have been implemented andused suessfully, suh as the \merge" operator of [AS85℄ and [Jon84℄, and the resouremanagers of [AB84℄. The diÆulty is rather with maintaining the language's desirablealgebrai properties.In the ontext of parallel programming, the e�et of this restrition is that a funtionalprogram's result annot depend on the order or speed of evaluation of its onstituent41



expressions. This is a very attrative safety feature for parallel programming, but doeslimit the appliation to some extent.2.7.2 Lak of Abstrative Power.Allowing program objets to have evolving loal state an substantially simplify the expres-sion of ertain algorithms|the funtional style prohibits an \objet-oriented" program-ming struture. [ASS85℄ argues that, although assignment an always be avoided (e.g.using lazy streams), their onstraint-propagation iruit simulator, for example, would beinordinately ompliated if no assignment were allowed at all. An obsure program in amathematially-simple language is, surely, at least as diÆult to reason about as a learprogram in a language with a more omplex logi.An alternative to simply re-introduing assignment is to notie that the language fea-tures proposed to help with the problem of interative resoure management mentionedabove, suh as Abramsky and Sykes' non-deterministi merge, or Arvind and Brok's re-soure managers, an also be used to help simplify the expression of shared aess to a statevariable. This may be a more strutured and uniform approah than allowing assignment,but the semanti problems remain.2.7.3 PerformaneUntil reently, the usefulness of funtional languages has been hampered by a lak offast implementations on onventional omputers. Their use as a basis for researh intoprogramming for high-performane, parallel omputers therefore needed some justi�ation.Funtional programs tend to run slowly beause the language provides useful serviesto the programmer. These generally inlude1. Dynami store alloation.2. Lazy semantis.3. Higher-order funtions.It has been shown (see [Jon87℄, [Aug84℄, [BGS82℄) that these features an often be re-moved from the ompiled ode, after areful program analysis. We review suh teh-niques in Chapter 3. When suh modern ompiler tehnology is applied, performane ononventional mahines an be very nearly omparable to standard imperative languageimplementations.32.7.4 The update problemThere remains a systemati performane problem whih is harder in general to resolve.The histogram funtion given in setion 2.2.6 was introdued as an illustration. At itsheart lies the funtion MapElement f i xs, whih was de�ned so that3Languages having all-by-value semantis, suh as Common Lisp [Ste84℄, and Hope [BMS80℄ ertainlyhave implementations with performane ompetitive with the standard imperative language ompilers (see[BGS82℄). Compilers for lazy languages, suh as Lazy ML [Aug84℄, are not far behind.42



MapElement f i [x1, x2, . . . xi, . . . xn℄= [x1, x2, . . . f xi, . . . xn℄It is not possible to de�ne this funtion within the language in a way whih avoids someopying of the list. The reason is that referenes to the unhanged list must retain thesame meaning. We annot, in general, just replae the hanged element in situ. Suh anupdate might be alled \destrutive", sine it overwrites a value whih is already de�ned.What this means is that we annot simulate a onventional, imperative programminglanguage (where assignment an be destrutive) with the same eÆieny. By using a treerepresentation, it an be shown that the loss need only be a fator proportional to thelogarithm of the data struture's size, but the overheads of suh shemes ompared withthe imperative approah are inevitably large.Of ourse, in partiular ases a ompiler an loate where a destrutive implementationof funtions like MapElement an be used. This is rather ompliated, and not very pre-ditable; for example, it depends on evaluation order, whih in turn depends on stritnessanalysis. The spae usage harateristis of funtional programs are notoriously diÆultto predetermine.2.8 SummaryThis hapter has given a swift introdution to funtional programming in the style usedin the remainder of this book. A partiular emphasis has been laid on tehniques formanipulating and verifying funtional programs, as a foundation for the more extensivederivations whih follow. One aim of the approah to programming being advoated isthat programmers will make use of simple identities when onstruting and maintainingprograms, and for this reason the presentation has not separated the ativity of writingprograms from that of reasoning about them.2.9 Pointers into the literatureStandard texts on funtional programmingBird and Wadler's textbook [BW88℄ is the most appropriate soure for material whihexpands on the ontent of this hapter at a similar level. Their notation is very similar.Field and Harrison [FH88℄ give a muh deeper treatment of a wide range of subjets inthe area, and is reommended for the reader wishing to go beyond the introdutory levelof this hapter.Muh of the material in Henderson's book [Hen80℄ is overed by these later books,but it is at least worth referring to for its investigations of stream programming andbaktraking. Glaser, Hankin and Till wrote a fundamental textbook [GHT84℄ overingeverything needed for a basi grounding in the area at the time. Their treatment ofmathematial foundations suh as ombinators and the �-alulus is partiularly worthreferring to. It laks overage on topis whih have sine gained importane, suh as typesystems. Another useful, but again somewhat dated, referene is the olletion (ommonly43



alled the \blue book") edited by Darlington, Henderson and Turner [DHT82℄. This isinteresting beause of the breadth of the funtional programming researh ommunity itspans.Abelson and Sussman's textbook [ASS85℄ is outstanding in many respets. They areespeially suessful in plaing the funtional paradigm in ontext, arefully developing adisussion of whether a pure funtional language is suÆiently expressive. Their book givesa taste for the work of the large Lisp-based ommunity, ostensibly based on a funtionalview but extending far outside it. For an introdution loser to the mainstream of Lispulture, one might look to Wilensky [Wil84℄.Foundations for reasoning about funtional programsThe �-alulus, originated by Churh [Chu41℄, was introdued as a notation for funtions ingeneral, and deals with higher-order funtions partiularly tidily. Its orrespondene withmost funtional programming languages is lose enough for us to think of their syntax as\sugar" for what is really just programming diretly in the �-alulus. Dana Sott foundeda large body of theoretial omputer siene by onstruting a model of the �-alulus,using only fundamental mathematial notions suh as set theory. This enables fats aboutthe �-alulus to be proven using lassial mathematis, and forms the formal basis, alleddomain theory, for reasoning about funtional programs as mathematial objets. Stra-hey applied this to the problem of giving mathematial meaning to other programminglanguages as a means of formal spei�ation of programming language meaning. Thisarea, denotational semantis, is well overed by [Sh86℄ and [Sto77℄. The �-alulus itselfis rather thoroughly overed by Barendregt [Bar84℄. Stoy gives a partiularly aessibleintrodution to Sott's domain theory in [DHT82℄.The priniples of reasoning about programs using the tehniques presented here wereatually developed before that mathematis were formalised, in the �rst reorded instaneby MCarthy [MC67℄. The survey of indution tehniques given here was based on aartile by Manna, Ness and Vuillemin [MNV73℄, where a variety (more than were givenhere) are illustrated and veri�ed with respet to omputational indution, and ultimately,therefore, to Sott's domain theory.Bakus [Ba78℄ presents a rather di�erent approah based on the ombinator languageFP. Whereas in our language higher-order funtions an be onstruted at will, FP isrestrited to small set of well-understood higher-order ombining forms, and the languageis haraterised by a quite small set of generally-appliable equivalenes whih onstitutean \algebra of programs". Being a ombinator language, there are no variables at all, onlyfuntions to pik out and manipulate parameters. This avoids onsideration of parametervalues in deiding the appliability of algebrai laws, and leads to a laim that reasoningours at a \funtion level". The reader is referred to Field and Harrison [FH88℄.The presentation in this book avoids the �-alulus, drawing instead from the theoryof term rewriting systems. This allows a simpler explanation of equational reasoning andpattern mathing. It is slightly more general, sine it inludes some funtions (suh as thenon-strit or of setion 3.1.3) whih annot be written in the �-alulus (although theyare represented in most models of the �-alulus). The reader is referred to Klop [Klo90℄or Huet and Oppen [HO80℄. 44



Assessing funtional programmingIt is for the reader to ponder the question of whether funtional programming has anythingto o�er programming pratitioners, and if so what. As already mentioned, this is onetheme of Abelson and Sussman's book [ASS85℄. They identify some serious problems inexpressing ertain program strutures in the funtional style, but they do not deal withthe question of reasoning about programs. Hughes' artile \Why funtional programmingmatters" [Hug84℄ �nds muh expressive power in the funtional style, and some of thispresentation has been drawn from it. His emphasis is on using streams and funtionomposition to separate programs into modules. Note that these onlusions are notontraditory, but rather indiate that the funtional style does matter, but is not auniversal panaea.Arvind and Ekanadham advoate their language, Id Nouveau, for sienti� program-ming in [AE88℄. They �nd muh to ommend a purely funtional approah. The vetorand matrix reurrene notation used here is drawn from their \I-strutures", and sharesthe interesting advantage seen in the Gauss-Seidel example (see setion 2.2.8), that thematrix's san order need not be spei�ed. They do �nd ause to augment their languagewith features whih are not purely funtional, but are still relatively pure (see setion 4.11).They have not yet found ause to deal espeially with the \update problem" outlined insetion 2.7.4.Determinay and operating systemsFor parallel programming, funtional languages have an outstanding advantage: regardlessof the parallelism used in the evaluation, the result will be ompletely repeatable. It isnot possible, either by aident or by design, to write a funtional program whose resultdepends on who wins a \rae" between two parallel proesses.Although very handy for many appliations, there are situations where some kind ofrae is just what is wanted. For example, one might have a parallel algorithm in whihany solution will do, but we do not know whih \solver" proess will �nd a solution �rst(MBurney and Sleep give an example of this, where a global bounding value is non-deterministially updated to ontrol pruning in a parallel searhing algorithm).More ommon examples our in operating systems and when dealing with input andoutput devies. It is in the nature of an operating system that its behaviour depends onthe termination order of the proesses for whih it is responsible.A substantial amount of work has been done on operating system design in the fun-tional style. Abramsky and Sykes [AS85℄ and Simon Jones [Jon84℄ have built operatingsystems by introduing a speial operator, merge. The stream returned by merge e1 e2 on-tains the elements of the streams e1 and e2 in the order in whih they are omputed. This\fair, bottom-avoiding" merge operator is suÆient to enode all the operating systemsappliations studied, and is not diÆult to implement. Unfortunately, programs usingmerge are very diÆult to reason about.
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Input-output and the \plumbing problem"In a funtional language, all the objets upon whih an expression's value might dependmust be manifest in the expression itself. When programming input and output this raisesthe \plumbing problem": every expression, funtion or module whih might perform inputor output must be \plumbed in" to the input and output ontrollers, at the very top level ofthe program. Thus an apparently quite small modi�ation, making a funtion print somestatus information for example, an involve substantial hanges at all levels of abstration.The only published attempt known by this author to deal with this problem appears inthe FL language design, and is studied by Williams and Wimmers in [WW88℄.Extensions to our funtional language's type systemThe language presented here uses the Hindley-Milner system [DM82℄, with no frills. Itlaks overloading, for example of integers and reals, and ould be extended relatively easilyto inlude subtypes and inheritane, giving an immense boost in its power to desribeompliated logial strutures learly and onisely.A simple example of a subtype struture ours with reords, where a reord is aolletion of objets strutured into named �elds. A subtype of a reord is a larger reord,ontaining all of the �rst reord's �elds, and more. A funtion f de�ned to take an objetof type A as a parameter is automatially de�ned on objets of subtypes of A. We say thatf is inherited by the subtypes of A.Cardelli and Wegner review of types in programming languages [CW85℄ is requiredreading. Kaes has proposed an attrative approah to introduing overloading to a lan-guage like ours [Kae88℄, and this is likely to be inorporated in the Haskell languagedesign [HWA+88℄. Fuh and Mishra [FM88℄ present the basis for a type sheme whihretains the polymorphism and type inferene properties of the Hindley-Milner system, butinorporates subtypes and inheritane.Our language has no modules, as would be required for writing large programs. Mod-ules an be parameterised by types, and an pakage strutures to reet their mathe-matial struture. Standard ML [Mil84℄ is an example, while Cardelli and Wegner, andBurstall [Bur84a℄ develop the theory. See also the work of Goguen and the OBJ group[Gog88℄. Goguen argues that higher-order funtions are not needed for typial higher-orderprogramming examples: parameterised modules do the job more simply, and failitate theimposition of semanti onstraints on parameters (e.g. that the operator be assoiative forinsert).Spei�ation languagesThe delarative ompleteness property of funtional programs implies that an objet an-not be spei�ed in the language without a giving a program to onstrut it. It is oftenuseful to be able to write down the behaviour expeted of a program in a formal manner,before going into the detail needed to implement it. Muh of this book is devoted to gener-ating improved implementations from spei�ations given as simple implementations, butnon-exeutable spei�ation tehniques are oasionally used informally. See, for example,46



the breadth-�rst list-tree interonversion funtions in Appendix A, setion A.6.2, and thede�nition of the vetor and matrix operations in Appendix B.Several languages have been designed spei�ally for giving formal spei�ations ofsoftware systems. Examples inlude Z (a good, short introdution is [Suf82℄), VDM[BJ82℄, OBJ [GT79℄ and Larh [GH86℄. All these languages have an exeutable subsetwhih is funtional.Another approah to extending the power of a funtional language to speify is byaugmenting it with the mehanisms of logi languages. Degroot and Lindstrom [DL86℄give a omprehensive survey. An interesting attempt to apture an objet-oriented stylein a spei�ation language is desribed by Goguen and Meseguer [GM86℄.
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Chapter 3Sequential and ParallelImplementation TehniquesHopefully Chapter 2 gave the reader a feel for the power and simpliity of the funtionalapproah to programming. This hapter deals with implementation tehniques. The aimsof this hapter are� To demonstrate that funtional programs an be ompiled to ahieve performaneompetitive with other programming paradigms on onventional, sequential omput-ers.� To explain how these fast sequential implementation tehniques an be extended totightly-oupled multiproessors.� To develop an understanding of how parallelism arises in the funtional program'ssoure ode.� To provide a framework for assessing the osts involved in attempting to exploitparallelism, so that they may be weighed against the possible bene�ts.The treatment of implementation tehnology will not be very profound or detailed: theintention is to give just enough detail to understand the problems of writing good parallelfuntional programs.The hapter deals with the graph redution approah to funtional language imple-mentation, and for a deeper desription see Peyton Jones' textbook [Jon87℄. There areother approahes but the inuene on the programmer's view of program behaviour is thesame.3.1 An Overview of CompilationCompiling a funtional language is not fundamentally di�erent from ompilation of onven-tional languages, but the opportunities for analysis and optimisation are more abundant.Moreover, the analysis and simpli�ation often have quite tidy justi�ations with refereneto the language's underlying theory.The phases one would expet in a high-quality ompiler for our language will inlude49



1. Type heking,2. Simpli�ation,3. Removal of pattern mathing,4. Variable abstration|removal of parameterised where lauses.5. Stritness analysis,6. Boxing analysis,7. Code generationSophistiated ompilers will inlude other phases, suh as storage lass analysis to lassifyvalues aording to whether register, global, stak or heap (in that order of preferene)storage an be used. The next few setions give some explanation of eah phase.3.1.1 Type hekingThis has two purposes: to detet and report programmer's mistakes as learly as possi-ble, and to annotate the program with information needed later. The language used inthis book uses a straightforward polymorphi type sheme, essentially the Hindley-Milnertype system [DM82℄. This system allows an objet to be assigned the most general typeexpression possible, under the ondition that its ode at identially on all instanes ofthat type expression. It also has the advantage that type delarations an be inferred ifthey are not given, and that the type heking algorithm will fail if a run-time error ouldour due to a type mismath.More realisti programming languages require a slightly riher type system than this,if only to handle oerion of integers to reals properly. As is shown by Fuh and Mishra,[FM88℄ and Kaes [Kae88℄ this need not be a substantial ompliation.3.1.2 Simpli�ationThere are many opportunities to apply the algebra of programs, and in partiular the prop-erties of well-known operators, to simplify the program whih the programmer originallywrote. Examples inludeCommon subexpression elimination: This standard ompiler tehnique is appliablewithout restrition in the funtional world, beause no funtion an have a side-e�et. Some are does have to be applied to avoid inreasing the amount of workingmemory a program may require.Partial evaluation: When all parameters to a funtion are provided at ompile-timethe ompiler an simply alulate the value. When some but not all parameters areprovided, massive simpli�ations an still our. In partiular, ommon higher-orderfuntions like map and insertleft an be speialised to their funtion parameter. Thisan improve stritness information, redue funtion all overheads and allow betterstorage lass optimisation. 50



Unfolding simple funtions: This is alled `inlining' in the standard ompiler litera-ture. It often leads to muh more substantial simpli�ations.Data type transformations: Library funtions like ListToVetor and VetorToList areknown to satisfy handy properties suh asListToVetor (VetorToList as) = asThus, for example, if operations like map and insertleft are de�ned over vetors by�rst translating to lists, this simpli�ation is appliable as soon as the de�nitionsare unfolded.This is an area of very ative researh, and several transformations appearing in this bookare andidates. For example, see the ++ optimisation in Appendix A, setion A.1.1.It may seem unwise to apply so muh unfolding to programs. There is a danger that thespae oupied may be too large, but the priniple at work is quite reasonable: operatorslike insertright, map and so on are shorthand for what in an imperative language wouldappear as an expliitly-oded loop. Thus the \maro-expansion" implementation shouldbe no worse than the imperative ase.3.1.3 Removal of pattern mathingIn Chapter 2 setion 2.2.5, a strategy was given for seleting whih equation to apply toa redex. As desribed there, the normalisation strategy is very ineÆient: it may involvemany tests being performed more than one, and it inurs the overhead of spawningand then tidying up a number of parallel testing proesses. We simplify the disussionhere by insisting (along with almost all existing ompilers and language designs), thatthe patterns be restrited in form so that the parallel, \raing" implementation is notneessary. Instead, a sequential pattern testing implementation an be used.Normal-order redutionFor programs whih use no pattern mathing, a trivial sequential strategy is guaranteedto �nd the normal form if it exists:� The normal-order normalisation strategy: The left-most, outermost reduibleexpression is redued at eah step.Without pattern mathing, eah variable is de�ned by a single equation of the formf x1 x2 . . . xN = RHSfor N � 0. There is no need for any pattern-testing proesses as there is never more thana single andidate equation. Under the normal redution order, none of the parametersare evaluated at all before the funtion is invoked.It is helpful (although not formally neessary) to allow just one funtion to be de-�ned by pattern-mathing, a onditional with the rôle of the if. . .then. . .else onstrut ofonventional languages: 51



Bool ::= TRUE j FALSEond :: Bool ! � ! � ! �ond TRUE a b = aond FALSE a b = bNormal order is still a normalisation strategy even with the addition of ond. We anthink of ond as being a built-in primitive.Compiling pattern-mathingThe purpose of the pattern-mathing removal phase of the ompiler is to translate aprogram with patterns into a program without, so that the normal redution strategyabove an be used instead of the general (parallel) normalisation strategy. To do this, thesequene of parameter testing must be expliitly oded using the ond operator.As a very simple example, onsider a variation of ond de�ned by the equationsguard :: � ! � ! Bool ! �guard a b TRUE = aguard a b FALSE = bThis funtion is just the same as ond exept that the ondition is the leftmost parameterinstead of the leftmost one. It is easily translated into a pattern-free de�nition using ond:guard a b test = ond test a bNow when an appliation of guard is applied to some parameters, this equation is usedstraight away, before evaluating any parameters. The next redex will be an appliation ofond, and this will require test to be evaluated. Thus, although the guard funtion doesnot work properly under the normal redution order, we an ode it in terms of ond toget the desired e�et.Non-sequential patternsThis ompilation tehnique annot work in general. Take for exampleor :: Bool ! Bool ! Boolor FALSE FALSE = FALSEor TRUE x = TRUEor x TRUE = TRUEThis is the well-known Boolean `or' funtion, but unusually it is de�ned to yield TRUE ifone of its inputs is TRUE, even if the other input is still unde�ned. Its full truth table is52



or FALSE FALSE = FALSEor FALSE TRUE = TRUEor TRUE FALSE = TRUEor TRUE TRUE = TRUEor ? TRUE = TRUEor TRUE ? = TRUEThe only orret implementation of this or spawns two parallel proesses, one to test theseond de�ning equation (by evaluating the �rst parameter), the other to test the thirdequation (by evaluating the seond parameter).3.1.4 Variable abstrationThe next phase is a form of ombinator abstration, as desribed in Chapter 2, setion2.2.8. The di�erene is that the ombinators are not hosen from a �xed set, but are derivedfrom the input program. The proess is often alled �-lifting, or, if ertain \laziness"onstraints are satis�ed, superombinator abstration.The objet of �-lifting is to eliminate funtion de�nitions from where lauses. Theproblem de�nitions are those whih introdue new parameters in the LHS. For example,g inf x y = (some expression involving g)whereg z = (some other expression)The transformation is very straightforward if the RHS of g's equation makes no refereneto variables loal to f, suh as x and y. We just move g out of the where lause, if neessaryrenaming g to g' to make sure that no name lash is introdued:f x y = (some expression involving g)g' z = (some other expression)If g's RHS does refer to free variables suh as x and/or y, the free variables must be passedexpliitly as parameters to g' every time g' is alled. This givesf x y = (some expression involving g x y)g' x y z = (some other expression)Peyton Jones gives the full details, whih are quite ompliated beause of reursive de�-nitions and the need to ensure that the transformation introdues no reomputation. Thesuperombinator abstration algorithm makes this guarantee for all expressions (alledfull laziness, while �-lifting introdues no reomputation of named expressions, but mayreompute some unnamed ones. Most ompilers employ �-lifting beause it involves lessrun-time overhead.The result of the variable abstration phase is a set of simple reursion equations, withsimple LHS's (thanks to the pattern mathing removal), and at RHS's: a at RHS either53



has no where lause, or has a where lause all of whose equations have variables asLHS's. For example,f x = map ((+) 1) xswherexs = x : xsis a simple reursion equation beause although it has a where lause, the LHS of theequation de�ning xs onsists only of a variable.Alternative implementation tehniques avoid this step, with the result that an environ-ment data struture must be arried about at run-time, arrying the values of variablesbound for the sope of a where lause. The �-lifting proess simply makes this environ-ment expliit: it makes sure that eah free variable is passed as a parameter to just thoseexpressions whih need it.3.1.5 Stritness analysisThe de�nition of stritness was �rst given in setion 2.4.1. In its simplest form it an begiven in terms of a single funtion appliation with a single parameter: the funtion f isstrit in its parameter iff ? = ?Stritness analysis is a ompiler algorithm whih analyses the syntax of every funtionde�nition and every funtion appliation and detets in eah ase whether the equationabove holds. If this is not easily dedued, perhaps beause of run-time dependeny orsimply intratability, the analyser assumes that the funtion is not strit. The analysisalgorithm employs a partiularly elegant approah (alled abstrat interpretation) basedon an abstration of the language's standard semantis, in whih eah value is representedby an abstration|either ? or \not-?". An introdution is given in [Jon87℄, [FH88℄ andin Hankin and Abramsky's introdutory hapter in [AH87℄.One dedued, stritness information is manifest as stritness annotations appearing onstrit appliations. Thus, if the soure program ontains the appliation of two expressionse1 and e2:e1 e2and the ompiler dedues that e1 is strit in its parameter, i.e. thate1 ? = ?then the appliation is annotated:e1 # e2For omplete stritness information it is also neessary to annotate the strit formal pa-rameters in funtion de�nitions. If f is de�ned by the equation54



f x y z = � � �and f is found to be strit in its seond parameter, its de�nition is annotated:f x y# z = � � �This is neessary if stritness information is to be made available when a funtion is passedas a parameter and used in a ontext in whih its identity annot be known at ompile-time(Peyton Jones overs this well [Jon87℄).Stritness and redution orderThe value of stritness information is in the freedom it onfers on the order in whihredutions are applied. With no stritness information, every appliation must be appliedin normal order, leftmost �rst: where e1 and e2 are expressions, then in the appliatione1 e2the evaluation of e2 must be suspended until e1 has been evaluated to a stage where itneeds the value of e2. This approah is often alled the all-by-need parameter passingstrategy. By ontrast, with stritness information,e1 # e2we an evaluate e2 muh earlier|as soon as we know we need the result of the appliationas a whole. This is beause we know that e1 will eventually use e2 (unless it is ? of itsown aord!). For example, we an employ all-by-value parameter passing, where e2 isevaluated ompletely before evaluation of e1 begins. This is the hoie taken by most olderlanguage designs for eÆieny reasons, regardless of stritness.Alternatively, parallel parameter passing an be used; see setion 3.2.3.1.6 Boxing analysisThe explanation given so far of program exeution relies on a tree-strutured representationof the expression being evaluated. The tree has a node wherever an appliation ours, withthe funtion being applied as the left sub-tree, and the parameter expression as the rightsub-tree. The tree is represented by a linked struture in the omputer's memory. Whena parameter expression is passed into a funtion body, a pointer to the piee of graphrepresenting the expression is transferred|rather than opying the expression. This isimportant not only to redue opying and redue spae use: it is also neessary so thatone a parameter does get evaluated, it an be overwritten with the value so that it neednot be alulated again. Note that this means that after some rewriting the expressiontree will have nodes with more than one parent; it beomes a general direted graph.In this mehanism, the parameter is alled boxed, and to �nd its value a pointer mustbe followed. This indiretion is very expensive ompared with passing the parameter\unboxed", in a register as might a ompiler for a onventional language. Clearly aparameter an only be passed unboxed if it is passed by value.55



This problem is slightly awkward beause to take full advantage of unboxed parameterpassing, the ode generated for a funtion's body must be quite di�erent, but the boxedinterfae must still be available for all-by-need invoations. In the presene of manyparameters the number of versions needed of eah funtion's ode an be very large, soa ompiler should emit ode only for those variants atually used, and should impose alimit beyond whih boxed parameter passing must be used.Only with boxing analysis is the speed improvement due to stritness analysis realised(a spae improvement almost always ours with or without boxing: onsider an aumu-lating parameter funtion like length).3.1.7 Code generationAfter simpli�ation, stritness and boxing analysis, muh of a typial program will behandled well by a onventional ode generator. However, in the general ase problems arisewhih are peuliar to the funtional ase: at the heart lies the problem that a funtionan be applied to a parameter in a ontext where the ompiler annot tell whether theresulting appliation is a redex. This an be resolved by arrying an parameter ount withthe funtion, but this overhead is undesirable, and an be avoided.Several fast and suessful implementations of ode generators for lazy, higher-orderfuntional languages have been in existene for some time, and are desribed, for example,by Peyton Jones [Jon87℄, Augustsson and Johnsson [Aug87, Joh87℄ and Fairbairn andWray [FW87℄. In order to give the interested reader a onrete understanding of imple-mentation issues, a simple ode generator is desribed here in some detail. It should beemphasised that the approah taken is representative of but di�erent from the variousexisting ompilers, and does not desribe a partiular ompleted ompiler1.We begin the explanation with an outline of the sheme, together with some motivation.We will be more spei� in the next setion:� We separate funtion appliation from objet evaluation. The apply operation takesa funtion f and a parameter a, and builds a heap ell (alled \an appliation box")ontaining the odef1: push apush f1jmp fThe label f1 is the address of the heap ell.� Thus, for example, when a three-parameter urried funtion is applied to threeparameters a, b and , three heap ells are oupied:1The ideas presented in this setion owe muh to work originally done by Hugh Glaser of SouthamptonUniversity
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f1: push apush f1jmp f f2: push bpush f2jmp f1 f3: push push f3jmp f2The value f3 represents a fully-parameterised funtion appliation: it is a redex,although this may not be loally detetable at the point where the �nal parameteris provided.� When the result of a funtion appliation is passed to a strit basi operator (take\+" as an example), the evaluate operator is applied to it �rst. The evaluate operatortakes an appliation box as input, and returns an unboxed, evaluated objet. Theinput must be of base (i.e. non-funtional) type.� When a funtion has omputed its return result, it must update the appliation boxso that it represents the evaluated objet rather than the orresponding funtionappliation. For example, if f3 is a three-parameter funtion, the box f3 above isoverwritten withf3: push xreturn� The evaluate operator invokes the ode to alulate its input (say f3 for example)by pushing some urrent state information, and then branhing to f3. Eah pa-rameter and the pointer to eah losure, is thereby staked in turn, and �nally thesuperombinator f itself is exeuted.� When f omes to return its result, it must ensure that a base-type normal formis ultimately returned. Thus, every superombinator de�nition evaluates its resultbefore returning. This happens naturally when the result returned by f is the outputof a strit basi operator. However, not all funtions do this|some just return (someomponent of) an input parameter, or an appliation box.In general it is possible that f is not a three-parameter funtion, but is instead afuntion of fewer parameters, whih returns a funtion, and this returned funtionis then applied to the remaining parameters.In either ase, the ompiler an detet that the return result is not of base type.Instead or returning an unboxed, base-type result, suh a funtion removes the pa-rameters it has onsumed from the top of the stakThe orretness of this sheme relies ruially on the evaluate operator being applied onlyto redexes. Thus, we annot (in general) interpret stritness annotations on funtion-typedobjets as all-by-value funtion appliation.3.1.8 A simple ode generatorFor onreteness a simple ode generator is skethed here. It does not deal with on-strutors, parameterless de�nitions or where lauses, and assumes that pattern mathing57



has been transformed away. In the �rst instane, it is fully lazy and takes no aount ofstritness or boxing analysis. The input is a list of equations:SoureCode == [Equation℄Equation ::= EQUATION funtion [formalparameter℄ rhswhere funtion and formalparameter are identi�ers,funtion == identi�erformalparameter == identi�erThe right hand side an be any expression. Expressions are either base-value onstants,funtion onstants, parameters, appliations of primitive (and strit) operators suh as\+", or appliations of user-de�ned funtions (think of the list of Expressions here as beinga pair for the time being):rhs == ExpressionExpression ::= CONST Num jFUNCTION identi�er jPARAM Num jADD Expression Expression jAPPLY [Expression℄It proves useful to separate right-hand sides into two lasses, value-type or graph-type:ValueType :: Expression ! BoolGraphType :: Expression ! BoolValueType (CONST n) = TRUEValueType (FUNCTION f) = FALSEValueType (PARAM n) = FALSEValueType (ADD e1 e2) = TRUEValueType (APPLY [e1, e2℄) = FALSEGraphType exp = not (ValueType exp)The ode generator outputs a list of ode bloks, one for eah equation in the soure ode:CodeGenerator :: SoureCode ! [CodeBlok℄A ode blok is simply an entry point label and the assoiated instrution sequene:CodeBlok ::= LABEL identi�er [Instrution℄
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The abstrat mahineThe abstrat mahine's instrution set is de�ned by the data type Instrution:Instrution ::= PUSHVALUE Num jPUSHGRAPH identi�er jPUSHPARAM Num jADD jAPPLY jEVAL jUPDATEVALUE Num jUPDATEGRAPH identi�er jBOX jRETJMP Num jRETJMP identi�erAfter optimisation, this representation is used to generate ode for the target proessor.This may involve register alloation and other issues whih will not onern us here.The abstrat mahine maintains a heap and a single stak, into whih it has two pointerregisters, the stak pointer and the frame pointer. The frame pointer points to the basein the stak of the urrent invoation frame, where the return address is kept, while thestak pointer points to the top of the stak. Thus, the stak just before a three-parameterfuntion like f returns a result v will have the formsp !
fp !

v (return value)f1 (�rst appliation box)a (�rst parameter)f2 (seond appliation box)b (seond parameter)f3 (third appliation box) (third parameter)ret (invoation return address, pushed by EVAL)ofp (pointer to base of previous frame, pushed by EVAL)(previous frame)The PUSHVALUE n instrution plaes the unboxed onstant n on the top of the stak. ThePUSHGRAPH instrution takes a pointer to a funtion or heap ell and puts it on the topof the stak. PUSHPARAM n piks the nth parameter out of the stak frame and pushes itonto the stak.The APPLY instrution takes a funtion f and a parameter x from the top of the stak,and replaes them with a pointer f1 to a heap ell (an appliation box) ontaining theode
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f1: PUSHGRAPH xPUSHGRAPH f1JMP fThe EVAL instrution takes a pointer to an appliation box from the top of the stak,pushes the urrent frame pointer and return address and jumps to the ode in the box.On return, an unboxed base-type objet will have been plaed on the stak by the funtion.The UPDATEVALUE n instrution is used when an n-parameter funtion has omputedits return value, in the ase when the value is unboxed. It takes the value v at the top ofthe stak and uses it to overwrite the nth appliation box in its invoation hain. To do thisit �nds the appliation box pointer saved adjaent to the nth parameter, and overwrites itwith the odefn: PUSH vRETThe UPDATEGRAPH n instrution is similarly used when an n-parameter funtion hasomputed its return value, but in the ase when the value is boxed. It takes the pointerv (to the boxed result) at the top of the stak and uses it to overwrite the nth appliationbox in its invoation hain with the odefn :: JMP vThe BOX instrution takes an unboxed value v from the top of the stak, and puts it ina box in the heap, just like the ell fn above. It leaves a pointer to the box on the top ofthe stak (this instrution will almost always be optimised out in ode generators whihtake boxing analysis into aount).The RETJMP n instrution is used when a funtion has omputed its return resultand updated the orresponding appliation box using UPDATEGRAPH. The objet beingreturned is still a pointer to a box. This may our either beause one of the parametersis being returned (and so might not yet have been evaluated), or beause the result is offuntion type. It saves the value on the top of the stak in a temporary register (whih isa pointer to the box being returned), removes the top n parameters from the top of thestak, and �nally jumps to the saved pointer. The ode thereby invoked will eventuallyompute the unboxed base-type objet required, and return.The RET instrution is used when a funtion has omputed a base-type, unboxed result.It piks up the return address and old frame pointer from the base of the invoation frame,resets the stak pointer to the top of the old stak frame, and pushes the returned value.The JMP instrution simply transfers ontrol to the funtion or box named.The translatorThe key to understanding the ode generator is to distinguish between two modes, graphmode, where ode to build a heap-based graph is generated, and value mode, where ode toalulate atual values is generated. The main optimisation task is to avoid graph mode.The ode generator takes eah equation and lassi�es its RHS as either value type or graph60



type. It then alls the appropriate graph or value mode ode generator:CodeGenerator :: SoureCode ! [CodeBlok℄CodeGenerator equations = map TranslateEquation eqnsTranslateEquation (EQUATION fname params rhs)= LABEL fname ((Ggen rhs)++[UPDATEGRAPH n, RETJMP n℄), if GraphType rhswheren = length params= LABEL fname ((Vgen rhs)++[UPDATEVALUE n, RET℄), otherwisewheren = length paramsThe graph mode ode generator Ggen generates ode to build the funtion appliation treeof its result using APPLY and BOX:Ggen :: Expression ! [Instrution℄Ggen (CONST n) = [PUSHVALUE n, BOX℄Ggen (FUNCTION f) = [PUSHGRAPH f℄Ggen (PARAM n) = [PUSHPARAM n℄Ggen (ADD e1 e2) = [PUSHFUNCTION \addfuntion"℄++(Ggen e1)++[APPLY℄++(Ggen e2)++[APPLY℄Ggen (APPLY [e1, e2℄) = (Ggen e1)++(Ggen e2)++[APPLY℄The funtion identi�er \addfuntion" refers to a funtion whih adds its two parameters.It an be ompiled in value mode, but is needed here to suspend evaluation of the additionand its parameters during graph onstrution.The value mode ode generator is more straightforward, but must all Ggen to buildfuntions and lazy parameters:Vgen :: Expression ! [Instrution℄Vgen (CONST n) = [PUSHVALUE n℄Vgen (FUNCTION f) = [PUSHGRAPH f, EVAL℄Vgen (PARAM n) = [PUSHPARAM n, EVAL℄Vgen (ADD e1 e2) = (Vgen e1)++(Vgen e2)++[ADD℄Vgen (APPLY [e1, e2℄) = (Ggen e1)++(Ggen e2)++[APPLY℄++[EVAL℄A simple exampleAs an example, onsider the funtion de�nitions61



f x = (ident x) + xident x = xThis program is represented in the SoureCode data type as[ EQUATION \f" [\x"℄(ADD (APPLY [FUNCTION \ident", PARAM 1℄) (PARAM 1)),EQUATION \ident" [\x"℄(PARAM 1)℄Applying the ode generator we �nd that \f" is ompiled in value mode (Vgen), while\ident" is ompiled in graph mode using Ggen:[ LABEL \f"[ PUSHFUNCTION \f",PUSHPARAM 1,APPLY,EVAL,PUSHPARAM 1,EVAL,ADD,UPDATEVALUE 1,RET ℄LABEL \ident"[ PUSHPARAM 1,UPDATEGRAPH 1,RETJMP 1 ℄ ℄Optimisations in the ode generatorMuh of the performane omes from optimisations making use of information aboutpartiular ases. The most basi make use of information available from the immediateontext, from stritness information and from types. A small seletion is given here:� Unshared appliations: When the APPLY instrution is used to build an appli-ation box, it is possible to detet from the ontext whether the resulting pointermight be opied. If not, the box need not be updated when the funtion is evaluated.Then the appliation box need not inlude ode to push the box address, although itmust still put something there to make sure the parameters are staked in the frameorretly. We all this instrution PUSHDUMMY. It is unneessary if a non-updatingvariant of the funtion being applied is used, but this is not likely to be worthwhile.� Combining EVAL and APPLY: this optimisation is simply the observation that ina sequene of the form 62



[PUSH f, PUSH x, APPLY, EVAL℄the appliation box annot be shared, and will be freed immediately. It thereforeneed not be UPDATEVALUEed, and an be replaed by the ode[PUSHSTATUS label, PUSH x, PUSHDUMMY, JMP f, DEFINELABEL label℄where label is an unused identi�er, DEFINELABEL label assoiates label with thefollowing instrution and PUSHSTATUS label pushes the urrent frame pointer andlabel onto the stak.This optimisation derives from splitting EVAL into [PUSHSTATUS label, JMP oldtop of stak, DEFINELABEL label℄. Then it is simply a storage lass optimisation tomove the PUSH from the appliation box into the instrution stream. The APPLYequation for Vgen beomesVgen (APPLY [e1, e2℄) = [PUSHSTATUS label℄++(Ggen e2)++[PUSHDUMMY℄++(Ggen e1)++[PUSHDUMMY℄++[JMP (top of stak),DEFINELABEL label℄� Multiple appliations: It is very ommon for a urried funtion to be applied toseveral parameters at one. The appliation boxes an be ompressed into a singleheap ell. Thus, as well as the binary appliation rules in Ggen and Vgen we haverules for 2, 3 or more parameters. For example,Ggen (APPLY [e1, e2, e3℄) = (Ggen e1)++(Ggen e2)++[APPLY2℄where the APPLY2 instrution builds an appliation box f ontaining the odef: PUSHGRAPH (graph of e2)PUSHDUMMYPUSHGRAPH (graph of e3)PUSHGRAPH fJMP (graph of e1)This is simply an optimisation by branh elimination of the ode
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fn�1:f: PUSHGRAPH (graph of e3)PUSHGRAPH fJMP (graph of e1)PUSHGRAPH (graph of e2)PUSHDUMMYJMP fn�1� Strit appliations: when a funtion f is known to be strit, and its value is knownto be of base type, then the value-mode ode generator an generate ode to applyEVAL to a parameter before passing it:Vgen (STRICTAPPLY [e1, e2℄) = (Ggen e1)++(Ggen e2)++[EVAL℄++[APPLY℄++[EVAL℄Things are not quite so simple beause now e2 is passed to e1 unboxed. It would beeasy to arrange a pointer to its box to be passed instead, but more eÆient wouldbe to use the equationVgen (STRICTAPPLY [e1, e2℄) = (Ggen e1)++(Vgen e2)++[APPLY℄++[EVAL℄(as well as the other optimisations listed above). To do this requires a variant ofe1 to be used whih expets its parameter unboxed, and this annot in general bemanaged.A similar problem arises when trying to avoid having to BOX onstants before passingthem as parameters.� Tail reursion: a tail reursive funtion is one whose result is an appliation. Asthings stand, the ode generated will build a heap-based appliation box representingthe appliation being returned, update the orresponding appliation box, lear theparameters onsumed from the stak, and then jump to the tail-reursive all. Thisavoids needlessly onsuming stak spae, but is ineÆient beause the update isunneessary, and beause the parameters ould be updated in plae rather thanbeing built in the heap and then opied onto the stak.It is important to deal with tail reursion well, as this is how loops are manifest. Itis quite ompliated, and the reader is referred to the literature review (setion 3.4)for details.To onlude this rather ompliated ode generation sheme, we note that we have avoidedany run-time testing of the graph to determine whether funtions an be invoked, and wehave avoided tagging objets with their type. The ostly aspets of the language are� non-strit funtions, requiring parameters to be passed as graph,64



� updating appliation boxes, requiring pointers to boxes to be passed with parameters,in onjuntion with higher-order and polymorphi funtions.Muh of the overhead an be redued by generating multiple variants of eah funtion'sode, but this is not always aeptable.3.1.9 Garbage olletionFuntional language implementations are very reliant on high-performane garbage ol-letion. Very areful design of run-time data strutures is required to allow unused heapstorage spae to be deteted and olleted eÆiently. Moreover, garbage must be madeavailable for olletion as soon as possible, requiring some potentially quite expensive a-ounting as pointers are destroyed. Compile-time optimisation of this garbage aountingativity is an ative researh area.3.2 Parallel graph redutionIn the last setion ompilation tehniques were disussed for exeution of a funtionalprogramming language on a single, onventional proessing element. However, it was veryommon in examples of redution that several redexes ould be redued in parallel. This isatually done by the large family of parallel graph redution mahines being onstruted,inludingAlie [DCF+87℄ Grip [JCH85℄, Alfalfa [GH86b℄, Flagship [WSWW87℄ andothers.In order to understand how parallelism is exploited in these arhitetures, we examinehow and when potentially-onurrent tasks are reated, and how they interat with oneanother.3.2.1 ProessesUnder sequential evaluation, there is a single redution proess, whih applies a normal-order redution strategy modi�ed by stritness annotations to inlude all-by-value pa-rameter passing. Under parallel graph redution, there may be many suh proesses,eah evaluating a di�erent sub-graph. There are several overheads paid by parallel graphredution mahines against whih the potential speedup must be weighed:Fork overhead: The ost of reating a new proess arises in three ways:1. Construting the graph representing the expression. This is the same as theost of all-by-need parameter passing. It is to be ompared with the lower ostof all-by-value parameter passing.2. Plaing a new proess desriptor in a proess pool to await sheduling. Thenew proess desriptor will ontain a referene to the graph of the expressionin question, and when neessary, the identi�er of the proess whih spawns it.Other proessors may take desriptors from this pool, thus migrating the workaross the mahine. 65



3. Construting and entering a new proess when the graph referene is sheduledfor exeution.In addition, there may be a ost assoiated with distributing the graph refereneto another proessing element for exeution. We an aount for all these osts asan average fork overhead hargeable for every proess reation. Note that muh ofthis ost is inurred whether or not the proess is atually distributed to anotherproessing element.Synhronisation ontrol: Beause of sharing in the graph, a proess may attempt toredue a node in the graph whih is already being redued by another proess. Ifallowed to proeed, onsiderable haos will result. To prevent this, a marker mustbe plaed on a node|signifying that \work is in progress below"|to ensure mutualexlusion whenever a redution proess attempts to redue a node. The marker anbe removed when the node is rewritten to normal form.A proess whih needs the value of a marked node before it an proeed must suspenditself, after arranging to be re-awoken when the mark is removed.Join synhronisation: When a redution proess suessfully terminates, having re-dued its expression graph to normal form, it overwrites the root node of the graphit redued with the result, and removes its mutual-exlusion marker.By this time, several other proesses may be suspended awaiting this result. Theidenti�ers of eah waiting proess will be held in a pending list assoiated with thenode. The last thing a proess does is to awaken these proesses by informing thesheduler that they an be resumed.Memory aess interferene: The multiple redution proessors must have fast aessto the shared graph data struture. This requires a omplex ommuniations andarbitration system whih inurs a delay on aesses to the graph. In the �rst in-stane, when assessing the performane issues for parallel graph redution mahines,this delay is assumed relatively small. This an be ahieved using sophistiated in-teronnetion network tehnology (surveyed in [WF84℄), at a onsiderable ost. Insetion 3.2.3 we will see the inuene of a poorer interonnetion network.As well as these additions to the amount of work a parallel graph redution mahine does,there is a severe inrease in the spae oupied. We return to this question in setion 3.4.3.2.2 PartitioningIn priniple, a new proess an be reated whenever an already-existing proess disoversa strit appliation. However, some proesses terminate after doing very little usefulwork|and this an be dwarfed by the fork and join overheads inurred by the attempt toemploy parallel redution. When this is the ase, it is wiser to generate ode for all-by-value parameter passing. In general, we would require a ompiler to prove for eah stritappliation that a deision to use parallel redution rather than fast sequential redution66



will not inur a substantial ost. This approah has been taken by Hudak and Goldbergwith their \serial ombinator" ompilation tehnique [HG85℄.Their strategy an be used to guarantee some speed-up due to parallelism|and shouldertainly ensure that the attempt to exploit parallelism does not result in a slow-down.Just how muh speed-up depends on how muh parallelism is atually present in thesoure program after the grain-size analysis. Some highly-parallel programs may ontainno expressions whih the ompiler an guarantee are worth distributing. Worse yet, somearhitetures may have fork-join overheads so high that distributable expressions are veryrare in any program at all.The problem of ensuring a non-negative speed-up is far easier than arranging for reallygood performane. Partiular algorithm strutures suh as divide-and-onquer (see Chap-ter 4) are well-understood, but in general onsiderable understanding of the algorithm isrequired, in order to selet just the right expressions for whih to spawn proesses. Thetarget is to maximise the grain size while still providing suÆient parallelism to exploitthe mahine's resoures. Of ourse, this all depends on the program itself having a goodparallel struture. To get the best from suh a mahine, these issues must beome theonern of the programmer, and the approah of Chapter 5 is appliable.3.2.3 Loosely-oupled parallel graph redution mahinesUp to now, we have assumed a tightly-oupled underlying arhiteture, in whih aess toa non-loal proessing element's memory is not muh slower than aess to loal memory.If this is not so, the performane issues beome muh more ompliated.The �rst aspet of the problem an be onsidered to be with the notion of \grain-size".This was de�ned for the tightly-oupled ase to be the amount of work done by a proessbetween being reated (when the fork overhead is inurred) and terminating (when the joinoverhead is inurred). We an simply ompare the proess's (minimum or likely) exeutiontime with the total overhead to deide whether organising a new proess is worthwhile.In a loosely-oupled mahine, a non-trivial overhead is inurred every time a proessmakes a non-loal memory referene. We are therefore fored to think of the grain sizeas the amount of work done between non-loal memory aesses. This rather ompliatesthe alulation, and ertainly redues the proportion of strit appliations whih an beimplemented safely using parallelism.When an expression is passed from one proessing element (say A) to another proess-ing element (say B) for parallel evaluation, its parameters have to be aessed non-loally,by B from A, and any struture returned will probably be onstruted by B, in B'smemory, and so will be aessed non-loally by A.Note that one an objet has been evaluated to normal form, it an be opied (withoutintroduing realulation). Thus, when B aesses a parameter struture, it need onlyaess eah non-loal node one. Similarly, when A aesses the result of the parallelevaluation, it need examine eah node of the returned struture at most one (Flagship[WSWW87℄ employs this tehnique). Thus the overhead due to parameter/result aessinurred by distribution is bounded by the size of the parameter and result strutures.
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Eager evaluation of listsReursively-de�ned data types suh as lists and trees an have unbounded size. However,they are evaluated pieemeal, just enough to expose the outermost onstrutor (this istehnially alled weak head normal form). Thus the overhead inurred by non-loalaess to suh a struture is limited by the number of parameters taken by the data type'sonstrutor. Aess to a subtree, or to the tail of a list, would onstitute a quite separateevaluation and the advantage of employing parallelism an be onsidered separately.However, lists an be treated di�erently from other strutures beause of their sequen-tial aess mode. Remote aess lateny an be avoided by alulating several elementsahead, and sending to the onsuming proessor before they are demanded. This requiresstritness analysis to be applied to ensure that unwanted omputations are not spawned.Burn's work on evaluation transformers, reported in [Bur87a℄ forms a basis for this ap-proah. See also the proess network view presented in setion 4.3.3.2.4 Neighbour-oupled parallel graph redution mahinesThe neighbour-oupled arhiteture, introdued in setion 1.3, is an interesting intermedi-ate arhiteture for parallel graph redution. Reall that in these arhitetures, a general,random, non-loal aess is relatively slow, just as in a loosely-oupled mahine. The dif-ferene is that eah proessing element has a few neighbours to whih it is tightly-oupled.Now muh of the problem with ompile-time performane analysis an be simpli�edprovided that a proess is not migrated to a non-neighbour of the proessing element whihspawned it. With are, we an ensure that all parameters are available in the spawningproessing element's loal memory (if neessary by judiious opying).3.3 ConlusionThis hapter has given a very brief overview of the graph redution implementation teh-nique for funtional programming languages. Substantial optimisations an be appliedand very high sequential performane an be ahieved this way. We went on to exam-ine how parallelism an be applied to speed up graph redution. A qualitative analysisof the osts of parallel graph redution demonstrated that the approah is well-suitedto tightly-oupled parallel omputers, but that in a loosely-oupled mahine the ost ofremote memory aesses dominates, and that ompile-time proess distribution beomesintratable.3.4 Pointers into the literatureStandard works on ompilersDespite the additional problems of funtional languages, the standard texts on ompilerdesign are indispensable. Examples might inlude Gries [Gri71℄, Aho, Sethi and Ullman[ASU86℄ and Wulf and his olleagues [WJW+75℄.68



Approahes to ompiling funtional programsThere are ompilation problems speial to lazy and higher-order languages, and researhersstudying the area have developed a number of di�erent abstrat mahine designs. Likeours, these generally form a simple, well-understood instrution set for an imaginary om-puter, and an be translated into instrutions for a real mahine. Field and Harrison[FH88℄ over several di�erent approahes well.Abstrat mahines an be divided into two ategories: environment-based andombinator-based.� Combinator-based abstrat mahines: this hapter has desribed a ombinator-based approah, where the ompiler simpli�es the program so that referenes to non-loal, non-global variables are transformed into parameter referenes. This avoidsthe need for environment links (or displays), simpli�es funtion invoation and islaimed to redue ontention for the environment between parallel redutions.The �rst appearane of this idea is Turner's ombinator redution mahine [Tur79℄.Turner translated programs into a �xed set of simple ombinators (based on S, K andI, introdued in setion 2.2.8), whih form the abstrat mahine. Although the setdesribed in the paper is small, optimised implementations use a large ombinator setinorporating many of the language's library funtions. Clarke and his olleaguesat Cambridge University built a prototype sequential arhiteture (alled SKIM)mirooded to support suh ombinators as its instrution set [CGMN80℄. Stoye(in [Sto85℄) presents a deeper study, developing the instrution set towards moreonventional mahines.Apparently onurrent work by Hughes [Hug83℄, Augustsson and Johnsson [Joh84b℄developed algorithms to onstrut a ombinator set espeially for eah program.The body of eah ombinator an then be translated into ode for a onventionalomputer. This is done via the G-mahine abstrat mahine by Augustsson andJohnsson's Lazy ML ompiler, and is desribed in detail in [Aug87℄ and [Joh87℄,where substantial optimisations are presented. This material is given in simpli�edform in Peyton Jones textbook [Jon87℄. Hughes approah (alled superombina-tor abstration) maintains non-reomputation of shared subexpressions whih maybe ompromised by Augustsson and Johnsson's simpler �-lifting algorithm. It isnot lear whether the overheads introdued by Hughes' algorithm are justi�ed, butGoldberg [Gol87℄ gives an analysis whih determines when the reomputation mightour. The Ponder ompiler, desribed by Fairbairn [Fai82℄, uses similar tehniques.The ode generator presented in setion 3.1.8 is based on ideas from Glaser andHayes [GH86a℄ and Fairbairn and Wray [FW87℄, with muh help from Hugh Glaser,Sebastian Hunt and Tony Field whih is gratefully aknowledged.� Environment-based abstrat mahines: These extend and formalise the on-ventional approah to implementation of blok-strutured programming languages.The �-lifting phase is omitted, so that referenes to non-loal, non-global variablesremain. Eah funtion maintains not only its own loal environment, but also apointer to a linked list of environment reords, eah holding values of non-loal non-global variables it might refer to. In a higher-order language, this hain may inlude69



the loal environments of funtions whih have already returned. They must, there-fore, be kept in the heap rather than on the stak, as is possible in onventionalblok-strutured languages.The �rst example is the SECD mahine, introdued by Landin [Lan64℄. A thoroughtreatment is given, inluding a lazy variant and a orretness proof, by Field andHarrison [FH88℄. For generation of high-performane ode, they also desribe anoptimised variant alled FPM. The ategorial abstrat mahine, CAM, an alsobe thought of as an optimised SECD-style evaluator. It is interesting in that itsinstrutions are just ombinators, drawn from a �xed set (Categorial CombinatoryLogi). See Field and Harrison and Curien [Cur86℄, although the latter is quitetheoretially-oriented.An interesting variation was proposed by Steele in his Rabbit ompiler prototype[Ste78℄, a more aessible presentation being [Kra88℄. These ompilers begin with atransformation phase resulting in a \ontinuation-passing style" (CPS) formulationof the program. This makes a funtion's return address an expliit parameter (offuntion type), alled a ontinuation. When a funtion returns a value, the CPSfuntion passes the value as a parameter to the ontinuation. CPS style programsan be evaluated by a simpli�ed interpreter whih does not retain funtion returnaddresses. The aim of this transformation is shift the data strutures needed tomanage ontrol-ow into the domain of values. This makes them available for on-ventional value-based optimisations. It also makes the treatment of tail reursionmore straightforward.Compiling pattern mathingVarious approahes have been desribed by Wadler, in Peyton Jones textbook [Jon87℄,Field and Harrison [FH88℄ and Augustsson [Aug87℄. More general work on pattern math-ing has been done by Ho�man, O'Donnell and Strandh [HOS85℄, among others. Interestin pattern mathing extends to the theorem proving and omputer algebra ommunities;Klop [Klo90℄ and Huet and Oppen [HO80℄ over some of the area.Stritness analysisStritness analysis an be approahed using onventional data ow analysis, but has provena very suessful appliation of abstrat interpretation. This has the advantage of han-dling inter-funtional dependeny, reursion, higher-order funtions and data strutures.An introdution to abstrat interpretation is given by Abramsky and Hankin in theirintrodution to [AH87℄.Stritness analysis of �rst-order programs (or �rst-order parts of higher-order pro-grams) was �rst desribed by Myroft [My81℄, and this has been implemented with verypositive results in Augustsson and Johnsson's Lazy ML ompiler [Aug87, Joh87℄. This wasextended by Burn, Hankin and Abramsky and Peyton Jones to higher-order programs (see[HBJ88℄), although eÆieny problems with implementations of this sheme have yet to beresolved. Bakwards analysis, as proposed by Hughes [Hug87℄, may prove a more pratialalternative. 70



Extensions to disover stritness information about lists have been made by Wadler[Wad87℄, Burn [Bur87a℄ and others. The pratial appliation of stritness analysis on listsis still a researh topi; di�erent approximations seem appropriate for di�erent purposes.See, for example, Chapter 5 setion 5.4.5.Compile-time simpli�ationPerforming large-sale simpli�ation of programs is still very muh an experimental teh-nique. For a general review of partial evaluation, see page 160. An example of a ompleteompiler based on simpli�ation is desribed by Hudak and Kranz [HK84℄. Partiulartehniques are desribed by Wadler [Wad88b, Wad88a℄.Store management and garbage olletionThe assignment operation \x := x + 1" an be interpreted as a hint to the ompiler that theold ontents of ell x are no longer required, and the spae an be reused to aommodatethe value x + 1. As funtional languages have no suh onstrut, other means must befound to relaim memory spae when it is no longer needed. Some of this an be done atompile-time, but at present most is the responsibility of the run-time system.Run-time storage relamation an roughly be divided into two quite di�erent ap-proahes: opying and referene ounting.� Copying shemes: The starting point for these algorithms is to separate the work-ing memory into two parts, the TOSPACE and the FROMSPACE. When garbageolletion ours, data objets in use are opied from the FROMSPACE to theTOSPACE. After garbage olletion, free spae and alloated spae form two ad-jaent ontiguous bloks. In its simplest form, TOSPACE and FROMSPACE arestatially alloated and of equal size, so half of the available memory is wasted. Afterolletion, the rôles of the two spaes are reversed.An important advantage of opying is that the memory is ompated, so improv-ing the performane of a virtual memory system; this an be further improved bystrategies like using depth-�rst opying to loate linked objets near to one another.Although shemes do exist whih eliminate the waste of the two-spae method, amore attrative approah is to split the memory into many spaes, only one of whihneed be empty at one. This is desribed by Lieberman and Hewitt [LH83℄. Thespaes are ordered by age|the more garbage olletions an objet survives, thedeeper in the vetor of spaes it resides. Thus, most olletions need deal only withthe youngest objets. Unfortunately, Lieberman and Hewitt's sheme assumes thatmost pointers point to older objets. In the presene of lazy evaluation, assignmentor logi variables this an often be far from the ase, and then a substantial overheadis inurred. Moon [Moo84℄ desribes a similar but muh more ompliated sheme,using substantial hardware support, to resolve these problems with high performane.Copying garbage olletion is not invoked until free spae beomes short, and thelarger the physial memory the less often this need our. The ost of eah ol-letion depends only on the amount of spae oupied by non-garbage. This leads71



to a startling onlusion: with enough memory we an make the garbage olletionoverhead asymptotially approah zero. When memory is short, on the other hand,performane an be very poor.� Referene ounting shemes: An alternative to opying is simply to keep aount with eah ell of the number of pointers to it. When a pointer is opiedor destroyed, this ount is adjusted, and when it reahes zero the ell is markedrealloable. The main advantage of referene ounting is that the rate and responsetime of the proessing is always onstant. Its main problem is that it fails for ylistrutures. There is no opportunity for ompation, so great are must be takento plae ells to maximise loality when virtual memory is in use. Finally, theoverhead of referene ounting depends on the amount of opying and deletion ofpointers. Nonetheless, a great deal of work has been done in the area, partiularlyin parallel systems where opying shemes beome rather ompliated. For parallelsystems with paket-swithed interonnetion, a variation on the sheme is neessaryto avoid rae onditions [WW87, Bev87℄2, where \weights" are arried with thepointers instead of ounts with the ells. Various other variations have been desribedby Glaser and his olleagues (e.g. [GT84℄).In priniple, garbage olletion an be avoided by ompile-time sheduling of memory use.This has proven diÆult, although attempts have been made by Myroft [My81℄ andHudak and Bloss [Hud87, HB84℄ and others. More fruitful to date have been transfor-mation tatis whih eliminate intermediate data strutures. This is very ommon duringderivations given in this book. Wadler [Wad88b℄ attempts to formulate strategies suitablefor inlusion in optimising ompilers.Spae leaksBeause they lak expliit ontrol over spae re-use, funtional programs have a tendeny toonsume large quantities of spae as they run. In some ases, this an be quite disastrous,and quite unneessary. The problems an arise in several ways:1. The program may neessarily demand more spae than a more reasonable imple-mentation would require. This an happen quite aidentally. Take, for example,this funtion de�nition, whih ontains dupliated ommon subexpressions:f xs ys = ond ((sum (map g xs)) > 1)(ond (h ys)(ond ((sum (map g xs)) < 10)ab))d(the ond is used to fore the three onditions to be evaluated sequentially). If we2The idea seems also to have been urrent in dataow irles at MIT as early as 197972



abstrat the expression map g xs using a where lause, we redue the amount ofwork done:f xs ys = ond ((sum gxs) > 1)(ond (h ys)(ond ((sum gxs) < 10)ab))dwheregxs = map g xsUnfortunately this means that the list gxs must be retained in memory during theevaluation of h ys. There may not be enough memory remaining for this omputation.2. The spae oupied may depend on the evaluation order. An example might be afuntion mean, spei�ed by the equationmean as = (sum as)/(length as)A onventional sequential evaluator would selet either the sum or the length alu-lation to perform �rst, leaving the other to do seond. Either way means the list asmust be held in memory in its entirety. There does exist a redution order whihevaluates both expressions in step (a data-driven order, for example). This programan be rewritten to make the step-by-step alulation expliit, but muh of the valueof a funtional formulation is lost. This problem is approahed in more depth byHughes [Hug83℄.3. The spae may be inadvertently retained by the implementation, even though itannot be reahed. A ommon way this an happen is when several variables areheld in a funtion's ativation reord. The variables may beome garbage before theativation reord does, but many implementations will not free the variables untilthe ativation reord is freed. With referene ounting a similar problem ours ifreferene derement ode is migrated aross funtion invoations. This is partiallyaddressed by Wadler [Wad86℄.Parallel Graph RedutionThe priniples of parallel graph redution are reviewed in Chapter 24 of Peyton Jones'textbook [Jon87℄. This oneptual basis was generalised and �rst implemented in theprototype Alie mahine, by Darlington, Cripps and their olleagues [DCF+87℄. TheAlie work was the foundation for the Flagship projet [WSWW87℄, where attempts togeneralise the graph-rewriting model of parallel omputation have been rystallised in thedatl language design. Datl [GKS87℄, and the related language Lean [BvEG+87a℄,extend the term-rewriting basis of funtional programming to the more general rewriting73



of linked graph strutures, and have muh in ommon with the Alie ompiler targetlanguage CTL. An important result of this work has been the formal veri�ation thatgraph redution implements funtional languages properly (the more general result is givenby Barendregt et al. [BvEG+87b℄, but an interesting algebrai approah is presented byvan der Broek and van der Hoeven [vdBvdH86℄).Many other researh groups have implemented or studied parallel graph redution, anda omplete list is impossible. Most notable might be the grip mahine being onstrutedby Peyton Jones and his olleagues [PCSH87℄ and the Alfalfa and Bukwheat imple-mentations by Goldberg and Hudak [Gol88℄, whose partitioning [HG85℄ and work di�usion[HG84℄ studies and espeially interesting. Other design studies inlude Bevan, Burn andKaria's [BBK87℄ and Keller and Lin's Rediflow mahine [KL84, KSL86℄.Other approahes to parallel ode generationThere is not room here to over even a fration of the general literature onerned withthe problem of taking a program with little or no spei� ontrol over parallel exeution,and generating parallel objet ode from it. A fundamental distintion an be drawnbetween run-time sheduled objet ode and ompile-time sheduled objet ode. Withrun-time sheduling the ompilation problem is mainly onerned with partitioning theproblem into large-grain proesses in order to overome the overhead of run-time proessmanagement. With ompile-time sheduling, a muh �ner \grain" of proessing an beemployed|typially at the level of instrutions |beause high loality an be arrangedand synhronisation delays an be avoided.Sarkar [Sar89℄ and Goldberg [Gol88℄ desribe reent quite suessful approahes to thepartitioning problem. Sarkar also approahes the problem of ompile-time sheduling oflarge-grain proesses to gain yet higher performane.The ompile-time sheduling literature goes bak muh further, beause of the earlyprevalene of vetor pipeline proessors (of whih the ray-1 [Rus78℄ is the lassialexample). An example of this work might be Kuk et al. [KKLW81℄. Long instrution wordarhitetures have led to other interesting �ne-grain ompile-time sheduling ompilers.See for example Ellis' bulldog ompiler [Ell82℄ and Aiken and Niolau [AN88℄. Wolfe[Wol89℄ gives a more unifying view, employing vetor operations where possible (a�etinginnermost loops), but introduing large-grain proesses at the outermost level as well.This kind of ompiler is �nding some ommerial suess with reent parallel proessorsystems [TMS87℄.
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Chapter 4Speifying and Deriving ParallelAlgorithmsThis hapter has two aims:� to investigate how parallelism an be expressed in the form of a funtional program,� to develop tehniques for transforming programs from one formulation into another,in order to express parallelism in di�erent ways,� to illustrate some of the tehniques with simple examples, ulminating in a simplepipelined ray-traing program.Several of the more involved transformations and veri�ations have been olleted sepa-rately, and appear as Appendix A; they would interfere with the development of the �rstaim, to understand how parallelism appears in the ode. They are, however, quite impor-tant to the seond aim, of building a toolbox of tehniques for hanging the parallelism ina program, and the reader is enouraged to follow the Appendix on the seond reading.4.1 Horizontal and vertial parallelismWe have disussed how the graph-rewriting view of expression evaluation an be used toexploit parallel hardware. But what an we say about the struture of parallel omputa-tions under this regime?Goldberg [Gol88℄ distinguishes two soures of parallelism in parallel graph redution:� Horizontal parallelism ours when two or more of a funtion's parameters areevaluated in parallel.� Vertial parallelism ours when a parameter is evaluated in parallel with the fun-tion appliation to whih it is being passed.A simple example of purely horizontal parallelism is when a strit, built-in operator suhas \+" is applied. In an appliation like 75



(+) e1 e2the parameter expressions e1 and e2 an be evaluated in parallel, but both must �nishbefore the addition an proeed.Vertial parallelism an our whenever a parameter is passed to a strit, user-de�nedfuntion. The parameter is evaluated in the time \window" between funtion appliationand use of the parameter by a strit, built-in operator like addition. For example, de�nef x y = y+1, if x = 0f x y = f (x�1) y if x > 0A good stritness analyser will infer that f is strit in both its parameters (parameter x isalways used; parameter y is used whenever f terminates)1. Now suppose we have de�nedg so thatg y = f 10000 yNow suppose we have an appliation of g to an expression e1:g # e1Given two proessing elements, it should be lear how one proessor an be oupiedounting down from 10000 while the other evaluates e1.Horizontal and vertial parallelism aount for all the parallelism available in a parallelgraph redution mahine. Eah leads to a di�erent algorithmi struture. We identify theseas the divide-and-onquer struture, whih exploits horizontal parallelism, and pipelining,whih exploits vertial parallelism.4.2 Divide-and-onquer parallelismThe olonial maxim \Divide-and-onquer" has broad appliation in omputer siene. Wean haraterise a divide-and-onquer algorithm by a funtional program sheme. Solvesolves some problem, desribed by its parameter problem, using the divide-and-onquerapproah:Solve :: � ! �Solve problem = SimplySolve problem, if Trivial problemSolve problem = CombineSolutions problem (map Solve SubProblems) otherwisewhereSubProblems = Deompose problemwhere SimplySolve, CombineSolutions, Deompose and Trivial depend on the partiulardivide-and-onquer algorithm. They have the types1Of ourse, a good optimiser would remove the alulations involving x sine their results are neverused 76



SimplySolve :: � ! �CombineSolutions :: � ! [�℄ ! �Deompose :: � ! [�℄Trivial :: � ! BoolIf the problem to be solved is trivially simple, it is solved diretly using SimplySolve. If not,the problem is broken down into a list of subproblems. These are eah solved separately(usingmap Solve), and �nally CombineSolutions uses the list of solutions to the subproblemsto solve the original problem. Provided CombineSolutions is known to be strit in eahelement of its list parameter SubProblems, plentiful horizontal parallelism is available.4.2.1 Divide-and-onquer examplesWe omplete the haraterisation of divide-and-onquer by giving a funtion whih appliesthe divide-and-onquer strategy given de�nitions of the omponent funtions:DivideAndConquer :: (� ! �)! (� ! [�℄ ! �)! (� ! [�℄)! (� ! Bool)! �! �DivideAndConquer SimplySolve CombineSolutions Deompose Trivial problem= Solve problemwhereSolve problem = SimplySolve problem, if Trivial problemSolve problem = CombineSolutions problem(map Solve SubProblems),otherwisewhereSubProblems = Deompose problemThere follow four examples of how DivideAndConquer an be used in pratie: in theFibonai reurrene, in the Quiksort algorithm, as a parallel implementation of insert,and to redue overheads in a parallel implementation of map.The Fibonai FuntionThis is naturally de�ned by the reurrene relation
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�b n = 1, if n � 2�b n = �b (n�1) + �b (n�2), otherwiseThis is a working funtional program (although far better ways of alulating the Fibonainumbers exist).We an see that it has the form of a divide-and-onquer algorithm by writing itsde�nition in terms of DivideAndConquer:�b = DivideAndConquer (onst 1)(onst sum)(onstrut [(subtrat 1), (subtrat 2)℄)((�) 2)Here onst 1 returns 1 whatever its parameter. The funtion sum adds the elements of a listof numbers. subtrat n derements its parameter by n. The funtion onstrut is analogousto map, but takes a list of funtions and applies eah one to the same parameter:onstrut :: [� ! �℄ ! � ! �onstrut [ ℄ x = [ ℄onstrut (f : fs) x = (f x) : (onstrut fs x)The Quiksort AlgorithmThere are many parallel sorting algorithms, inluding several divide-and-onquer ones.This one is partiularly straightforward. We de�ne SeletSmaller to selet all those elementsof an input list smaller than some \pivot" value:SeletSmaller :: Num ! [Num℄ ! [Num℄SeletSmaller pivot as = �lter ((>) pivot) asSeletBigger is similar:SeletBigger :: Num ! [Num℄ ! [Num℄SeletBigger pivot as = �lter ((�) pivot) asThe funtion �lter eliminates elements from a list unless they satisfy the prediate:
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�lter :: (� ! Bool) ! [�℄ ! [�℄�lter prediate [ ℄ = [ ℄�lter prediate (a : as) = a : (�lter prediate as), if prediate a�lter prediate (a : as) = (�lter prediate as), otherwiseNow the sort funtion is easily de�ned:QuikSort [ ℄ = [ ℄QuikSort as = (QuikSort SmallerOnes) ++ (Quiksort BiggerOnes)whereSmallerOnes = SeletSmaller pivot asBiggerOnes = SeletBigger pivot aspivot = hd asThe hoie of pivot element an have a drasti e�et on the algorithm's performane unlessthe input is truly randomly ordered.This algorithm an be represented using DivideAndConquer asQuikSort = DivideAndConquer (onst [ ℄),(onst ListAppend),PivotAndSplit,((=) [ ℄)whereListAppend [as, bs℄ = as ++ bsPivotAndSplit as = [ SeletSmaller pivot as,SeletBigger pivot as ℄wherepivot = hd as(ListAppend is just a speial ase of join = insert (++) [ ℄).The Insert funtionIn Chapter 2 a funtion alled insert was introdued, whih takes an assoiative funtion,whih we denoted by the in�x operator op, and is de�ned informally by the equationsinsert (op) base [ ℄ = baseinsert (op) base [a1, a2, a3, � � � aN℄ = a1 op a2 op a3 � � � op aNThis is unambiguous provided (op) is assoiative, when we an plae brakets whereveronvenient on the RHS. We will also require that base have the property that for all a,a op base = a = base op aA simple example is summation, 79



sum as = insert (+) 0 asGiven these restritions, we an employ a divide-and-onquer implementation:insert (op) base as= DivideAndConquer (onst base) (onst ListOp) ListSplitwhereListOp [a, b℄ = a op bListSplit as = [ take m as,drop m as ℄wherem = (length as)/2A useful more general approah to this is to transform the data type being used to representas, from a list to a tree. Let us employ the following binary tree data type:BinaryTree � ::= EMPTY jLEAF � jNODE (BinaryTree �) (BinaryTree �)We need a pair of funtions to turn the list into a tree, and vie versa:ListToTree :: [�℄ ! BinaryTree �TreeToList :: BinaryTree � ! [�℄and we speify that for all �nite and total lists as,TreeToList (ListToTree as) = asProbably the most natural de�nitions for this pair of funtions are:ListToTree1 [ ℄ = EMPTYListToTree1 [a℄ = LEAF aListToTree1 (a0:a1:as) = NODE (ListToTree1 (take m (a0:a1:as)))(ListToTree1 (drop m (a0:a1:as))), if length as > 1wherem = (length (a0:a1:as))/2(it is neessary to introdue (a0:a1:as) to avoid ambiguity).TreeToList1 EMPTY = [ ℄TreeToList1 (LEAF a) = [a℄TreeToList1 (NODE subtree1 subtree2) = (TreeToList1 subtree1)++ (TreeToList1 subtree2)where 80



take :: Num ! [�℄ ! [�℄take n (a : as) = a : (take (n�1) as), if n 6= 0take n [ ℄ = [ ℄, if n 6= 0take 0 as = [ ℄anddrop :: Num ! [�℄ ! [�℄drop n (a : as) = drop (n�1) as, if n 6= 0drop n [ ℄ = [ ℄, if n 6= 0drop 0 as = asIn Appendix A (Theorem 1) a proof is given that these funtions do satisfy the spei�a-tion. More importantly, there are very serious ineÆienies in the de�nitions as given andin the appendix a muh more eÆient, though more ompliated, de�nition is derived.Now we an turn the list into its tree representation, we must arrange to exploit thedivide-and-onquer struture available. We haveinsert (op) base as = insert (op) base (TreeToList1 (ListToTree1 as))We apply equational reasoning to improve on this. First, let us name our new version,TreeInsert (op) base as = insert (op) base (TreeToList1 (ListToTree1 as))Now, instantiate it for the ase when as has more than one element, and apply the appro-priate equation for ListToTree1:TreeInsert (op) base as= insert (op) base(TreeToList1 (ListToTree1 as)| {z } ), if length as > 1= insert (op) base(TreeToList1 (NODE (ListToTree1 (take m as))(ListToTree1 (drop m as)))), if length as > 1| {z }wherem = (length as)/2= insert (op) base ( (TreeToList1 (ListToTree1 (take m as)))++(TreeToList1 (ListToTree1 (drop m as))) ), if length as > 1wherem = (length as)/2At this point we must use a straightforward extension of assoiativity:81



insert (op) base (as++bs) = (insert as base) op (insert bs base)The result isTreeInsert (op) base as= (insert (op) base (TreeToList1 (ListToTree1 (take m as))))op(insert (op) base (TreeToList1 (ListToTree1 (drop m as)))), if length as > 1wherem = (length as)/2Finally, applying the original equation de�ning TreeInsert, in reverse, we getTreeInsert (op) base as= (TreeInsert (op) base (take m as))op(TreeInsert (op) base (drop m as)), if length as > 1wherem = (length as)/2The remaining equations required to de�ne TreeInsert for empty and singleton lists areeasily derived:TreeInsert (op) base [ ℄ = baseTreeInsert (op) base [a℄ = aSuh a transformation is likely to work well if the time required to apply the funtion opis quite substantial. However, the tree-based version learly does more work and one suf-�ient parallelism has been generated, exeution ould revert from the expensive, paralleltree-based de�nition of insert to the original list-based one. It is oneivable that suh adeision ould be taken at run-time.This transformation example brings out a rather ompliated and interesting problemfor program transformation tehnology: we introdued simple de�nitions for ListToTree1and TreeToList1, and then used them to derive a parallel version of insert. Meanwhile, inAppendix A, the very ineÆient de�nitions of ListToTree1 and TreeToList1 are optimisedsubstantially. The optimisations do not destroy the possibility of a divide-and-onquerversion of insert based on the optimised de�nitions, but we need to go through the deriva-tion again. Beause the derivation shares the same struture as before, and uses the sameproperties, we an hope that a omputer ould help.The map funtionThe funtion map, de�ned by the equations
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map f [ ℄ = [ ℄map f (a : as) = (f a) : (map f as)has a lear interpretation for parallel programming: spawn a proess to evaluate f ai foreah ai of the input list. Provided suÆient stritness information is available, this isjust what happens. It is slightly unsatisfatory beause the proesses must be spawnedsequentially, one for eah time an appliation of map is rewritten.Just as with insert, we an apply divide-and-onquer by repeatedly sub-dividing theinput list as to form a tree, at whose leaves we an apply the funtion f in parallel. In thisase we an use a muh simpler and more eÆient version of the list-tree representation,beause we are free to hoose the order in whih elements of the list appear in the tree.Rather than dividing the list into two halves by utting it in the middle, we divide it intoodd- and even-indexed sublists:ListToTree2 :: [�℄ ! BinaryTree �ListToTree2 [ ℄ = EMPTYListToTree2 [a℄ = LEAF aListToTree2 (a0:a1:as) = NODE (ListToTree2 (EvenOnes (a0:a1:as)))(ListToTree2 (OddOnes (a0:a1:as))), if (a0:a1:as) 6= [ ℄whereEvenOnes [ ℄ = [ ℄EvenOnes [a0℄ = [a0℄EvenOnes (a0 : a1 : as) = a0 : (EvenOnes as)OddOnes [ ℄ = [ ℄OddOnes [a0℄ = [ ℄OddOnes (a0 : a1 : as) = a1 : (OddOnes as)andTreeToList2 :: BinaryTree � ! [�℄TreeToList2 EMPTY = [ ℄TreeToList2 (LEAF a) = [a℄TreeToList2 (NODE evensubtree oddsubtree)= (merge (TreeToList2 evensubtree) (TreeToList2 oddsubtree))wheremerge (a0 : evens) (a1 : odds) = a0 : a1 : (merge evens odds)merge as [ ℄ = asIn Appendix A (Theorem 2), total strutural indution is used to verify that for all �nite83



and total lists as,TreeToList2 (ListToTree2 as) = as(Notie the striking resemblane between the struture of this omputation and the stru-ture of QuikSort).Now let us de�ne a map operator for trees:MapTree :: (� ! �) ! BinaryTree � ! BinaryTree �MapTree f EMPTY = EMPTYMapTree f (LEAF a) = LEAF (f a)MapTree f (NODE subtree1 subtree2) = NODE (MapTree subtree1)(MapTree f subtree2)It is very easy to verify using equational reasoning that for all �nite and total lists as,map f as = TreeToList2 (MapTree f (ListToTree2 as))We an simply substitute this implementation of map when required.It is, however, far from lear that it will improve matters unless the proess reationor migration overhead is very large. It does more overall work than the simpler de�nition,but the work is potentially more parallel and more distributed. If there is already morethan enough parallelism on the mahine, it will ertainly slow the omputation down.4.3 Pipeline parallelismWhen vertial parallelism is used and the parameter onerned is a list, pipeline parallelisman our. For example, suppose we have the funtion de�nitionsfrom n = n : (from (n+1))andintegrate as = 0 : (integrate' 0 as)whereintegrate' sum [ ℄ = [ ℄integrate' sum (a : as) = newsum : (integrate' newsum as)wherenewsum = a + sumProvided we have suÆient stritness information, vertial parallelism is available in theappliation
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Figure 4.1: Pipelining and horizontal parallelismintegrate (from 1)One proessor an be responsible for exeuting from 1, while another is responsible for theappliation of integrate to the other's output.We an easily extend the pipeline:map ((�) 10) (integrate (from 1))Pipelining ombines naturally with horizontal parallelism:map2 (+) (map ((�) 2) (from 1))(map ((�) 3) (from 1))This demands a diagram, given in �gure 4.1. This resembles the graph representation ofan expression like (2 � x) + (3 � x), but now the nodes represent proesses whih anexist for a substantial period of time, operating on suessive input values. Suh a diagramis often alled a data ow graph, sine one ould imagine a real, parallel omputer builtfrom units (represented as nodes in the graph) wired together aording to the ars given.During a omputation, data would ow along the ars and no other ommuniationswould be neessary. This idea has prompted a large variety of omputer arhiteturesbased on the data ow idea, inluding for example, the Manhester data ow mahine[GKW85℄, the MIT Tagged-Token data ow arhiteture [AN87℄ and many others. Itmust be emphasised that these omputers are not rewired for eah dataow program, butrather exploit a dataow graph program representation at run-time. We all suh diagramsproess networks in this book to emphasise that speial dataow hardware need not beinvolved, and that, as we shall see in Chapter 5, there may indeed be a stati alloationof proesses to proessing elements.4.3.1 Cyli proess networksThe example of Figure 4.1 is ayli, but there is no reason why a yle should not beintrodued. Cyles in proess networks orrespond to iteration, and we an derive ayli proess network de�nition from the reurrene idiom introdued in Chapter 2. Two85



examples will be demonstrated: the Fibonai numbers and the Newton-Raphson method.Reall the de�nition of the list of Fibonai numbers:�bs = generate NextFibwhereNextFib 0 = 1NextFib 1 = 1NextFib n = (�bs sub (n�1)) + (�bs sub (n�2)), if n � 2Note that for n � 2,NextFib n = prev�b + pprev�b, if n � 2whereprev�b = �bs sub (n�1)pprev�b = �bs sub (n�2)That is,NextFib n = ((+) ÆÆ (((sub) �bs) Æ (subtrat 1))(((sub) �bs) Æ (subtrat 2)) ) n, if n � 2Now in the de�nition of �bs, unfold generate:�bs = map NextFib (from 0)= map NextFib (0:1:(from 2))= (NextFib 0)| {z }:(NextFib 1)| {z }:(map NextFib (from 2))= 1:1:(map NextFib| {z } (from 2))= 1:1:(map ((+) ÆÆ (((sub) �bs) Æ (subtrat 1))(((sub) �bs) Æ (subtrat 2)) ) (from 2)| {z }Here we use the properties that map (f Æ g) = (map f) Æ (map g), and map (f ÆÆ g h) =(map2 f) ÆÆ (map g)(map h):�bs = 1:1:( (map2 (+)) ÆÆ (map (((sub) �bs) Æ (subtrat 1)))(map (((sub) �bs) Æ (subtrat 2)))| {z } ) (from 2)= 1:1:( (map2 (+)) ÆÆ (map (((sub) �bs) Æ (subtrat 1)))( (map ((sub) �bs)) Æ (map (subtrat 2)) ) ) (from 2)| {z }= 1:1:(map2 (+) (map ((sub) �bs) (map (subtrat 1) (from 2))| {z })(map ((sub) �bs) (map (subtrat 2) (from 2))| {z }) )Clearly map (subtrat n) (from m) = from (m�n), and that map ((sub) as) (from 0) = as,so we have 86



Figure 4.2: A yli proess network to alulate the Fibonai numbers�bs = 1:1:(map2 (+) (map ((sub) �bs) (from 1))| {z }(map ((sub) �bs) (from 0))| {z }= 1:1:(map2 (+) (tl �bs)�bs)This is the omplete proess network formulation, and was used as an example in setion2.4.3, where its operation is explained. Its proess network is given in Figure 4.2.For the seond example let us take for an example the generalised Newton-Raphsonmethod. We solve for f x = 0 with f 0 x = d(f x)dx , and using an initial estimate x0:xs sub 0 = x0xs sub i = (xs sub (i�1)) � ( f (xs sub (i�1))/ f' (xs sub (i�1)) ), if n � 1with the implementation using the reurrene idiom:solve f f' x0= until onverges xswhereonverges 0 = FALSEonverges i = abs(((xs sub i)� (xs sub (i�1)))/(xs sub i))��, if i � 1xs = generate NextEstimatewhereNextEstimate 0 = x0NextEstimate i = (xs sub (i�1))� ( f (xs sub (i�1)) / f' (xs sub (i�1)) ), if n � 1The derivation of the proess network formulation of this de�nition is given in Appendix A,87



setion A.3. In simpli�ed form it is:solve f f' x0= selet (map2 Test (tl xs) xs) (tl xs)wherexs = x0 : (map Transition xs)Test prevx thisx = abs( (thisx � prevx)/thisx ) � �Transition prevx = prevx � ((f prevx)/(f' prevx))We an introdue parallelism into this de�nition by separating the arithmeti operationsinto proesses. This is done by propagating map into the bodies of the arithmeti expres-sions. To do this, Map2Test is de�ned to be the transformed version of map2 Test, andMapTransition is de�ned to be the transformed version of Map Transition:solve f f' x0= selet (Map2Test (tl xs) xs) (tl xs)wherexs = x0 : (MapTransition xs)Map2Test thisxs nextxs = map ((�) �)(map abs ( (map2 (/) (map2 (�) thisxs prevxs)thisxs)))MapTransition prevxs = map2 (�) prevxs (map2 (/) (map f prevxs)(map f' prevxs))The graphial representation of this network is given in Figure 4.3. This example learlyhas some potential for parallelism in the evaluation of f xi and f' xi.When the value at eah step (xi here) is a vetor or matrix rather than a salar,additional parallelism is available by pipelining suessive iterations.4.4 The Kahn prinipleThe relationship between the diagrams and the programs they are supposed to representis made preise by what is sometimes alled the Kahn Priniple. Gilles Kahn, in a lassipaper [Kah74℄, showed how, if we are given a funtional spei�ation of the behaviour ofeah proess in a network, we an write down the behaviour of the network as a whole.First, label every ar of the network with a separate variable name. Then write down anequation for eah variable, de�ning its value in terms of onstants and other variables.For example, Figure 4.4 shows the Newton-Raphson proess network with eah arlabelled with a new variable. Eah node is labelled with a funtional desription of itsbehaviour. The Kahn priniple says we an determine the behaviour of the network as awhole by writing down the system of equations relating the variables:
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Figure 4.3: A yli proess network applying the Newton Raphson method
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Figure 4.4: A yli network with labelled ars
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a = selet bs sbs = map ((�) �) dss = tl esds = map abs fses = x0 : gsfs = map2 (/) hs sgs = map2 (�) es ishs = map2 (�) s esis = map2 (/) js ksjs = map f esks = map f' esIt is not hard to verify that this de�nition is equivalent to the de�nition of solve f f' x0given earlier.Using this relationship, it is possible to visualise a large and useful lass of funtionalprograms as proess networks, and this has been the starting point for several dataowprogramming languages, most notably Luid [WA85℄.4.5 Parameter-dependent proess networksThe proess networks we have seen so far have been stati: their size and shape has beenindependent of the program's parameters. This need not always be so. In some ases theproess network depends on something simple like the length of some parameter list, asin the next example, although in general the dependeny an in priniple be arbitrarilyompliated.For a simple example, suppose we build a pipeline by omposing three funtions, mapf1, map f2 and map f3:pipeline [f1, f2, f3℄ xs = map f1 (map f2 (map f3 xs))This an be rewritten using \Æ":pipeline [f1, f2, f3℄ xs = ((map f1) Æ (map f2) Æ (map f3)) xsWhen we don't know how many fi's there are, we an use the insert funtion with \Æ",together with the identity funtion ident x = x:pipeline [f1, f2, f3℄ xs = (insert (Æ) ident [(map f1), (map f2), (map f3)℄) xsso thatpipeline fs xs = (insert (Æ) ident (map map fs)) xsThis aptures a pipeline of proesses as long as the list fs.Now suppose that the funtions fi are not hosen arbitrarily, but are instanes of ageneral funtion f, speialised by partial, urried, appliation to suessive elements of the91



list, say [a1, a2, a3℄, i.e.[f1, f2, f3℄ = map f [a1, a2, a3℄or fs = map f asNow the pipeline ispipeline (map fs as) xs = (insert (Æ) ident (map map (map f as))) xsThis de�nition is rather hair-raising, what with insert (Æ) ident and map map (map f) as,but what these forms atually do is quite down-to-earth. They appear in onrete form inan example drawn from the ray-traing algorithm for three-dimensional image rendering.4.5.1 Example: ray intersetion testWe have a list of rays and a list of objets, and we need to �nd whih objet eah raystrikes �rst. To avoid tehnialities, let us assume suitable de�nitions for a data type Rayto represent a ray, giving its diretion and starting point, a data type Objet, desribingperhaps a sphere, plane or just a polygonal faet, and a funtionTestForImpat :: Ray ! Objet ! Impatwhere Impat is a data type whih desribes the interation between the ray and the objet.This may be a miss NOIMPACT, or a hit IMPACT, with details of how far along the raythe impat ours (needed to �nd the ray's �rst impat), and other information relating tothe angle of impat, the surfae texture, refration et. whih need not be spei�ed here:Impat ::= NOIMPACT jIMPACT Num ImpatInformationNow what we need to �nd is the �rst objet struk by the ray in the list of all objets ofinterest:FirstImpat :: [Objet℄ ! Ray ! ImpatFirstImpat objets ray = earliest (map (TestForImpat ray) objets)whereearliest impats = insert earlier NOIMPACT impatsThe funtion earlier ompares two impats, and returns the one whih oured earlier inthe ray's travel|i.e. the one the ray atually hits. It must take aount of NOIMPACTproperly:
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Figure 4.5: The untransformed parallel ray intersetion testearlier :: Impat ! Impat ! Impatearlier NOIMPACT NOIMPACT = NOIMPACTearlier (IMPACT distane1 info1) NOIMPACT = (IMPACT distane1 info1)earlier NOIMPACT (IMPACT distane2 info2) = (IMPACT distane2 info2)earlier (IMPACT distane1 info1)(IMPACT distane2 info2) = (IMPACT distane1 info1), if distane1 � distane2earlier (IMPACT distane1 info1)(IMPACT distane2 info2) = (IMPACT distane2 info2), if distane1 > distane2The omplete de�nition to �nd the impats orresponding to a list of rays is nowFindImpats :: [Ray℄ ! [Objet℄ ! [Impats℄FindImpats rays objets = map (FirstImpat objets) raysThis de�nition has the potential for very highly-parallel evaluation, arising from horizontalparallel evaluation of eah FirstImpat objets rayi expression. Figure 4.5 shows the patternof data dependeny in this omputation.Introduing pipeline parallelismIt is possible to make this algorithm more suitable for loosely-oupled parallel proessorsby transforming it to inrease its loality.The pipelined implementation onsists of a hain of pipeline stages, PipelineStage. Eahlooks after its own objet. PipelineStage objet takes as input and produes as output astream of PipeItems: 93



PipeItem � � ::= PIPEITEM � �A objet of the type PipeItem ray impat ontains a ray and its earliest impat so far.The pipeline stage funtion PipelineStage tests the ray against the stage's objet, and thenompares the resulting impat with impat. Its output is a opy of the input ray, togetherwith the earlier impat:PipelineStage :: Objet ! PipeItem Ray Impat ! PipeItem Ray ImpatPipelineStage objet (PIPEITEM ray impat)= PIPEITEM ray impat'whereimpat' = earlier impat NewImpatNewImpat = TestForImpat ray objetNow it should be lear that we an write the de�nition of FirstImpat asFirstImpat [objet1, objet2, . . . objetN℄ ray= impatwherePIPEITEM ray impat= PipelineStage objet1(PipelineStage objet2� � � (PipelineStage objetN (ray, NOIMPACT)) � � � )= ((PipelineStage objet1) Æ(PipelineStage objet2) Æ� � � Æ (PipelineStage objetN)) PIPEITEM ray NOIMPACTThis de�nition an be tidied somewhat using funtions to build the PipeItem struture atthe input to the pipeline, and to selet out the impat at the output:MakePipeItem ray = PIPEITEM ray NOIMPACTTakeImpat (PIPEITEM ray impat) = impatgiving usFirstImpat [objet1, objet2, . . . objetN℄ ray= (TakeImpat Æ((PipelineStage objet1) Æ(PipelineStage objet2) Æ� � � Æ (PipelineStage objetN))Æ MakePipeItem)rayWe an remove the \� � �" notation using insert (Æ) ident and map:94



Figure 4.6: The transformed, pipeline-parallel ray intersetion testFirstImpat objets ray= (TakeImpat Æ(insert (Æ) ident (map PipelineStage objets))Æ MakePipeItem)rayFinally, reall thatFindImpats rays objets = map (FirstImpat objets)| {z } rays= map ( (TakeImpat Æ(insert (Æ) ident(map PipelineStage objets))Æ MakePipeItem )raysNow propagate the map into the omposition using map (f Æ g) = (map f) Æ (map g):FindImpats rays objets = ( (map TakeImpat) Æ(insert (Æ) ident(map map (map PipelineStage objets)))Æ (map MakePipeItem) )raysThis transformation is justi�ed more formally in Appendix A, setion A.4. The trans-formed version's proess network is shown in Figure 4.6. The important di�erene betweenthe transformed and untransformed algorithms is that in �gure 4.5 the graph's onnetivityis very high, sine every intersetion test proess requires aess to the entire objets list.95



By ontrast, in the pipeline version, �gure 4.6, the graph's onnetivity is very low. It is amuh more distributed algorithm, more suitable for a distributed memory, loosely-oupledmultiproessor. We return to this point in the next hapter, setion 5.1.2.4.6 In�nite proess networksWe have seen proess networks whose size depends on the size of some data struture.In our funtional language data strutures need not be �nite in size|a list might growinde�nitely, and the same an happen with a proess network, as happens in the nextexample.4.6.1 Example: generating primes using Eratosthenes' sieveThe in�nite list of prime numbers an be omputed as follows:primes = sieve (from 2)wheresieve (a : as) = a : (sieve (FilterMultiples a as))whereFilterMultiples p (a:as) = a : (FilterMultiples p as), if not(divides p a)= FilterMultiples p as, if divides p aThis neat (although hardly lear) example2 omputes the list of all the prime numbers,using Eratosthenes' famous sieve algorithm. An explanation and derivation of this formu-lation of the algorithm is given in Appendix A, setion A.5.Its proess network is given in Figure 4.7. At eah invoation of sieve, a new instaneof FilterMultiples is generated. Thus the proess network has the form of a hain, whih isonstantly being extended as more primes are found.The primes sieve is not a good parallel algorithm, beause most of the work is doneby a small number of the FilterMultiples proesses. In fat in�nite proess networks don'tseem very useful for parallel programming in general. As well as this balane problem,the proesses must be mapped to proessors at run time. The example is given mainly todemonstrate the potential existene of suh programs.4.7 Proess networks as hardware desriptionsWhen a proess network is �nite in size, it is very natural to interpret it as a desriptionof a physial, parallel, omputer. A restrited form of our funtional language an be usedas a hardware desription language, and we ould use it to speify the design of VLSIdevies, as in the example given here.2Attributed to P. Quarendon by Henderson and Morris [HM76℄.96



Figure 4.7: Some steps in the evaluation of the primes sieve4.7.1 Primitives for hardware desriptionIn speifying a digital eletroni iruit, the fundamental data type is the (approximate)voltage on a wire at a partiular time. We onsider here just three possibilities: a settledhigh or low logi level, or some temporary intermediate value \XX":Sample ::= HI j LO j XXWe will model the behaviour of a wire by the sequene of voltage samples taken at regularintervals inde�nitely:Signal == [Sample℄We will bundle wires using the tuple \(� � �)" notation, and form indexed aggregates (torepresent numbers, for example), using vetors:bus == <Signal>The approah is to use the funtional notation to onnet simple ombinational iruitsin a restrited set of ways.Speifying ombinational logi using truth tablesTo do this we need a primitive for implementing iruits spei�ed using just truth tables:97



SignalCase :: [Signal℄ ! ([Sample℄,[Sample℄) ! [Signal℄SignalCase inputsignal ases= (transpose ÆÆ (map (SeletMath ases))Æ transpose) inputsignalwhereSeletMath :: ([Sample℄,[Sample℄) ! [Sample℄ ! [Sample℄SeletMath ((lhs, rhs) : ases) samples = rhs, if lhs = samplesSeletMath ((lhs, rhs) : ases) samples = SeletMath ases samples, otherwiseandtranspose :: [[�℄℄ ! [[�℄℄transpose rows = [ ℄, if rows = [ ℄transpose rows = (map hd rows) : (transpose (map tl rows)) otherwiseTransposition is spei�ed by the requirement that for all n and m,(rows sub n) sub m = (ols sub m) sub nwhereols = transpose rowsIt is used here to transform an �nite list of signals into an in�nitely-long list of samples.For example, a 3-element list of signals is transformed into a stream of three-element listsof samples:transpose [[a1, a2, . . . ℄[b1, b2, . . . ℄[1, 2, . . . ℄℄ = [[a1, b1, 1℄,[a2, b2, 2℄,[a3, b3, 3℄,...In this form map SeletMath an be used to apply the transformation spei�ed by thetruth table, to produe a stream of lists of samples as output. This is turned bak into alist of signals by applying transpose again.Using SignalCase it is easy to de�ne the building bloks for more ompliated iruits.For example, the \or" operation is de�ned by
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IdealOr :: (Signal, Signal) ! SignalIdealOr a b = hd (SignalCase [a,b℄[[[LO, LO℄, [LO℄℄,[[LO, HI℄, [HI℄℄,[[HI, LO℄, [HI℄℄,[[HI, HI℄, [HI℄℄,[[XX, HI℄, [XX℄℄,[[HI, XX℄, [XX℄℄,[[XX, LO℄, [XX℄℄[[LO, XX℄, [XX℄℄℄ )Many ombinational iruits are unde�ned if any input is unde�ned, so it might provehelpful to build this into SignalCase. It is left out here for larity.Modeling propagation delayNotie the use of \don't know" values in the truth table, so that the gate propagatesunde�ned results properly (this ould be done automatially by SignalCase. Unde�nedresults ome into the world when the mahine is swithed on, and �lter through theiruit at a rate determined by propagation delays. Thus, a more realisti or-gate wouldbe Or (a, b) = Delay � (IdealOr (a, b))where � is the number of samples-worth of delay inurred. This is implemented by simplyprepending � unde�ned samples to the gate's output:Delay t signal = (Unde�nedFor �) ++ signalwhereUnde�nedFor � = repliate � XXThus, the or-gate's �rst � outputs are unde�ned even if its input is de�ned. Thereafter,hanges to the input are delayed � time units in the output. This is not the only physiallysensible model of delay.Lathes and registersA register is the primitive storage element in a digital iruit. The behaviour of a simpleregister is spei�ed by the equationsRegister :: Sample ! Signal ! Signal ! Signal
99



Register initialstate (si : input)(XX : strobe) = initialstate : (Register initialstate input strobe)Register initialstate (si : input)(LO : strobe) = initialstate : (Register initialstate input strobe)Register initialstate (si : input)(HI : strobe) = initialstate : (Register si input strobe)The register maintains and outputs an internal state, whih retains the last value of theinput when the strobe is HI. It is not hard to verify (using the alternative de�nitions ofiterate) that this reursive de�nition is equivalent toRegister initialstate input strobe= outputwhereoutput = initialstate : FeedbakFuntion [output, input, strobe℄whereFeedbakFuntion [op, ip, st℄ = hd (SignalCase [op, ip, st℄[[[HI, HI, HI℄, [HI℄℄,[[LO, HI, HI℄, [HI℄℄,[[HI, LO, HI℄, [LO℄℄,[[LO, LO, HI℄, [LO℄℄,[[HI, HI, LO℄, [HI℄℄,[[HI, LO, LO℄, [HI℄℄,[[LO, LO, LO℄, [LO℄℄,[[LO, HI, LO℄, [LO℄℄℄)This de�nition of Register spei�es a ombinational iruit and a wiring diagram, and sodoubles as both a behavioural and a strutural desription of a iruit. The feedbak, inthe form of a reursive stream de�nition, is a neessary feature of any history-sensitiveiruit desription.4.7.2 Example: AdderA binary adder iruit would normally be provided to the VLSI designer as a arefullyhand-rafted library \ell". However, we an speify it quite naturally. Following thestandard digital iruit design textbooks, we start by building a bit-wise adder, from two\half-adders":HalfAdder :: (Signal, Signal) ! (Signal, Signal)
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HalfAdder (a, b) = SignalCase [Delay � a, Delay � b℄[[[LO, LO℄, (LO, LO)℄,[[LO, HI℄, (HI, LO)℄,[[HI, LO℄, (HI, LO)℄,[[HI, HI℄, (HI, HI)℄,[[XX, HI℄, (XX, XX)℄,[[XX, LO℄, (XX, XX)℄,[[HI, XX℄, (XX, XX)℄,[[LO, XX℄, (XX, XX)℄℄Now we an put together a full adder taking two numbers and a arry from the preedingdigit, and produing this digit pair's sum, and a arry for the next digit:FullAdder :: (Signal, Signal, Signal) ! (Signal, Signal)FullAdder (a, b, CarryIn) = (sum2, CarryOut)where(sum2, Carry2) = HalfAdder (sum1, CarryIn)CarryOut = Or (Carry1, Carry2)(sum1, Carry1) = HalfAdder (a, b)For onveniene we will de�ne projetors to pik out the sum and the arry:SumOf (sum, arry) = sumCarryOf (sum, arry) = arryWe onstrut the omplete, multi-digit adder by writing down the standard additionalgorithm as a vetor reurrene:BitwiseAdder :: Num ! (Signal, bus, bus) ! (bus, Signal)BitwiseAdder BusSize (CarryIn, aBus, bBus)= (ResultBus, CarryOut)where
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ResultBus = MakeVetor BusSize SumswhereSums n = SumOf (AdderOutputs sub n)CarryOut = CarryBus sub BusSizeAdderOutputs = MakeVetor BusSize FullAdderswhereFullAdders n = FullAdder ((aBus sub n),(bBus sub n),(CarryBus sub n))CarryBus = MakeVetor (BusSize+1) CarrieswhereCarries 0 = CarryInCarries (n+1) = CarryOf (AdderOutputs sub n)(where BusSize is the length (VetorBound) of aBus and bBus. This algorithm is entirelysequential and so rather slow, although it an be implemented with very little hardware.More realisti adders use a \look-ahead" arry sheme whih breaks the hain of depen-deny between suessive digits. This is left as an exerise for the interested reader.4.7.3 Funtional hardware desription languagesThe ease with whih digital hardware an be spei�ed in the funtional notation has ledto several ommerial silion design systems based on the funtional approah, notablyElla [MPT85℄. It has even been laimed (by Johnson [Joh84a℄) that the way a systemis desribed funtionally oinides preisely with the abstration imposed by the digitalview of iruit design.Notie the distintion between funtions whih orrespond to ative iruitry (ulti-mately using the SignalCase onstrut), and funtions whih arrange wiring only|suh asMakeVetor, SumOf, sub et. It was lear from the way we used the notation that these\wiring" funtions are sa�olding whih is not supposed to be present in the resultingiruit. We an remove the sa�olding using redution, as soon as we know the size of theinput buses. For example, a 3-bit adder iruit is spei�ed byBitwiseAdder 3 (CarryIn, <a0, a1, a2>, <b0, b1, b2>)= (ResultBus, CarryOut)where
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ResultBus = MakeVetor 3 SumswhereSums n = SumOf (AdderOutputs sub n)| {z }CarryOut = CarryBus sub 2AdderOutputs = MakeVetor 3 FullAdderswhereFullAdders n = FullAdder ((<a0, a1, a2> sub n),(<b0, b1, b2> sub n),(CarryBus sub n))| {z }CarryBus = MakeVetor 3 CarrieswhereCarries 0 = CarryInCarries (n+1) = CarryOf (AdderOutputs sub n)| {z }This redues toBitwiseAdder 3 (CarryIn, <a0, a1, a2>, <b0, b1, b2>)= (ResultBus, CarryOut)whereResultBus = <SumOf( FullAdder (a0, b0, CarryBus sub 0) ),SumOf (FullAdder (a1, b1, CarryBus sub 1)),SumOf (FullAdder (a2, b2, CarryBus sub 2)) >CarryOut = CarryBus sub 2AdderOutputs = <FullAdder (a0, b0, CarryBus sub 0),FullAdder (a1, b1, CarryBus sub 1),FullAdder (a2, b2, CarryBus sub 2) >CarryBus = <CarryIn,CarryOf (FullAdder (a, b0, CarryBus sub 0)),CarryOf (FullAdder (a1, b1, CarryBus sub 1)) >This iruit this desribes is illustrated in �gure 4.8.This use of symboli evaluation in order to produe a stati proess network froman abstrat desription was seen in the ray-traer pipeline example. In the hardwaredesription ontext, it is useful to be able to distinguish \stati" omponents from the\dynami" parts of the program whih serve only to apture the wiring in an abstratway. In some funtional hardware desription languages (e.g. Johnson's Daisy language103



Figure 4.8: A three-bit adder iruit[Joh84a℄, the language is syntatially separated to make the distintion espeially lear.4.8 Divide-and-onquer using a proess networkThis hapter began by distinguishing two di�erent forms in whih parallelism an appearin funtional programs, being in essene \divide-and-onquer" and the pipeline/parallelproess network. To omplete this hapter's brief overview of transformation tehniques,we present a transformation whih an turn the divide phase of a reursive divide-and-onquer parallel program into a yli proess network. For motivation, it will be used ina very simple ray-traer, where the proess network formulation allows a highly parallelpipeline algorithm. The transformation is quite omplex and detailed, and is not vitalto the remainder of the book, so the reader is invited to skip to the end of this hapter,pausing only to look at the introdutory material here and in the next subsetion.The untransformed versionReall the generi divide-and-onquer formulation (we simplify it by representing the triv-ial ase by a deomposition with no subproblems):DivideAndConquer :: (� ! [�℄ ! �) ! (� ! [�℄) ! � ! �
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DivideAndConquer CombineSolutions Deompose problem= Solve problemwhereSolve problem = CombineSolutions problem (map Solve SubProblems)whereSubProblems = Deompose problemThe transformed versionThe �nal, transformed version has the formDivideAndConquer CombineSolutions Deompose problem= EvaluateTree (StreamToMTree (StreamOfSubProblemTree [problem℄))whereStreamOfSubProblemTree problems= outputwhere(output, feedbak)= SplitStreamDividePhase (problems++feedbak)DividePhase NewAndReyledProblems= insert (++) [ ℄(map LayerOf NewAndReyledProblems)LayerOf problem= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems)): (map FEEDBACKTAG Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsThe proess network of the yli pipeline is given in Figure 4.9. This de�nition makesuse of several funtions whose de�nitions have will be given shortly. They are olleted inAppendix A, setion A.6, where a proof of orretness of the transformation is given.4.8.1 Operation of the yli divide-and-onquer programTo understand �gure 4.9, it is neessary to think of the tree of subproblem deompositionas an expliit data struture. We have a \divide" phase where the tree is onstruted, and105



Figure 4.9: Sketh of the yli pipeline formulation of divide-and-onquera \onquer" phase, where solutions to subproblems are propagated up the tree from itsleaves, until a solution to the root problem an be found.The yli part of the transformed program appears in the divide phase. The treeis onstruted generation by generation in a breadth-�rst manner. This means problemdeomposition an be performed on all the elements of a generation at one.The �rst generation is the input problem by itself. When the divide phase is appliedto this, one node of the deomposition tree is built and a number of subproblems aregenerated. The node is tagged using OUTPUTTAG and is passed through SplitStreamto output where it is olleted (StreamToMTree) to form the deomposition tree. Thesubproblems are tagged using FEEDBACKTAG, and are passed by SplitStream to feedbak.They are �nally fed bak to sueed input in the input stream to DividePhase.The proess omes to an end when subproblems an be deomposed no further. Whena whole generation of subproblem-less subproblems is reahed, the omplete deompositiontree an be ompleted, and the onquer phase an begin.4.8.2 Derivation of the yli divide-and-onquer programThe derivation onsists of the following steps:� Separating the two phases, divide and onquer, linked by the deomposition tree,� Transforming the tree into a stream, sanned in breadth-�rst order|and bak again,� Integrating the tree onstrution proess with transformation of the tree into abreadth-�rst san,� Introdution of a yli stream version of the integrated tree onstrution and sanproess.Separating divide from onquer with a deomposition treeThe intermediate tree has the type
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MultiTree � � ::= MNODE � (� ! [�℄ ! �) Num [MultiTree � �℄Although there is only one kind of element in this type, it is tagged with the onstrutorMNODE for larity.Eah node of a MultiTree,MNODE Problem CombiningFuntion NoOfSubproblems Subproblemsonsists of a list of subtrees Subproblems, a number NoOfSubproblems giving the numberof subtrees in the list, CombiningFuntion, a funtion to take solutions of the subtrees'problems, and produe a solution of the problem the node itself represents, and Problem,the original problem to be solved. At the leaves, the list of subtrees is empty. UsingMultiTree, we have the new funtionsBuildTree :: � ! MultiTree � �EvaluateTree :: (MultiTree � �) ! �whih make the intermediate tree expliit when put together:DivideAndConquer CombineSolutions Deompose problem= EvaluateTree (BuildTree problem)whereBuildTree problem = MNODE problemCombineSolutionsNoOfSubproblems(map BuildTree Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length SubProblemswhereEvaluateTree (MNODE problem CombineSolutions n subtrees)= CombineSolutions problem (map EvaluateTree subtrees)This is proven in Appendix A setion A.6.1, but note that it holds only if CombineSolutionsis strit in all the sub-solutions.Separating the phases by a streamThe next stage of the derivation is to atten the intermediate tree struture into a stream(i.e. a lazily-produed list). To do this a speial tree{stream data type transformation isused. It is neessary to san the tree breadth �rst in order to bring out its parallelism. Weuse a list of speial tokens, 107



MultiTreeToken � � ::= MTREETOKEN � (� ! [�℄ ! �) Num(the number arries the number of subtrees for this node, and is neessary to enable thetree to be reonstruted from the stream). To perform the transformation we need twofuntions,MTreeToStream :: MultiTree � � ! MultiTreeToken � �StreamToMTree :: MultiTreeToken � � ! MultiTree � �For all (�nitely-branhing) MultiTrees mtree we require thatStreamToMTree (MTreeToStream mtree) = mtree(The funtions StreamToMTree and MTreeToStream are de�ned in Appendix A setionA.6.2, where they are derived. Now we an rewrite the two-phase divide-and-onquerformulation asDivideAndConquer CombineSolutions Deompose problem= EvaluateTree (StreamToMTree (MTreeToStream (BuildTree problem)))whereBuildTree problem = � � �Simplifying tree onstrutionIn the next step of the transformation, we have the ompositionMTreeToStream (BuildTree problem)whereBuildTree problem = MNODE problemCombineSolutionsNoOfSubproblems(map BuildTree Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length SubProblemswhere
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MTreeToStream tree = ListOfTreesToStream [tree℄ [ ℄ListOfTreesToStream [ ℄ [ ℄ = [ ℄ListOfTreesToStream [ ℄ hildren = ListOfTreesToStream hildren [ ℄ListOfTreesToStream ((MNODE p op n newhildren) : siblings) oldhildren= (MTREETOKEN p op n): (ListOfTreesToStream siblings (oldhildren++newhildren))We an use redution to de�ne a new funtion BuildStream whih onstruts the streamdiretly, so that the tree need not be built at all here. We proeed by writing down aspei�ation for BuildStream, and then reduing:BuildStream problem = MTreeToStream (BuildTree problem)| {z }= ListOfTreesToStream [BuildTree problem℄ [ ℄Clearly it is ListOfTreesToStream whih does all the work, so de�neBuildStream problem = BuildStreamsOfTrees [problem℄ [ ℄whereBuildStreamsOfTrees problems subproblems= ListOfTreesToStream (map BuildTree problems) subproblemsThis gives us a spei�ation for BuildStreamsOfTrees. The equations de�ning BuildStream-sOfTrees diretly are derived from those de�ning ListOfTreesToStream by instantiation andthen redution:BuildStreamsOfTrees [ ℄ [ ℄ = [ ℄BuildStreamsOfTrees [ ℄ subproblems = BuildStreamsOfTrees subproblems [ ℄BuildStreamsOfTrees (problem : siblingproblems) oldsubproblems= (MTREETOKEN problem CombineSolutions NoOfSubproblems): (BuildStreamsOfTrees siblingproblems(oldsubproblems++Subproblems))whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsBuilding the yleThe next step is the only \eureka" step in the derivation, so-alled beause it is pulled outa hat and then veri�ed rather than derived. It is not ompletely unexpeted as we have109



already seen several reursive de�nitions transformed into a similar form. One of the �rstexamples was iterate, given in Chapter 2, setion 2.2.7. The laim, proven in Appendix A,setion A.6.3 (Theorem 5), is that an equivalent de�nition for BuildStreamsOfTrees isBuildStreamsOfTrees [ ℄ [ ℄ = [ ℄BuildStreamsOfTrees problems subproblems= outputwhere(output, feedbak)= SplitStream((map FEEDBACKTAG subproblems) ++(join (map LayerOf (problems++feedbak))))LayerOf problem= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems)): (map FEEDBACKTAG Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsThe unde�ned funtions and data types are de�ned in a moment. Before explaining this,let's simplify things by presenting BuildStream itself in this form:BuildStreamOfTrees problem= outputwhere(output, feedbak)= SplitStream(join (map LayerOf (problem : feedbak)))LayerOf problem= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems)): (map FEEDBACKTAG Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsThe funtion LayerOf takes a problem and produes a list ontaining the problem's node(tagged with OUTPUTTAG), followed by all the problem's subproblems (tagged withFEEDBACKTAG). The funtion SplitStream piks out the objets in the list and dispathesthose marked for output as the funtion's result, but routes the subproblems, taggedFEEDBACKTAG, bak to be deomposed again by LayerOf.The de�nitions are as follows: the data type for the tagged list is110



TaggedStreamItem � � ::= OUTPUTTAG (MultiTreeToken � �)j FEEDBACKTAG �The seletion funtion SplitStream is de�ned asSplitStream :: [TaggedStreamItem � �℄ ! ([MultiTreeToken � �℄, �)SplitStream [ ℄ = ([ ℄, [ ℄)SplitStream ((OUTPUTTAG token) : rest)= (token : rest1, rest2)where(rest1, rest2) = SplitStream restSplitStream ((FEEDBACKTAG subproblem) : rest)= (rest1, subproblem : rest2)where(rest1, rest2) = SplitStream restThe funtion join attens a list of lists into a list:join :: [[�℄℄ ! [�℄join xss = insert (++) [ ℄ xss4.9 Appliation to ray traingTo �nish the hapter, we apply this transformation to a simple reursive ray-traing pro-gram. By transforming the divide-and-onquer formulation into a yli de�nition, large-sale pipeline parallelism in the ray-intersetion test is unovered.4.9.1 An introdution to ray-traingA variety of high-quality omputer graphis appliations require the generation, from aomputer model of a three-dimensional spae, of a view whih inludes shadows, and alsomodels refration and reetion from shiny and non-shiny surfaes. This is in additionto the more standard requirements for hidden surfae removal, perspetive, depth-ueing,et.The only generally-appliable way of generating suh images is by modeling the pathsand intensity of rays of light as they are reeted, refrated et. in the simulated region.The ruial observation behind ray-traing is that only rays whih pass through a pixel,and are inident on the viewer's eye (stereo vision is generally ignored), need be onsidered,and that these rays an be followed bakwards to their soure. The lassi referene onray-traing is Whitted [Whi80℄. 111



Traing rays bakwards ensures that only rays of interest are onsidered. Forward raytraing is infeasible beause, when a urved wavefront is approximately represented bymany rays, the unavoidable quantisation an be arbitrarily ampli�ed by unfortunately-plaed urved reeting surfaes.The system being onsidered onsists of the viewer's eye, the mesh imposed by thepixel pattern of the display devie, and a simulated region behind the display devie. Ourtask is to render the surfae of the display devie with just the olours, brightnesses andhues of the light passing through it from the simulated region to the viewer's eye. For thesake of simpliity we shall refer to the appearane of a pixel as its olour.The set of objets in the simulated region will be alled the objet database. Eah objethas a harateristi surfae: given an inoming ray, this determines where the ontributoryrays ome from, and how their intensities are ombined to produe the outgoing ray.In essene, the ray traing algorithm is as follows:1. For every pixel, ompute the ray starting from the viewpoint, whih passes throughit.2. For eah of these rays, �nd the �rst objet in the objet database whih the raystrikes.3. When a ray strikes a surfae, ompute the ray's olour. If the surfae is a light sourein its own right (or is ompletely dark), this is trivial. If not, alulate whih raysontribute to this ray's intensity, and ray-trae them in turn. The intensities of thesubrays an then be ombined to give the resulting ray's intensity, using a formulamodeling the surfae's harateristis.Thus, for eah original ray, a tree of sub-rays is onstruted during a reursive, divide-and-onquer omputation of eah pixel's olour and intensity properties.It must be emphasised before going on to the details that this example is for illustrationonly:� For pratial use, a far more subtle initial approah is always justi�ed. This ver-sion tests every ray against every objet; a smarter algorithm would partition theenvironment, so that one intersetion test against a large \envelope" objet (alleda bounding volume) would determine whether tests on objets inside the envelopeould possibly sueed.� This approah applies parallelism to the \divide" phase of the algorithm, duringwhih intersetion tests are performed. It leaves the \onquer" phase, during whihpixel intensities are atually alulated given their ontributory ray trees, to beperformed entirely sequentially. For simple models of surfaes' optial properties,the divide phase does dominate [Whi80℄, but not by a large fator.4.9.2 A simple divide-and-onquer ray traerTo begin with, we must generate the list of all the rays passing from the viewer's eyethrough eah pixel of the display devie, into the simulated region. Without going into112



detail, we assume we have a funtion whih does this, given details of the display meshand the position of the viewer's eye:GenerateInitialRays :: mesh ! point ! [Ray℄There is no need to de�ne the types mesh, point or Ray here. Now the fundamental questionis, given a ray and the objet database, what olour should we paint the orrespondingpixel? Let us introdue a funtion to answer this, whih we will re�ne shortly:FindRayColour :: ObjetDatabase ! Ray ! PixelColourWe have no need to re�ne the type PixelColour, but we do assume that the objet databaseis represented by a list of objets:ObjetDatabase == [Objet℄At the �rst level of abstration, the ray traer as a whole is de�ned byRayTraer :: ObjetDatabase ! point ! [PixelColour℄RayTraer objets viewpoint = map (FindRayColour objets)(GenerateInitialRays objets viewpoint)The pixel olours are output in the order they were generated by GenerateInitialRays.The ray-traing is done by the reursive funtion FindRayColour:FindRayColour objets ray = SurfaeModelFuntion ColoursOfSubrayswhereColoursOfSubrays = map (FindRayColour objets) SubraysSubrays = GetSubrays ImpatInfoSurfaeModelFuntion = GetSurfaeModel ImpatInfoImpatInfo = FirstImpat objets rayThis employs the funtion FirstImpat, whih was introdued bak in setion 4.5.1:FirstImpat :: ObjetDatabase ! Ray ! Impatwhere the data type Impat was de�ned asImpat ::= NOIMPACT jIMPACT Num ImpatInformationWithout elaborating fully the type ImpatInformation, we assume that the ontributoryrays an be found by
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GetSubrays :: ImpatInformation ! [Ray℄and that the funtion whih ombines the olours of these ontributory rays aording tothe appropriate surfae model an be found byGetSurfaeModel :: ImpatInformation ! ([PixelColour℄ ! PixelColour)The original ray is also available:GetRay :: ImpatInformation ! RayWhen a ray strikes an opaque, non-reetive surfae, GetSubrays will return an emptylist of ontributory rays, while GetSurfaeModel will return a onstant funtion giving theolour of the surfae.Expressing the ray-traer using DivideAndConquerThe �rst step in the transformation will be to onvert the divide-and-onquer formulationof FindRayColour into a yli stream de�nition, using the result of setion 4.8. To usethat result, we must �rst express FindRayColour in terms of the generi DivideAndConquerform:FindRayColour objets ray= DivideAndConquer CombineSolutions Deompose raywhereDeompose ray = Subrays (FirstImpat objets ray)CombineSolutions ray subrayolours = (GetSurfaeModel (FirstImpat objets ray))subrayoloursIt should be noted here that this is a highly parallel algorithm: when the many pixels ona typial sreen are taken into aount there will be work for several million PEs. Theaim of the transformation is to organise the avilable parallelism to take advantage of aloosely-oupled multiproessor.4.9.3 Transformation to a yli stream de�nitionOne we have the ray traer expressed using DivideAndConquer, we an now apply theyli stream transformation, giving:
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FindRayColour objets ray= EvaluateTree (StreamToMTree (StreamOfContributoryRayTrees [ray℄))whereStreamOfContributoryRayTrees rays= outputwhere(output, feedbak)= SplitStream (DividePhase (rays ++ feedbak))DividePhase NewAndReyledRays= (insert (++) [ ℄(map LayerOf NewAndReyledRays))LayerOf ray= (OUTPUTTAG (MTREETOKEN ray CombineSubrayColours NoOfSubRays)): (map FEEDBACKTAG subrays)whereCombineSubrayColours = GetSurfaeModel impatinfosubrays = Subrays impatinfoimpatinfo = FirstImpat objets rayNoOfSubRays = length subraysWe an tidy this up a little by separating out the intersetion test:FindRayColour objets ray= EvaluateTree (StreamToMTree (StreamOfContributoryRayTrees [ray℄))whereStreamOfContributoryRayTrees rays= outputwhere(output, feedbak)= SplitStream (DividePhase (FindImpats (rays ++ feedbak)))
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whereDividePhase NewAndReyledRaysImpats= (insert (++) [ ℄(map LayerOf' NewAndReyledRaysImpats))LayerOf' impatinfo= (OUTPUTTAG (MTREETOKEN ray CombineSubrayColours NoOfSubRays)): (map FEEDBACKTAG subrays)whereCombineSubrayColours = GetSurfaeModel impatinfosubrays = Subrays impatinforay = GetRay impatinfoNoOfSubRays = length subrayswhereFindImpats rays objets = map (FirstImpat objets) rays4.9.4 Exploiting pipeline parallelism in the yleThe next step is to employ our pipelined formulation of FindImpats,FindImpats rays objets = ( (map TakeImpat) Æ(insert (Æ) ident(map map (map PipelineStage objets)))Æ (map MakePipeItem) )raysThis exploits parallelism suessfully provided suÆient rays are present in the feedbakyle (�gure 4.9) to keep the pipeline omponents busy.4.9.5 Using pixel-wise parallelismAt present we an exploit pipeline parallelism to speed the appliation of the intersetiontest to eah suessive generation of a single pixel's ontributory-ray tree. The pipelinewill often be idle at the top and the bottom of trees, and (as is often the ase) whenmost of the trees are quite small. Fortunately we an use the pipeline to work on parts ofdi�erent pixels' ontributory-ray trees at the same time.First, notie that although we have onentrated so far on FindRayColour, the funtionwe really need to evaluate isRayTraer objets viewpoint = map (FindRayColour objets)(GenerateInitialRays objets viewpoint)Now reall (in fat from Appendix A, setion A.6.2) that StreamToMTree was de�ned in116



terms of a StreamToListOfMTrees:StreamToMTree stream = StreamToListOfMTrees 1 streamStreamToListOfMTrees n stream piks up a list of n trees from stream. In deriving Stream-ToMTree we proved thatStreamToListOfMTrees (length trees) (ListOfMTreesToStream trees) = treesThus, we an very naturally show thatmap (FirstImpat objets) rays= (StreamToListOfMTrees (length initialrays)(StreamOfContributoryRayTrees initialrays))This gives us the �nal, yli, pipelined ray traer implementation:RayTraer objets viewpoint= map EvaluateTree(StreamToListOfMTrees (length initialrays)(StreamOfContributoryRayTrees initialrays))whereStreamOfContributoryRayTrees rays= outputwhere(output, feedbak)= (SplitStreamÆ joinÆ (map LayerOf')Æ (map TakeImpat)Æ (insert (Æ) ident(map map (map PipelineStage objets)))Æ (map MakePipeItem))(rays ++ feedbak)where
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LayerOf' impatinfo= (OUTPUTTAG (MTREETOKEN ray CombineSubrayColours NoOfSubRays)): (map FEEDBACKTAG subrays)whereCombineSubrayColours = GetSurfaeModel impatinfosubrays = Subrays impatinforay = GetRay impatinfoNoOfSubRays = length subrays4.10 ConlusionsThis formulation of the ray traer ompletes the hapter's illustrative investigation oftehniques for transforming programs to bring out parallelism in easily-exploited ways.We return to the example in the next hapter.The main objetive of developing some general methods has only been partially ah-ieved. Some useful tehniques have been presented, but not in their most general form,nor so that they might be automated diretly. There is plenty of room for further work.In partiular, the transformation from divide-and-onquer into a yli stream formu-lation an be improved. The approah an be extended to inlude the \onquer" phase,and an be generalised to apply when CombineSolutions is not strit in all the subproblems.This is interesting beause a reursive expression evaluator is of this form, and would leadto a struture muh like a yli-pipeline data ow arhiteture suh as the ManhesterData Flow Mahine [GKW85℄.To make the approah pratial, a onsiderable level of support is neessary. The workshown was developed using penil and paper, and so mistakes inevitably reep in. Buildingsoftware to help is a onsiderable hallenge: systems to hek derivations and proofs haveexisted for some onsiderable time (notable are LCF [GMW79℄ and its derivatives), butbuilding proofs with suh systems is a slow and painstaking task|muh slower than peniland paper. What has not yet been ahieved onviningly is omputer-aided programtransformation and veri�ation whih is atually quiker and easier than doing it by hand.A great deal of work is in progress.4.11 Pointers into the literatureParallelism in graph redutionDespite the large amount of researh and development work on implementing parallelgraph redution mahines, there is very little published material desribing how programsmight be designed to exploit these designs' apabilities. Goldberg's thesis [Gol88℄ is themost omprehensive to date, although other studies are under preparation. Goldberg'sresults are interesting in partiular beause of the light they throw on the importane ofshared memory hardware. 118



Divide and onquerDivide-and-onquer has a very long history in algorithm design, and its extension toparallel algorithm design omes very naturally. Thus, muh of the standard algorithmdesign literature serves as a good introdution (see for example Aho, Hoproft and Ull-man [AHU83℄). Horowitz and Zorat survey general parallel divide-and-onquer algorithms[HZ83℄, while Stout gives a survey of divide-and-onquer image proessing algorithms[Sto87℄. Rayward-Smith and Clark develop a theory for sheduling divide-and-onquer al-gorithms [RSC88℄. Hartel and Vree present an interesting approah to the eÆient imple-mentation of a lass of divide-and-onquer programs on relatively loosely-oupled parallelgraph redution mahines [HV87℄. Vree applied program transformation to improve thegrain size of a divide-and-onquer implementation of a simulation of tidal motion in theNorth Sea [Vre87℄.Dataow and pipeline parallelismPipelining as a tehnique in the arhiteture of onventional omputers is the subjet of areview artile by Ramamoorthy and Li [RL77℄, and a book by Kogge [Kog81℄.Our interpretation of funtional programs as spei�ations of networks of proessesis shared by dataow proponents. Dataow languages like VAL [MG82℄, Id [NPA86℄,Luid [WA85℄ and Sisal [MSA+85℄ are essentially forms of pure funtional languages,normally restrited at least to �rst-order proedures (i.e. no funtion values), and om-monly augmented by \syntati sugar" for reurrenes and other forms onvenient forsienti� omputation.This sugaring an often be thought of as restriting an imperative language so thatno variable or struture element may be assigned to more than one. This leads to aslight inrease in expressive power, exploited in Id Nouveau [AE88℄, where, for example,an array an be passed to two funtions whih then interat by assigning to array elements.This apability, shared with ommitted-hoie logi languages like Parlog [Gre87℄ andStrand�Strand [AI 88℄, goes beyond what an naturally be expressed in the purely-funtional language used in this book.The dataow onept has prompted several hardware design projets, aimed at usinga dataow graph representation of a program's onsituent instrutions at run-time, sothat parallelism an be exploited instrution by instrution on a large sale. This di�ersfrom onventional look-ahead proessors [Kel77℄ where data dependenies are analysedat run-time in a look-ahead bu�er of limited size. A by-produt of organising the fullyasynhronous instrution sheduling this requires is that PE's an be made very tolerantof large and variable memory aess lateny [AI86℄, but the overheads are non-trivial(although for a ontrary view see [ACE88℄). Critiisms of the approah are summarisedby Gajski and his olleagues [GPKK82℄. Classial early work in the area inludes theManhester Data Flow Mahine projet, reviewed in [GKW85℄, and more thoroughly inpart I of [CDJ84℄. More reent work inludes Arvind's \Monsoon" projet, reported in[AN87℄ and [Pap89℄.Elsewhere, onsiderable progress has been made ompiling dataow languages for on-ventional shared-memory multiproessors suh as the Cray-XMP [Lee88℄. This has arisenfrom suess with the partitioning problem, as reported by Sarkar [Sar89℄.119



Hardware desription and derivationJohnson [Joh84a℄ argues that the abstration made in iruit design when moving froman analogue to a digital model of devie behaviour preisely mathes the funtional view.There is some pratial support for the view, not least the suess of ommerial produtslikeElla [MPT85℄. In the ontext of systoli designs, it has led to a great deal of suessfulwork in deriving eÆient VLSI implementations of parallel algorithms. Suh work, notablyby Quinton [Qui84℄, Chen [Che84℄ and Moldovan [Mol83℄, has developed a onsiderableunderstanding of sheduling omputations onto �xed arrays of synhronous PE's.There are some weaknesses with the funtional approah. Certainly when one needsto work below or outside the abstration of synhronous digital iruits, more generaltehniques are needed. Quite an e�etive treatment of this is the higher-order logi (HOL)approah of Hanna and Daehe [HD85℄ and Fourman [FPZ88℄. At a higher level, Sheeranidenti�es a failure to apture ideas like handshaking, where, for example, an input to airuit inludes an aknowledgement output. Sheeran proposes Ruby, an experimentalrelational language [She88℄, to deal with the problem.The existene of hardware desription and spei�ation languages poses the quite on-tentious question of whether programming is a good model for digital systems design, orat least VLSI iruit design. One theme of this book is that parallel programming is di�er-ent and more ompliated than sequential programming. This ertainly extends to digitaliruit design, whih an be yet more ompliated when pakaging, power distribution andtehnology mixing are taken into aount. Even in the muh simpli�ed arena of a singleVLSI hip, the use of ompilation tehniques in favour of more interative design tools isdiÆult to justify when the ost of a devie rises exponentially with the hip's size.The Kahn prinipleKahn observed [Kah74℄ that the meaning of ertain simple systems of interating pro-esses an be given using the standard �xed-point methods of denotational semantis. Fora introdution to the denotational approah to giving a mathematial semantis to a pro-gram, see Shmidt [Sh86℄. The restrition Kahn imposed was that the behaviour of theomponent proesses be haraterisable by funtions mapping the history (i.e. stream) ofinput values to the history of output values. Keller [Kel74℄ details this simpli�ation in awider ontext, but it was not until Faustini's thesis [Fau82℄ that Kahn's \priniple" wasformally proven in a general ontext.Ray traingAlthough it goes bak at least to 1968 [App68℄, the tehnique was �rst presented in detailby Turner Whitted in 1980 [Whi80℄. It is now ommonly dealt with in introdutoryomputer graphis textbooks. The range of smart ray-traing algorithms is enormous,but they essentially depend on the notion of a \bounding volume", a simple arti�ialsolid introdued to envelop a real objet with a more omplex form, so that most raysan bypass the intersetion test with the omplex shapes. This and other tehniques aresurveyed in [WHG84℄. Kajiya [Kaj83℄ gives an interesting twist to the bounding volume120



approah when applied to senes generated at random in a \fratal" fashion: the seneitself together with bounding volumes is generated only when a ray might strike it.Automati transformation tehniquesThe emphasis in this hapter has been on developing manual tehniques for exploringprogram transformations. A large body of work has been done towards understanding thealgebra of programs enough to give algorithms for manipulating programs into spei�edforms. A simple example (explored by Wadler [Wad88a℄) might be the tehnique of propa-gating \++" into funtions returning lists to avoid opying, as employed in setion A.1.1.A more ompliated one might be the elimination of sub from reurrenes, as given insetion A.3. For more examples, see Field and Harrison's textbook [FH88℄.Computer-aided program transformation and veri�ation environmentsProgram veri�ations annot be expeted to be heked by well-quali�ed reviewers in thesame way that mathematial veri�ations appearing in the sienti� literature are. Theyare generally too boring! A formal approah arries no more weight than vigorous assertionunless the steps are heked, and so omputer support is a neessity, not a luxury. Proofhekers exist, LCF being a prime example [GMW79℄. Unfortunately using suh a systeman be very hard work indeed beause of the amount of detail required.One approah to alleviating the tedium of heked veri�ation is to employ a mehanialtheorem prover. The lassi work in this area is by Boyer and Moore [BM79℄, whilst Gordongives an introdution [Gor88℄ and Chang and Lee give a more general treatment [CL73℄.An interesting alternative, whih applies more neatly to program derivation, is toapture proof tehniques or derivation strategies as programs in a meta-language (in thease of LCF this was ML|whih took on a life of its own [Mil83℄). These \tatials" arebuilt by ombining fundamental inferene rules of the program logi. Milner [Mil85℄ givesa good introdution. A partiular suess of the ML/LCF approah of Gordon, Milner andWadsworth is the use of a polymorphi type system to ensure that only formally-derivedstatements ahieve the status of theorems. Darlington pioneered the appliation of thisproof development work to program derivation with [Dar81℄, using the funtional languageHope [BMS80℄ as both the meta-language and the objet language.Darlington's group have gone on to base a omplete programming environment onformal program transformation [De88℄. Their aim is to apture software spei�ation,derivation and hange ontrol by using Hope+ to doument software modi�ations asexeutable meta-programs.Reviews of related work are given by Pepper [Pep83℄ and Feather [Fea86℄.
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Chapter 5Distributed Parallel FuntionalProgrammingThis hapter examines the problem of ontrolling the distribution of a parallel programaross a loosely-oupled multiproessor, and develops an extension to the programminglanguage to resolve it.The main points are� In general funtional programs demand some additional ontrol if the parallelismwhih is present is to be exploited eÆiently.� This ontrol over spatial program distribution, although not impervious to ompilertehnology, an legitimately be thought of as part of the programming task.� The proess network diagram used to illustrate parallelism struture is an appropri-ate level of abstration for program design and analysis.� The proess network assoiated with a program is not uniquely determined by theprogram's form. In fat, the hoie of whih proess network to use to distribute aprogram an depend on run-time data values.� A delarative program annotation is presented whih assoiates a program with itsproess network. The notation has two natural abstration mehanisms, and hasappliation in more tightly-oupled multiproessors.5.1 Communiation patternsA ommuniation ours every time a value is stored in or read from a memory loation.The ommuniation ours between a memory devie and a PE. The memory may be verylose to the PE { perhaps on the same hip. It may be in some other PE's loal memory, orin some speial memory organ shared between many PE's by means of a high-performaneinteronnetion network. At the far extreme, aess to non-loal memory may be providedby expliitly-programmed message passing over a ommuniations network.123



As well as optimising the use of proessing power, we must treat the target arhite-ture's ommuniations apabilities as a ritial resoure. In a loosely-oupled multipro-essor the number of immediately-aessible PE's or memories for eah proess is stritlylimited. Thus, a ring-shaped proess network is far easier to aommodate than a star net-work, or even a mesh or (hyper)ube. The ommuniations demands of a parallel algorithmmust be taken into aount in evaluating its suitability for suh mahines. The importaneof ommuniation to parallel program performane is often hidden in small-sale parallelomputers, but when really large sale parallelism is to be exploited it is inesapable. Indevies fabriated using photolithography, e.g. VLSI, it is already paramount.5.1.1 The speed-up of a sequential multiproessorOne way to demonstrate the importane of ommuniations is to onsider a omputationwhih ould be made faster by repliating PE's without involving any parallelism at all.Let us imagine a single proessor omputer, linked to a single, large, memory devie.Its performane is, to a large extent, governed by the yle time of the memory devie.The speed of a memory devie depends on its apaity, sine its operation depends onsignal propagation aross the memory matrix. In the worst ase, this propagation delayis quadrati in the memory matrix's width, but with areful design it an be redued to alogarithmi fator (see Mead and Conway [MC80℄, setion 8.5.2.3).For some omputation, it might be possible to determine in advane that the memorywill be aessed region-by-region, in a sequential fashion. Thus, if we ould break thememory devie up into many sub-memories, eah overing exatly one region, we ouldhope to inur only the aess time of a small memory devie at eah memory aess, ratherthan the aess time of the entire memory. With a single PE, this would save no time,beause the signals would still need to travel to and from the orret sub-memory, but ifwe make many dupliates of the PE and satter them among the submemories, we ouldarrange for the program to move to the appropriate PE before aessing eah region.Just this e�et is exploited with transputers, where there is a speial advantage tokeeping eah proess's memory requirements small so that the on-hip RAM is suÆient.Of ourse, if we an use the results from more than one region's alulation at a time, wean exploit parallelism too, giving a double bonus.5.1.2 The ray intersetion test exampleOne of the example program transformations used in the previous hapter (setion 4.5.1)is an illustration of this. We had a omputation initially given asFindImpats rays objets= map (FirstImpat objets) rayswhereFirstImpat objets ray = earliest (map (TestForImpat ray) objets)whereearliest impats = insert earlier NOIMPACT impatsCommonly, both the number of rays and the number of objets are very large. It is124



lear, therefore, that this program has no shortage of parallelism: we an use horizontalparallelism to spawn a proess to ompute every element of the result list in parallel.Notie, though, that every one of these proesses,FirstImpat objets rayiwill need extensive aess to the list objets { in fat every proess will be ontinuously a-essing all of objets. Only in an arhiteture with a very powerful interonnetion shemean this level of shared memory traÆ be supported. Most suessful implementationsopy the database instead, and with a moderate number of objets opying works well.The transformed version of the program took the form of a pipeline, eah omponentof whih was responsible for a single element of the objets list:FindImpats2 rays objets = ( (map TakeImpat) Æ(insert (Æ) ident(map map (map PipelineStage objets)))Æ (map MakePipeItem) )rayswhere the pipeline stage is de�ned byPipelineStage objet (PIPEITEM ray impat)= PIPEITEM ray impat'whereimpat' = earlier impat NewImpatNewImpat = TestForImpat ray objetThe body of the pipeline is a hain of proesses evaluatingmap PipelineStage objet pipeitemsThe pipeline stage's only ommuniations are with the next and previous stages in thehain. The number of objets handled by eah stage an be inreased if neessary, al-lowing omplete ontrol over how muh loal memory is used, and over the ommuni-ation/omputation ratio. This implementation does, indeed, seem to win the \doublebonus" promised above!5.1.3 Is this programming?This leads us to a rather awkward question: are the two formulations of the ray inter-setion test given above di�erent parallel algorithms? In sequential programming terms,we must answer \no", for they do represent exatly the same omputation. Nonethelessthe di�erene is substantial: the pipelined form eluidates an organisation of the problemwhih seems pratially important.Beause the problem of distributing a parallel omputation in spae is so ompliated,it is reasonable to onsider taking the view that it is the programmer's responsibility. If125



Figure 5.1: A four-element yli graphwe take this view, then we must hope to o�er some support in the programming languageto make the task easy. We an still hope for theoretial advanes to eliminate suh detailsfrom programmers' daily work; the notation presented might then be an intermediate formin the ompilation proess.5.2 Delarative desriptions of proess networksWe have disovered that the unadorned text of a program does not onstrain its parallelevaluation enough for us to laim that the sript serves to desribe a parallel algorithm.Instead of re�ning programs into desriptions of parallel algorithms using annotationsto ontrol operational aspets of evaluation, it seems preferable to apply delarative pro-gramming to the problem. A proess network (like any graph) an be desribed by itsnodes and its ars. If we name the nodes in the program a, b,  et. we an represent thenetwork's ars using a list of assertions. For example, the four element yli graph shownin �gure 5.1 an be written(ar a b) ^ (ar b ) ^ (ar  d) ^ (ar d a)Here, a, b,  and d are labels identifying expressions in the program, and ^ denotes logial\and". By asserting ar a b, the programmer is informing the ompiler that expressionsa and b ought to be omputed in parallel, and that the proesses evaluating them areexpeted to interat. Just how they interat is not explained by the proess network:one must refer to the de�nitions of the labelled expressions. In partiular, the ars inthe proess network desribed do not arry arrows indiating any partiular diretion ofinformation ow. We will see examples (see setion 5.3.3) where an ar stands for abidiretional ow.Let us look a little more losely at a simpler example, a three element hain:(ar a b) ^ (ar b ) ^ (ar  d)with the assoiated de�nitions 126



a = map ((+) 2) bb = map ((�) 3)  = map sqrt dd = from 1The network assertion ar  d demands that the expressions named  and d eah be anindependent proess, to be alloated to a proessor of its own (at least notionally). Itfurther requires the ompiler to arrange things so that the proessor exeuting  is linkeddiretly to the proessor exeuting d, beause they are expeted to ommuniate duringthe omputation.Looking at the body of d we �nd that there are no free variables: the expression isquite self-ontained, apart from the ode it exeutes. Its only neessary ommuniation isto deliver its result stream.The body of  has one free variable (apart from the ode it exeutes), d. Fortunately,we already know that d is plaed on a neighbouring proessor, so its value is easily availableto the proessor whih must evaluate . Indeed it is beause of this dependeny that thear assertion was made. The ompiler an hek that all of a program's data dependeniesare reeted by ars in the network, although the programmer may hoose to ignore suhwarnings if the expeted level of traÆ on the ar onerned is thought to be very small.Looking at b the pattern should beome lear. It is the entire expression whih is namedand mentioned in the delarative proess network desription. Thus, b is the ompletefuntion appliation map ((�) 3) . This might seem somewhat onfusing sine in ourproess network diagram this node would be labelled just map ((�) 3), being the funtionthe node applies to its input. We use a shorthand to resolve it, introdued shortly.5.2.1 A proess network languageThis tehnique for assoiating a program sript with a proess network diagram forms thebasis for an interesting extension to our funtional programming language. We add a newkeyword,moreover, to introdue a \moreover lause" ontaining a delarative desriptionof the struture of the intended proess network, using as labels any names urrently insope. The resulting language is alled \Caliban" for somewhat obsure reasons, afterthe harater from Shakespeare's The Tempest. Caliban, bereft of his one-great magialpower, is muh maligned in modern interpretations of the play.Thus the example above might be written in Caliban asawherea = map ((+) 2) bb = map ((�) 3)  = map sqrt dd = from 1moreover(ar a b) ^ (ar b ) ^ (ar  d) 127



5.2.2 A shorthand for naming proessesThis desription is a little ompliated, beause every time we want to distinguish a proesswe must use where to give a name to the appliation. We introdue a shorthand, 2f (read\make proess f"), to denote a name for the appliation in whih f appears. The funtionf must appear exatly one in the soure program (or a ompile-time error should bereported). We an use it to re-express our pipeline asf (g (h d))wheref = map ((+) 2)g = map ((�) 3)h = map sqrtd = from 1moreover(ar 2f 2g) ^ (ar 2g 2h) ^ (ar 2h d)Of ourse it would be equivalent to use parameterised de�nitions of f, g and h, suh asf xs = map ((+) 2) xsThe di�erene between f and 2f is that f is the name of a proess to ompute the funtionso named, while 2f is the name of a proess whih applies it. Beause our host languageallows funtions as values, either of these an onstitute a sensible proess body.We an be a little informal and use omposition rather than appliation provided theappliation an be unovered by the use of redution at ompile-time. Doing this allowsus to write(f Æ g Æ h) dwheref = map ((+) 2)g = map ((�) 3)h = map sqrtd = from 1moreover(ar 2f 2g) ^ (ar 2g 2h) ^ (2h d)5.2.3 Abstrating proess networksIt is frustrating to have to write out the details of highly-strutured proess networks likeour hain example. It would be muh tidier to have some means of de�ning one-and-for-all what a proess hain looks like. This turns out to be very easy, beause we have all themehanisms we require in the host language. In order to speify a hain network given alist of funtions, [f1, f2, f3, . . . fn�1, fn℄, we need to build an assertion128



(ar 2f1 2f2) ^ (ar 2f2 2f3) ^ . . . ^ (ar 2fn�1 2fn)This is easy. We de�ne a funtion, whih we will all a \network forming operator":hain :: (Bool ! Bool ! Bool) ! [(� ! �)℄ ! Boolhain relation [f℄ = TRUEhain relation (f1 : f2 : fs) = (relation f1 f2) ^ (hain relation f2 fs)Now suppose we write(f Æ g Æ h) dmoreoverhain ar [2f, 2g, 2h, d℄| {z }We an apply redution to expand this annotation:(f Æ g Æ h) dmoreover(ar 2f 2g) ^ (hain ar [2g, 2h, d℄)| {z }(f Æ g Æ h) dmoreover(ar 2f 2g) ^ (ar 2g 2h) ^ (hain ar [2h, d℄)| {z }(f Æ g Æ h) dmoreover(ar 2f 2g) ^ (ar 2g 2h) ^ (ar 2h d) ^ (hain ar [d℄)| {z }(f Æ g Æ h) dmoreover(ar 2f 2g) ^ (ar 2g 2h) ^ (ar 2h d) ^ TRUEBeause the annotation has the form of a onjuntion of Boolean assertions, TRUE repre-sents the empty annotation, and so an be removed.Other network-forming operatorsA hain is not the only useful pattern of ommuniation to apture. Di�erent appliationsmay require more speialised strutures, but we an omplete an initial toolkit with thefuntions ladder and fan de�ned as follows:
129



ladder :: (Bool ! Bool ! Bool) ! [� ! �℄ ! [ ! Æ℄ ! Boolladder relation [ ℄ [ ℄ = TRUEladder relation (a : as) (b : bs) = (relation a b) ^ (ladder relation as bs)Thus, ladder ar as bs takes two lists of proesses and builds an assertion that they belinked pairwise by the relation. It might more neatly be expressed asladder relation as bs = all (map2 relation as bs)whereall = insert (^) TRUEThis makes lear the relationship between ladder and map2.The fan operator takes a proess and a list of proesses and builds an assertion thatevery proess in the list is linked to the �rst proess:fan :: (Bool ! Bool ! Bool) ! � ! [� ! ℄ ! Boolfan relation a bs = all (map (relation a) bs)We will assume vetor variants of the network forming operators, de�ned likeVetorLadder relation av bv = ladder relation (VetorToList av) (VetorToList bv)5.2.4 A seond abstration mehanismA funtion like hain allows patterns of ars to be abstrated, and treated as a single link ofa higher-level kind. A dual to this ar abstration mehanism is node abstration, a meansof pakaging up olletions of nodes as a single, higher-level form. Let us ontinue withthe proess hain example we have been using so far, whih is, in fat, used as a pipeline.We ould try to apture the notion of a pipeline as a single higher-order ombining form:pipeline :: [� ! �℄ ! � ! �pipeline fs x = (insert (Æ) ident fs) xmoreover(hain ar (map (2) fs))^ (ar 2(last fs) x)^ (ar 2(hd fs) interfae)pipeline takes a list of funtions, eah of whih spei�es a omponent proess of the pipeline.Themoreover annotation asserts that the omponents are eah separate proesses linkedinto a hain, while the body part �lls in the details of the ommuniations, applying eahfuntion to the result of the next in the pipeline. Note that map (2) fs must be reduedso that 2 is applied to eah element of fs before being interpreted as a referene to the130



proesses.The keyword interfae is a shorthand for the name of the funtion's result { the de�-nition above is equivalent topipeline fs x = resultwhereresult = (insert (Æ) ident fs) xmoreover(hain ar (map (2) fs))^ (ar 2(last fs) x)^ (ar 2(hd fs) resultThe purpose of making this link to result is to onnet the output of the proess networkof this funtion orretly into the proess network of the alling program. In this example,the pipeline has a single output ar, so interfae is the name of a single node.5.2.5 Simpli�ation rulesWe have now seen all the omponents of the Caliban language. Examples of appliationswill be given shortly, but �rst a simple program will be analysed. The fundamentalnotation is based on naming and the moreover lause, but this is augmented by the 2operator, the interfae pseudonym, the use of network forming operators like hain, and theappearane ofmoreover lauses in auxiliary funtion de�nitions like pipeline as well as atthe outermost level of a program. We understand the meaning of omplex onstrutionsby applying simpli�ation rules and redution. The rules an be summarised ase1ff xg1 moreover e2f2fg � e1fag where a = f x moreover e2fagLHS = e1 moreover e2finterfaeg � LHS = a where a = e1 moreover e2fageAfeB moreover eCg moreover eD � eAfeBg moreover eC ^ eDWhere� a is a urrently unused name in eah ase,� e1fe2g stands for an expression e1 ontaining an instane of e2.� e1fe2g1 stands for an expression e1 ontaining exatly one instane of e2.� all the names referred to by eC are de�ned in eA orretly.A program is ompiled by applying these rules, together with redution as required, untilthe program has just onemoreover lause onsisting only of a onjuntion of ar assertionsabout named proesses. This may involve evaluating a substantial portion of the program,and there is a risk that the ompiler will fail to terminate.The last restrition means that parameters and names de�ned in nested where lausesmust be lifted to the outermost lexial level. This may not be possible. It might, therefore,prove impossible to oat all moreover lauses to the outermost level. For example, thisours if a reursive funtion depending on a run-time variable is annotated so that the131



Figure 5.2: The expanded proess networknesting ofmoreover lauses annot be unravelled at ompile-time. Suh programs speifydynami proess networks, whih evolve at run-time. These are not dealt with by thissimpli�ation sheme. Some examples are given in setion 5.2.7.5.2.6 An example of simpli�ationA simple example of the use of these rules { whih would normally be applied by theompiler { is given below. This program spei�es the proess network given in �gure 5.2:f x y = ombine (left x)(right y)whereombine xs ys = map2 op xs ysleft = pipeline [f1, g1, h1℄right = pipeline [f2, g2, h2℄moreover(fan 22ombine [2left, 2right℄)^ (ar 22ombine interfae)There are three points to wath out for here:� When a two-parameter urried funtion like ombine is applied to both parameters,two 2 operators are needed to refer to the omplete appliation.� The presene of the ar assertion between two proesses does not reet the diretionof data transfer.� At this level, 2left and 2right appear to be single proesses. Sine they are instanesof pipeline, they atually unfold into pipelines of three proesses eah. The outputof eah pipeline is its \interfae", to whih it delivers its output, and to whihproesses onsuming its output are linked.The input of eah pipeline is onneted by the assertion that eah pipeline is linkedto its parameter x. 132



We begin by expanding the interfae and 2 shorthands:f x y= resultwhereresult = boxboxombineboxboxombine = ombine boxleftboxrightboxleft = pipeline [f1, g1, h1℄ xboxright = pipeline [f2, g2, h2℄ yombine xs ys = map2 op xs ysmoreover(fan boxboxombine [boxleft, boxright℄)^ (ar boxboxombine result)Sine boxboxombine = result, ar boxboxombine result = TRUE. This is evidene of someredundany in the notation: the interfae link was not stritly neessary here, but wasinluded to make all the ars manifest in the moreover lause. The next step is to unfoldthe referenes to pipeline. We take the �rst one, and remove the use of \Æ", 2, interfaeand hain ar straight away:f x y= resultwhereresult = boxboxombineboxboxombine = ombine boxleftboxright
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boxleft = result2whereresult2 = boxf1boxf1 = f1 boxg1boxg1 = g1 boxh1boxh1 = h1 xmoreover(hain ar [boxf1, boxg1, boxh1℄)^ (ar boxh1 x)^ (ar boxf1 result2)boxright = pipeline [f2, g2, h2℄ yombine xs ys = map2 op xs ysmoreover(fan boxboxombine [boxleft, boxright℄)^ (ar boxboxombine result)Notie the need to introdue result2 to avoid a lash with result. The next step is to tryto oat the nested moreover lause out to join the outer one. To do this we must makesure that all the names it refers to are de�ned in the outer sope:f x y= resultwhereresult = boxboxombineboxboxombine = ombine boxleftboxrightboxleft = result2moreover(hain ar [boxf1, boxg1, boxh1℄)^ (ar boxh1 x)^ (ar boxf1 result2)result2 = boxf1boxf1 = f1 boxg1boxg1 = g1 boxh1boxh1 = h1 xboxright = pipeline [f2, g2, h2℄ yombine xs ys = map2 op xs ys 134



moreover(fan boxboxombine [boxleft, boxright℄)^ (ar boxboxombine result)Merging moreover lauses givesf x y= resultwhereresult = boxboxombineboxboxombine = ombine boxleftboxrightboxleft = result2result2 = boxf1boxf1 = f1 boxg1boxg1 = g1 boxh1boxh1 = h1 xboxright = pipeline [f2, g2, h2℄ yombine xs ys = map2 op xs ysmoreover(hain ar [boxf1, boxg1, boxh1℄)^ (ar boxh1 x)^ (ar boxf1 result2)^ (fan boxboxombine [boxleft, boxright℄)^ (ar boxboxombine result)We omplete the simpli�ation by doing the same with the other instane of pipeline, andunfolding the uses of hain and fan:f x y= resultwhereresult = boxboxombineboxboxombine = ombine boxleftboxright
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boxleft = result2result2 = boxf1boxf1 = f1 boxg1boxg1 = g1 boxh1boxh1 = h1 xboxright = result3boxf2 = f2 boxg2boxg2 = g2 boxh2boxh2 = h2 yombine xs ys = map2 op xs ysmoreover(ar boxf1 boxg1) ^ (ar boxg1 boxh1)^ (ar boxh1 x)^ (ar boxf1 result2)^ (ar boxf2 boxg2) ^ (ar boxg2 boxh2)^ (ar boxh2 x)^ (ar boxf2 result3)^ (fan boxboxombine [boxleft, boxright℄)^ (ar boxboxombine result)This de�nition now uses only Caliban's fundamental mehanisms. We might all this\normal form" Caliban.5.2.7 Some examples where simpli�ation failsSimpli�ation may not always sueed in �nding a \normal form" Caliban formulation ofthe input program. This happens with programs whose proess network evolves duringprogram exeution, as with the primes sieve program (setion 4.6.1):primes = sieve (from 2)wheresieve (a : as) = a : (sieve (�lter a as))moreoverar 2sieve 22�lterIt also happens if insuÆient information is available to determine the proess network,as in a program likef xs = map g xsmoreoverfan 2g (map (2) xs)where xs is a program input, and yet determines the size of the network.136



Finally, a rather pathologial possibility is that the omputation neessary to �nd theproess network fails to terminate, even though the program terminates orretly. Thisan happen if the output of the proess network is not needed at run time, as might ourin this example:f a = if (satisfatory a)a(map g xs)wherexs = 1 : xsmoreoverfan 2g (map (2) xs)5.3 Some examplesHaving introdued the bones of the Caliban language, we need some examples to see howit works out in pratie.5.3.1 Example: the square root pipelineThis example is derived from an Oam tutorial. It is very simple, being a systoli algo-rithm of the most basi kind. The problem is to take a list of numbers, and ompute thelist of their orresponding square roots. The solution is a pipeline algorithm, with onestage for eah iteration of the Newton-Raphson approximation tehnique.Begin with the standard Newton-Raphson algorithm, from setion 4.3.1:solve f f' x0= until onverges xswhereonverges 0 = FALSEonverges i = abs(((xs sub i) - (xs sub (i-1)))/(xs sub i))��, if i � 1xs = generate NextEstimatewhereNextEstimate 0 = x0NextEstimate i = (xs sub (i-1))- ( f (xs sub (i-1)) / f' (xs sub (i-1)) ), if n � 1To �nd a square root, we solve for f x = 0, wheref x = x2 - aso f' x = 2�x. A fair guess to start with is x0 = a/2, so we have
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sqrt a= until onverges xswhereonverges 0 = FALSEonverges i = abs(((xs sub i) - (xs sub (i-1)))/(xs sub i))��, if i � 1xs = generate NextEstimatewhereNextEstimate 0 = aNextEstimate i = ((xs sub (i-1)) + a/(xs sub (i-1)))/2, if i � 1Testing for onvergene at eah step is quite expensive; it turns out to be easier (and muhbetter for a pipelined implementation) to iterate a �xed number of times before �nishing:sqrt a= until �nished xswhere�nished i = TRUE, if i = NumIterates�nished i = FALSE, otherwisexs = generate NextEstimatewhereNextEstimate 0 = a/2NextEstimate i = ((xs sub (i-1)) + a/(xs sub (i-1)))/2Applying our standard tehnique for optimising reurrenes (Appendix A, setion A.3),this beomessqrt a = xs sub NumIterateswherexs = (a/2) : (map Transition xs)Transition prevx = (prevx + a/prevx)/2If we �x NumIterates at some given value, say four, and apply redution this an be writtensqrt a = (Transition Æ Transition Æ Transition Æ Transition) (a/2)whereTransition prevx = (prevx + a/prevx)/2If we apply fat 2 (Appendix A, setion A.4) here we an make the free variable a inTransition a parameter of Transition, and propagate it through using a pair:sqrt a = fst ((Transition' Æ Transition' Æ Transition' Æ Transition')(a/2, a))whereTransition' (prevx, a) = ((prevx + a/prevx)/2, a)We atually need to apply this to a stream of inoming values. By distributing map over138



\Æ" we getmap sqrt as = ((map fst)Æ (map Transition')Æ (map Transition')Æ (map Transition')Æ (map Transition')Æ (map MakePair))aswhereTransition' (prevx, a) = ((prevx + a/prevx)/2, a)MakePair a = (a/2, a)Adding the network annotationThis is the �nal, parallel form of the square root pipeline. We have now to use Calibanto distribute it in the obvious pipeline fashion. We an do this in a number of ways: weould use the pipeline operator given earlier:map sqrt as = pipeline [map fst,map Transition',map Transition',map Transition',map Transition',map MakePair℄asAlternatively, we ould use hain:map sqrt as = (insert (Æ) ident proesses) aswhereproesses = [map fst,map Transition',map Transition',map Transition',map Transition',map MakePair℄moreover(hain ar (map (2) proesses))^ (ar 2(last proesses) as)(As an aside, notie that the elements of the list proesses are not all of the same type,and so fail to satisfy the type sheme even although no run-time type error an our.The problem disappears after simpli�ation so is not pursued here).139



5.3.2 Bundling: a partitioning tehniqueOne of the main funtions of the annotation is to ontrol proess partitioning. Bundlingis a way of doing so whih does not disturb existing ode. Suppose we wish to plae someof the omponents of the omposition above in the same PE. We ould modify the odebody to get the e�et:map sqrt as = (insert (Æ) ident proesses) aswhereproesses = [(map fst) Æ (map Transition'),(map Transition') Æ (map Transition'),(map Transition') Æ (map MakePair)℄moreover(hain ar (map (2) proesses))^ (ar 2(last proesses) as)In making a hange to the distribution of the program, we had to hange the body of theode. The idea of bundling is to build a data struture ontaining the omponent parts ofeah proess, and talk about that instead. Any data struture will do, but for larity wewill tag data strutures built for bundling purposes with the onstrutor BUNDLE:Bundle � ::= BUNDLE �We an now write the partitioned pipeline as follows:map sqrt as = (insert (Æ) ident proesses) aswhereproesses = [map fst,map Transition',map Transition',map Transition',map Transition',map MakePair℄[bak, t1, t2, t3, t4, front℄ = map (2) proessespartitions = [BUNDLE (bak, t1),BUNDLE (t2, t3),BUNDLE (t4, front)℄moreoverhain ar partitionsHere, we named the omponents of proesses bak, t1, t2 . . . front (by de�ning them usingpattern mathing). One they have names it is easy to use BUNDLE to bundle them up.It would have been tidier, though perhaps not quite so lear, to write
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partitions = map2 Make2Bundle oddones evenoneswhereMake2Bundle a b = BUNDLE (a, b)oddones = OddOnes (map (2) proesses)evenones = EvenOnes (map (2) proesses)where OddOnes and EvenOnes selet the odd- and even-indexed elements of the list. Thenext example gives a more onvining demonstration of bundling at work.5.3.3 Example: loal neighbourhood operationsA two-dimensional loal neighbourhood operation takes a matrix and maps eah elementto a funtion of its immediate neighbours, produing a new matrix. Loal neighbourhoodoperations are widely used in image proessing and in omputational physis.In our vetor notation we might de�ne a generi funtion for applying loal neighbour-hood operations:ApplyLNO :: ([�℄ ! �) ! ��� ! ���ApplyLNO op matrix= MakeMatrix LoalOperationwhereLoalOperation (i,j) = matrix sub (i,j), if OnBoundary matrix (i,j)LoalOperation (i,j)= op [matrix sub (i-1,j),matrix sub (i,j-1),matrix sub (i+1,j),matrix sub (i,j+1),matrix sub (i,j)℄, otherwisewhereOnBoundary matrix (i,j) = (i=0) _ (j=0) _ (i=iBound-1) _ (j=jBound-1)where(iBound,jBound) = MatrixBound matrixThe parameter op determines what funtion of the four neighbours is applied. A typialone might be a low-pass �lter:LowPass matrix = ApplyLNO average matrixwhereaverage [west, south, east, north, home℄ = (west+south+east+north+home)/5Very ommonly we will apply a loal neighbourhood operation repeatedly, produing a141



sequene of iterates:iterate (ApplyLNO LowPass) InitialMatrix= [InitialMatrix,ApplyLNO LowPass InitialMatrix,ApplyLNO LowPass (ApplyLNO InitialMatrix),ApplyLNO LowPass (ApplyLNO LowPass (ApplyLNO InitialMatrix)),...Construting a network-forming operator for a meshAlthough not the only option, for the sake of an example we will distribute this programover a mesh of PE's. To do so, we need a network forming operator whih takes a matrixand asserts that eah element is omputed by a separate PE, and that eah PE interatswith the element's four nearest neighbours. This turns out quite surprisingly easy:mesh :: ��� ! Boolmesh matrix = MatrixAll (ApplyLNO LinkNeighbours matrix)whereLinkNeighbours [west, south, east, north, home℄= fan ar home [west, south, east, north℄where MatrixAll matrix is TRUE just when every element of matrix is TRUE. Just as fanorresponds to map and ladder orresponds to map2, so there is a natural relationshipbetween mesh and ApplyLNO.Adding the network annotationWe are now ready to express the distribution of the loal-neighbourhood operation om-putation over a mesh of PEs:LowPass matrix = outputwhereoutput = ApplyLNO average matrixmoreovermesh outputIn fat we an write this more briey using the interfae shorthand:LowPass matrix = ApplyLNO average matrixmoreovermesh interfaeThis makes lear that the elements of the array are generated in a distributed fashion.142



If the result were passed to another mesh-distributed funtion, the two proess networksould be ombined to minimise data movement.Distributing an iterated loal neighbourhood operationIf we wanted to iterate this omputation, maintaining the expression-to-PE mapping fromiteration to iteration, we ould try writingIteratedFilter initialmatrix = iterate LowPass initialmatrixwhere LowPass is the distributed version given above. This doesn't work beause thesimpli�ation sheme annot shift the moreover lause to the outer level, beause thematrix parameter is di�erent for eah suessive iteration. It atually spei�es that a freshnetwork be used for eah iteration. Instead we must build a struture to bundle the valueswe want eah PE to ompute { that is, orresponding elements of suessive matries.This omes out quite easily by permuting indies. What we need is a single matrix,eah of whose elements is a stream of elements from suessive iterations. Let us de�nea funtion StreamOfMatriesToMatrixOfStreams to make this transformation: we demandthat(ms sub k) sub (i,j) = ((StreamOfMatriesToMatrixOfStreams ms) sub (i,j))sub kThis is ahieved by the de�nitionStreamOfMatriesToMatrixOfStreams ms= MakeMatrix (MatrixBounds (hd ms)) EahStreamwhereEahStream (i,j) = generate ElementswhereElements k = (ms sub k) sub (i,j)(We assume that all the matries in the stream have the same bounds as the �rst, hd ms).We are now ready to give the distributed implementation of IteratedFilter:IteratedFilter initialmatrix = iterate LowPass initialmatrixwhereLowPass matrix = ApplyLNO average matrixmoreovermesh (MatrixMap BUNDLE(StreamOfMatriesToMatrixOfStreams interfae))Here MatrixMap is the natural extension of map to matries. It is used to introdue theBUNDLE tags, whih appear simply to indiate to the reader whih data strutures areused for bundling purposes. 143



Partitioning the loal-neighbourhood operationHardware speially designed for suh algorithmsmay be able to implement this distributioneÆiently, but for more general-purpose arhitetures there is a \grain size" problem: eahPE does a great deal of ommuniation for eah item of useful omputation performed.At eah step, eah PE reeives data from four neighbours, does �ve arithmeti operations,and then distributes the result to four neighbours.For eÆient exeution on more typial hardware, we an break the matrix up, makingeah PE responsible for a sub-matrix rather than a single element. This strategy reduesthe ratio of ommuniation to omputation in diret proportion to the ratio between theperimeter and the area of the submatries. Let us de�ne a partitioning funtion Partitionn m, whih builds an n�n matrix of adjaent equal-size submatries of m. We require nto divide both of m's bounds exatly. The property required is that:mat sub (i,j) = ((Partition n mat) sub (majori,majorj))sub (minori,minorj)wheremajori = i div nmajorj = j div nminori = i mod nminorj = j mod n(where div denotes integer division, and mod denotes the remainder). This spei�ationis satis�ed byPartition n matrix= MakeMatrix (n,n) EahSubMatrixwhereEahSubMatrix (majori,majorj)= MakeMatrix (minoriBound,minorjBound) ElementswhereElements (minori,minorj) = matrix sub (imap majori minori, jmap majorj minorj)imap majori minori = (majori�minoriBound) + minorijmap majorj minorj = (majorj�minorjBound) + minorj(iBound,jBound) = MatrixBounds matrixminoriBound = iBound div nminorjBound = jBound div nGiven this partitioning funtion, the distributed, partitioned, iterated �lter program anbe written as
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IteratedFilter initialmatrix = iterate LowPass initialmatrixwhereLowPass matrix = ApplyLNO average matrixmoreovermesh (MatrixMap BUNDLE(partition MeshDimension(StreamOfMatriesToMatrixOfStreams interfae)))This spei�es that the omputation be distributed over a MeshDimension�MeshDimensionfour-onneted mesh of PEs. Notie that the body of IteratedFilter remains unhanged.Transformation into stream-proessing formThere are some implementation problems with this formulation, beause eah omponentproess aesses a sequene of global matries. A ompiler must hek the matrix indiesto verify that eah proess aesses only its neighbours. We an simplify matters a greatdeal by modifying the program so that all the indexing ours at ompile-time. We willlaim, but not prove, that1. We have an inverse for StreamOfMatriesToMatrixOfStreams so thatMatrixOfStreamsToStreamOfMatries (StreamOfMatriesToMatrixOfStreams as) = as2. That we an propagate map inside ApplyLNO:map (ApplyLNO f) as = MatrixOfStreamsToStreamOfMatries(ApplyLNO ((map f) Æ transpose)(StreamOfMatriesToMatrixOfStreams as))(where transpose (de�ned on page 98) interhanges rows and olumns in a list-of-lists).Now reall thatiterate f x = outputwhereoutput = x : (map f output)so thatIteratedFilter initialmatrix= outputwhereoutput = initialmatrix : (map LowPass output)so that 145



IteratedFilter initialmatrix= outputwhereoutput = initialmatrix: (MatrixOfStreamsToStreamOfMatries(ApplyLNO ((map f) Æ transpose)(StreamOfMatriesToMatrixOfStreams output)))This an be simpli�ed by using the property thatStreamOfMatriesToMatrixOfStreams (initialmatrix : xs)= MatrixMap2 (:) initialmatrix (StreamOfMatriesToMatrixOfStreams xs)(where MatrixMap2 is the natural extension of map2 to matries). This lets us writeIteratedFilter initialmatrix= MatrixOfStreamsToStreamOfMatries outputwhereoutput = MatrixMap2 (:) initialmatrix(ApplyLNO ((map f) Æ transpose)output)Now when we add the moreover lause,moreovermesh (MatrixMap BUNDLE(partition n output))we an unfold the program so that all ommuniation paths are manifest at ompile-time, and arry streams. We have built a mesh of proesses, eah interating in bothdiretions with their four nearest neighbours. The ars's of the proess network orrespondto multiple bidiretional ommuniation hannels { as was promised.5.4 Implementation of stati network programsProvided suÆient parameters are supplied, and the omputation required to build the pro-ess network terminates, a program whih employs the shorthand and abstration meha-nisms available an be simpli�ed to \normal form", in whih there is just one moreoverlause qualifying the entire program, onsisting of a simple onjuntion of ar assertionsapplied to expression names.In this setion we explain how normal form programs an be ompiled to eÆient objetode for a loosely-oupled multiproessor. The work desribed here is still in progress: noimplementation of Caliban exists yet.
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5.4.1 Compiler struture� Proess separation: The expression eah proess is to ompute is separated intoa distint proess onstrut. All the de�nitions on whih this expression dependsare also inluded in eah proess onstrut, with the exeption of any de�nitionmentioned in the moreover lause.Referenes to names referred to in the moreover lause are replaed by alls tospeial ommuniations ode, detailed in a moment.� Proess ompilation: Eah proess onstrut is ompiled using onventionalompilation tehnology (as desribed in Chapter 3).� Mapping and on�guration: The logial network spei�ed by the moreoverlause is analysed to �nd how best to embed it in the available multiproessor net-work. For reon�gurable networks this involves generating a table of interonnetionswith settings. For non-on�gurable networks it involves �nding a graph embed-ding whih maintains loality as well as possible. For dynami-routing networks itinvolves hoosing a layout whih will minimize network ongestion, and alloatingnetwork addresses.The mapping phase may fail, if the logial network makes demands on the physialnetwork whih annot be met { for example requiring too many loal neighbours.The output onsists of the network on�guration ode, whih depends on the networkdesign, together with a binding of proess names to PE identi�ers.� Link-editting and load module onstrution: Finally, eah proess is linkedwith libraries and the run-time system as required. The linker produes a �le readyfor loading on the multiproessor, making sure that the right ode is opied arossthe network to the right PE as required.The most ompliated part of the implementation lies in the run-time system, neessary tohandle inter-proessor ommuniation orretly. Rather than go into the ompiler phasesin great detail, we will onentrate on when ommuniation ours, and what has to bedone when it does.5.4.2 When does ommuniation our?Communiation may our when a proess (as separated in the �rst phase of the ompiler)refers to a name whih is itself identi�ed as a (di�erent) proess. The ompiler shouldhek that this happens just when an ar assertion links the two proesses. If a proessrefers to a name whih is not identi�ed in the moreover lause as a di�erent proess,then the expression to whih the name refers is inorporated in the proess.If suh a name is referred to by more than one proess, then its de�ning expression isdupliated in the body of eah one. This is very natural when the expression is alreadyin normal form, as most funtion de�nitions are { so ode is opied to those PE's whihmight refer to it. If the expression is not in normal form, it is often still sensible to opyit, but if the reomputation involved is substantial some warning to the programmer is147



probably justi�ed. Loal reomputation is quite ommonly preferred over having a singleglobal opy of an objet.5.4.3 Channels: the implementation of ommuniationWe will present an implementation sheme whih handles all possible ases; muh of thismight be simpli�ed by an optimizing ompiler. For the time being we will onsider onlyhannels orresponding to stream ommuniations. We an generalise later.Let us all the link between two proesses a hannel. Channels may be reated atrun-time { in fat we will assume that all hannels are. Moreover, there may be severalhannels linking two PE's, for reasons whih should beome lear later. Eah hannel isimplemented by a pair of drivers, the sender and the reeiver, responsible for managing thelink. The hannel arries suessive elements of the stream. How the elements themselvesare represented is disussed later.The reeiverThe reeiver tries to maintain a full bu�er of reeived values, so that the reeiving proessneed never be delayed waiting for the sender to respond. We an think of the reeiversending the sender a bag of tokens, eah allowing the sender to write one value to thereeiver's bu�er. Every time the reeiving proess onsumes a value from its bu�er, itsends the orresponding token bak to the sender. A value is delivered by the reeiver tothe reeiving proess by opying into the heap of the reeiving proess. This is neessaryto make sure that the bu�er spae is freed for subsequent use.The senderThe sender end of a hannel orresponds quite losely to the notion of a proess, sineit is the sender whih generates demand for values. The distintion is that our proessis identi�ed with the expression to be evaluated. There may be several referenes to theexpression, so there may be several hannels linking to it. Thus, there may be severalsenders eah holding a referene to the expression.When the expression onstruts a stream, it may happen that after some omputationthe di�erent senders refer to di�erent parts of the stream. This situation may persistbeause a sender may be bloked awaiting a token from its orresponding reeiver. In thisevent, a bloked sender may hold a pointer to an early part of the stream while anothersender demands many more elements. In this event the intermediate list elements mustbe stored (in the heap, as usual) inde�nitely. This is all managed quite naturally bya garbage olletor provided every sender proess, and all to whih it refers, is treatedas non-garbage. We are ommitted to ensuring that sender proesses are independentlydestroyed when they are no longer needed.If a single PE runs out of heap spae, the entire omputation may deadlok. Thus,some emergeny arrangement for laiming spae from neighbouring PEs may be justi�edif the arhiteture an support remote memory aess at all eÆiently.
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Observe that after omputation has begun, two senders pointing to the same expressionan evolve so that they point to di�erent plaes in the stream being omputed. Thus theydo orrespond to our original notion of a proess.5.4.4 Proto-hannels, hannel reation and hannel deletionAlthough the proess network remains stati, the hannels linking a pair of PEs an bereated at run-time. For simpliity we will assume that they are all reated at run-time,although an optimising ompiler will perform some hannel reation at ompile-time inorder to unover other optimisation opportunities.A hannel is reated when a proess makes a referene to an expression whih hasbeen plaed on another PE. To ahieve this, eah suh referene in the original programis replaed by a speial objet, a proto-hannel. A proto-hannel an be implemented as abox (see setion 3.1.7), ontaining a pointer to ode in the run-time system together witha representation of the name of the expression referred to.When a proto-hannel is evaluated, the run-time system sets up a hannel to theappropriate PE (presumed nearby). A sender proess is reated on the other PE, anda reeiver objet is reated on the urrent PE. The initiating proess is bloked until aresponse from the sender arrives. When the �rst CONS ell of the stream is transmittedby the sender to the reeiver, the initiating proess is re-awakened, and the original boxrepresenting the remote value is replaed by a CONS ell ontaining the value reeived(the hd of the ell) together with a referene to the reeiver (as the tl of the ell. Thisreferene to the reeiver is another speial objet, a hannel referene, also represented asa box.When the tl of the CONS ell is needed, the reeiver is interrogated. If it has a valuealready in its bu�er, this is built into a new CONS ell and returned, and a token is sentbak to the sender to signify that the bu�er spae is available. If the value is not availablethe proess is suspended until it is reeived.Channel deletion and garbage olletionChannels are olleted during the normal proess of garbage olletion loal to eah PE.An objet is not garbage if and only if it is referred to by some existent sender. A hannelis deleted when its reeiver beomes garbage. A onventional single-proessor garbageolletion sheme an be used. The only addition whih might be required is some meansto trigger garbage olletion on other PE's in the hope of freeing spae loally.5.4.5 Representation of stream elementsThus far we have onsidered streams as just hains of CONS ells. We have ignored the hdomponents, the atual values being arried. In the absene of any stritness information,these values must be passed unevaluated, as pointers (in fat proto-hannels) to suspendedfuntion appliations (i.e. boxes) loated on the sending PE. In the ase of tuples, we anarry pointers to suspensions of eah tuple element.149



When the reeiving funtion needs the head of a CONS ell it has reeived, it will �nda proto-hannel, a sender will be spawned on the sending PE and the value will be sentover a new hannel.This is unfortunate for two reasons:1. It inurs a large overhead ompared with the sequential implementation.2. If the proto-hannel is passed on unevaluated to a third PE, a non-loal ommuni-ation hannel ould be needed when the objet is �nally evaluated.The �rst problem is unfortunate, but the seond is intolerable. We must insist that noproto-hannel is ever sent over a hannel to a PE whih is not a neighbour of its home. Itmust either be evaluated and used by the reeiving proess, or it must be disarded.A partial solution, at least, is to be found in reent work on stritness analysis oflist programs, for example by Burn [Bur87a℄ and Wadler [Wad87℄. Alternatively, theprogrammer ould be required to introdue assertions about stritness in order to onstrainthe evaluation order.Non-stream ommuniationsWe must be able to use a hannel to pik any objet from another PE { not just astream, but also salars, tuples, trees, vetors, matries and so on. We have onentratedon streams beause they form the natural inarnation of a ommuniation link in thefuntional programming language. The reason is that there is just one order in whih toexamine the CONS ells whih form a list. With trees, vetors and matries there are manyorders in whih to traverse the data struture. We are fored to take a very onservativeapproah.In the ase of a vetor or matrix, the simplest solution is to send a vetor or matrix ofproto-hannels. This leaves the elements unevaluated until the reeiver needs them. If theelements are streams, pipeline parallelism an be exploited by omputing elements eagerlyas usual. If the elements are salars, the parallelism available may be very limited.For a tree, we send a onstrutor, e.g. NODE, with proto-hannels as its parameters.Unfortunately, this onservative approah allows no produer-onsumer, pipeline par-allelism unless streams are involved at some point. This does seem the only preditableand ontrollable hoie. Although a more eager sheme is desirable in many ases, it anoften have a very bad e�et, onentrating PE power away from the tasks most urgentlyat hand.5.4.6 MultitaskingIt should now be lear that eah PE must be multiplexed between the various senderproesses plaed upon it. A slight ompliation here is that the proesses must share thePE fairly: none an be allowed to monopolize the PE inde�nitely. Thus, proesses mustbe time-slied. The di�erent proesses will often share ommon sub-expressions, so somesynhronisation ontrol must be imposed to prevent evaluation being attempted by severalproesses of the same expression simultaneously.150



It ould be quite straightforward to employ tightly-oupled multiproessors as PEs inour loosely-oupled network, as the synhronisation neessary for time-slied multitaskingis suÆient to synhronise multiple truly-parallel proesses.5.4.7 Communiations optimisationsWhat has been desribed applies to the general ase. In partiular examples many op-timisations an be applied. We have already seen how stritness analysis an avoid theneed for passing proto-hannels over hannels by evaluating objets before sending them.If a stream has only one hannel onsuming it, the sender's ode an be ompiled insidethe expression, so that instead of building a CONS ell, the value is sent diretly along thehannel. This is the starting point for a series of powerful optimisations. To begin with,one an extend the appliability by observing that if the hannel has several onsumerswho an all reeive their values in lok-step, then they an share the output of a singlesender proess. If the sender is the only proess on its PE, and the onsumers are alone ontheir PEs too, then it may be possible to optimise out the hannel synhronisation. Theneighbouring PEs simply swap values on agreed lok tiks. This is elaborated by Bailey,Cuny and MaLeod in [BCM87℄.In \neighbour-oupled" mahines, where aess to a neighbour's loal memory is almostas eÆient as to a PE's own, muh opying an be avoided. A hannel need arry onlya pointer to the objet being transferred. A opy must still be made if the objet isforwarded to a third PE.An optimisation for the general ase might be to hek that an objet has not alreadybeen opied to this PE before following a proto-hannel to another to get it. This anbe done using a hash table, as used for the same purpose in the Flagship parallel graphredution mahine [WSWW87℄.Finally, one might hope that hardware or miroode support for the ommuniation andsheduling operations might be provided. The overheads of disovering a proto-hannel,setting up the link, spawning the sender and waiting for a value are a serious threat tothe feasibility of the sheme when non-stream objets are ommuniated.5.5 A simple guide to the e�et of arTo �nish the disussion of implementation strategies, we give a desription of the e�et ofthe ar assertion. Suppose we have a program fragment summarized byx = outputwhereoutput = f aa = g bmoreover(ar output a)^ . . . b . . .
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Figure 5.3: The proess network for example x� Plaement of output: The result, output, will be delivered to a PE at or next tothe PE where it is required. Thus, if the output is to be displayed on a graphisdevie, it will be plaed on or adjaent to a PE with aess to the graphis hardware.� Plaement for input: If input is required, it will be manifest as a free variablenamed in the moreover lause, suh as b in the example. The proess networkwill be plaed so that its ommuniation with the produer of b is neighbour-to-neighbour.� Partitioning of omponents: The expression output is plaed on a PE of itsown, together with all the expressions to whih it refers { exept a, whih is plaedelsewhere. For example, if f is a funtion, the ode for f is opied to output's PE.Similarly, a is plaed on a di�erent PE, of its own, together with a opy of g.� Plaement of omponents: The PE arrying output is hosen so that it enjoysneighbour-to-neighbour ommuniations with the PE arrying a.� Evaluation parallelism: The PEs arrying output and a interat beause theexpression output refers to a. If a is a salar or a list, its evaluation will proeed inparallel with output.If a is vetor, matrix or tree, evaluation of a will not begin until output demands it.At that point, output will be bloked, waiting for a's value. This preludes pipelineparallelism, but horizontal parallelism may yet keep the PE's usefully employed.However, vertial parallelism an still our if a returns a struture ontainingstreams, whih are examined by output.Finally, note that output may not be able to proeed in parallel with a if a depends on x.If a is a stream, and suessive elements depend on one another due to suh a reursivestream de�nition, then the pipeline parallelism available may be restrited by the span ofthis dependeny. We return to this point in setion 5.10.The proess network is illustrated in �gure 5.3.
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5.6 Semi-stati proess networksA Caliban program may speify a proess network whih is not entirely determined atompile-time. In the simplest ase, as with the size of the matrix in the ApplyLNO example,the network might depend on just one parameter. We ould delay ompilation until thisparameter is known, and then generate a speialised version to apply to the remainingparameters.Another example might be the ray traer, where the length of the ray intersetiontest pipeline depends on the number of objets in the objet database. In fat, of ourse,the length of the pipeline is limited by the number of PEs available. We ould write ade�nition of the distributed ray traer like this:RayTraer objets viewpoint= map EvaluateTree(StreamToListOfMTrees (length initialrays)(StreamOfContributoryRayTrees initialrays))whereStreamOfContributoryRayTrees rays= outputwhere(output, feedbak)= (SplitÆ joinÆ (map LayerOf')Æ (map TakeImpat)Æ IntersetionPipelineComponentsÆ (map MakePipeItem))(rays ++ feedbak)whereIntersetionPipelineComponents= (insert (Æ) ident(map map (map PipelineStage objets)))partitions = map BUNDLE(PartitionList (NumFreePEs-1)(map (2) IntersetionPipelineComponents)moreover(hain partitions)^ (ar output (hd partitions))^ (ar (last partitions) output)where NumFreePEs is the number of available PE's. We reserve one PE for output, re-sponsible for the join, map LayerOf' and map TakeImpat proesses. The \++" and mapMakePipeItem operations are automatially olleted in the last omponent of Intersetion-153



PipelineComponents. The funtion PartitionList n xs gathers the list xs into a list of n lists:PartitionList n xs= PartitionListWithSize bitsize xswherebitsize = eiling ((length xs) / n)PartitionListWithSize bitsize= (take bitsize xs): (PartitionList n (drop bitsize xs))where eiling x yields the smallest integer larger that the real number x. The onstrutorBUNDLE is mapped over partitions to indiate that the list is for bundling purposes only.This program is partitioned automatially to make use of just the resoures available.A slightly more subtle version might �rst ensure that the objet database is big enoughto justify distribution over NumFreePEs-1 with a worthwhile grain size.Kedem and Ellis give an interesting example [KE84℄ of a program for parallel ray-asting whose proess network depends on the struture of the objet database in a muhmore ompliated way. The database takes the form of an expression in the algebra ofConstrutive Solid Geometry (CSG). The expression's shape varies from problem to prob-lem and is typially quite a severely unbalaned tree. They employ an eÆient embeddingalgorithm to map this tree into their arhiteture's mesh of PEs at the beginning of eahomputation.It might be quite reasonable for a omputation to go through a series of phases, eahrequiring a di�erent proess network. The ommuniations would be reon�gured aftereah phase, giving the e�et of an evolving network. This has not yet been aptured inthe Caliban network desription language.5.7 Dynami proess networksIt is quite possible to write down Caliban programs whose proess network is not deter-mined until all parameters are present. An example might our in omputational uiddynamis, where the grid is re�ned between iterations to over regions of turbulene more�nely. The omputation would start with a small mesh of PEs, but as areas of interestare deteted, and the grid is re�ned, more PEs ould be alled in to over regions showingpoor onvergene. Some PEs might �nish their tasks early. They ould make themselvesavailable to be reused at another point of the grid.We have an algorithm of the form
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solve f a= generate EahMatrixwhereEahMatrix 0 = aEahMatrix (i+1)= MakeMatrix Bounds EahElementwhereEahElement= solutionwherePointSolution = . . .solution = PointSolution, if PointError � �solution = solve f submatrix, otherwisesubmatrix = . . .Muh has been simpli�ed here. The important point is that solve is oasionally alledreursively on a smaller mesh submatrix (using a re�ned grid). Depending on the solutionsheme (i.e. how PointSolution is de�ned), several possible proess networks might be used.Let us suppose a mesh is used: we might write the moreover lausemoreovermesh interfaeWe �nd that the proess network an develop into a mesh-shaped tree of meshes. Thisinteresting area is not overed by the explanation given here of how Caliban programsmight be implemented , but ould prove fruitful on a lass of more tightly-oupled mahineswhere loality is still important.5.8 Related WorkCaliban builds on a fast sequential implementation of a funtional programming language,as presented by [Jon87℄. It should be ontrasted with dynami-shedule approahes toparallel implementation of funtional languages, for example as proposed in hapter 24 ofPeyton Jones' textbook [Jon87℄ (parallel graph redution), and in [AN87℄ (dataow).5.8.1 OamCaliban's aims are similar to those of Oam [PM87℄. It di�ers in three priniple respets:1. Funtional base language. Caliban inherits the expressive power of a full, lazy,higher-order funtional language, along with its highly dynami store use.Caliban retains the funtional base language's very simple and attrative transfor-mation properties. Like all funtional languages, Caliban pays for its theoretialsimpliity with its innate determinay: a proess annot make deisions based onthe order of ompletion of subtasks. This limits the appliability of the language.155



2. Abstrat Networks. Caliban does not demand that the programmer's proessnetwork be expliitly mapped to physial hannels. That responsibility is devolvedto the ompiler { more preisely, to the post-ompilation mapping phase. Therewould appear to be no reason, in priniple, why an Oam implementation shouldnot do the same.3. Dynami networks. Caliban failitates the desription of proess networks whosesize, and possibly form, annot be determined until at least some parameters arepresent. This an be used to desribe run-time dynami networks, or, perhaps moreinterestingly, to express a family of proess networks for di�erent hoies of partiularparameters. A good example of suh a program is given in [KE84℄.Oam does not allow dynami networks, although simple parameters suh as aproessor array's size an be given as a manifest onstant. This restrition wasimposed, however, solely to simplify implementation: [May87℄ shows how a variantof Oam with reursion ould desribe a tree of proesses.To summarise, Caliban ful�ls a very similar role to Oam, and promises similar per-formane, but o�ers an improvement in expressive power, and a basis for more powerfulprogram transformation and veri�ation tehniques. Caliban is substantially more reliantthan Oam on advaned ompiler tehnology.5.8.2 \Para-Funtional" ProgrammingThis is an extension to the lazy funtional programming language \alfl" proposed byPaul Hudak in [Hud86b℄, alled \paralfl". An expression \e" an be annotated by aseond expression, \p", whose value indiates the PE on whih \e" is to be exeuted:e $on pTo simplify use of this mehanism, the value of the reserved identi�er \$self" is de�nedto be the index of the PE upon whih the expression onerned is exeuted. This an beused in \e" as well as in \p", thus subverting referential transpareny. PE's are indexedby integers. Related ideas appear in [KL82℄ (by Keller and Lindstrom) and [Bur84b℄ and[Bur87b℄ (by Burton).Hudak's approah has the merit of simple implementation. The notion of a program's\proess network" { whih lies at the root of the Caliban approah { seems to be wellhidden in the text of a para-funtional program. Caliban o�ers some abstration here, byleaving responsibility for mapping of a logial proess network to atual proessors withan automati post-ompilation phase.Caliban also makes some attempt to ensure that all proess interations appear ex-pliitly in the program sript. Paralfl has no suh aspiration, with the result that un-expeted interdependenies between proesses mapped to distant proessors ould meanvery disappointing performane.
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5.8.3 FloThis parallel funtional programming language was developed by Floating Point SystemsIn. and is desribed in [You85℄. Flo is based on Bakus' FP [Ba78℄, augmented withstreams and a reverse funtion omposition operator \!". It is aimed at providing ahigh-level language for building autonomous parallel appliations programs running ontheir proprietary sienti� o-proessors. These are miro-programmed vetor proessorso�ering a variety of built-in high level funtions, suh as the Fast Fourier Transform andmatrix multipliation. Flo is responsible for partitioning large problems between multiplePE's.Flo inludes various operators for partitioning arrays, distributing them over pools ofPE's, and olleting the results. A very simple example whih they give is the funtion\fun" (whose type spei�ation has been omitted):DEFINE fun = f ! [OnAny(D1) ! g, OnAny(D2) ! h℄This is funtionally equivalent to our de�nitionfun x = (g y, h y)wherey = f xThe \OnAny" operator results in a hange of \ontext": the input stream to \g" isopied to a PE seleted from D1 (a set of PE identi�ers), where \g" is applied. Run-timemehanisms selet PE's as available.Flo is interesting in being motivated by pratial onerns raised by trying to runsienti� appliations very fast on fairly onventional hardware. The limited ontrol overproess plaement probably derives from the use of a bus as the ommuniations medium:eah PE is e�etively equidistant from all the others. This is made more feasible by theuse of PE's with substantial fundamental operations, making large granularity easy toahieve.5.8.4 Graph Grammar-based Spei�ation of InteronnetionStruturesThis work, reported in [BC87℄, aims to simplify the desription of proess network familiesin an interative parallel program development environment. A graph family arises when aparallel algorithm is designed to be portable between similar arhitetures of di�ering sizes{ for example, after testing on a small program development on�guration. It is neessaryto give a formal desription of how the graph generalises for larger on�gurations.Details of the approah are rather omplex, and merit more thorough study. Theformalism employed, a restrition of aggregate-rewriting graph grammars to allow onlythree kinds of rewrite, would appear to be at least as powerful as Caliban. The use ofgraph grammars expliitly o�ers the prospet of a sound theory for embedding program-generated graphs in physial ommuniations networks.157



Bailey and Cuny may gain some additional expressive power over Caliban by ompletelyseparating the way the graph is onstruted from the program's reursive struture.5.9 Future ResearhMuh of this hapter has been devoted to preliminary investigation of areas deservingmore extensive study. Here, some of the more interesting areas are summarised:CompilersThe development of a pilot implementation of Caliban is the most pressing next step. Atransputer network is a very attrative target arhiteture.Dynami networks may streth the ommuniations apabilities of present-day trans-puters. Caliban's dynami networks an make use of software-on�gurable networks withrelatively long swithing times, whih may �t well with novel tehnologies, based, forexample, on optis.Programming EnvironmentsCaliban's design is based on the hypothesis that proess networks are a useful way for aprogrammer to think about parallel algorithms. They demand graphial presentation. ACaliban programming environment ould illustrate a program's proess network, perhapsshowing traÆ levels on ars and load levels on bubbles, derived from simulation statistis.Program transformation and analysis tools ould be inluded, inluding stritness analysis,yle-starvation analysis, \granularity" analysis (identifying proesses whih may have ahigh ommuniation-to-omputation ratio) et.SemantisGiving a mathematial explanation of what Caliban's annotations mean is an interestingarea. Hudak has given an \exeution tree" semantis for paralfl [Hud86a℄, and Williams[Wil88℄ has extended and re�ned this for a Caliban-like language. Caliban seems to de-mand a riher domain of semanti values, to inlude arbitrary, possibly yli, graphs.The graph grammar approah taken by Bailey and Cuny may prove of use.As mentioned earlier, of most value would be a semantis whih assigns a proessnetwork family to a funtion, orresponding to the networks whih might result for di�erentparameter hoies.5.10 Pointers into the literatureCommuniation in parallel algorithmsVitanyi [Vit86℄, Feldman and Shapiro [FS88℄ and others have investigated the onstraintsimposed by the physial universe on ommuniation in parallel omputations (although158



Deutsh [Deu85℄ suggests the real world admits more possibilities than presently ex-ploited). The importane of suh arguments when omputer manufature an employall three dimensions for wiring an be disputed, although heat dissipation plaes a limiton three dimensional paking density.However, the situation is muh learer in two dimensions, and VLSI omplexity theoryaddresses the problem of aounting for ommuniation in algorithm design and analy-sis with onsiderable suess. A good introdutory work is Ullman's textbook [Ull84℄.Although there are many di�erent VLSI omplexity measures, they all take the area ofthe wiring into aount as well as the number of \ative" data operations performed.Some theories also aount for the signal propagation delay in the wiring, whose length isdetermined by the layout and size of the iruit.It is lear that good VLSI algorithms make good algorithms for loosely-oupled multi-proessors { in fat one might think of a loosely- or neighbour-oupled multiproessor as a\universal" VLSI mahine, being programmable to implement any algorithm with similarbehaviour but at a substantial interpretation overhead. One might expet that this over-head would mask some of the importane of ommuniations onnetivity. The questionof the existene and nature of a universal parallel omputer is the subjet of ontinuingwork by Valiant, see for example [Val81℄.The nature of parallel programmingMuh has been made of the \von Neumann bottlenek", a term oined by Bakus [Ba78℄.Bakus argues that programming in an imperative style imposes the presene of a singleword-at-a-time memory aess path on the design of programs { reduing programmingto the sheduling of traÆ to and from memory. That onventional high-performanevon Neumann mahines need have no suh bottlenek is not as important as the damagedone by the von Neumann model of omputation to program design. Sutherland and Mead[SM77℄ extend this argument in a substantial way: they argue that sequential omputationhas arti�ially dominated the study and teahing of omputer siene from its beginning.The tehnologial aident responsible for this, that swithing has been more expensiveand slower than wiring, they argue, is no longer valid { and yet its heritage is still withus. An example Sutherland and Mead use onerns the parallel interhange sort algorithm,where a PE is responsible for every element, and neighbours swap if their elements areout of order. This algorithm is expensive in sequential terms, beause to sort n elementsit requires O(n2) (order n2: proportional to n2 when n beomes large) omparisons asopposed to Quiksort (see setion 4.2.1) whih needs only O(n log2 n) omparisons in theaverage ase. However, Quiksort involves global ommuniations at every step, while theinterhange sort involves neighbours only. We an expet the interhange sort to give byfar the better performane for a large range of ases, although when sorting a very largedata set Quiksort must win.Of ourse there are far better parallel sorting algorithms; see Ullman [Ull84℄ and thelassi work by Thompson ([TK77℄ and [Tho81℄).
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Partial evaluationThe simpli�ation proess by whih a normal-form Caliban program is derived from oneusing the abstration mehanisms is a kind of partial evaluation. Partial evaluation is theappliation of a program to some but not all of its parameters, so that simpli�ations an bemade to save time when subsequent parameters are provided. It was pioneered by Ershov[Ers82℄, who alled it \mixed omputation". Jones' group at Copenhagen have made greatprogress in understanding the struture of a partial evaluator, and the simpli�ations andanalyses possible. Most exiting has been their onstrution of a self-appliable partialevaluator, MIX, and its appliation to ompiler generation: MIX takes a program, and its�rst parameter, and generates a new, simpli�ed program suh that(MIX p a) b = p a bThey apply MIX to an interpreter Int for another programming language, l. Int takes aprogram in l, pl, and its input:Int pl inputIt yields the output resulting from running the program pl on input. Now we an get aompiled implementation of pl by evaluatingMIX Int plThus, the partial appliation MIX Int plays the part of a ompiler. In fat the speialisedompiler is generated byMIX MIX IntRepeating the proess, we an observe that the partial appliationMIX MIX plays the partof a ompiler generator { when given an interpreter it produes a ompiler. Thus, we angenerate the ompiler generator by writingMIX MIX MIXThe idea is attributed to Futamura [Fut71℄.More pratially direted appliations inlude ray-traing, whih has been investigatedby Mogenson [Mog87℄. Mogenson takes a simple ray-traer (more realisti than the im-plementations given here), and partially-evaluates it with details of the sene but notthe viewpoint. The residual program an then be applied to di�erent viewpoints, and aonsiderable saving is observed.Starvation and DeadlokReall the funtion to ompute the list of Fibonai numbers:
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�bs = 1 : 1 : (map2 (+) �bs (tl �bs))This reurrene is too trivial for real parallelism, but suppose we ould deompose map2(+) into a pipeline,xs = 1 : 1 : (map f (map g (map2 h xs (tl xs))))Now there might seem to be pipeline parallelism available. However, loser inspetionreveals that eah element xs sub n depends on the immediately preeding element of thestream, xs sub (n-1). There an be only a single lous of omputation in the yle.We an inrease the amount of parallelism available by inreasing the data dependenygap. For example, the (di�erent!) programys = 1 : 1 : 1 : (map f (map g (map2 h ys (tl ys))))has two loi of omputation. The amount of parallelism ould depend on a run-timevariable, as inf initialvalues = xswherexs = initialvalues ++ (map f (map g (map2 h xs (tl xs))))This atually happens in the yli-pipeline implementation of the ray traer, given insetion 4.9.This program will deadlok: if length initialvalues� 1 there are zero loi of omputation.It is important to realise that deadlok in a funtional language is quite independent ofany parallel ativity, and reets nothing more than a partiular form of unde�nedness.Semantially, deadlok is indistinguishable from non-termination, ?. Thus, the programtransformations in this book an be used to transform a deadloking program into onewhih is simply unde�ned: from�bishs = 1 : (map2 (+) �bishs (tl �bishs))it is not hard to derive the reurrene�bishs sub 0 = 1�bishs sub (n+1) = (�bishs sub n) + (�bishs sub (n-1))whih is learly ill-founded. Thus, deadlok is a semanti property of a program, una�etedby how the program is distributed, or use of parallel evaluation.A simple test exists to predit when deadlok will our, alled the yle sum test. Anumber is alulated for eah yle in the data ow graph, giving the data dependenybetween suessive elements. The yle sum test was introdued and justi�ed by W.W.Wadge [Wad81℄ in the ontext of the dataow language Luid. Wadge veri�es it bydiret referene to the denotational semantis of the language: there is no need for anyoperational reasoning. 161
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Chapter 6EpilogueMuh of this book has been onerned with details. It is the rôle of the onluding hapterto regain a broader perspetive on what has been ahieved, and where the researh is going.Let us begin by returning to to Ekert's advie quoted in the introdution, thatAny steps whih are ontrolled by the operator, who sets up the mahine,should be set up only in a serial fashion.Things have hanged a great deal sine the time when Ekert was writing. Obviously theapabilities of the hardware have improved, but the hardware's struture has not reallyaddressed the parallel programming problem. Muh more signi�ant to the argument havebeen the advanes in software tehnology: Ekert was writing before the �rst ompilerwas written, so did not take into aount the possibility that the ompiler as well as thehardware ould exploit parallelismwithout the programmer being involved. The funtionalapproah to parallel programming takes this idea to its limit, by removing the step-by-stepimperative pereption of program exeution ompletely. The line is drawn at programswhose behaviour is non-deterministi|whih is where the trouble Ekert refers to reallystarts. The happy oinidene whih forms the basis of this book is that this lass oflanguages is also very easy to manipulate mathematially.There are alternative approahes. One of the most ommon is simply to ignore Ek-ert's problem, and employ a great deal of are and disipline in writing expliitly-parallelmultiproessor programs. This approah may be resued by the advent of simple math-ematial systems of reasoning about parallel programs in the general, non-deterministiase. Researh aimed at providing suh a system is very muh still in progress. Anotherarea of reent suess has been the development of parallelising ompilers for imperativelanguages.Meanwhile, the problem of ensuring the orretness of omputer programs has beomemore and more aute. This is espeially interesting in appliation areas like natural andmedial siene, where tehnology has made the omputer a ubiquitous tool, and oftenmeans that a omputer program is not just a test of a sienti� model|but is the onlytested model in existene. The problem is understanding suh models, testing them, andpresenting them in the literature. However, formality must be tempered by the need tobuild and use omputer programs quikly, and to run them very fast. This demandsa high level of omputer support and very well-designed and well-explained tools anddoumentation. 163



This book is a manifesto for a programme of researh aimed at making derivationand transformation of omputer programs an aessible and e�etive tool to enable thenon-speialist to produe more reliable omputer programs more quikly.
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Appendix AProofs and DerivationsIn the body of the book it has been useful to state several laws relating expressions in thefuntional notation. Rather than interrupt the narrative ow, their proofs appear in thisappendix.A.1 ListToTree and TreeToList, simple versionsThis is an example of a ommon requirement during a program transformation by datatype transformation|that we an get the original representation bak. It was used toprodue a divide-and-onquer implementation of map. We have some auxiliary funtions:take n (a:as) = a : (take (n�1) as), if n 6= 0take n [ ℄ = [ ℄, if n 6= 0take 0 as = [ ℄anddrop n (a:as) = drop (n�1) as, if n 6= 0drop n [ ℄ = [ ℄, if n 6= 0drop 0 as = asA list is onverted into its binary tree representation by the funtion ListToTree1:ListToTree1 [ ℄ = EMPTYListToTree1 [a℄ = LEAF aListToTree1 (a0:a1:as) = NODE (ListToTree1 (take m (a0:a1:as)))(ListToTree1 (drop m (a0:a1:as)))wherem = (length (a0:a1:as))/2To onvert it bak to a list again, we have
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TreeToList1 EMPTY = [ ℄TreeToList1 (LEAF a) = [a℄TreeToList1 (NODE subtree1 subtree2) = (TreeToList1 subtree1)++ (TreeToList1 subtree2)We have, for all n and as,(take n as) ++ (drop n as) = asThis an be shown using total strutural indution on n. The proof is omitted in ase thereader should attempt it as an exerise. Theorem 1 is our main onern:Theorem 1 We require that for all �nite, total lists as,TreeToList1(ListToTree1 as) = asThe proof uses total strutural indution, but unfortunately the standard ordering onlists doesn't do the job. Instead we employ a \bisetion" ordering, with basis [a℄ andas ++ bs � asandas ++ bs � bsfor any as, bs 6= [ ℄. The ase of empty as must be shown separately, but is triviallysatis�ed.Proof:By total strutural indution on the bisetion ordering.Empty ase: TreeToList1(ListToTree1 [ ℄) = TreeToList1 EMPTY= [ ℄as required.Base ase: TreeToList1(ListToTree1 [a℄) = TreeToList1 (LEAF a)= [a℄as required.Indutive Step: Assuming that for all �nite and total as and bs,TreeToList1(ListToTree1 as) = asand 166



TreeToList1(ListToTree1 bs) = bswe must show thatTreeToList1(ListToTree1 (as ++ bs)) = (as ++ bs)Apply redution to the LHS:LHS = TreeToList1 (ListToTree1 (as ++ bs)| {z })= TreeToList1 (NODE (ListToTree1 (take m (as ++ bs)))(ListToTree1 (drop m (as ++ bs))) )wherem = (length (as++bs)) / 2We an de�nes = take m (as ++ bs)andds = drop m (as ++ bs)So we haveLHS = TreeToList1 (NODE (ListToTree1 s)(ListToTree1 ds)| {z }wherem = (length (as++bs)) / 2= (TreeToList1 (ListToTree1 as))| {z }++ (TreeToList1 (ListToTree1 bs))| {z }Our indutive assumptions hold for any hoie of as and bs, so this isLHS = s ++ ds = (take m (as ++ bs)) ++ (drop m (as ++ bs))| {z }Using the property of take, drop and \++" laimed earlier, this is justLHS = (as++bs)as required.
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A.1.1 Removing the ineÆienyListToTree1 and TreeToList1 are ineÆient for several reasons:� the length of the parameter list is alulated at eah reursion.� both take and drop san the input list at eah reursion.� the append operator \++" sans and reonstruts its left parameter.We an use program transformation to remove eah of these ineÆienies.Removing the length realulationFirst let us de�ne a version of ListToTree1 whih alulates the length of its input list.The intention is thatListToTree1' as n = ListToTree1 aswheren = length asDe�ne:ListToTree1' [ ℄ 0 = EMPTYListToTree1' [a℄ 1 = [a℄ListToTree1' (a0:a1:as) n = NODE (ListToTree1' (take m (a0:a1:as)) m)(ListToTree1' (drop m (a0:a1:as)) m)wherem = n/2Now we rede�ne ListToTree1 to use this modi�ed version:ListToTree1 as = ListToTree1' as (length as)It is easy to verify the equivalene using reursion indution.Removing the re-sanning in take and dropLet us de�nesplit n as = (take n as, drop n as)Now we an re-express ListToTree1' to use it:
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ListToTree1' [ ℄ 0 = EMPTYListToTree1' [a℄ 1 = [a℄ListToTree1' (a0:a1:as) n = NODE (ListToTree1' front m) (ListToTree1' bak m)where(front, bak) = split m (a0:a1:as)m = n/2We an derive a more eÆient version of split. Instantiate its de�nition for a non-emptyparameter list:split n (a:as) = (a: (take (n�1) as), drop (n�1) as), if n 6= 0But we an rewrite this as another instane of split:split n (a:as) = (a: front, bak), if n 6= 0where(front, bak) = split (n�1) asAll that remains is to derive the equation for the other ases. For the empty list ase:split n [ ℄ = (take n [ ℄| {z } , drop n [ ℄),| {z } if n 6= 0= ([ ℄, [ ℄), if n 6= 0When n = 0,split 0 as = (take n as| {z } , drop n as)| {z }= ([ ℄, as)Avoiding reonstrution in \++"The �nal transformation avoids the use of \++", whih is ineÆient beause it mustalways make a opy of its left parameter. Instead we use the list onstruted by the leftparameter, but modify the left parameter expression so that the right parameter is plaedon the end instead of [ ℄. The property we exploit is(f x) ++ (g y) = f' x (g y)wheref' x as = (f x) ++ asThe optimisation omes by applying equational reasoning to the de�nition of f' above, sothat the \++" is not needed. This optimisation is straightforward enough to be onsideredfor inlusion as an automati proess in optimising ompilers (the interested reader mightompare it with the use of di�erene lists in Prolog, as introdued by Clark and Tarnlund169



[CT77℄. In our ase, we de�neTreeToList1' tree rest = (TreeToList1 tree) ++ restNote thatTreeToList1 tree = TreeToList1' tree [ ℄Instantiate the de�nition of TreeToList1' for the empty tree:TreeToList1' EMPTY rest= (TreeToList1 EMPTY)| {z } ++ rest= [ ℄ ++ rest| {z }= restNow instantiate it for the LEAF ase:TreeToList1' (LEAF a) rest= (TreeToList1 (LEAF a))| {z } ++ rest= [a℄ ++ rest= a : rest(note that this is where the \++" disappears). The NODE ase is the most ompliated:TreeToList1' (NODE subtree1 subtree2) rest= (TreeToList1 (NODE subtree1 subtree2))| {z } ++ rest= (TreeToList1 subtree1) ++ (TreeToList1 subtree2) ++ rest| {z }At this point we an use the de�nition of TreeToList1', bakwards:TreeToList1' (NODE subtree1 subtree2) rest= (TreeToList1 subtree1) ++ (TreeToList1' subtree2 rest)| {z }And now do the same to the whole RHS, getting rid of \++" altogether:TreeToList1' (NODE subtree1 subtree2) rest= (TreeToList1' subtree1 (TreeToList1' subtree2 rest))(This optimisation of \++" an be inorporated as a ompiler optimisation, and Wadlerhas haraterised where it an be applied [Wad88a℄. It is a form of linearisation; see Fieldand Harrison [FH88℄).This ompletes our optimisation proess. Colleting the results, we have ListToTree1:ListToTree1 as = ListToTree1' as (length n)170



ListToTree1' [ ℄ 0 = EMPTYListToTree1' [a℄ 1 = [a℄ListToTree1' (a0:a1:as) n = NODE (ListToTree1' front m) (ListToTree1' bak m)where(front, bak) = split m (a0:a1:as)m = n/2wheresplit 0 as = ([ ℄, as)split 0 [ ℄ = ([ ℄, [ ℄), if n 6= 0split n (a:as) = (a: front, bak), if n 6= 0where(front, bak) = split (n�1) asand TreeToList1:TreeToList1 tree = TreeToList1' tree [ ℄TreeToList1' EMPTY rest = restTreeToList1' (LEAF a) rest = a : restTreeToList1' (NODE subtree1 subtree2) rest = (TreeToList1' subtree1(TreeToList1' subtree2 rest))A.2 ListToTree and TreeToList, shu�ed versionsIn this setion we show the orretness of an alternative approah to the problem ofrepresenting a list as a binary tree. In this version eah node has all the even-indexedelements of the list it represents to its left, and all the odd-indexed ones to its right. Wemake use of some auxiliary funtions, whose rôle here is analogous to the rôles of take,drop and \++" in the straightforward versions given in the previous setion:EvenOnes [ ℄ = [ ℄EvenOnes [a0℄ = [a0℄EvenOnes (a0:a1:as) = a0:(EvenOnes as)OddOnes [ ℄ = [ ℄OddOnes [a0℄ = [ ℄OddOnes (a0:a1:as) = a1:(OddOnes as)
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merge (a0:evens) (a1:odds) = a0:a1:(merge evens odds)merge as [ ℄ = asThe funtions we are interested in are:ListToTree2 [ ℄ = EMPTYListToTree2 [a℄ = LEAF aListToTree2 (a0:a1:as) = NODE (ListToTree2 (EvenOnes (a0:a1:as)))(ListToTree2 (OddOnes (a0:a1:as)))andTreeToList2 EMPTY = [ ℄TreeToList2 (LEAF a) = [a℄TreeToList2 (NODE evensubtree oddsubtree)= (merge (TreeToList2 evensubtree) (TreeToList2 oddsubtree))That they satisfy the spei�ation as required is the subjet of the next theorem:Theorem 2 For all �nite and total lists as,TreeToList2 (ListToTree2 as) = asThe natural approah for the proof is total strutural indution. The base ase as = [ ℄is trivial. The obvious indutive step is to show the property for a:as assuming it for as.This fails, and the reason is not hard to �nd. The algorithm looks two elements aheadinto the input list (via EvenOnes and OddOnes). A better indutive step is to assume theproperty for as and a1:as, and try to show it for a0:a1:as. This is valid provided we makesure all possible values for as are overed|a speial proof must be given for as = [a℄.It is surely no oinidene to �nd that the de�nition of ListToTree2 does indeed dealwith the [a℄ ase speially!ProofBy total strutural indution on the length of the list as.Base ases: Trivial for both as = [ ℄ and as = [a℄.Indutive step: Assuming that for all �nite and total lists as,TreeToList2 (ListToTree2 as) = asandTreeToList2 (ListToTree2 (a1:as)) = a1:aswe must show that 172



TreeToList2 (ListToTree2 (a0:a1:as))| {z } = a0:a1:asApply redution to the LHS:LHS = TreeToList2 (NODE (ListToTree2 (EvenOnes (a0:a1:as))| {z })(ListToTree2 (OddOnes (a0:a1:as))| {z }))= TreeToList2 (NODE (ListToTree2 (a0:(EvenOnes as)))(ListToTree2 (a1:(OddOnes as))))| {z }= merge (TreeToList2 (ListToTree2 (a0:(EvenOnes as))))| {z }(TreeToList2 (ListToTree2 (a1:(OddOnes as))))| {z }The underbraed expressions here are instanes of our seond indutive assumption,givingLHS = merge (a0:(EvenOnes as)) (a1:(OddOnes as))| {z }= a0:a1:(merge (EvenOnes as) (OddOnes as))| {z }By Lemma 1, this is simply a0:a1:as as required.The alert reader will realise that Lemma 1 has not yet been exhibited. However, it doesseem to be ruial to the algorithm's operation. We've sueeded in reduing our originalproblem so that all remains is this lemma|an ativity muh like stepwise re�nement ofprograms. Fortunately, the lemma is easily proved:Lemma 1 For all �nite and total lists as,merge (EvenOnes as) (OddOnes as) = asProofBy total strutural indution on the length of as.Base ases: Trivial for both as = [ ℄ and as = [a℄.Indutive step: Assuming that for all �nite and total lists as,merge (EvenOnes as) (OddOnes as) = asandmerge (EvenOnes (a1:as)) (OddOnes (a1:as)) = a1:aswe must show that 173



merge (EvenOnes (a0:a1:as))| {z } (OddOnes (a0:a1:as))| {z } = a0:a1:asApply redution to the LHS:LHS = merge (a0:(EvenOnes as)) (a1:(OddOnes as))| {z }= a0:a1:(merge (EvenOnes as) (OddOnes as))| {z }Our �rst indutive assumption applies here, to give a0:a1:as as required.We did not need the seond indutive assumption here. This is somewhat disturbing|often a sign of some error. But uriously, in the proof of Theorem 2, we didn't usethe �rst indutive assumption: between the two proofs we did eventually disharge bothassumptions.A.3 Turning reurrenes into yli networksIn introduing the funtional language employed in this book, an idiom was employed forreurrenes|what in an imperative language would simply be written as a loop. Althoughvery lear and onise, this idiom has an ineÆieny beause of the use of the sub operatorto selet values from previous iterations. In this setion we transform suh a reurreneinto a yli proess network formulation. This removes the use of the sub operator, andalso eluidates some potential parallelism. We work with the Newton Raphson example.We solve for fx = 0 with f 0x = d(f x)dx , and using an initial estimate x0:xs sub 0 = x0xs sub i = (xs sub (i�1)) � ( f (xs sub (i�1)) / f' (xs sub (i�1)) ), if n � 1with the implementation using the reurrene idiom:solve f f' x0= until onverges xswhereonverges 0 = FALSEonverges i = abs( ((xs sub i) � (xs sub (i�1)))/(xs subi) ) � �, if i � 1xs = generate NextEstimatewhereNextEstimate 0 = x0NextEstimate i = (xs sub (i�1))� ( f (xs sub (i�1)) / f' (xs sub (i�1)) ), if n � 1We now transform this into a yli proess network. Unfold generate in the de�nition ofxs:
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xs = map NextEstimate (from 0)| {z }= map NextEstimate (0:(from 1))| {z }= (NextEstimate 0)| {z } : (map NextEstimate (from 1))= x0 : (map NextEstimate (from 1))Now we must deompose (the � 1 ase of) NextEstimate into the transition funtion andthe indexing funtion:NextEstimate i = (xs sub (i�1)) � ( f (xs sub (i�1)) / f' (xs sub (i�1)) ), if n � 1= prevx � ((f prevx)/(f' prevx))whereprevx = xs sub (i�1)= (Transition Æ (Index xs)) iwhereTransition prevx = prevx � ((f prevx)/(f' prevx))Index xs i = xs sub (i�1)We an deompose this a little further (reall that xs sub i = ((sub) xs) i):NextEstimate i = (Transition Æ ((sub) xs) Æ (subtrat 1)) iwheresubtrat n m = m � nSo now we havexs = x0 : (map (Transition Æ ((sub) xs) Æ (subtrat 1))| {z } (from 1))It is easy to verify (using partial strutural indution on the list's length) that map (f Æ g)= (map f) Æ (map g), so that this isxs = x0 : (((map Transition) Æ (map ((sub) xs)) Æ (map (subtrat 1))) (from 1))| {z }= x0 : (((map Transition) Æ (map ((sub) xs))) (map (subtrat 1) (from 1))| {z } )Clearly map (subtrat 1) (from 1) = from 0, givingxs = x0 : (((map Transition) Æ (map ((sub) xs))) (from 0) )| {z }= x0 : (map Transition (map ((sub) xs) (from 0))| {z })By the de�nition of sub, map ((sub) xs) (from 0) = xs, so this isxs = x0 : (map Transition xs)This is a de�nition of a proess network to generate a stream of suessive estimates. To175



omplete the task we must onvert the until onverges part into a proess network too. Weemploy a similar approah; �rst deompose onverges:onverges i = abs( (thisx � prevx)/thisx ) � �wherethisx = xs sub iprevx = xs sub (i�1)= Test (xs sub i) (xs sub (i�1))whereTest thisx nextx = abs( (thisx � prevx)/thisx ) � �= (Test ÆÆ ((sub) xs) (((sub) xs) Æ (subtrat 1))) iwhereTest thisx nextx = abs( (thisx � prevx)/thisx ) � �Reall from Chapter 2 that (f ÆÆ g h) x = f (g x)(h x). Now take the appliation of untiland unfold it:until onverges xs = selet (map onverges (from 0))| {z } xs= selet (FALSE : (map onverges (from 1))) xs| {z }= selet (map onverges (from 1)) (tl xs)= selet (map (Test ÆÆ ((sub) xs)(((sub) xs) Æ (subtrat 1))) (from 1))| {z }(tl xs)Using the property that map (f ÆÆ g h) = (map2 f) ÆÆ (map g)(map h), we haveuntil onverges xs = selet ( (map2 Test) ÆÆ (map ((sub) xs))(map (((sub) xs) Æ (subtrat 1)))| {z }(from 1) )(tl xs)= selet ( (map2 Test (map ((sub) xs) (from 1))| {z }(map ((sub) xs) (map (subtrat 1) (from 1)))) )(tl xs)Now we again use the property map ((sub) xs) (from 0) = xs to getuntil onverges xs = selet (map2 Test (tl xs)(map ((sub) xs) (map (subtrat 1) (from 1))| {z } ))(tl xs)= selet (map2 Test (tl xs) (map ((sub) xs) (from 0))| {z } )(tl xs)= selet (map2 Test (tl xs) xs) (tl xs)176



This ompletes the transformation to proess network form. Putting it all together wehavesolve f f' x0= selet (map2 Test (tl xs) xs) (tl xs)wherexs = x0 : (map Transition xs)Test thisx nextx = abs( (thisx � prevx)/thisx ) � �Transition prevx = prevx � ((f prevx)/(f' prevx))We an introdue parallelism into this de�nition by separating the arithmeti operationsinto proesses:solve f f' x0= selet (Map2Test (tl xs) xs) (tl xs)wherexs = x0 : (MapTransition xs)Map2Test thisxs nextxs = map abs ( (map2 (/) (map2 (�) thisxs prevxs) thisxs) )MapTransition prevxs = map2 (�) prevx (map2 (/) (map f prevx)(map f' prevx))The graphial representation of this network is given in Figure 4.3, bak in Chapter 4,setion 4.3.1, where the transformation is employed to express a parallel implementationof the reurrene.The transformation an be applied automatially, by a ompiler, provided that at eahstep the referenes bakwards to previous iterations are at a �xed o�set. The tehniquean be summarised as follows:1. Find the state transition funtion in terms of indexing into the list of iterates. Inour examples these were NextEstimate and NextFib.2. Take the de�nition of the list of iterates (written in terms of generate), and unfoldgenerate. Apply redution to generate the initial state or states for whih values aregiven diretly by the transition funtion.3. Deompose the remaining, reursive, ase of the state transition funtion into thebody itself, and the funtions used to ollet the values from previous iterations. Inour examples these wereNextEstimate = Transition Æ ((sub) xs) Æ (subtrat 1)andNextFib = ((+) ÆÆ (((sub) �bs) Æ (subtrat 1))(((sub) �bs) Æ (subtrat 2)) ) n
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4. Distribute the map introdued by generate into this omposition, to produe, forexample,xs = map NextEstimate (from 1)= ((map Transition) Æ (map ((sub) xs)) Æ (map (subtrat 1))) (from 1)5. Unfold the omposition, giving for example,xs = map Transition (map ((sub) xs) (map (subtrat 1) (from 1)))6. Apply the equationmap (subtrat n) (from m) = from (m�n), produing, for example,xs = map Transition (map ((sub) xs) (from 0))7. Apply the equations map ((sub) xs) (from 0) = xs, map ((sub) xs) (from 1) = tl xs,et. to get, for example,xs = map Transition xsThe transformation-based programming environment implemented by John Darlingtonand his olleagues at Imperial College [De88℄ is designed spei�ally to allow transforma-tions like this to be developed, enoded and reused.A.4 The ray-traer pipelineIn this example, a sequential searh proess is distributed over a pipeline. We have anunspei�ed funtionTestForImpat :: Ray ! Objet ! Impatwhere Impat is a data type whih desribes the interation between a ray and an objet.We must �nd the earliest impat made by a ray, so we are also given a seletion funtionearlier:earlier :: Impat ! Impat ! ImpatThe original formulation was
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FindImpats rays objets= map (FirstImpat objets) rayswhereFirstImpat objets ray = earliest (map (TestForImpat ray) objets)whereearliest impats = insert earlier NOIMPACT impatsThe laim is that this is equivalent to a pipelined formulation:FindImpats2 rays objets = ( (map TakeImpat) Æ(insert (Æ) ident(map map (map PipelineStage objets)))Æ (map MakePipeItem) )rayswhere the pipeline stage is de�ned byPipelineStage objet (PIPEITEM ray impat)= PIPEITEM ray impat'whereimpat' = earlier impat NewImpatNewImpat = TestForImpat ray objetand the stages are linked by lists of PipeItem's:PipeItem � � ::= PIPEITEM � �with onstrution and projetion funtions:MakePipeItem ray = PIPEITEM ray NOIMPACTTakeImpat (PIPEITEM ray impat) = impatTheorem 3 We laim that for all �nite and total lists rays and objets,FindImpats rays objets = FindImpats2 rays objetsBefore giving the proof we give some identities we will use. Proofs are left as exerisesfor the reader:Fat 1 Combining insertright and map:insertright op x (map g xs) = insertright h x xswhereh a b = op (g a) b179



Fat 2 Abstrating a free variable from the operator parameter of insertright:insertright (f a) x bs = fst (insertright f' (x, a) bs)wheref' b (x, a) = (f a b x, a)For our purposes this fat is better expressed in terms of our data types:insertright (f ray) NOIMPACT objets= TakeImpat (insertright f' (MakePipeItem ray) objets)wheref' objet (PIPEITEM ray impat) = PIPEITEM (f ray objet impat) ray(sine PIPEITEM ray impat is essentially equivalent to (ray, impat) but with a mnemonitag to aid readability1).Fat 3 Expressing insertright using a hain of ompositions:insertright op x xs = (insert (Æ) ident (map op xs)) xFat 4 Propagating map into a hain of ompositions:map (insert (Æ) ident fs) = insert (Æ) ident (map map fs)Proof:By redution and use of the above fats.Take the LHS:FindImpats rays objets = map (FirstImpat objets) raysLet us onsider to FirstImpat alone:FirstImpat objets ray= insert earlier NOIMPACT (map (TestForImpat ray) objets)| {z }Using Fat 1 gives1There is a subtle di�erene; see setion C.2.
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FirstImpat objets ray= insertright TestAndCompare NOIMPACT objetswhereTestAndCompare objet impat = earlier (TestForImpat ray objet) impatAbstrat ray from TestAndCompare as a parameter:FirstImpat objets ray= insertright (TestAndCompare' ray) NOIMPACT objetswhereTestAndCompare' ray objet impat = earlier (TestForImpat ray objet) impatThis is where Fat 2 omes into play, introduing the PipeItem data type: givingFirstImpat objets ray= TakeImpat (insertright TestAndCompare" (MakePipeItem ray) objets)whereTestAndCompare" objet (PIPEITEM ray impat)= PIPEITEM (TestAndCompare' ray objet impat) ray= PIPEITEM (earlier (TestForImpat ray objet) impat) rayFat 3 introdues the hain of ompositions:FirstImpat objets ray= TakeImpat ((insert (Æ) ident (map TestAndCompare" objets))(MakePipeItem ray))whereTestAndCompare" objet (PIPEITEM ray impat)= PIPEITEM (earlier (TestForImpat ray objet) impat) ray= (TakeImpat Æ(insert (Æ) ident(map TestAndCompare" objets))Æ MakePipeItem)raywhereTestAndCompare" objet (PIPEITEM ray impat)= PIPEITEM (earlier (TestForImpat ray objet) impat) rayPutting this bak into its ontext in the LHS, we an propagate the map into theomposition (using Fat 4):
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FindImpats rays objets= map (FirstImpat objets)| {z } rays= map (TakeImpat Æ(insert (Æ) ident(map TestAndCompare" objets))Æ MakePipeItem)rays| {z }= ((map TakeImpat) Æ(insert (Æ) ident(map map (map TestAndCompare" objets)))Æ (map MakeItem))rayswhereTestAndCompare" objet (PIPEITEM ray impat)= PIPEITEM (earlier (TestForImpat ray objet) impat) rayThis is trivially equal to the RHS.A.5 The sieve of EratosthenesThis derivation is partiularly fasinating. We have a �ltering funtion, whih takes anumber p (whih will be prime), and a list of numbers as, and produes the list of elementsof as whih are not divisible by p:FilterMultiples p (a:as) = a : (FilterMultiples p as), if not(divides p a)= FilterMultiples p as, if divides p aThis has the e�et of \rossing out" every multiple of p from the list of numbers as.Eratosthenes' approah was to repeat this for every prime, in inreasing order. Clearlythe resulting list would onsist only of prime numbers|but how do we �nd the primesin the �rst plae? Happily, after doing all the rossings out up to a prime p, the nextunrossed-out number must also be prime: no fator of p is greater than p, and all smallerfators have already been eliminated.This leads us to an iterative formulation. We start with the list of natural numbers(exluding 1 for onveniene). At eah iteration, we �lter the remaining numbers with thelatest prime:
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sieves = generate NextSievewhereNextSieve 0 = from 2NextSieve (n+1) = FilterMultiples newprime (sieves sub n)wherenewprime = hd (sieves sub n)At eah step, the �rst element in the list is guaranteed prime, and is used in the next stepfor rossing out. From this iteration, the list of primes itself is easily found:primes = generate FindPrimewhereFindPrime n = hd (sieves sub n)We just ollet the �rst element of the list at eah iteration. It is not hard, using thetehniques developed for removing sub from reurrenes, to simplify this de�nition to justprimes = map hd (iterate g (from 2))whereg (a:as) = FilterMultiples a asReall one of the alternative de�nitions of iterate:iterate f x = x : (iterate f (f x))(So that iterate f x = [x, f x, f(f x). . .℄). Now de�ne a funtion sieve so thatprimes = sieve (from 2)wheresieve as = map hd (iterate g as)Instantiate sieve for non-empty as, and then unfold the de�nition of iteratesieve (a:as) = map hd (iterate g (a:as))| {z }= map hd ((a:as):(iterate g (g (a:as))))| {z }= a : (map hd (iterate g (g (a:as))))| {z }= a : (sieve (g (a:as))| {z } )= a : (sieve (FilterMultiples a as))This gives the de�nition as required:primes = sieve (from 2)wheresieve (a:as) = a : (sieve (FilterMultiples a as))183



A.6 Transforming divide-and-onquer into a yleThe next luth of proofs support the derivation of a yli formulation of the divide-and-onquer algorithm form. The derivation itself appears in Chapter 4 setion 4.8. Thestarting point is the higher-order funtion to apture the divide-and-onquer form:DivideAndConquer :: (� ! [�℄ ! �) ! (� ! [�℄) ! � ! �DivideAndConquer CombineSolutions Deompose problem= Solve problemwhereSolve problem = CombineSolutions problem (map Solve SubProblems)whereSubProblems = Deompose problemA.6.1 Introduing an intermediate treeWe introdue an intermediate data struture to represent how the problem is broken downinto subproblems:MultiTree � � ::= MNODE � (� ! [�℄ ! �) Num [MultiTree � �℄We de�neDivideAndConquer' CombineSolutions Deompose problem= EvaluateTree (BuildTree problem)whereBuildTree problem = MNODE problemCombineSolutionsNoOfSubproblems(map BuildTree Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length SubProblemswhereEvaluateTree (MNODE problem CombineSolutions n subtrees)= CombineSolutions problem (map EvaluateTree subtrees)Theorem 4 DivideAndConquer' = DivideAndConquerProofBy equational reasoning: 184



First, introdue an auxiliary funtion Solve':DivideAndConquer' CombineSolutions Deompose problem= Solve' problemwhereSolve' problem = (EvaluateTree Æ BuildTree) problemBuildTree problem = MNODE problemCombineSolutionsNoOfSubproblems(map BuildTree Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length SubProblemsThen apply redution:Solve' problem= EvaluateTree (MNODE problemCombineSolutionsNoOfSubproblems(map BuildTree Subproblems))| {z }whereSubproblems = Deompose problemNoOfSubproblems = length SubProblems= CombineSolutions problem (map EvaluateTree (map BuildTree Subproblems))| {z }whereSubproblems = Deompose problemNoOfSubproblems = length SubProblems= CombineSolutions problem (map (EvaluateTree Æ BuildTree)| {z } Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length SubProblemsAt this point a fold step applies, giving
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Solve' problem= CombineSolutions problem (map Solve' Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length SubProblemsThis has preisely the form of the original de�nition of DivideAndConquer.A.6.2 The breadth-�rst tree{stream interonversionIn this setion we derive a pair of breadth-�rst tree{stream interonversion funtions. Thetree is transformed into a list of tokens, eah arrying details of a node:MultiTreeToken � � ::= MTREETOKEN � (� ! [�℄ ! �) NumThe funtions we must derive have the type spei�ationsMTreeToStream :: MultiTree � � ! [MultiTreeToken � �℄andStreamToMTree :: [MultiTreeToken � �℄ ! Multitree � �It turns out to be easier to derive a slightly more general pair of funtions,ListOfMTreesToStream :: [MultiTree � �℄ ! [MultiTreeToken � �℄StreamToListOfMTrees :: Num ! [MultiTreeToken � �℄ ! [Multitree � �℄so thatMTreeToStream tree = ListOfMTreesToStream [tree℄andStreamToMTree stream = StreamToListOfMTrees 1 streamThe �rst parameter to StreamToListOfMTrees must be the number of trees we must extratfrom the inoming stream|in this ase just one.The spei�ationThe spei�ation omes in two parts. Firstly, we obviously require that the type spei�-ations be satis�ed, and that we an get the trees bak again:StreamToListOfMTrees (length trees) (ListOfMTreesToStream trees) = treesHowever, we also demand that the list representation be generated in \breadth-�rst" order,and this needs speifying. The idea is that the tree is made up of suessive generations,186



so that eah node of eah generation is the same distane from the root. We an formalisethis by writing down some funtions for separating o� the �rst generation of a list of treesfrom the subsequent ones:RootsOf :: [MultiTree � �℄ ! [MultiTreeToken � �℄RootsOf [ ℄ = [ ℄RootsOf ((MNODE p op n subtrees) : trees) = (MTREETOKEN p op n): (RootsOf trees)RootsOf trees produes a list of tokens, eah representing the root node of the orrespondingtree in trees. Notie that we expet n to be the number of hildren of this node|i.e. lengthsubtrees.RootsOf's ounterpart is SubtreesOf, whih piks out eah node's hildren:SubtreesOf :: [MultiTree � �℄ ! [MultiTree � �℄SubtreesOf [ ℄ = [ ℄SubtreesOf ((MNODE p op n subtrees) : trees) = subtrees ++ (SubtreesOf trees)These two funtions allow us to deompose trees into generations. All that remains is to�nd a way to put them bak together again:JoinLayers :: [MultiTreeToken � �℄ ! [Multitree � �℄ ! [Multitree � �℄JoinLayers [ ℄ [ ℄ = [ ℄JoinLayers ((MTREETOKEN p op n) : l1) l2 = (MNODE p op n (take n l2)): (JoinLayers l1 (drop n l2))It is not hard to verify (using partial strutural indution) that these funtions operate asintended: for all lists of trees, trees,trees = JoinLayers (RootsOf trees) (SubtreesOf trees)These funtions establish a well-founded ordering based on generations. Now to the spei-�ation that the list be generated in breadth-�rst order. What we mean is that the outputlist should onsist of eah omplete generation, one-at-a-time, from the roots:ListOfMTreesToStream trees = (RootsOf trees) ++(RootsOf (SubtreesOf trees)) ++(RootsOf (SubtreesOf (SubtreesOf trees))) ++ � � �This is simply aptured reursively:
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ListOfMTreesToStream [ ℄ = [ ℄ListOfMTreesToStream trees = (RootsOf trees) ++(ListOfMTreesToStream (SubtreesOf trees))This is an adequate implementation for ListOfMTreesToStream.It will also be fruitful to note how to separate the generations when they are representedin the stream form. For this, we must know the number n of nodes in the �rst generation.Then we have simply thatFirstGeneration n tokens = take n tokensSubsequentGenerations n tokens = drop n tokensTo �nd n we speify thatSizeOfNextGeneration (RootsOf trees) = length (SubtreesOf trees)We have to use an implementation whih doesn't need the tree form. If tokens = RootsOftrees thenSizeOfNextGeneration tokens = sum (map NumberOfChildren tokens)whereNumberOfChildren (MTREETOKEN p op n) = nBefore proeeding, take note of two equalities whih are easily veri�ed by redution (again,n = length (RootsOf trees)):FirstGeneration n (ListOfMTreesToStream trees) = RootsOf treesandSubsequentGenerations n (ListOfMTreesToStream trees)=ListOfMTreesToStream (SubtreesOf trees)Deriving StreamToListOfMTreesWhile the translation from trees to lists was easily derived from its spei�ation, syn-thesising an exeutable de�nition for StreamToListOfMTrees is rather more diÆult. Itsspei�ation is just
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StreamToListOfMTrees n stream = trees| {z }wherestream = ListOfMTreesToStream treesn = length treesLet us instantiate StreamToListOfMTrees for two ases: when the list of trees (and thereforestream) is empty, and when it onsists of one or more generations. For streams = [ ℄, it islear that n must also be zero, and we onstrut the empty list of trees:StreamToListOfMTrees 0 [ ℄ = [ ℄For the non-empty ase we know that we an deompose stream so thatstream = (FirstGeneration n stream) ++ (SubsequentGenerations n stream)We observed earlier thatFirstGeneration n (ListOfMTreesToStream trees) = RootsOf treesandSubsequentGenerations n (ListOfMTreesToStream trees)=ListOfMTreesToStream (SubtreesOf trees)We haveStreamToListOfMTrees n stream= JoinLayers (RootsOf trees)| {z } (SubtreesOf trees)= JoinLayers gen1 (SubtreesOf trees)| {z }wheregen1 = FirstGeneration n stream= JoinLayers gen1 subtreeswheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (ListOfMTreesToStream (SubtreesOf trees))| {z }m = length (SubtreesOf trees)(by hypothesis)
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= JoinLayers gen1 subtreeswheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n(ListOfMTreesToStream trees)| {z })m = length (SubtreesOf trees)= JoinLayers gen1 subtreeswheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)m = length (SubtreesOf trees)| {z }= JoinLayers gen1 subtreeswheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)m = SizeOfNextGeneration (RootsOf trees)| {z }= JoinLayers gen1 subtreeswheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)m = SizeOfNextGeneration gen1This ompletes the derivation, sine StreamToListOfMTrees n stream no longer refers totrees. The de�nitions are olleted below for larity:ListOfMTreesToStream :: [MultiTree � �℄ ! [MultiTreeToken � �℄ListOfMTreesToStream trees = (RootsOf trees) ++(ListOfMTreesToStream (SubtreesOf trees))and
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StreamToListOfMTrees :: [MultiTreeToken � �℄ ! [Multitree � �℄StreamToListOfMTrees 0 [ ℄ = [ ℄StreamToListOfMTrees n stream= JoinLayers gen1 subtrees, n 6= 0wheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)m = SizeOfNextGeneration gen1The de�nition of StreamToListOfMTrees an be made more eÆient using the optimisa-tions of setion A.1.1. In partiular, the �rst generation, its length, and the subsequentgenerations an all be omputed in a single pass.A.6.3 Verifying the yli de�nitionBy applying redution (see setion 4.8.2) to ombine BuildTree with ListOfMTreesToStream,we reahed the following reursive de�nition for BuildStreamsOfTrees, a funtion whihdeomposes a list of rays diretly into the stream representation of their subray trees:BuildStreamsOfTrees [ ℄ [ ℄ = [ ℄BuildStreamsOfTrees [ ℄ subproblems = BuildStreamsOfTrees subproblems [ ℄BuildStreamsOfTrees (problem:siblingproblems) oldsubproblems= (MTREETOKEN problem CombineSolutions NoOfSubproblems): (BuildStreamsOfTrees siblingproblems(oldsubproblems++Subproblems))whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsIn setion 4.8.2 we laim that this is equivalent to a de�nition whih is not reursiveas suh, but uses a yli stream de�nition:BuildStreamsOfTrees' [ ℄ [ ℄ = [ ℄
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BuildStreamsOfTrees' problems subproblems= outputwhere(output, feedbak)= SplitStream((map FEEDBACKTAG subproblems) ++(join (map LayerOf (problems++feedbak))))LayerOf problem= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems)): (map FEEDBACKTAG Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length Subproblemswhere SplitStream separates a stream of tagged objets into two streams of untagged ones:SplitStream :: [TaggedStreamItem � �℄ ! ([MultiTreeToken � �℄, �)SplitStream [ ℄ = ([ ℄, [ ℄)SplitStream ((OUTPUTTAG token) : rest)= (token : rest1, rest2)where(rest1, rest2) = SplitStream restSplitStream ((FEEDBACKTAG subproblem) : rest)= (rest1, subproblem : rest2)where(rest1, rest2) = SplitStream restand join attens a list of lists into a list:join :: [[�℄℄ ! [�℄join xss = insert (++) [ ℄ xssTheorem 5 BuildStreamsOfTrees = BuildStreamsOfTrees'
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ProofBy reursion indution. We must show that BuildStreamsOfTrees' satis�es eah of thethree equations de�ning BuildStreamsOfTrees. This veri�es that BuildStreamsOfTrees vBuildStreamsOfTrees' (see setion 2.5.5). We omit a proof of the equality itself, beausewe know that BuildStreamsOfTrees is de�ned for all parameter values of interest.First Equation: We must show thatBuildStreamsOfTrees' [ ℄ [ ℄ = [ ℄This follows trivially from the �rst equation de�ning BuildStreamsOfTrees'.Seond Equation: We must show thatBuildStreamsOfTrees' [ ℄ subproblems = BuildStreamsOfTrees' subproblems [ ℄If we unfold the RHS we getRHS = outputwhere(output, feedbak)= SplitStream((map FEEDBACKTAG [ ℄) ++(join (map LayerOf (subproblems++feedbak))))The LHS unfolds toLHS = outputwhere(output, feedbak)= SplitStream((map FEEDBACKTAG subproblems) ++(join (map LayerOf (feedbak))))The elements of the list subproblems are tagged so they are emitted in the right-handfeedbak stream:LHS = outputwhere(output, feedbak) = (output, subproblems++feedbak')(output, feedbak')= SplitStream((map FEEDBACKTAG [ ℄) ++(join (map LayerOf (feedbak))))Simplifying to get rid of feedbak' we get193



LHS = outputwhere(output, feedbak)= SplitStream((map FEEDBACKTAG [ ℄) ++(join (map LayerOf (subproblems++feedbak))))But this is preisely the same as the RHS.Third Equation: We must show thatBuildStreamsOfTrees' (problem:siblingproblems) oldsubproblems= (MTREETOKEN problem CombineSolutions NoOfSubproblems): (BuildStreamsOfTrees' siblingproblems(oldsubproblems++Subproblems))whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsWe apply redution to the LHS:LHS = BuildStreamsOfTrees' (problem:siblingproblems) oldsubproblems| {z }= outputwhere(output, feedbak)= SplitStream((map FEEDBACKTAG oldsubproblems) ++(join (map LayerOf ((problem:siblingproblems)++feedbak))| {z } ))= outputwhere(output, feedbak)= SplitStream((map FEEDBACKTAG oldsubproblems) ++(join ((LayerOf problem)| {z }: (map LayerOf (siblingproblems++feedbak))) ))Unfolding LayerOf gives
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LHS = outputwhere(output, feedbak)= SplitStream((map FEEDBACKTAG oldsubproblems) ++(join ((OUTPUTTAG (MTREETOKEN problemCombineSolutionsNoOfSubproblems)): (map FEEDBACKTAG Subproblems)): (map LayerOf (siblingproblems++feedbak)) ))| {z }whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsReduing the appliation of join givesLHS = outputwhere(output, feedbak)= SplitStream((map FEEDBACKTAG oldsubproblems) ++[OUTPUTTAG (MTREETOKEN problemCombineSolutionsNoOfSubproblems)℄ ++(map FEEDBACKTAG Subproblems) ++(map LayerOf (siblingproblems++feedbak)))whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsWe an now oat the MTREETOKEN struture out to the output:LHS = (MTREETOKEN problem CombineSolutions NoOfSubproblems): output'where(output', feedbak)= SplitStream((map FEEDBACKTAG oldsubproblems) ++(map FEEDBACKTAG Subproblems) ++(map LayerOf (siblingproblems++feedbak)))whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsWe know that map FEEDBACKTAG is distributive over \++", giving195



LHS = (MTREETOKEN problem CombineSolutions NoOfSubproblems): output'where(output', feedbak)= SplitStream((map FEEDBACKTAG oldsubproblems++Subproblems) ++(map LayerOf (siblingproblems++feedbak)))whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsNow notie thatoutput' = BuildStreamsOfTrees' siblingproblems(oldsubproblems++Subproblems)so we haveLHS = (MTREETOKEN problem CombineSolutions NoOfSubproblems): BuildStreamsOfTrees' siblingproblems(oldsubproblems++Subproblems)whereSubproblems = Deompose problemNoOfSubproblems = length SubproblemsThis is idential to the RHS.
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Appendix BCommon De�nitionsThis appendix ollets de�nitions of ommonly used symbols and funtions. Intermediaryde�nitions in program derivations are not generally inluded.B.1 Symbols== Equality of types, used for de�ning synonyms for types. For example name ==[Char℄.::= Algebrai data type delaration. Used to onstrut a new data type from taggedalternatives (separated by | and reursion. The tags are known as onstrutors.:: Type spei�ation/assertion. For example, f :: � assert the f is a member of the type� . It is generally used to give a partial spei�ation of the objet to aid the reader'sunderstanding and to aid ompiler heking.! � ! � is the type of a funtion whih takes one parameter of type �, and returns aresult of type �. �! (� ! ) is the type of a two-parameter funtion. The braketshere an be omitted.| {z } An underbrae is used in this book to mark an expression whih is shortly to berewritten._ Logial or.^ Logial and. 197



++ The in�x form of the append funtion, de�ned below.:, [ ℄ Shorthand forms of the CONS and NIL onstrutors of the List data type.\. . . "The expression \ab" is shorthand for the list of haraters 'a' : 'b' : '' : [ ℄.Æ The in�x form of the funtion ompose. f Æ g denotes a funtion whih applies g toits parameter, and then applies f to the result.ÆÆ The in�x form of the funtion ompose2. f ÆÆ g h is a two parameter funtion whihapplies g to its �rst parameter, h to its seond parameter, and applies f to the tworesults.? Read \bottom", ? denotes a omputation whih does not terminate. When lookingat snapshots of a omputation, ? an be thought of as standing for a value whihhas not yet been omputed.v Read \approximates". Informally x v y if further omputation might re�ne x untilit is equal to y.�, �These symbols are used in this book for an ordering relation (analogous to � and >)whih is \well founded"|that is there exists no in�nite hain of dereasing values.# An appliation a b an be marked a # b is its result must be unde�ned if b isunde�ned|in whih ase it is alled a \strit" appliation. A funtion de�nition fa b  = e an be marked f a b#  = e if all appliations of f to its seond parameterare strit.2 The expression 2f denotes the expression in whih f is applied. This must be uniquelydetermined. When written (2), redution must be applied until 2 is applied to avalue.B.2 TypesBinaryTree:
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BinaryTree � ::= EMPTY jLEAF � jNODE (BinaryTree �) (BinaryTree �)Bool: Bool ::= TRUE j FALSEBundle:Bundle � ::= BUNDLE �BUNDLE is used only as a visible signal to the reader that the parameter datastruture is being used for bundling.Char: This type ontains all the haraters, and might be de�ned by the equationChar ::= 'a' j 'b' j '' . . . 'z' j 'A' j 'B' . . . 'Z' j '0' j '1' . . . '9' . . .It would normally inlude the haraters of the ASCII ode, and be ordered in thesame way.Impat:Impat ::= NOIMPACT jIMPACT Num ImpatInformationList: List � ::= NIL j CONS � (List �)MultiTree:MultiTree � � ::= MNODE � (� ! [�℄ ! �) Num [MultiTree � �℄In this kind of tree, eah node arries a funtion as well as a list of subtrees. Thenumber should be equal to the number of subtrees.
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MultiTreeToken:MultiTreeToken � � ::= MTREETOKEN � (� ! [�℄ ! �) NumThis type is used in the breadth-�rst stream representation of the MultiTree type.PipeItem:PipeItem � � ::= PIPEITEM � �This is simply a tagged pair type, used instead of just (�, �) for ease of readability.It is need when pipelining and insert operation.Sample:Sample ::= HI j LO j XXThis is an approximation to the signal level on a wire, used in speifying digitaliruits.Signal:Signal == [Sample℄TaggedStreamItem:TaggedStreamItem � � ::= OUTPUTTAG (MultiTreeToken � �)j FEEDBACKTAG �This type is like a \union" type: it inludes two di�erent typed objets, requiringthat they be tagged to indiate whih. It is used in the yli formulation of thedivide phase of DivideAndConquer.B.3 Funtionsappend (++):append :: [�℄ ! [�℄ ! [�℄append (a : as) bs = a : (append as bs)append [ ℄ bs = bsThe appliation append as bs is normally written as++bs.200



ApplyLNO:ApplyLNO :: ([�℄ ! �) ! ��� ! ���ApplyLNO op matrix= MakeMatrix LoalOperationwhereLoalOperation (i,j)= matrix sub (i,j), if OnBoundary matrix (i,j)LoalOperation (i,j)= op [matrix sub (i�1,j),matrix sub (i,j�1),matrix sub (i+1,j),matrix sub (i,j+1),matrix sub (i,j)℄, otherwisear: ar :: � ! � ! BoolThis relation is used to build assertions about proess distribution. The assertionar a b requires the ompiler to plae the proesses whih ompute expressions a andb on separate proessors, but to arrange for them to be able to ommuniate withone another eÆiently. Note that ar a b is equivalent to the assertion ar b a.DivideAndConquer:DivideAndConquer :: (� ! �)! (� ! [�℄ ! �)! (� ! [�℄)! (� ! Bool)! �! �
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DivideAndConquer SimplySolve CombineSolutions Deompose Trivial problem= Solve problemwhereSolve problem = SimplySolve problem, if Trivial problemSolve problem = CombineSolutions problem(map Solve SubProblems) otherwisewhereSubProblems = Deompose problemabs: abs :: Num ! Numabs x = x, if x � 0abs x = �x, otherwiseall: all :: [Bool℄ ! Boolall = insert (^) TRUEhain:hain :: (Bool ! Bool ! Bool) ! [(� ! �)℄ ! Boolhain relation [f℄ = TRUEhain relation (f1 : f2 : fs) = (relation f1 f2) ^ (hain relation f2 fs)ompose (Æ):ompose :: (� ! ) ! (� ! �) ! � ! ompose f g = f Æ g = hwhereh x = f (g x)ompose2 (ÆÆ):
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ompose2 :: (�1 ! �2 ! ) ! (� ! �1) ! (� ! �2) ! � ! ompose2 f g1 g2 = f ÆÆ g1 g2 = hwhereh x = f (g1 x) (g2 x)ond: ond :: Bool ! � ! � ! �ond TRUE a b = aond FALSE a b = bonstrut:onstrut :: [� ! �℄ ! � ! �onstrut [ ℄ x = [ ℄onstrut (f : fs) x = (f x) : (onstrut fs x)onst:onst :: � ! �onst x = xdivides:divides :: Num ! Num ! Booldivides p a is TRUE is p divides a exatly, False otherwise.drop: drop :: Num ! [�℄ ! [�℄drop n (a : as) = drop (n�1) as, if n 6= 0drop n [ ℄ = [ ℄, if n 6= 0drop 0 as = as 203



earlier:earlier :: Impat ! Impat ! Impatearlier NOIMPACT NOIMPACT = NOIMPACTearlier (IMPACT dist1 info1) NOIMPACT = (IMPACT dist1 info1)earlier NOIMPACT (IMPACT dist2 info2) = (IMPACT dist2 info2)earlier (IMPACT dist1 info1)(IMPACT dist2 info2) = (IMPACT dist1 info1), if dist1 � dist2earlier (IMPACT dist1 info1)(IMPACT dist2 info2) = (IMPACT dist2 info2), if dist1 > dist2EvaluateTree:EvaluateTree :: (MultiTree � �) ! �EvaluateTree (MNODE problem CombineSolutions n subtrees)= CombineSolutions problem (map EvaluateTree subtrees)EvenOnes:EvenOnes :: [�℄ ! [�℄EvenOnes [ ℄ = [ ℄EvenOnes [a0℄ = [a0℄EvenOnes (a0 : a1 : as) = a0 : (EvenOnes as)fan: fan :: (Bool ! Bool ! Bool) ! � ! [� ! ℄ ! Boolfan relation a bs = all (map (relation a) bs)�lter:
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�lter :: (� ! Bool) ! [�℄ ! [�℄�lter prediate [ ℄ = [ ℄�lter prediate (a : as) = a : (�lter prediate as), if prediate a�lter prediate (a : as) = (�lter prediate as), otherwiseFindImpats:FindImpats :: [Ray℄ ! [Objet℄ ! [Impats℄FindImpats rays objets = map (FirstImpat objets) raysFirstImpat:FirstImpat :: [Objet℄ ! Ray ! ImpatFirstImpat objets ray = earliest (map (TestForImpat ray) objets)whereearliest impats = insert earlier NOIMPACT impatsfrom: from :: Num ! [Num℄from n = n : ( from (n + 1) )fst: fst :: (�, �) ! �fst (a, b) = agenerate:generate :: (Num ! �) ! [�℄generate f = map f (from 0)hd:
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hd :: [�℄ ! �hd (x : xs) = xident: ident :: � !�ident x = xinsert:insert :: (� ! � ! �) ! � ! [�℄ ! �insert (op) base [ ℄ = baseinsert (op) base [a1, a2, a3, � � � aN℄ = a1 op a2 op a3 � � � op aNThe funtion parameter is written (op) here beause it is onvenient to use it in in�xform on the RHS. This funtion is appliable only when (op) is assoiative.insertleft:insertleft :: (� ! � ! �) ! � ! [�℄ ! �insertleft f base [ ℄ = baseinsertleft f base (a : as) = insertleft f (f base a) asinsertright:insertright :: (� ! � ! �) ! � ! [�℄ ! �insertright f base [ ℄ = baseinsertright f base (a : as) = f a (insertright f base as)iterate:iterate :: (� ! �) ! � ! [�℄iterate f x = x : (iterate f (f x))A useful alternative de�nition of iterate is206



iterate f x = outputwhereoutput = x : (map f output)join: join :: [[�℄℄ ! [�℄join as = insert (++) [ ℄ asladder:ladder :: (Bool ! Bool ! Bool) ! [� ! �℄ ! [ ! Æ℄ ! Boolladder relation [ ℄ [ ℄ = TRUEladder relation (a : as) (b : bs) = (relation a b) ^ (ladder relation as bs)length:length :: [�℄ ! Numlength [ ℄ = 0length (a : as) = 1 + (length as)A more eÆient de�nition (when stritness analysis annotations are interpreted asall-by-value parameter passing) islength as = length' 0 aswherelength' n [ ℄ = nlength' n (a:as) = length' (n+1) asListToTree1:ListToTree1 :: [�℄ ! BinaryTree �
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ListToTree1 [ ℄ = EMPTYListToTree1 [a℄ = LEAF aListToTree1 (a0:a1:as) = NODE (ListToTree1 (take m (a0:a1:as)))(ListToTree1 (drop m (a0:a1:as)))wherem = (length (a0:a1:as))/2ListToTree2:ListToTree2 :: [�℄ ! BinaryTree �ListToTree2 [ ℄ = EMPTYListToTree2 [a℄ = LEAF aListToTree2 (a0:a1:as) = NODE (ListToTree2 (EvenOnes (a0:a1:as)))(ListToTree2 (OddOnes (a0:a1:as)))whereEvenOnes [ ℄ = [ ℄EvenOnes [a0℄ = [a0℄EvenOnes (a0 : a1 : as) = a0 : (EvenOnes as)OddOnes [ ℄ = [ ℄OddOnes [a0℄ = [ ℄OddOnes (a0 : a1 : as) = a1 : (OddOnes as)ListToVetor:ListToVetor :: [�℄ ! <�>This is spei�ed (but not implemented) by the requirement that for all 0 � i �(length as)�1,(ListToVetor as) sub i = as sub iMakeList:
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MakeList :: Num ! (Num ! �) ! [�℄MakeList length f = VetorToList (MakeVetor length f)MakeMatrix:MakeMatrix :: (Num, Num) ! ((Num, Num) ! �) ! ���This is spei�ed (but not implemented) by the requirement that for all 0 � i �xBound and 0 � j � yBound,(MakeMatrix (xBound,yBound) f) sub (i.j) = f (i,j)MakePipeItem:MakePipeItem :: Ray ! PipeItem Ray ImpatMakePipeItem ray = PIPEITEM ray NOIMPACTMakeVetor:MakeVetor :: Num ! (Num ! �) ! <�>This is spei�ed (but not implemented) by the requirement that for all 0 � i �bound,(MakeVetor bound f) sub i = f imap: map :: (� ! �) ! [�℄ ! �map f [ ℄ = [ ℄map f (x:xs) = (f x) : (map f xs)map2:
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map2 :: (� ! � ! ) ! [�℄ ! [�℄ ! [℄map2 op (a : as) (b : bs) = (op a b) : (map2 op as bs)map2 op [ ℄ [ ℄ = [ ℄MatrixAll:MatrixAll :: �Bool� ! BoolThis is spei�ed by the requirement that for all 0 � i � xBound and 0 � j � yBound,m sub (i,j) = TRUEwhere (xBound,yBound) = MatrixBounds m.MatrixBounds:MatrixBounds :: ��� ! (Num,Num)This is spei�ed by the requirement thatMatrixBounds (MakeMatrix (xBound,yBound) f) = (xBound,yBound)MatrixMap:MatrixMap :: (� ! �) ! ��� ! ���We require thatMatrixMap f (MakeMatrix (xBnd,yBnd) g)= MakeMatrix (xBnd,yBnd) (f Æ g)MatrixMap2:MatrixMap2 :: (� ! � ! ) ! ��� ! ��� ��We require thatMatrixMap2 f (MakeMatrix (xBnd,yBnd) g)(MakeMatrix (xBnd,yBnd) h) = MakeMatrix (xBnd,yBnd) (f ÆÆ g h)210



mesh:mesh :: ��� ! Boolmesh matrix = MatrixAll (ApplyLNO LinkNeighbours matrix)whereLinkNeighbours [west, south, east, north, home℄= fan ar home [west, south, east, north℄MTreeToStream:MTreeToStream :: MultiTree � � ! [MultiTreeToken � �℄MTreeToStream tree = ListOfMTreesToStream [tree℄whereListOfMTreesToStream :: [MultiTree � �℄ ! [MultiTreeToken � �℄ListOfMTreesToStream trees = (RootsOf trees) ++(ListOfMTreesToStream (SubtreesOf trees))not: not :: Bool ! Boolnot TRUE = FALSEnot FALSE = TRUEOddOnes:OddOnes :: [�℄ ! [�℄OddOnes [ ℄ = [ ℄OddOnes [a0℄ = [ ℄OddOnes (a0 : a1 : as) = a1 : (OddOnes as)OnBoundary:
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OnBoundary :: ��� ! (Num,Num) ! BoolOnBoundary matrix (i,j) = (i=0) _ (j=0) _ (i=iBound�1) _ (j=jBound�1)where(iBound,jBound) = MatrixBound matrixpair: pair :: � ! � ! (�, �)pair a b = (a, b)pipeline:pipeline :: [� ! �℄ ! [�℄ ! [�℄pipeline fs xs = (insert (Æ) ident (map map fs)) xsply: ply :: [(� ! �)℄ ! [�℄ ! [�℄ply [ ℄ [ ℄ = [ ℄ply (f : fs)(x : xs) = (f x) : (ply fs xs)repliate:repliate :: Num ! � ! [�℄repliate 0 x = [ ℄repliate (n+1) x = x : (repliate n x)reverse:reverse :: [�℄ ! [�℄reverse [ ℄ = [ ℄reverse (x : xs) = (reverse xs) ++ [x℄ 212



selet:selet :: [Bool℄ ! [�℄ ! �selet (FALSE : tests) (x : xs) = selet tests xsselet (TRUE : tests) (x : xs) = xsnd: snd :: (�, �) ! �snd (a, b) = bsplit: split :: Num ! [�℄ ! ([�℄,[�℄)split 0 as = ([ ℄, as)split 0 [ ℄ = ([ ℄, [ ℄), if n 6= 0split n (a:as) = (a: front, bak), if n 6= 0where(front, bak) = split (n�1) asSplitStream:SplitStream :: [TaggedStreamItem � �℄ ! ([MultiTreeToken � �℄, �)SplitStream [ ℄ = ([ ℄, [ ℄)SplitStream ((OUTPUTTAG token) : rest)= (token : rest1, rest2)where(rest1, rest2) = SplitStream restSplitStream ((FEEDBACKTAG subproblem) : rest)= (rest1, subproblem : rest2)where(rest1, rest2) = SplitStream rest
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StreamOfMatriesToMatrixOfStreams:StreamOfMatriesToMatrixOfStreams :: [���℄ ! �[�℄�StreamOfMatriesToMatrixOfStreams ms= MakeMatrix (MatrixBounds (hd ms)) EahStreamwhereEahStream (i,j) = generate ElementswhereElements k = (ms sub k) sub (i,j)StreamToMTree:StreamToMTree :: [MultiTreeToken � �℄ ! Multitree � �StreamToMTree stream = StreamToListOfMTrees 1 streamwhereStreamToListOfMTrees :: [MultiTreeToken � �℄ ! [Multitree � �℄StreamToListOfMTrees 0 [ ℄ = [ ℄StreamToListOfMTrees n stream= JoinLayers gen1 subtrees, n 6= 0wheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)m = SizeOfNextGeneration gen1sub :This subsripting operator is used for lists, vetors and matries. For lists its de�ni-tion is(sub) :: [�℄ ! Num ! �(a : as) sub 0 = a(a : as) sub (n+1) = as sub n
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sum: sum :: [Num℄ ! Numsum as = insert (+) 0 as = insertleft (+) 0 as = insertright (+) 0 astake: take :: Num ! [�℄ ! [�℄take n (a : as) = a : (take (n�1) as), if n 6= 0take n [ ℄ = [ ℄, if n 6= 0take 0 as = [ ℄TakeImpat:TakeImpat :: PipeItem Ray Impat ! ImpatTakeImpat (PIPEITEM ray impat) = impatTestForImpat:TestForImpat :: Ray ! Objet ! ImpatThis funtion's de�nition is not given here to avoid unneessary detail. It hekswhether Ray intersets with Objet. If not it returns NOIMPACT. If so, it returns anImpat data objet ontaining details of how far along the ray the impat ourred,where the rays (if any) ontributing to this ray's olour ome from, and details ofthe surfae harateristis in the form of a funtion whih ombines the olours ofthe ontributory rays to yield the olour of the original ray.tl: tl :: [�℄ ! [�℄tl (x : xs) = xstranspose:
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transpose :: [[�℄℄ ! [[�℄℄transpose rows = [ ℄, if rows = [ ℄transpose rows = (map hd rows) : (transpose (map tl rows)) otherwiseThe important use for this funtion is in transforming an in�nite stream of (�nitelength) lists into a (�nite length) list of in�nite streams|and bak again.TreeToList1:TreeToList1 :: BinaryTree � ! [�℄TreeToList1 EMPTY = [ ℄TreeToList1 (LEAF a) = [a℄TreeToList1 (NODE subtree1 subtree2) = (TreeToList1 subtree1)++ (TreeToList1 subtree2)TreeToList2:TreeToList2 :: BinaryTree � ! [�℄TreeToList2 EMPTY = [ ℄TreeToList2 (LEAF a) = [a℄TreeToList2 (NODE evensubtree oddsubtree)= (merge (TreeToList2 evensubtree) (TreeToList2 oddsubtree))wheremerge (a0 : evens) (a1 : odds) = a0 : a1 : (merge evens odds)merge as [ ℄ = asuntil: until :: (Num ! Bool) ! [Num℄ ! Numuntil prediate xs = selet (map prediate (from 0)) xswhereselet (FALSE : tests) (x : xs) = selet tests xsselet (TRUE : tests) (x : xs) = xVetorBound: 216



VetorBound :: <�> ! NumWe speify thatVetorBound (MakeVetor bound f) = boundVetorToList:VetorToList :: <�> ! [�℄This is spei�ed by the requirements that(VetorToList (MakeVetor bound f)) sub i = (MakeVetor bound f) sub iandlength (VetorToList (MakeVetor bound f)) = bound
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Appendix CProgramming in a real funtionallanguageThe programming language used in this book is not preisely the same as any ommonly-available programming language. In fat only a small part of a real programming languageis used, so the translation proess required is really very small. It di�ers only super�iallyfrom several more aessible languages:� Miranda1 [Tur86℄. A Miranda interpreter and program development environment isommerially available from its originator, D.A. Turner.� Orwell (available at Oxford University)� Lazy ML [Aug84℄� Haskell [HWA+88℄. This language proposal will hopefully result in a widely aessiblepubli-domain implementation, but none exists at the time of writing.The language SASL (also originated by Turner) may be suitable for experimentation. Forour purposes its resembles Miranda but laks a type system. A third, similar, languageimplementation distributed by Turner's group, KRC, is not suitable beause it laks thewhere onstrut.The LispKit system, whih is desribed in Henderson's textbook [Hen80℄, and Sugar,desribed by Glaser, Hankin and Till [GHT84℄ might also be suitable for experimentation,but lak pattern-mathing as well as a type system.Strit languagesThe language used here is lazy: a parameter expression is evaluated only if and whenthe appliation in whih it appears needs its value to return a result. An implementationmust employ normal-order redution (see page 51), unless stritness analysis indiates thatappliative order will be safe.In a strit (that is, all-by-value) language, a parameter is always evaluated before it ispassed to the funtion body. Implementations of suh languages are muh more ommon.1Miranda is a trademark of Researh Software Ltd.219



Unfortunately translating a program written in a lazy language into a program whih willwork under a strit interpretation is quite ompliated, and not reommended. Detailsare given in [GHT84℄.C.1 Di�erenes from MirandaThe main purpose of this appendix is to give enough information for the programs inthis book to be tried out under the Miranda system. Users of other implementationsmust glean what they an. Reasons for the di�erenes are summarised at the end of theappendix.Lexial onvention for onstrutorsAll onstrutors (e.g. NIL, CONS, LEAF, NODE, et.) appeared in upper ase, while allother identi�ers were of mixed ase. In Miranda, any identi�er starting with a apital isde�ned to be a onstrutor, and all other names must begin in lower ase.Type variablesType variables were referred to as �, �,  et. In Miranda they are written *, **, *** et.Pattern mathing and guardsMiranda's syntax inludes ours as a speial ase, but does not demand that all equationsde�ning an objet be mutually exlusive. Miranda's semantis di�ers: patterns are testedsequentially from the top of the page downwards. This means that funtions like the non-strit or of page 52 will not work as expeted. The omponents of a partiular equation'spattern are also tested sequentially, in an unspei�ed order.Vetors and matriesMiranda has no vetors or matries. Lists and lists of lists an be used instead, providedeÆieny is not a serious onern.Built-in operatorsPresent-day keyboards have tied Miranda to forms like \<=" where \�" appears in thisbook, \*" for \�", \->" for \!", \&" for \^" and so on. Funtion omposition, f Æ g, iswritten \f . g" in Miranda. There is no ounterpart to \ÆÆ".The subsripting operator sub is used for lists, vetors and matries. In Miranda, itsonly ounterpart is the in�x \!" operator for indexing lists.The list type and its shorthandThe [a, b, . . . ℄, \:" and [ ℄ notations were introdued as shorthand for a list data typede�ned by 220



List � ::= NIL j CONS � (List �)In Miranda they are di�erent (but isomorphi) types.C.1.1 ExamplesBinary trees: as in this book:BinaryTree � ::= EMPTY jLEAF � jNODE (BinaryTree �) (BinaryTree �)In Miranda:binary_tree * ::= Empty |Leaf * |Node (binary_tree *) (binary_tree *)Square root: as in this book:sqrt :: Num ! numsqrt a = until onverges xswhereonverges 0 = FALSEonverges (i+1) = abs( ((xs sub (i+1)) � (xs sub i))/(xs sub(i+1)) ) � �xs = generate NextEstimatewhereNextEstimate 0 = a/2NextEstimate (i+1) = ((xs sub i) + a/(xs sub i))/2until :: (Num ! Bool) ! [Num℄ ! Numuntil prediate xs = selet (map prediate (from 0)) xswhereselet (FALSE:tests) (x:xs) = selet tests xsselet (TRUE:tests) (x:xs) = xIn Miranda:sqrt :: num -> numsqrt a = until onverges xswhereonverges 0 = Falseonverges (i+1) = abs( ((xs ! (i+1))221



- (xs ! i))/(xs ! (i+1)) ) <= epsilonxs = generate NextEstimatewhereNextEstimate 0 = a/2NextEstimate (i+1) = ((xs ! i) + a/(xs ! i))/2until :: (num -> bool) -> [num℄ -> numuntil prediate xs = selet (map prediate (from 0)) xswhereselet (False:tests) (x:xs) = selet tests xsselet (True:tests) (x:xs) = xC.2 Reasons for the di�erenesThe lexial di�erenes, suh as the uses of \!" instead of \->", and the admission ofapitals in ordinary identi�ers, were simply to improve readability, at the suggestion ofthe reviewers.The only signi�ant hange is in the rules onerning overlapping patterns and guards.When reasoning about programs, it is important to be able to treat equations indepen-dently of one another, so they must not overlap. However, in a pratial programminglanguage design di�erent riteria apply:� Guards: in a programming language, it is important that a ompiler be able to verifythat a program is well formed. To hek whether guards overlap is not omputablein general. By ontrast, in a language used for speifying and verifying programs,the onus is on the human.� Patterns: patterns di�er from guards beause a ompiler an perform a full analysisof overlapping and missing ases. The sequential order of testing patterns used byMiranda simpli�es and shortens programs: one an writeEahElement (0,0) = edgeEahElement (i,0) = edgeEahElement (0,j) = edgeEahElement (i,j) = f (a sub (i,j�1)) (a sub (i�1,j))whereas we had to introdue guards to disambiguate the four equations.A simple resolution of this ould be to introdue a syntati onstrut for de�nition bysequential pattern/guard mathing.Miranda and most other languages with pattern mathing have avoided having to usea parallel pattern testing mehanism like our general normalisation strategy beause itis diÆult to implement without a large run-time overhead. This leads to rather moreawkward rules for program syntax and semantis than ours. By ontrast, ommittedhoie logi languages like Parlog exploit parallelism in guard evaluation as a positivefeature. 222



Tagged tuplesOne subtlety touhed on only slightly in the text is the use of onstrutors to tag data typeswhih are really only aggregates of their omponents. The main example (see page 180)wasPipeItem � � ::= PIPEITEM � �The onstrutor PIPEITEM was introdued solely so provide a visual ue to what is goingon. It does not serve to distinguish di�erent alternative ases. We assumed that we ouldhave used the pair typePipeItem � � == (�, �)instead. In Miranda they are nearly but not preisely equivalent. Suppose we de�nef (PIPEITEM a b) = TRUEIn Miranda, f ? = ?. By ontrast, if we writeg (a, b) = TRUEthen f ? = TRUE. In Miranda, the rule is that the parameter must be evaluated enough tounover the onstrutors appearing on the LHS before the equation an be applied. Someother languages, notably Haskell, treat data types with just one alternative as a speialase. Suh a onstrutor is alled \irrefutable", and a preise equivalene with pairs holds.
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