
Generating CUDA code at runtime: specializing
accelerator code to runtime data

Tristan Perryman, Paul H. J. Kelly, Anton Lokhmotov and Tony Field
Department of Computing, Imperial College, London, United Kingdom

{p.kelly}@imperial.ac.uk

ABSTRACT
This abstract presents preliminary results from exploring the idea
of generating code for a GPU accelerator at run-time. We show
that this can lead to performance improvements due to specializa-
tion: we specialize the GPU code to the particular run-time data.
We illustrate the prototype tool with a ray tracing example, where
we achieve 10%–30% speedup due to specialisation to the scene
being rendered. The prototype tool is based on our Taskgraph li-
brary for runtime code generation in C++; this supports runtime
generation of both the CUDA kernel itself, and the host code for
transferring parameters and results. The tool gives the program-
mer full, dynamic control over CUDA resource management and
storage assignment.

1. INTRODUCTION
Programming heterogenous multicore systems, such as a PC with

a GPU, is sometimes quite complex - so complex that it is easier to
write a program to generate the implementation itself. This paper
explores this idea. Our Taskgraph library (TGL)1 supports runtime
construction and execution of a subset of C at runtime. We have
built a new back-end that generates CUDA instead of just C, and
invokes the nVidia CUDA compiler, so that a C++ host program
can build CUDA code on-the-fly.

In this paper we illustrate the use of the tool with a simple vector-
scalar addition example, and present experimental results for a ray-
tracing example where a performance benefit has been achieved by
using the Taskgraph library to generate CUDA code specialised to
data available only at run-time. This abstract is a brief summary of
Perryman’s thesis work [2], where more details are available. We
plan to make the software publically available; please contact the
authors for details.

2. THE TASKGRAPH LIBRARY
TGL was developed at Imperial College London to provide a

flexible, but not-too-error-prone way to write programs that build C

1URL: http://www.doc.ic.ac.uk/ phjk/Software/TGL/

Abstract submitted to FPGAs, GPUs, and accelerators for High-
Performance Computing Workshop at Imperial College London, 17-18
September 2008

#include <TaskGraph>
using namespace tg;

int main() {
int c = 1;
TaskGraph < int, int, int > T;
taskgraph(T, tuple2(x, y)) {

tReturn(x + y + c);
}
T.compile(tg::GCC);
printf("a+b+c = %d\n", T(2, 3)); // a+b+c = 6

}

Figure 1: TGL supports runtime contruction and specialisation
of a subset of C from within a C++ program. In this example,
T is the abstract syntax tree for a C function that takes two pa-
rameters, x and y, and returns x+y+1. The code is specialised
to the value of c at construction-time.

code at runtime, and then execute it. A minimal example is shown
in Figure 2.

TGL constructs an abstract syntax tree representation of the code
(using the Stanford SUIF framework [1]). It then prints this to a
temporary file, and calls the specified compiler. The resulting bi-
nary is dynamically linked into the client code so that it can be
called. Parameter passing is type checked as with standard C.

3. USING TGL TO GENERATE CUDA
This section presents an example to show how the extended TGL

for CUDA is used. The code constructs a vector in the host, and
passes it to the GPU, where a scalar is added to each element. The
result vector is then passed back to the host. See Figure 2. This
simple example does not show the performance advantage of using
TGL with CUDA; a more complex example is discussed in Sec-
tion 4.

3.1 Vector-scalar addition in TGL+CUDA
Our philosophy in the design of TGL+CUDA was to give the

programmer complete control over the CUDA that is generated.
This is evident in Figure 4. This specifies how the work is mapped
onto CUDA Cooperative Thread Arrays, and also explicit allocates
memory and copies data to and from the host. Much of this is
boilerplate which we plan to automate.

4. USING TGL+CUDA FOR SPECIALISA-
TION: RAY TRACING

Although we have other TGL+CUDA examples [2], we focus
here on the most complex and the nearest to a complete application.

int main(int argc, char *argv[]) {
cuda_host T;
cuda_kernel T2;
int k=5;
int mem_size = sizeof(vector3)*NVALS;
cudakerneltaskgraph(cuda_kernel, T2, tuple1(d_A))
{

...See Figure 3...
}
cudahosttaskgraph(cuda_host, T, tuple1(h_A))
{

...See Figure 4...
}
T.compile(tg::NVCC, true, args);

// Allocate and initialise vector operand
vector3* h_A;
h_A = (vector3*)malloc(mem_size);
getVectors(h_A, NVALS);

T(h_A); // invoke CUDA
}

Figure 2: Vector-scalar addition example - client code. The
code elided here (and shown in Figures 3 and 4) creates
Taskgraphs for the CUDA kernel, and also for the host CUDA
code (which manages resources and parameter/result mar-
shalling). Once this is done the GPU is invoked by a simple
function call.

cudakerneltaskgraph(cuda_kernel, T2, tuple1(d_A))
{

tVar(int, tx);

bx = blockIdx.x; // Block index
tx = threadIdx.x; // Thread index
tVar(int, thisvector);
thisvector = tx + bx*BLOCK_SIZE;

d_A[thisvector].x = d_A[thisvector].x*k;
d_A[thisvector].y = d_A[thisvector].y*k;
d_A[thisvector].z = d_A[thisvector].z*k;

}

Figure 3: TGL code to generate the CUDA kernel.

cudahosttaskgraph(cuda_host, T, tuple1(h_A)) {
tInclude("stdio.h"); tInclude("cutil.h");
tCall("CUT_DEVICE_INIT");
// allocate device memory
tVar(vector3*, d_A);
tCall("cudaMalloc", cast<void**>(&d_A), mem_size);
// copy host memory to device
tCall("cudaMemcpy", d_A, h_A, mem_size,

cudaMemcpyHostToDevice);
// setup execution parameters
tVar(dim3, threads);
threads.x = BLOCK_SIZE;
tVar(dim3, grid);
grid.x = NVALS / threads.x;

tCudaGlobalCall(T2, grid,threads,0,d_A);

// copy result from device to host
tCall("cudaMemcpy", h_A, d_A, sizeof(float3)*NVALS,

cudaMemcpyDeviceToHost);
tCall("cudaFree", d_A);
}

Figure 4: TGL code to generate the host-side CUDA code.

Figure 5: Performance of the specialised ray tracer. Maxi-
mum performance is achieved when specialising to both the
scene’s objects and viewpoint, without reflections (lighting re-
mains variable). More realistic is to specialise to objects but not
viewpoint (and with reflections); here speedup is about 10%,
giving 30 frames/second for a scene with 100 objects.

We started with a simple CUDA ray tracer written by Eric Rollins2.
This is a very basic ray tracer, computing diffusion and specularity
in a scene consisting of spheres. We extended it to handle multiple
light sources, shadows and multiple reflections, and improved its
performance using constant memory instead of shared memory for
the scene data. Figure 5 shows the performance, over this improved
baseline, gained from using TGL+CUDA in a simple real-time ray
tracing application. Compilation times (once for each scene) in
this example range from about 1.8 to about 11 seconds, depending
on the amount of loop unrolling done. The graph shows a drop
in performance in the without-reflections case which we have not
yet fully understood. If we limit unrolling to the first 30 objects
the effect disappears and some of the benefit of specialisation is
seen in larger scenes. (Configuration: 2.8ghz E6300 Core2Duo
with 2GB of 800MHz DDR2 RAM, Nvidia 8800GTS with 640MB
video memory. Open SuSE Linux 10.2, Nvidia driver 171.06, Cuda
Toolkit and SDK 1.1).

5. CONCLUSIONS
TGL+CUDA supports specialisation which can yield performance

benefits on GPUs. Our future work will focus on using it to ease
generation of more sophisticated implementations.

Acknowledgements. This work was partially funded by the U.K. En-
gineering and Physical Sciences Research Council through the SPOCS project
(ref EP/E002412).

6. REFERENCES
[1] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.

Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
multiprocessor performance with the SUIF compiler. IEEE
Computer, December 1996.

[2] T. Perryman. Runtime compilation with nvidia cuda as a
programming tool. Technical report, Imperial College
London, 2008. BSci dissertation.

2URL: http://eric rollins.home.mindspring.com/ray/cuda.html

