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THEORY AND TECHNIQUES
FOR DESIGN OF
ELECTRONIC DIGITAL COMPUTERS

Lectures given at the Moore School
8 July 1946 —31 August 1946

Volume IV
Lectures 34-48

UNIVERSITY OF PENNSYLVANIA
Moore Schocl of Electrical Engirzeering

PHILADELPHIA, PENNSYLVANIA

June 30, 1948

“2

B The first ever computer
architecture conference

B July 8th to August 31st
1946, at the Moore
School of Electrical
Engineering, University
of Pennsylvania

B A defining moment in
the history of computing

B To have been there....
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Co-inventor of, and chief engineer on, the ENIAC, arguably the first stored-
program computer (first operational Feb 14t 1946)

27 tonnes, 150KW, 5000 cycles/sec
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ORAWING NUMBER FPX-/-82 PANEL DIAGRAM OF THE £ELECTRON

= ENIAC: “setting up the machine’
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ENIAC was de3|gned to be set up manually by pluggmg
=arithmetic units together (reconfigurable logic)

B You could plug together quite complex configurations
B Parallel - with multiple units working at the same time
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WGloria Gorden and Ester Gerston: programmers on ENIAC
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http://www.columbia.edu/acis/history/eniac.html




LECTURE 45 26 AUGUST 1946

A PARALLEL CHANNEL CCGIPUTING :iaCHINE

Lecture b
J. P, Eckert, Jr,
Electronic Control Company

«»» Again I wish to reiterste the peoint that all the arguments
for parallel operation are only valid provided one applies them to
the steps which the built in or wired in programming of the machine
DéEPHtEE; Any steps which are progra.med by the operastor, who sets
up the machine, should be set up only in a serial fashion., It has

heen shown over and over again that any departuwre from this procedure

results in a system which is much too complicated to use,

See also http://www.digital60.org/birth/themooreschool/lectures.html#l45



DRAWING NUMBER PX-/-82  PANEL DIAGRAM OF THE £LECTRON

ENIAC: "setting up the machine” s
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(ML

=-lThe “blg |dea stored program mode -

E B Plug the units together to build a machine that fetches ===
instructions from memory - and executes them gt

B So any calculation could be set up completely s

i automatically — just choose the right sequence of
Instructions



John von Neumann

http://en.wikipedia.org/wiki/John_von_Neumann

John Backus

“Can Programming be
Liberated from the von
Neumann Style?” (1979)

a ~rom/inn/0702N /771122 QR ctm

The price to pay:

B Stored-program
mode was serial —
one instruction at a
time

BEHow can we have our
cake - and eat it?

B Flexibility and ease
of programming

B Performance of
parallelism


http://www.post-gazette.com/pg/07080/771123-96.stm
http://www.post-gazette.com/pg/07080/771123-96.stm
http://www.post-gazette.com/pg/07080/771123-96.stm
http://www.post-gazette.com/pg/07080/771123-96.stm
http://www.post-gazette.com/pg/07080/771123-96.stm
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4GB 1GB
Commodity Highly-interleaved

memaory memor

Scratchpad memory

Typical 2009 personal computer

B 2-to 8-way multicore CPU:
B Each core executes 2- to 4-wide parallel SSE instructions

B Attached programmable graphics processor is also highly parallel:
B Typically 8 cores, each executing a 32-wide “warp” of instructions
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True HD video Programmable OpenGL® ES 2.0 to Virtual
multi-standard 1080p elements for audio deliver immersive user low power
30-fps playback and emerging interface, advanced gaming, audio IC
Symmetric and record video standards rich 3D mapping
Multiprocessing
N V4 14
. ™

Processing ARM® ARM®@ IVA 3 Hardware POSWGE(%‘};% Audio
power for all Cortex™ -A9 [ Cortex™ -A9 : back-end
applications MPCore™ MPCore™ accelerator graphics

and ore = accelerator processor

no-compromise
Internet

: Main system interconnect
browsing

™M Dl I-HOH I U I I I i

Securing
content DAV, 7 controller | controller Processor (ISP)
secure
runtime,
IPSec
Larger, color-rich DSC quality imaging Composite and
displays embedded LPDDR2, MLC/SLC oc/sD, up to 20-megapixel HDMI v1.3
ratat_im:l en_giﬂE, NAND, NOR Flash, USBCSI UAE:T with noise fihering, output to drive
multi-pipelines, eSD, eMMC etc. SP|. McBSP image/video external displays
multioutput ’ stabiliztion from the handset

B Texas Instruments OMAP4 Mobile Applications Platform

B Two ARM cores + programmable graphics processor + other
more specialised accelerators

B To appear in 2010 smart phones and mobile internet devices

http://focus.ti.com/docs/solution/folders/print/501.html
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http://www.lanl.gov/orgs/hpc/roadrunner/index.shtml and http://www.infoworld.co

RoadRunner being bu"ilt by IBM for Los Alamos National Lab
3,456 TriBlades: Two dual-core Opterons + four IBM PowerXCell + interconnect
B6,120 x86 + 12,240 PowerPC + 97,920 Cell SPEs: 122,400 total (2.35MWatts)

BRecord-breaking 1 PetaFLOP (1000 TFLOPs, 1012 floating-point calculations per
second) achieved in June 08

B Computational science simulations demand massive parallelism
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B But “It has been shown over and over again...” that
this results in a system too complicated to use

B How can we get the speed and efficiency without
suffering the complexity?

B \What have we learned since 19467
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B But “It has been shown over and over again...” that
this results in a system too complicated to use

B How can we get the speed and efficiency without
suffering the complexity?

B \What have we learned since 19467

B Compilers and out-of-order processors can extract some
instruction-level parallelism

B Explicit parallel programming in MPI, OpenMP, VHDL are
flourishing industries — they can be made to work

B SQL, TBB, Cilk, Ct (all functional...), many more
speculative proposals

B No attractive general-purpose solution
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B But “It has been shown over and over again...” that
this results in a system too complicated to use

B How can we get the speed and efficiency without
suffering the complexity?

B \What have we learned since 19467
B Some discipline for controlling complexity
B Program generation....
B Programs that generate programs
B That are correct by construction

B The generator encapsulates parallel programming
expertise
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B But “It has been shown over and over again...” that
this results in a system too complicated to use

B How can we get the speed and efficiency without
suffering the complexity?

B \What have we learned since 19467
B We really need parallelism
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Example: B Can the iterations
for (i=0; i<N; ++i) { of this loop be

}points[i]->x +=1: z);?acllljete?d in
200 A 20 B T 2
A (v [y Il v] [y ] o]

ENo problem: each iteration is independent
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Example: B Can the iterations
for (i=0; i<N; ++i) { of this loop be

points[i]->x += 1; executed in

\ parallel?
IR A
B EIE I E

BEOh no: not all the iterations are independent!

B You want to re-use piece of code in different contexts
B \Whether it's parallel depends on context!
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Example: B Can the iterations
for (i=0; i<N; ++i) { of this loop be
oints[i]->x += 1: executed In
}pl =X parallel?

AW4AN

& Nk A AT A AT AT >

y Y Ny MYy My Y WY Iy IllY
el iz le

Sergio Almeida’s PhD thesis:

“Balloon types” ensure that each cell is reached

only by it's owner pointer
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Thesis work of David Pearce, now at

Victoria University, New Zealand Variable s of
function g might
point to variable

int *f(int *p) {

| return pi p of function g
ingng':j{ L o e e, R might point to
Yy TP s T (2) anything s might
S=&D; point to
Lf(...) p=ax; (3)
L ) préx f's p might point
else p=&y; (4) to anything r
. (5) might point to
q=Ff (*1) ; (6) g might point to
anything f
) (7) s

returns

B Goal: for each pointer variable (p,q,r,s), find
the set of objects it might point to at runtime
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m\We have quite a large constraint graph
B Eg for 126.gcc from SPEC95:

B 194K lines of code (132K excl comments)
51K constraint variables (22K of them heap)
7.4K “trivial” constraints
39K “simple” constraints :2/00
25K “complex” constraints (due to
dereferencing)

B Need to bring together several tricky techniques
to get sensible solution times

B Difference-sets: propagate only changes so you
can track what has changed

B Topological sort: visit nodes in order that Yol

maximises solution propagation

B Cycle detection: zero-weighted cycles can be
collapsed

B Dynamically: dereferencing pointers adds new
edges

B 0.61s for the whole program (900MHz Athlon)
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Reimplemented for
GCC, the GNU
Compiler Collection (by
Dan Berlin, of IBM)

Released the week of
David’'s PhD defence

David’s paper is cited in
the open-source code

BHistogram of points-
to set size at
dereference sites for
126.gcc:

30 777

/ /
»»»»»
///////////////////////

et it s
A
' e ...;<<.. e

0 .1 2 3 _1(_) 160 10I
BField sensitive
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W Shared memory makes parallel
programming much easier:
for(i=0; I<N; ++i)
par_for(j=0; j<M; ++j)
Ali] = (Ali-1,)] + A[1,)])*0.5;
par_for(i=0; I<N; ++i)
for(j=0; J<M; ++])
AlL] = (Allj-1] + A[1L])*0.5;

» First loop operates on rows in parallel

W Second loop operates on columns in
parallel

w With distributed memory we would have L00p 2:
to program message passing to
transpose the array in between

W With shared memory... no problem!
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Sarah Bennett’'s PhD thesis:

Fixing pathological
communication patterns in
large shared-memory
multiprocessors

Using proxies, combining
and randomisation

: 2 2 D 8 2 8 s = s T g =
LL LL = = Q Q Q
© o0 0O & & 6 § 5§ & E E E = = 2 2 2 2

GE CFD FFT Ocean Ocean Barnes FMM Water
contlg non- nsq
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A: blocked row-major

B Olav Beckmann’s
PhD thesis:

B Each library function

comes with metadata
describing data layout
constraints

B Solve for distribution
of each variable that
minimises
redistribution cost

r: blocked row-wise

x: blocked row-wise
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Finding parallelism is usually
easy

Very few algorithms are inherently
sequential

B But if you want a large speedup you
need to parallelise almost all of your

program
Parallelism breaks abstractions: How can we build
B Whether code should run in parallel robustly-efficient
depends on context multicore software
B How data and computation should _ -
be distributed across the machine While maintaining the
depends on context abstractions that keep

code clean, reusable
and of long-term value?

“‘Best-effort”, opportunistic
parallelisation is almost useless:

B Robust software must robustly,
predictably, exploit large-scale
parallelism
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®* The Foundry is a London company building visual
effects plug-ins for the movie/TV industry
(http://www.thefoundry.co.uk/)

* Core competence: image processing algorithms

* Core value: large body of C++ code based on library
of image-based primitives

B Opportunity 1:

s Competitive advantage from exploitation of whatever
platform the customer may have - SSE, multicore, vendor
libraries, GPUs

B Opportunity 2:

m Redesign of the Foundry’s Image Processing Primitives
Library

P Risk:

s Premature optimisation delays delivery
m Performance hacking reduces value of core codebase


http://www.thefoundry.co.uk/

London

B Nuke compositing tool (http://www.thefoundry.co.uk)

B Visual effects plugins (Foundry and others) appear as nodes in the node graph
B We aim to optimise individual effects for multicore CPUs, GPUs etc
B In the future: tunnel optimisations across node boundaries at runtime.
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B Image degraining effect — a complete Foundry plug-in

B Random texturing noise introduced by photographic film is
removed without compromising the clarity of the picture, either
through analysis or by matching against a database of known
film grain patterns

B Based on undecimated wavelet transform
B Up to several seconds per frame
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Image DeGrainRecurse (Image input, int level = 0) {
Image HY,LY,HH,6 HL,LH, LL, HHP, HLP, LHP, LLP, pSuml, pSum2, out;

DWT1D hDWT (eHorizontal, 1 << level); ﬁ@
DWT1D vDWT (eVertical, 1 << level); Gmay
hDWT (input, HY, LY); e g

vDWT (HY, HH, LH);
vDWT (LY, LH, LL);

Proprietary prop;
prop (HH, HHP);
prop (LH, LHP);
prop (HL, HLP);

ot

Sum sum; P SHRCE <
sum (HHP, LHP, pSuml); 7 >
sum (HLP, pSuml, pSum2); -
/* Go to the next level of recursion. =*/ s
LLP = (level < 3) ? DeGrainRecurse (LL, level+l) : LL; aﬁiﬁﬁ»~
e
sum(pSum2, LLP, out); ﬂi?
return out; Ga3

}

B The recursive wavelet-based degraining visual effect in C++
BVisual primitives are chained together via image temporaries to form a DAG
BDAG construction is captured through delayed evaluation.

L}

(o O
e BN PN e PN

Fa
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B Functor represents function over an image

B Kernel accesses image via indexers
E Indexers carry metadata that characterises kernel’'s data access pattern

class DWTLD : public Functor<DWT1D, eParallel> ({
Indexer<elnput, eComponent, elD> Input;
Indexer<eOutput, eComponent, e0D> HighOutput;
Indexer<eOutput, eComponent, e0D> LowOutput;
mFunctorIndexers (Input, HighOutput, LowOutput);

DWT1D (Axis axis, Radius radius) : Input(axis, radius) {} ) \

void Kernel() { /4 p
float centre = Input();
float high = (centre - (Input (-Input.Radius) +
Input (Input.Radius)) * 0.5f) % 0.5f;

HighOutput () = high; _
LowOutput () = centre - high; Vertical DWT
} (1:2 / Filter Skeleton)

} mOne-dimensional discrete wavelet transform, as indexed functor

mCompilable with standard C++ compiler

mQOperates in either the horizontal or vertical axis
B Input indexer operates on RGB components separately
B Input indexer accesses *rradius elements in one (the axis) dimension
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B Use of indexed functors is optimised
using a source-to-source compiler

(based on ROSE,
www.rosecompiler.org)

SIMD/SIMT
Indexed code Array contraction

Source I(Ljer;ﬁgg generation and scra_tchpad
code staging

SIEWAIRE Indexed
y functor Polyhedral

dependence representation
metadata of composite

iteration space :
DAG DAG P — loop fusion

Schedule
transformation

Code generation
Vendor compiler

Functor

oS10IB (Sl composition
DAG for
visual effect

scheduling




Commodity
DRAM

1GB
Highly-interleaved
DRAM

Scratchpad memory

x8

x86

4-lane]
SIMD

32
lane
32x
SMT

SIMT

32

lane

32x

SMT
SIMT

lane

32x

SMT

SIMT]

32

lane

SMT

SIMT|SIMT

32

32x

32
lane
32x

SMT
SIMT

B Lots of cache per thread
B Lower DRAM bandwidth

SIMD Multicore CPU

B Very, very little cache per
thread

B Very small scratchpad

RAM shared by blocks of

threads
E Higher DRAM bandwidth

SIMT Manycore GPU
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B Key optiisation IS loop fusion
B A little tricky...for example:

for (I=1; I<N; 1++)

SARRRARAT] Vvin=ia - vt

AL

B “Stencil” loops are not directly fusable

for (I=1; I<N; 1++)
WIi] = (V[i-1] + V[i+1])/2
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B We make them fusable by shifting:

SRR R R R R T Vil = o+ U2y

for (1=2; I<N; 1++) {
V[i] = (U[i-1] + U[i+1])/2
WIi-1] = (V[i-2] + V]i])/2
}

WIN-1] = (V[N-2] + V[N])/2
EELELELLS

B The middle loop is fusable
B We get lots of little edge bits
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B The benefit of loop fusion comes from array

contraction - eliminating intermediate arrays:

SETITTRXXXT V[1] = (U[0] + U[2))/2
for (1I=2; IKN; I++) {
V[i%4] = (U[i-1] + U[i+1])/2
W(i-1] = (V](i-2)%4] + V[i%4])/2
}
WIN-1] = (V[(N-2)%4] + V[N%4])/2
LELEXLEY

We need the last two Vs

We need 3 V locations, quicker to round up to four
Four-element contracted array, used as circular buffer
Occupies small chunk of cache. avoids trashing rest of cache
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Code generation for conventional PC with
SSE (“SIMD”) instructions:

BAggressive loop fusion and array contraction

B Using the CLooG code generator to generate the loop
fragments

EVectorisation and Scalar promotion
B Correctness guaranteed by dependence metadata

Bif-conversion
B Generate code to use masks to track conditionals

BEMemory access realignment:

B In SIMD architectures where contiguous, aligned
loads/stores are faster, placement of intermediate data is
guided by metadata to make this so

EContracted load/store rescheduling:

B Filters require mis-aligned SIMD loads

B After contraction, these can straddle the end of the circular
buffer — we need them to wrap-around

B \We use a double-buffer trick...
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EConstant/shared memory staging

B \Where data needed by adjacent threads overlaps, we generate
code to stage image sub-blocks in scratchpad memory

EMaximising parallelism

B Moving-average filters are common in VFX, and involve a loop-
carried dependence

B \We catch this case with a special “eMoving” index type

B We create enough threads to fill the machine, while efficiently
computing a moving average within each thread

BCoordinated coalesced memory access

B We shift a kernel’s iteration space, if necessary, to arrange an
thread-to-data mapping that satisfies the alignment requirements
for high-bandwidth, coalesced access to global memory

B We introduce transposes to achieve coalescing in horizontal
moving-average filters

EChoosing optimal scheduling parameters

B Resource management and scheduling parameters are derived
from indexed functor metadata, and used to select optimal
mapping of threads onto processors.
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B Domain-specific “active” library Visulg}ln?tféeeclgmem

encapsulates specialist Linear algebra

: Game physics
performance expertise Finite difference

Applications

B Each new platform requires new
performance tuning effort

B So domain-specialists will be
doing the performance tuning

B Our challenge is to support
them Exotic hardware

GPU  Multicore FPGA Quantum?
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BA selection of active libraries we've developed
B DESOBLAS (1998, Olav Beckmann)
B Parallel dense matrix/vector library for clusters
B Automatically selects array alignment to minimise redistribution
B DESOLA (2006, Francis Russell, Mike Gist)
B Dense matrix/vector linear algebra library for C++
B Aggressive loop fusion
B Fusion matches or exceeds hand-tuned ATLAS and IMKL
B MayaVi/DSI (2005, Marc Hull, Karen Osmond, Olav Beckmann et al)
B Large Python fluid dynamics visualisation tool based on VTK
B Transparently parallelised for SMP and clusters (+ smart LoD, Rol)
B Aggregation of remote method invocations in Java and .Net
E (2003, Kwok Yeung, Michael Mellor)
B Various run-time, static and hybrid implementations
B Visual Effects for The Foundry (LCPCOQ7)
B Redesign of The Foundry’s Fundamental Image Processing Library

B For multicore: aggressive, skewed, loop fusion, array contraction,
vectorisation

B For GPU: staging, data-placement/alignment, partitioning,
transposition

B Matrix assembly abstractions for finite element analysis
B (ongoing, Francis Russell)
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Generalise the indexed functors concept

m AEcute access-execute descriptors Lee Howes’ PhD
B Generic support for pluggable optimisation
B DeepWeaver static analysis query language] Michael Mellor's PhD

B Automate and guide the search for optimal

combinations of optimisations

B TaskGraph code generation and metaprogramming
library

B Robustness...
B Static/dynamic checking of dependence metadata
B Test generation for optimisations
B We have a specification... can we verify the optimisations
statically?
B What happens when you combine different active
libraries?
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Parallelism is Eckert was right —
everywhere | - E Avoid parallel
Parallelism is y '® >, programming!

essential . B Isolate ordinary software
' : from parallelism

Parallelism is
disruptive — it
breaks abstractions

Eckert was wrong — we just 4 & Tools to build really

need the right... clever parallel
B Language b implementations

. Tools to deliver them
Machine

L : And protect us from
Discipline what lurks below

Abstractions
Education
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