
Data Distribution at Run-Time: Re-UsingExecution PlansOlav Beckmann and Paul H J KellyDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, U.K.fob3,phjkg@doc.ic.ac.ukAbstract. This paper shows how data placement optimisation tech-niques which are normally only found in optimising compilers can bemade available e�ciently in run-time systems. We study the exampleof a delayed evaluation, self-optimising (DESO) numerical library fora distributed-memory multicomputer. Delayed evaluation allows us tocapture the control-
ow of a user program from within the library atrun-time, and to construct an optimised execution plan by propagatingdata placement constraints backwards through the DAG representing thecomputation to be performed.In loops, essentially identical DAGs are likely to recur. The main concernof this paper is recognising opportunities where an execution plan canbe re-used. We have adapted both conventional parallelising compilertechniques and hardware dynamic branch prediction techniques in orderto ensure that our run-time optimisations need not perform any morework than a parallelising compiler would have to do unless there is aprospect of better performance.1 IntroductionParallel libraries have two major advantages as a parallel programming model.Firstly, they are convenient because user programs simply call library opera-tors which hide all aspects of parallelism internally. Secondly, there is ampleevidence [6] that compiled programming models do not yet get close to purpose-built libraries in terms of performance. It is therefore often worthwhile to investin a highly optimised, machine-speci�c library of common numerical subroutines.Hitherto, the disadvantage with such libraries has been that opportunities foroptimisation across library calls have been missed.In this paper, we study a delayed evaluation, self-optimising (DESO) vector-matrix library for a distributed-memory multicomputer. The idea of DESO isto delay actual execution of function calls for as long as possible. Evaluation isforced by the need to access array elements1. Delayed evaluation then providesthe opportunity at run-time to construct an execution plan which minimises1 The most common reasons for accessing array elements are output and conditionaltests. We will refer to statements where this happens as force points.



redistribution by propagating data placement constraints backwards through theDAG representing the computation to be performed. We will study a detailedexample in Section 2.Key issues. The main challenge in optimising at run-time is that the optimiseritself has to be very e�cient. We achieve this by{ Working from aggregate loop nests, which have been optimised in isolationand which are not re-optimised at run-time. It is precisely the point of thelibrary approach that we have invested in an implementation of selectedoperators which have been pre-optimised o�ine.{ Using a purely mathematical formulation for data distributions, which al-lows us to calculate, rather than search for optimal placements. We will notexpand on this aspect of our methodology here.{ Re-using execution plans for previously optimised DAGs. A value-numberingscheme is used to capture cases where this may be possible. The value num-bers are used to index a cache of optimisation results, and we use a techniqueadapted from hardware dynamic branch prediction for deciding whether tofurther optimise DAGs we have previously encountered.Context and Structure of this Paper. This paper builds on related work in the�eld of automatic data placement [8], run-time parallelisation [4, 9, 10] and con-ventional compiler and architecture technology [1, 5]. In our earlier paper [3] wedescribed the basic idea of a lazy, self-optimising parallel vector-matrix library.In this current paper, we extend that work by presenting the techniques we useto avoid re-optimisation of previously encountered problems. Below, we begin inSection 2 by discussing two alternative strategies for run-time optimisation. Fol-lowing that, Section 3 presents our techniques for avoiding re-optimisation whereappropriate. Section 4 shows performance results and Section 5 concludes.2 Issues in Run-Time OptimisationThis section discusses and compares two di�erent basic strategies for performingrun-time optimisation. We will refer to them as \Forward Propagation Only" and\Forward And Backward Propagation". We use the conjugate gradient iterativealgorithm for solving linear systems Ax� b = 0 to illustrate both strategies. Thepseudocode for this algorithm can be found in Figure 2. We use the followingterminology: n is the number of operator calls in a sequence, a the maximumarity of operators,m is the maximum number of di�erent methods per operator.If we work with a �xed set of data placements, s is the number of di�erentplacements, and in DAGs, d refers to the degree of the shared node (see [8])with maximum degree.Forward Propagation Only. This is the only strategy open to us if we performrun-time optimisation of a sequence of library operators under strict evaluation.The strategy is illustrated in Figure 1: we optimise the placement of each node



0 InitialisedData r x bA1 p = r
p = r

xrA

2 p = rq = A:p xrA

q = A.p

p = r

3 p = rq = A:p
 = q:p
 = q.pγ

xrA

q = A.p

p = rWe now need to transpose either qor p in order to calculate 
. Sup-pose we choose p.

6 p = rq = A:p
 = q:p� = r:r� = �
x = �p+ x ρ = r.r

α = ρ / γ

x = p + xα

xrA

p = r

q = A.p

 = q.pγWe now require p to be alignedwith x, but we have just trans-posed it, so we have to transposeback.We have made optimisation veryeasy by deciding the placement ofeach new node generated basedsimply on the placement of itsimmediate ancestor nodes. How-ever, this can result in sub-optimalplacements.Fig. 1. Run-time optimisation of the �rst iteration of the CG algorithm (see Figure 2)with Forward Propagation Only.based on information purely about its ancestors. The total optimisation timefor a sequence of operator calls under this strategy has linear complexity in thenumber of operators. However, as we have illustrated in Figure 1, the price wepay for using such an algorithm is that it may give a signi�cantly suboptimalanswer. This problem is present even for trees, but it is much worse for DAGssince shared nodes are not taken into account properly.Forward And Backward Propagation. Delayed evaluation gives us the opportu-nity to propagate placement constraint information backwards through a DAGsince we accumulate a full DAG before we begin to optimise. This type of op-timisation is much more complex than Forward Propagation Only. Mace [8] hasshown it to be NP-complete for general DAGs, but presents algorithms withcomplexity O((m + s2)n) for trees and with complexity O(n � sd+1) for a re-stricted class of DAG. The point to note here, though, is that Forward andBackward Propagation does give us the opportunity to �nd the optimal solutionto a problem, provided we are prepared to spend the time required.3 Re-Using Execution PlansThe previous section has shown how delayed evaluation gives us the opportunityto derive optimal execution plans, but potentially at not insigni�cant cost. In



r(0) = b�Ax(0)for i = 1; : : : ; imax�i�1 = r(i�1)T r(i�1)if i = 1p(1) = r(0)else �i�1 = �i�1=�i�2p(i) = r(i�1) + �(i�1)p(i�1)endifq(i) = Ap(i)�i = �i�1=p(i)T q(i)x(i) = x(i�1) + �ip(i)r(i) = r(i�1) � �iq(i)check convergenceend
xr

p = q

A

q = A.p

 = q.pγ

ρ = r.r

α = ρ / γ

x = p + xαFig. 2. Left: Pseudocode for the conjugate gradient iterative algorithm. Right: Opti-misation with Forward And Backward Propagation: we take account of the use of p inthe update of x in deciding the correct placement for the earlier calculation of 
.real programs, essentially identical DAGs often recur. In such situations, ourdelayed evaluation, run-time approach is set to su�er a signi�cant performancedisadvantage over compile-time techniques unless we can reuse the results ofprevious optimisations we have performed.This section shows how we can ensure that our optimiser does not have tocarry out any more work than an optimising compiler would have to do, unlessthere is the prospect of better performance than the compiler could deliver. Wediscuss �rst the problem of how to recognise a DAG, i.e. optimisation problem,which we have encountered before and then the issue of whether to optimisefurther, or, re-optimise, such a DAG.Recognising Opportunities for Reuse. The full optimisation problem is a largestructure. To avoid having to traverse it for comparing with previously encoun-tered DAGs, we derive a hashed \value number" [1, 5] for each node.{ Our value numbers have to encode data placements and placement con-straints, not actual data values. For nodes which are already evaluated, wesimply apply a hash function to the placement descriptor of that node. Fornodes which are not yet evaluated, we have to apply a hash function to theplacement constraints on that node.{ The key observation is that by seeking to take account of all placement con-straints on a node, we are in danger of deriving an algorithm for calculatingvalue numbers which has the same O-complexity as Forward and BackwardPropagation optimisation algorithms: each node in a DAG can potentiallyexert a placement constraint over every other node.



{ Our algorithm for calculating value numbers is therefore based on ForwardPropagation Only : we calculate value numbers for unevaluated nodes byapplying a hash function to the placement constraints deriving from theirimmediate ancestors.{ Since we do not store the \full DAG" information, we cannot easily detecthash con
icts. We return to this point shortly.When to Re-Use and When to Optimise. Because our value numbers are calcu-lated on Forward Propagation Only information, we have to address the problemof how to handle those cases where nodes which have identical value numbers areused in a di�erent context later on; in other words, how to to avoid the draw-backs of Forward Propagation Only optimisation. This is a branch-predictionproblem, and we use a technique adapted from hardware dynamic branch pre-diction (see [7]) for predicting heuristically whether identical value numbers willresult in identical future use of the corresponding node and hence identical op-timisation problems.Caching Execution Plans. Value numbers and `dynamic branch prediction' to-gether provide us with a fairly reliable mechanism for recognising the fact thatwe have encountered a node in the same context before. Assuming that we opti-mised the placement of that node when we �rst encountered it, our task is thensimply to re-use the placement which the optimiser derived. We do this by usinga \cache" of optimised placements, which is indexed by value numbers. Eachcache entry has a valid-tag which is set by our branch prediction mechanism.Competitive Optimisation. As we showed in Section 2, full optimisation based onForward And Backward Propagation can be very expensive. Each time we invokethe optimiser on a DAG, we therefore only spend a limited time optimising thatDAG. For a DAG which we encounter only once, this means that we only spendvery little time trying to eliminate the worst redistributions. For DAGs whichrecur, our strategy is to gradually improve the execution plan used until ouroptimisation algorithm can �nd no further improvements.The �nal point we need to address is how to handle hash con
icts. The resultof a hash con
ict on a value number will be that we use a sub-optimal placementfor a node which we had previously optimised. In order to detect this, our systemhas been instrumented to record the communication cost of executing a DAGunder an optimised execution plan. An increase in this cost on a \re-use" of thatplan indicates a hash con
ict.Summary. We use the full optimisation information, i.e. Forward and Back-ward Propagation, to optimise. We obtain access to this information by delayedevaluation. We use a scheme based on Forward Propagation Only, with linearcomplexity in program length, to ensure that we re-use the results of previousoptimisations.



P N Comp. Memory Overh. Comms. Opt. Total SpeedupN 1 256 51.14 0.81 3.97 0.00 0.00 55.93 �O 1 256 51.22 0.81 3.88 0.00 3.59 59.50 0.94C 1 256 51.13 0.79 3.25 0.00 0.30 55.47 1.01N 4 512 51.30 1.03 3.47 30.51 0.00 86.30 �O 4 512 51.79 0.86 3.06 22.35 3.73 81.79 1.06C 4 512 51.69 0.94 2.45 21.94 0.31 77.32 1.12N 9 768 51.72 1.12 3.46 34.78 0.00 91.10 �O 9 768 51.96 0.91 3.08 26.06 3.74 85.75 1.06C 9 768 51.90 0.98 2.46 25.91 0.31 81.55 1.12N 16 1024 52.05 1.03 3.48 45.37 0.00 101.93 �O 16 1024 52.29 0.88 3.16 35.99 3.82 96.14 1.06C 16 1024 52.13 0.95 2.49 35.65 0.31 91.53 1.11Table 1. Time in milliseconds for 20 iterations of Conjugate Gradient, with a con-vergence test every 10 iterations, on the AP3000, with 300MHz UltraSparc-2 nodes(average �gures, outlying points were omitted). N denotes timings without any opti-misation, O timings with optimisation but no caching, and C timings with optimisationand caching of optimisation results.Memory shows time spent in malloc() and free(),Overhead the cost of maintaining data distribution descriptors and suspended librarycalls at run-time. Speedup is the speedup due to optimisation and execution plan re-use.4 PerformanceIn this Section, we show performance �gures for our library on the FujitsuAP3000 multicomputer here at Imperial College. As a benchmark we used theconjugate gradient iterative algorithm. The pseudo-code for the algorithm andthe source code when implemented using our library were shown in Figure 2 andthe timing data are in Table 1.{ Our optimiser avoids two out of three vector transpose operations per it-eration. This can not be seen from the data in Table 1, it was determinedanalytically and by tracing communication.{ Optimisation achieves a reduction in communication time of between 20%and 30%. We do not achieve more because a signi�cant proportion of thecommunication in this algorithm is due to reduce-operations which are un-a�ected by our current optimisations.{ Run-time overhead and optimisation time are independent of the amount ofparallelism used. We suspect that the slight di�erence is due to cache e�ects.{ The reason why run-time overhead is reduced by optimisation is that per-forming fewer redistributions also results in spending less time inspectingdata placement descriptors. Caching achieves a further reduction in over-head; this is because it is cheaper to read placement descriptors from cachethan to generate them by function calls.{ Without caching of optimisation results, we achieve an overall speedup ofaround 6%. On platforms which have less powerful processors than the300MHz UltraSparc-2 nodes we use here, the cost of optimising afresh eachtime can easily outweigh the bene�t of reduced communication.



{ With caching of optimisation results, the time we spend optimising is negli-gible, and we achieve overall speedups of around 12%.5 ConclusionsWe have presented a technique for interprocedural data placement optimisationwhich exploits run-time control-
ow information and is applicable in contextswhere the calling program cannot be analysed statically. We present preliminaryexperimental evidence that the bene�ts can easily outweigh the run-time costs.Related Work. There is a huge body of work on data mappings for regularproblems, [2] is but one example. Our work relies on this in producing optimisedimplementations for library operators. However, the problem we seek to addressin this paper is di�erent | how to perform interprocedural optimisation over asequence of such pre-optimised operators.Saltz et al. [10] address the basic problem of how to parallelise loops wherethe dependence structure is not known statically. Loops are translated into aninspector loop which determines the dependencies at run-time and constructs aschedule, and an executor loop which carries out the calculations planned by theinspector. Saltz et al. discuss the possibility of reusing a previously constructedschedule, but rely on user annotations for doing so. Ponnusamy et al. [9] proposea simple conservative model which avoids the user having to indicate to thecompiler when a schedule may be reused. Benkner et al. [4] describe the reuse ofparallel schedules via explicit directives in HPF+: REUSE directives for indicatingthat the schedule computed for a certain loop can be reused and SCHEDULEvariables which allow a schedule to be saved and reused in other code sections.Value numbering schemes were pioneered by Ershov [5], who proposed theuse of \convention numbers" for denoting the results of computations and avoidhaving to recompute them. More recent work on this subject has been done, e.g.,by Alpern et al. [1].Run-Time vs. Compile-Time Optimisation. The particular example studied inthis paper would have been amenable to compile-time analysis. We refer backto Section 1 and the arguments of convenience and e�ciency we outlined therefor why we parallelise this application via a parallel library. using a librarythen forces us to optimise at run-time. Further, we have shown that a runtimeoptimiser need not actually perform any more work than a compiler.To compare the quality of run-time andcompile-time schedules, consider the loopopposite, assuming that there are no force-points inside the loop and that the loop isencountered a number of times, evaluationbeing forced after the loop each time. for(i = 0; i < N; ++i) {if <unknown condition><do A>else<do B>}This loop can potentially have 2N control-paths. A compile-time optimiserwould have to �nd one compromise execution plan for all invocations of the



loop. With our approach, we optimise the actual DAG which is generated oneach occasion. If the number of di�erent DAGs is high, compile-time methodswould probably have the edge over ours, since we cannot reuse execution plans.If, however, the number of di�erent DAGs is small, our execution plans for theactual DAGs will be superior to compile-time compromise solutions, and byreusing them, we limit the time spent optimising.Future work. The most exciting next step is to store cached execution plans per-sistently, so that they can be reused subsequently for this or similar applications.Although we can derive some bene�t from exploiting run-time control-
ow infor-mation, we have the opportunity to make run-time optimisation decisions basedon run-time properties of data; we plan to extend this work to address sparsematrices shortly. The run-time system has to make on-the-
y data placementdecisions. An intriguing question raised by this work is to compare this with anoptimal o�-line schedule.Acknowledgements. This work was partially supported by the EPSRC, under theFuturespace and CRAMP projects (refs. GR/J 87015 and GR/J 99117). We thank theImperial College Parallel Computing Centre for the use of their AP3000 machine.References1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equalities of variablesin programs. In 15th Annual ACM Symposium on Principles of ProgrammingLanguages, pages 1{11, San Diego, California, Jan. 1988.2. J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and computation trans-formations for multiprocessors. SIGPLAN Notices, 30(8):166{178, Aug. 1995.3. O. Beckmann and P. H. J. Kelly. Runtime interprocedural data placement opti-misation for lazy parallel libraries (extended abstract). In Lengauer et al., editor,Proceedings of Euro-Par '97, Passau, Germany, number 1300 in LNCS, pages 306{309. Springer Verlag, Aug. 1997.4. S. Benkner, P. Mehrotra, J. V. Rosendale, Zima, and Hans. High-level managementof communication schedules in HPF-like languages. Technical Report TR-97-46,Institute for Computer Applications in Science and Engineering, NASA LangleyResearch Center, Hampton, VA 23681, USA, Sept. 1997.5. A. P. Ershov. On programming of arithmetic operations. Communications of theACM, 1(8):3{6, 1958. Three �gures from this article are in CACM 1(9):16.6. W. D. Gropp. Performance driven programming models. InMPPM'97, Proceedingsof the 3rd International Working Conference on Massively Parallel ProgrammingModels, London, U.K., Nov. 1997. To appear.7. J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantative Ap-proach. Morgan Kaufman, San Mateo, California, 1st edition, 1990.8. M. E. Mace. Storage Patterns in Parallel Processing. Kluwer, 1987.9. R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime compilation techniques fordata partitioning and communication schedule reuse. In Proceedings of Supercom-puting '93: Portland, Oregon, November 15{19, 1993, pages 361{370, New York,NY 10036, USA, Nov. 1993. ACM Press.10. J. H. Saltz, R. Mirchandaney, and K. Crowley. Run-time parallelization andscheduling of loops. IEEE Transactions on Computers, 40(5):603{612, May 1991.


