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Abstract. In this paper we study the use of idle cycles in a network of desktop workstations under
unfavourable conditions: we aim to use idle cycles to improve the responsiveness of interactive appli-
cations through parallelism. Unlike much prior work in the area, our focus is on response time, not
throughput, and short jobs - of the order of a few seconds. We therefore assume a high level of pri-
mary activity by the desktop workstations’ users, and aim tokeep interference with their work within
reasonable limits.
We present a fault-tolerant, low-administration service for identifying idle machines, which can usually
assign a group of processors to a task in less than 200ms. Unusually, the system has no job queue: each
job is started immediately with the resources which are predicted to be available.
Using trace-driven simulation we study allocation policy for a stream of parallel jobs. Results show
that even under heavy load it is possible to accommodate multiple concurrent guest jobs and obtain
good speedup with very small disruption of host applications.
Keywords: parallel computing, cycle stealing, performance prediction, distributed computing

1 Introduction

This paper concerns the feasibility of on-the-fly recruitment of idle workstations to enable parallel ex-
ecution of short computationally-intensive phases of an interactive application, as commonly arise in a
computer-aided design environment. In such applications,when the user is constructing the design, little
processing power is required, however when the user selects‘Generate Photo-realistic Image’, the com-
putation required increases dramatically. Ideally, the user would not want to wait long for the image to be
produced, possibly grabbing spare processing time from unused workstations.

Our objective is to exploit the fact that (as we quantify below) even when a machine is actually being
used interactively (the “host” job), there are often periods of inactivity lasting several seconds or more.
We focus on the challenging goal of using these brief periodsof idleness to execute short “guest” jobs in
parallel in order to enhance response time.

In addition to presenting a simple and effective software tool, we explore the potential for achieving
this objective. We have chosen an extremely difficult environment - a heavily-used student laboratory of 32
Linux PCs; see Figure 1. We show that a typical (albeit rathersimple) parallel task can reliably achieve a
speedup of 3 or more (reducing runtime to ca.14 seconds), while interfering with only 6-7% of host user
seconds. Furthermore, we evaluate a simple allocation policy which handles intermittent arrival of such
tasks.
Cycle stealing on networks of desktop workstationsThe idea of making use of this wasted processing
power is attractive and exploiting idle workstations has been a popular research area. Studies have shown
that in typical networks of workstations (NOWs), most machines are idle most of the time [2, 1]. Batch
systems like Condor [9] have been in use for years to utilize idle workstations for running independent
sequential jobs. There have also been studies on the possibility of using idle workstations for parallel
processing on coarse grain parallel jobs. Arpaciet al. [2] study the availability traces of a 60-workstation
pool using a job arrival trace for a 32 node CM-5 partition. They find that the pool is able to sustain the 32-
node parallel workload in addition to the sequential load imposed by interactive tasks. Similarly, Acharya
et al. [1] show that for three non-dedicated pools of workstationsit was possible to achieve a performance
equal to that of a dedicated parallel machine between one third and three quarters the size of the pool. The? On leave from Dipartimento di Informatica, Corso Italia, 40, 56125 Pisa, Italy. e-mail: susanna@di.unipi.it.?? Now with Telcordia, Inc, New Jersey, USA
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Fig. 1. This graph shows (on a log scale), the hourly-averaged percentage utilisation (see Section 3.1) of our 32 Linux
PCs over two typical days. Although not always 100% busy, themachines are essentially in continuous use.

results were achieved on relatively coarse grainadaptive parallel applications which could dynamically
reconfigure to cope with changes in the pool of idle workstations available.
Instant-access cycle-stealing for interactive responseIn contrast to this earlier work, we focus on in-
teractive applications with intermittent bursts of computation load. This requires optimizing the average
response time for individual guest jobs and not the global system throughput. Second, our computation
bursts are quite short (10-20 seconds if executed in parallel). This rules out the possibility of expensive
process migrations during computation and makes crucial the ability to foresee idle times accurately. It is
impractical to ship code and data to distant specialized nodes as happens in grid-oriented metacomputing
environments [4, 7, 12]. Finally, since the guest jobs arisefrom interactive applications, we have to exploit
idle workstations during busy day hours and we are not interested in patterns of idleness during nights or
weekends.

To our knowledge, this is the first attempt to investigate idle workstation harvesting in this particular
setting. There are two, linked challenges:

1. Can we achieve a useful speedup? Parallel programs (especially short-running ones) rely on all pro-
cessors making progress. If just one of the participating machines is poorly-chosen, the entire parallel
task will be delayed.

2. Is the interference with the host machines’ other user(s)excessive?

Contributions The main contributions of this paper are:

1. We present a low-overhead distributed recruitment service, which automatically identifies the available
workstations on a local-area network. By autonomously electing a leader, the service requires minimal
administration and handles failures gracefully.

2. We analyse traces of workstation utilisation, in order toquantify the idle time available on a network
of workstations, its predictability, and the potential forusing idle time for parallel processing.

3. Using a simulation driven by these traces, we evaluate theguest job performance achievable, and the
amount of interference to host jobs.

4. We investigate scheduling policies to deal with a workload consisting of multiple users generating
occasional computationally-intensive guest jobs.

The paper is organized as follows. Section 2 gives an overview of the architecture of the system pro-
posed, Section 3 reports on the experimental results obtained, Section 4 discusses some related work and
Section 5 concludes.

2 System overview

The system is organized as a network of daemon processes, onefor each workstation. Daemons monitor
local load, provide job startup services and cooperate to predict future load and to schedule incoming guest
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Fig. 2. Distribution of time between idle periods (left) and distribution of length of idle periods (right).
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Fig. 3. Likelihood of havingx idle workstations at the same time (left) and expected lifetime of a group of 15 idle
workstations (right).

jobs. As the guest jobs are fairly short (10-20 seconds), we restrict our attention to clients and servers on a
single LAN running under the same administration/domain.
The mpidled monitor processAllocation is orchestrated by aleader daemon which acts as a central
server. The leader is elected using the distributed protocol by Garcia-Molina [8]. The protocol ensures
automatic substitution of a leader in case of suspected failure. When a client wants to spawn a new guest
job it makes a recruitment request to the leader which, afterquerying the daemon processes, returns a list of
machines predicted to be idle for the near future. Then, the client can contact the daemon on each machine
to inform it of the program to be executed. Each daemon process is responsible for monitoring the system
status and computing a load prediction (Section—3.1). The leader, which may be any one of the daemons,
is responsible for allocating resources (Section—3.2).
The mpidle application and API A client can initiate a request for resources using a commandline utility
(mpidle) which produces a list of idle workstations, as a parameter of an MPI job. Alternatively, a lower-
overhead API is provided for direct invocation from within client applications.

3 Experimental evaluation

Overview Section 3.1 quantifies the amount of idle time likely to be found in a typical LAN environment
during the day. Section 3.2 discusses and evaluates our loadprediction strategy. Section 3.3 evaluates
the time spent in finding a suitable workstation pool to execute new guest jobs (recruitment overhead).
Section 3.4 presents the simulation results under various scheduling strategies.
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3.1 Idle workstation recruitment

We consider a workstationidle if it is not executing user processes and has a significant amount of spare
CPU time. More precisely we define a workstation asidle if, over a one second period, less than 10% of
CPU time is spent executing user processes, and at least 90% of CPU time could be devoted to a new
process.
Experimental environment To measure idleness patterns using our recruitment policy we carried out ob-
servations of load traces collected over two weeks on a pool of 32 very similar non-dedicated workstations
(300MHz and 350MHz Pentium II, 128MB, Redhat Linux 6.1) located at Imperial College London. This
is a uniform pool of publicly available machines used fairlyintensively by undergraduate computer science
students for course assignments, software development projects, web browsing and email. Traces were
collected during the busy daytime hours, weekdays 9am to 6pm.
Pattern of workstation utilisation Of all the one-second samples, 86% were idle. Idle periods occur very
frequently. Figure 2.left shows the distribution of time between idle periods – 55% of intervals are 1s
or less. Figure 2.right shows the distribution of length of idle periods over all workstations. 50% of idle
periods last for at least 3.3s. One quarter of all idle periods last for longer than 10s: idle workstations
often remain idle long enough to perform another useful task. (Note the small inflection in the plot at 60s,
indicating that there are occasionally ‘periodic’ processes running on the workstations that cut-short idle
periods that would have otherwise exceeded 60s.).

To evaluate scope for parallel guest jobs, we studied the patterns of idleness acrossgroups of work-
stations. Figure 3.left shows the probability of having a group of workstations of a given size at any given
time. A group of 15 idle workstations is very nearly guaranteed to be available at any time, and a group
of 22 is available with a rather high probability. The stability of such groups is shown in Figure 3.right. A
group of 15 idle workstations is unlikely to remain idle for very long - there is only a 15% chance of them
lasting for more than 5 seconds. Smaller groups are normallymore robust (Figure 4.left).

3.2 Predicting short term workstation load

Each daemon process monitors its CPU load once every second.When an availability request is received
from the leader a load prediction is computed and returned. Load is predicted using a windowed mean
of recent load measurements to predict the load over the nextfew seconds. Previous studies [5, 14] have
shown that accurate short-term load prediction is possibleand that good predictions can be made simply by
taking the mean of recent load measurements. However, the load metric considered in [5, 14] (UNIX ‘Load
Average’ - the average length of the run-queue) is differentfrom the metric being considered here (CPU
activity) and so we evaluated the accuracy of their prediction scheme with our metric. The windowed-mean
prediction scheme was applied to our load traces, and the prediction errors were computed. Figure 4.right
shows that the error obtained using a window of 5 measurements is usually very small - 35% of predictions
correctly forecast the average load over the following 10s. We also studied the relationship between the
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window size and the length of the period for which the prediction is needed. Figure 5.left shows the effects
of window length on the mean absolute error for a particular desired prediction length (in this case 10s).
Figure 5.right shows optimal window sizes for different forecast length periods.

3.3 Recruitment overhead

Theworkstation recruitment overhead is the time spent in finding a suitable workstation pool to execute a
new guest job. Figure 6.left shows the measured recruitment time during our experiment.The vast majority
of recruitment requests are answered within a very short time (� 0:15s), however a small number of
requests can be delayed to anything up to 2.5s. This happens when requests occur when the leader is
executing a periodic check to ensure that there is no other leader in the cluster. During this time it cannot
claim to be the leader and any request must wait until the periodic check is finished [8].

3.4 Evaluating scheduling strategies

Trace-driven simulation To ensure reproducibility of results and allow for closer insight of the system
behavior, we constructed a simulation using the load tracesdiscussed in Section 3.1, varying various pa-
rameters. We tested the system with a sample rendering application which takes 42s on a single workstation.
Figure 6 shows its speedup behavior when executed on a dedicated cluster of the workstations.

The simulation uses the application’s speedup curve to predict the expected completion time of each
task on the resources available. It also accounts for the delay incurred (to all participating processors) when
a guest process contends with a host process for CPU time. Thecontention which occurs is determined
from the load traces, which record the number of running processes during each second so that a process’s
CPU time share can be computed.
The simulated usage regimeTo exercise the resource allocation mechanism, we simulatea fairly intensive
situation in which clients request execution of rendering jobs at random intervals. The rendering jobs are
all of the same size (42s on one processor). Requests arrive with an exponential distribution, with a mean
inter-arrival time of 20s.
Scheduling strategiesWe experimented with three different scheduling strategies: random, no reserve
andx-reserve. The results are shown in Table 1. For each scheduling strategy we measured the following:

– Jobs Refused the proportion of submitted guest jobs for which there were no available participants;
– Idle Seconds Used the proportion of idle seconds in the day that were put to gooduse by the system;
– Mean Group Size the mean size of the group of workstations allocated to incoming guest jobs;
– Mean Speedup the mean speedup for guest jobs including those for which no workstations were avail-

able (i.e. those that were forced to execute sequentially);
– Seconds Disrupted the proportion of busy seconds that were disrupted by the execution of guest jobs,

i.e. how often did a misprediction lead to disruption of ordinary workstation applications.
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Scheduling strategyrand no res 10-res20-res30-res40-res50-res60-res

Jobs Refused nil 16.3% 3.3% 1.5% 2.0% 0.5% 0.2% 0.1
Idle Seconds Used25.0%21.6%23.3%23.2%22.6%22.1%21.5%21.0%
Mean Group Size 17.0 17.2 15.24 13.6 12.0 10.3 8.7 7.1
Mean Speedup 3.68 3.58 4.58 4.88 4.96 4.82 4.46 3.92

Seconds Disrupted44.4%5.28% 6.3% 6.5% 5.9% 6.0% 5.9% 6.2%

Table 1.System behavior results for different scheduling strategies.

The random policy We show the performance of a random allocation policy as a control experiment. A
constant number of workstations is recruited for every job and this set is chosen at random among all the
workstations regardless to their load. We used a constant group size of 17, which is near to the mean which
results under the no-reserve policy.
The “no-reserve” policy The no-reserve policy allocates all the idle workstations available to each recruit-
ment request. Should a second request arrive shortly afterwards, no idle workstations will be left.

– This led to a slightly worse speedup than random allocation (3.58).
– However, a large proportion (84%) of recruitment requests were satisfied.
– 20% idle seconds were exploited, out of the average 25% of seconds belonging to periods of at least

10 seconds. This could be improved, especially since jobs were refused.
– The proportion of seconds that were disrupted by inappropriate allocation of jobs was low (5.3%),

although not low enough for the system to be considered completely non-intrusive.

The x-reserve policiesThe x-reserve strategies try to savex% of the resources available at any given
time for (near) future requests in order to have a better distribution of the group sizes and to lower the
percentages of guest jobs refused. With no-reserve, a largeproportion of jobs were executed on small
numbers of workstations or were forced to be executed serially because no workstation was available.
Table 1 shows the results obtained withx-reserve strategies keeping a different proportionx of reserve at
each allocation (the no-reserve strategy is the same as the0-reserve strategy). The results are as follows:

– By choosing the right reserve percentage we can achieve an average speedup of up to 4.96.
– Furthermore, this increase in speedup is achieved without significantly increasing the proportion of the

seconds disrupted.
– The speedup falls when too many workstations are kept in reserve as the average group size drops.
– Keeping reserves reduces the percentage of jobs refused, reducing the variance of the speedup experi-

enced by different guest jobs.

The effect of the reserve percentage on the distribution of group sizes is illustrated in Figure 7. As expected,
for small reserves, groups are either very large or very small, while for larger reserves the group sizes are
close to the mean.
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4 Related work

With Condor [9], the aim is to speed up independent sequential guest jobs using idle workstations in a
LAN. Usually, the jobs require a large amount of computation(hours more than seconds) and a network
of monitor daemons is used to collect information on the current load of machines on the net. Disruption
of host jobs is minimised by migrating the guest job as soon asthe host jobs need a workstation. Linger-
Longer [11] works in the same scenario but allows a guest job to remain on a host machine when it ceases
to be idle. To avoid disruption it employs a set of Linux kernel extensions which use a new guest process
priority to prevent guest processes from stealing time fromhost processes and a new page replacement
policy which limits the slow down caused by guest pages in thevirtual page system. With this new scheme,
the authors claim a much effective usage of workstations, allowing gains up to 60% in the total compute
time with respect to Condor. Although the techniques used inthese systems can be used in our setting, the
focus of our work is oninteractive parallel guest jobs posing a quite different set of challenges.

As mentioned in the Introduction, the use of idle workstations to execute a batch queue of parallel
jobs has been studied by Acharyaet al. and Arpaciet al. [1, 2]. With the longer-running jobs they study,
processes can be migrated from machine to machine during execution. Furthermore, their objective was to
minimize the execution time of a whole batch, which can mean very long execution time for single jobs in
order to achieve better global resource arrangement.

Some of the problems addressed in our research, such as workstation load prediction and load sensitive
guest job scheduling have been addressed recently in the broader framework of WAN scale metacomputing
systems [7, 4, 12]. This setting is much more complex than ours and requires network load prediction to
be addressed. Moreover, the higher overhead due to non localjob scheduling is more suitable for coarser
grain guest jobs than the ones addressed in this study.

Finally, scheduling parallel computations on batch parallel systems has attracted considerable attention
[3, 6, 13, 10]. The usual metric to be optimized here is globalbatch throughput. However, Subholkat al. [13]
proposes strategies to minimize response time for individual applications. They take both communication
load and computation load into account and select a pool of workstation and communication links to be
used. Our research addresses LAN environments in which onlycomputational load is relevant for node
selection. The strategy proposed by Subholket al. for our specific problem corresponds to our no-reserve
policy. As we discussed in Section 3 this strategy penalizesfuture jobs and leads to smaller average speedup
figure with respect tox-reserve. Although more experiments are needed, we believethat, in our setting,
a strategy aiming to optimize the average speedup experienced by competing guest jobs leads to better
resource usage and more reliable behavior than optimizing the response time of a guest job in isolation.

5 Conclusions and directions for further research

We have provided evidence that interactive performance of applications with intermittent computational
demands can be substantially enhanced through opportunistic parallel execution on other instantaneously-
idle workstations on the same LAN. Some interference with host tasks is incurred, but the effect is small.
When guest job requests arrive frequently, much better performance is achieved by holding back some of
the available resource on each allocation.



While there is enormous scope for further work, this paper has demonstrated “mpidled” to be a simple
yet surprisingly effective tool. The software is in regularuse at Imperial College and a public release is
planned. Further research is needed:

– How would our results change with different levels of host load? We have taken a fairly extreme
situation of essentially continuous utilisation - many realistic environments would give better results.

– Our simple policy of holding back some resources for future requests appears fairly stable, but we
would like to characterise how the policy should be adjustedas task arrival rate and host load are
varied. Some kind of adaptive scheme looks attractive.

– Our definition of “idle” is somewhat arbitrary (Section 3.1). We need to evaluate how lowering the
idleness threshold would reduce interference, and reduce speedup. In our environment, external users
(and Windows users) often connect to our Linux systems remotely, so some level of interference to
desktop responsiveness is already tolerated. Other organisations have a different culture.

– We used a rather simple parallel application to exercise thesystem. Although our rendering application
has less-than ideal speedup, it is relatively loosely-synchronised. We have been using mpidled to run a
tightly-synchronised CFD solver and have positive practical experience but have not yet been able to
quantify the resulting performance.

– Realistic applications often (like the CFD solver) have large input and output files. This is easily ad-
dressed by using the local filesystem on the machines allocated by mpidled - but the next interactive
use of the application (which uses the results from the previous run) is likely to be allocated a differing
set of machines. We plan to explore strategies for achievingparallel file access while retaining the
necessary scheduling flexibility.
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