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Abstract 1.1 Flow- and Context-Sensitivity

This paper presents and evaluates a number of tech- A common way of categorising this area is in terms of
niques to improve the execution time of interprocedural flow- andcontext-sensitivityThe former indicates whether
pointer analysis in the context of large C programs. The statement order should be considered. Thus, in the follow-
analysis is formulated as a graph of set constraints and ing, a flow-insensitive analysis would conclude tkatan
solved using a worklist algorithm. Indirections lead to new point tobothy andw:

constraints being added during this process. (1) z = &:
In this work, we present a new algorithm for online cy- (2) x = z; '
cle detection, and a difference propagation technique whic (3) z = &\'N

records changes in a variable’s solution. Effectiveness of . . _ .
these and other methods are evaluated experimenta”y us.ThlS conservativaesult arises as the algorlthm IS unaware

ing nine common ‘C’ programs ranging between 1000 to ©of the ordering between statements. Thus, it reasons that (3
55000 lines of code. could be executed before (2) and vice-versa. The advantage

of doing this comes from a reduced space requirement, as
it is no longer necessary to store separate solutions fdr eac
variable at different program points.

In a similar fashion, a context-insensitive analysis ig-

) o o norescalling context To see this more clearly, consider
Pointer analysis is the problem of determining before- the following:

hand what the pointer variables in a program may target.
Any algorithm for doing this will always be approximate
and the aim is to produce the most accurate (smallest) solu- (C1)
tion possible, for each variable, in practical amountsrogti y
and space. A solution is regarded as valid if all actual tar- In this case, there are two calling contex@, andC2. A
gets are included, although there may also be exfiaious  context-insensitive analysis merges these into one, which
targets. could be thought of as replacirggl andC'2 with:

This work is about improving the runtime of such analy- . )
ses, in particular those employing a worklist algorithmrOu (C1+2) {x.y} = sinple({&a, &b});

1 Introduction

int *sinple(int *q) {return q;}
x = sinple(&);
= sinpl e(&b);

main contributions are: Which meansanalyse simple as thoughpoints to botha
o ) _ _ andb and assign the result to bothandy. Thus, such an
e An original algorithm for online cycle detection. analysis would conclude thatandy can point toa andb.

Again, the reasoning behind this seemingly wasteful sim-
plification is practicality: If this was not done then an anal
yser would effectively be inlining every function and thés i
known to be unscalable.

o A difference-propagation solver for the pointer analy-
sis problem. This reduces work by propagating only
the change in solution for a variable, rather than the
whole solution.

e Empirical data comparing these and other techniques. 1.2 Organisation

In this paper, as is commonly the case, we only consider The remainder of this paper is organised as follows: Sec-
flow- and context-insensitive analyses. tion 2 will cover related work and any background neces-



char *f(char *p) {

char *q;

if(...) q=""bar’’; I* f,D{t1} */ main fp
else q = p; I* fo2f */

return q; I'* foDfq *1 {2} &

) }

voi d mai n(void) {

Char *r,*si*p,**t,**q; {tl}
p="‘foo"; I* main, D {t2} */ I
if(...) r =f1(p); I'* fp D maing,, main, DO f. */ main main, f
elser = p; I'* main, 2 main, */ *
S =r; I * maing D main, */ {main,} {t3} {}
r="'‘test’’; I'* main, D {t3} */ i i
q = &; I'* maing O {main,} */ ain ain
t =q; I'* maing O maing */ t s
*t = s; [* xmaing O maing */ {4 {4
}
Figure 1. An artificial example illustrating how the initial constraint graph is derived from the source
code. The “tX” constants represent the string objects and f« the return value of f. Roughly speaking
the graph can be solved by propagating the solution for a node to all those reachable from it. However,

there is a complex constraint  xmain; O maing, which cannot be directly represented in the graph.
But, it must eventually lead to an edge from mains t0 main, being added. This will happen during
solving, sometime after main, has been propagated into the solution of  main;.

sary. Section 3 will overview three methods for improving A small language is used for this purpose, where the do-
the runtime of such analyses. These will then be empirically main of variables is denoted ByAR. In addition, those
evaluated and discussed in Section 4. Finally, conclusionswhose addresses have been taken are membeRf, C

will be drawn and future work considered in Section 5. VAR. Thus, the constraints themselves take the form:

D D D D
2 Background p2alp2{dtlp2xq| *p2¢

Wherep andgq are variables fromVAR andx is the usual

Flow- and context-insensitive pointer analysis has been'C’ dereference operator. Those involving the dereference
studied extensively in the literature (see e.g. [10, 14621, Operator are termetbmplex constraintsinally, a solution
23]). These works can, for the most part, be placed into two t0 @ constraint set is an assignment to each variable from
camps: extensions of either Andersen’s [6] or Steensgaard’ P (VARg), such that all constraints are satisfied.

[23, 22] algorithm. The former us@clusion constraints
and are more precise but slower. The latter adojftcation 2.1.1 Constraint Graph Formulation
systemsnd sacrifice precision in favour of speed.

We will now examine each method in turn, paying par-
ticular attention to inclusion constraints as our work is in
this area.

In his original formulation, Andersen simply maintained
the constraints in a vector. However, a more suitable rep-
resentation is a&onstraint graph This was first used by
Heintze and Tardieu [14] and, although our description

. . varies slightly, can be constructed as follows:
2.1 Inclusion Constraints gntly

1. For every variablg, a unique vertex,, is created.
This general approach to pointer analysis, first suggested 2
by Andersen, comes under the bannerset-based con- '
straint solving(see e.g. [3, 4]). This involves generating 3. Each vertexv, is associated with a solution set
and solving simple set-constraints, which are often reférr Sol(vp) O VAR, Thisis initialised with all variables
to as inclusion constraints due to their use oftheperator. g involved in a constraing O {q}.

An edgey, + v, is added for each constraipD g.



In what follows, we often use a variable and its vertex inter-
changeably when the meaning is clear.

The constraint graph can be thought of as a dependenc
graph composed with a solution set for each vertex. Further-
more, as there is no clear means of expressingoneplex
constraints we simply assume that they remain close-at-
hand. This is to permit, for a given variable, quick iteratio
through those constraints which dereference it. Figure 1
provides a sample translation from ‘C’ code into the initial
constraint graph.

2.1.2 Solving

At this point, the constraints can be solved by repeatedly
selecting an edge, — v, and mergingSol(z) into Sol(y)
until a fixpoint is reached. This is often referred tocas-
vergence During this process, new edges arising from the
complex constraints must be added to the graph. To see why
this is so, consider the complex constragind xq. Suppose
that initially Sol(¢) = 0, but at some point during the analy-
sisSol(q) = {z}. Clearly, then, there is a dependence from
z to p and, furthermore, this could not have been known at
graph construction time. Therefore, the edge p must be
added as the solution fgrbecomes available.

The choices of which edge to select and when to
process a complex constraint are important factors affgcti

procedure solve)

W =V;

while |IW| > 0 do
n = selec{iV);

Il process constraints involvingn
foreachc € C(n) do
casec of
*n D w:
foreachk € Sol(n) do
if w—k ¢ Edo
EU=w—k;
Sol(k) U= Sol(w);
if Sol(k) changedhen W U= {k};
w D *n:
foreachk € Sol(n) do
if k—w ¢ Edo
E U= k—w;
Sol(w) U= Sol(k);
if Sol(w) changedhen W U= {w};

I/ propagate solution to successors of n
foreachn —w € E do

Sol(w) U= Sol(n);

if Sol(w) changedhen W U= {w};

convergence time. These issues were not addressed b

, Il end while
J

Andersen, who used a simple scheme where constraints ar
processed in turn. As we shall see, much more sophisti-
cated algorithms are possible.

The classical solution to this type of problem is the
worklist algorithm (see e.g. [19]). Such an algorithm
operates by initially placing all nodes onto a worklist. Tihe

a node is chosen from the list and its solution propagated
along all outgoing edges. Any successors whose solution
has now changed are placed onto the worklist. This
continues until a fixpoint is reached. Generally speaking,

€ Figure 2. The basic worklist constraint solver.
The algorithm assumes that  Sol has been ini-
tialised with all trivial constraints of the form
p 2 {q}. The set C(n) contains all complex
constraints involving “  xn”. Selecting a node
automatically removes it from the worklist.

Tardieu [14]. Their approach, roughly speaking, is to
repeatedly recompute the solution for each dereferenced

these algorithms are assumed to be working on a staticvariablen until no change is observed. This is achieved

graph. Thus, we must extend them to deal with the dynamic

by performing a reverse depth-first search starting,at

setting caused by the complex constraints. The generawhich searches out all variables contributingst@ (n) and

idea is to process those constraints involvipgas soon as
Sol(p) changes. Good places to do this are whéntaken
off the worklist or when it is put on. Figure 2 provides an
example worklist solver using the former.

The remaining issue iworklist selection strategyThis
is, in part, the subject of this paper and, although a large
amount of work has been done in the static setting (see e.g
[5, 15, 7, 8, 16]), there appears to have been little for the
dynamic case [17, 12]. In Section 3.1 we return to this.

Another interesting approach to inclusion-based con-
straint solving can be found in the work of Heintze and

combines their solutions into it. New edges arising from
constraints involving #¥n” are added as soon &Sol(n)

has been recomputed. Completing this provides only the
solutions for dereferenced variables. This may be sufficien

or, alternatively, a final phase could be employed to solve
the (now static) constraint graph. Their work provides

some evidence that sizeable programs440KLOC) can

be analysed in a matter of seconds.

In addition to the above, there have been a number of
other ideas put forward for improving convergence time and
space usage. The most notable beiagable substitution
[21, 10]. This idea arises from the observation that vari-



ables must often have the same solution. Thus, space caB.1 Iteration Order

be saved by representing them with a single vertex and/or

solution set. The clearest example of this arises with vari-  As mentioned in Section 2.1.2, an integral part of a work-

ablesinvolvedin acycle. As the constraintgraph is dynamic jist algorithm is the strategy for choosing which node to

in nature, full cycle detection requires an online alganith  process next. This is often referred to as itleeation or-

In [10] such an algorithm, albeit rather crude, is applied to der. The problem, then, is that selecting the wrong node

constraint solving and significant speedups are obsermed. | can result in extra work. Figure 3 illustrates this.

Se(:.:tion 32, we present a better solution for detectinmcl For a static graph’ iterating in topo'ogica' orderrer

online. verse post-ordeis a good approach. This is achieved by
The algorithm of Heintze and Tardieu also uses an online maintaining two priority queuesurrent andnext, of ver-

cycle detector. However, they effectively get this for feme  tices with priority given to those earlier in the r.p.o. The

a byproduct of the reverse depth-first search. plan now is simple: nodes are placed onto the worklist by
loading them intonext and are selected by taking from
2.2 Unification Algorithms current. If current is empty it is reloaded frommext,

which is then emptied. Thus, the worklist is empty only
when both queues are empty. The reader is referred to [19]
The algorithms presented by Steensgaard [23, 22] werefor a more detailed description of this. There are many vari-
the first example of a unification-based approach to pointerations and improvements possible. For example, it is possi-
analysis. The idea is to enforce the invariant that, for eachpje tg place nodes directly intaurrent, if they come higher
variablez, |Sol(z)| < 1. This reduces the space requiredto in the r.p.o than that currently being visited. Also, usiast]
hold the solution from @:?) to O(n) and, with some clever 4 single priority queue can be advantageous in some cases.
trickery, a near-linear time complexity is achieved. In general, the problem with this approach is the han-
However, these improvements come at the expense ofdling of cycles. The solution is to identify thes&ongly
precision, which can be explained by comparing how sim- connected componentnd iterate each until completed
ple assignments, such as = y, are dealt with. An  before moving on. This was first suggested in [15] and a
inclusion-based system, such as those discussed preyiouslgood examination can also be found in [19].
says that the solution of must include that of;. A uni-
fication system, however, states that the solutiom afust At this point, we turn our attention to the constraint
equalthat ofy. The following attempts to clarify what this  graph. As we know, this is a dynamic graph and, therefore,

really means: we cannot completely determine beforehand the topolog-
ical order or strong components. Furthermore, even if

X=8&z; we used online algorithms to do this the approach used

X=Y; previously would not be optimal. Figure 4 demonstrates

why. Nevertheless, one may still suppose that processing
In the above, the only way fa¥ol(z) = Sol(y) to hold is the graph in topological order will perform well. Indeed, so

if z € Sol(y). In other words, weinify the solutions of: long as nodes are visited fairly, it does. But, experiments
andy, resulting in the conservative conclusion tigatould we have conducted suggest a simpler scheme, known as
pointtoz. least recently fired17], is just as effective. The idea is to

Much work has been done on this approach to improve prioritise nodes by when they were last visited, so that a
the overall precision (see e.g. [9, 11]) and there would ap-node is chosen over another if it was visited less recently.
pear to be some indications that the actual loss comparedn Section 4, we compare the LRF scheme with two simple
with an inclusion-based system is quite small. However, in and oft-used strategies: LIFO and FIFO.
the face of results indicating that Andersen’s algorithm is
scalable, such as those of Heintze and Tardieu, the future3.2 Online Cycle Detection
for unification seems unclear.

As discussed in Section 2.1.2, cycle detection is a use-
ful component for an inclusion-based constraint solver. In
this section, we now present a powerful and origimaine
solution to this problem, based on the work of Marchetti-

In this section we examine three specific techniques for Spaccamelat al. [18].
improving the convergence time of an inclusion-based con-  The pseudo-code is listed in Figure 5. The algorithm op-
straint solveriteration order, cycle detectioanddifference erates by maintaining a topological ordering of the vegjce
propagation which is represented by the2i andi2n arrays. An invari-

3 Convergence Techniques
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Figure 3. Solving a simple constraint graph, using an arbitr ary selection strategy. The initial graph
is shown on the left. A bold border indicates that the vertex c urrently resides on the worklist. The
dashed edges indicate where propagation occurs. Note, the a Igorithm hasn't finished at part e,
because r and s must still be selected. The point is that some n odes are visited twice when they
don’t need to be. The optimal selection order is p>g>r>s.

p p p p p p p
{a} @ | {a} {a} {a} {a} {a}
et ] ] i ¢
q q | q q q q q
{b} ) | | {a,b} {a,b} {a,b} {a,b} {a,b}
L : {a,b};

r r r r r r
0 0 {a) {a} {a} {a) {a}
I ! ] @ v | '
u u u u u u u
{c} {c} {c} {c} {a,c} {ac} {a,c}
S S S S S S S
{n {r} {n {1 {n {n n
y ' Y Y Y iy I
t t t t t t t
0 0 0 0 0 g {1}

@) (b) (© (d) (e) ® @)

Figure 4. The diagrams show a constraint graph (drawn topolo gically) being converged using an
online topological selection strategy. We assume that the ¢ onstraint set included a single complex
constraint, xt O ¢. In diagram (g), node ¢t is processed, causing the edge ¢ — r to be added.
Furthermore, the algorithm immediately propagates across this edge, causing r to be put back on
the worklist. Thus, nodes r and u will be revisited after (g). The point is that leaving s and ¢ until last
means the new edge is not discovered soon enough. Had they bee n visited earlier, each node could
have been visited just once. Thus, an online topological str ategy is not optimal.



ant is enforced which states thatif>y € E theny comes procedure addedgét — h)

afterz in the order 42i[y] > n2i[z]). Thus, when an edge Ib = n2ilh); ub = n2ilt];
x — y isinserted there are two cases to consider: if 1b < ubthen
. markt asin_component;
1. n2ily] > n2i[z] - The two vertices are already ordered dfs(h); shift();

correctly and we do nothing.

procedure dfs(n)
markn asvisited;
forall n—w € E do
if n2i[w] < ubthen
if w unmarkeddo dfs(w);
if w markedin_component then
markn asin_component;

2. n2ify] < n2i[z] - Vertexy is positioned before: in
the ordering. To resolve this a depth-first search is per-
formed starting frony, limited to nodes betweepand
z in the order. This uncovers vertices reachable fgom
which should now come after. These are then shifted
pastz in the ordering. Ifz is reached during the search
then a cycle has been detected and we back propagat
this information to uncover those nodes involved.

[}

procedure shift()
The algorithm achieves an amortised cost 09¢F) in- unmarkt; shift = 0;
sertions ofO(V), which is a good improvement upon the for i = Ibtoubdo
O(V + E) complexity of the offline algorithm. A proof of n = i2n[i;
this can be found in [18]. The reader is referred to [20] for if n markedthen
a more detailed examination of this algorithm and its com- if n markedvisited then push(n, L);
plexity. elsepust(n, C);

shift = shift+1;

3.3 Difference Propagation unmarkr;

elseallocatén, i —shift);
/I place visited nodes after t in ordering
for j =0to|L| do
allocaté L[j],i—shift); i = i+1;
/I check if new cycle detected
if |C] > 0 then cycledetectedt U C');

Difference propagation is a technique first suggested by
Fecht and Seidl [13]. They proposed a general framework
for applying it to distributive constraint systems. Howeve
this is unable to describe constraints which have a derefer-
enced variable on the left hand side. Thus, the algorithm
we provide here is really an instance of their framework ex-
tended to cope with the constraint system of Section 2.1.

The rough aim of the technique is to reduce the cost of
propagating the solution for a node to its successors. In
standard worklist solver (see e.g. Figure 2), propagation
along an edge — y occurs by mergingol(x) into Sol(y).

This operation is likely to be linear in the size of the snmalle
set and, therefore, reducing the size of sets involved shoul
yield an improvement.

The key idea, then, is realising that each element of
Sol(z) only needs to be propagated along an edge once.
Figure 6 attempts to clarify this. Clearly, for this to work a the solution itself and can, therefore, save unnecessaiky wo
sufficient number of nodes must be visited more than oncewhen processing complex constraints and in propagating.
and there are three likely reasons why this can happeor. The complex constraints themselves must be handled with
iteration order, complex constraintandcycles Figures 3 care because, when a new edge y is added, we must en-

procedure allocatén, i)
// assign n to topological index i
n2i[n] = i; i2n[i] = n;

Figure 5. Our algorithm for online cycle
detection. The i2n and n2i arrays are
the [topological-lindex-to-node and node-to-
[topological-Jindex maps respectively.

and 4 provide examples of the first two. sure all values irbol(z) make their way intaSol(y). This
The new solver is given in Figure 7. A key component is achieved by propagatingpl(z), notA(z), into A(y).

is the difference set\(n), which contains thapproximate The algorithm is likely to visit more nodes than the stan-

change in solution for each node. We can thinkXdfn) dard solver. The reason being that it places a nodato

as the collection point for elements propagated tolt is the worklist whenA(n), notSol(n), has changed. Thus, it

approximate as it may contain values which are already inis now possible for a node to be placed onto the worklist

Sol(n). Each timen is visited the algorithm computes as a result of some element, already presestdit{n), be-

the actual change in solution, by taking the difference be- ing inserted intaA(n). We present some experimental data
tweenA(n) andSol(n). This is likely to be smaller than in Section 4 which attempts to quantify the effect of this.
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Figure 6. lllustrating unnecessary work per-
formed by the standard worklist solver. The
diagrams show part of a constraint graph dur-
ing convergence. We see an initial propaga-
tion from p to ¢ occurring (a). The solution
for pis later updated (b) and this is eventually
propagatedto ¢ (c). The pointis that “a” does
not need to be repropagated in (c). In fact,
only the change in p’'s solution does, which in
this case is {b}.

4 Experimental Study

In this section we provide empirical data, over a range
of benchmarks, on the runtimes of worklist solvers using
different combinations of the techniques described in Sec-
tion 3. The purpose is to facilitate an understanding of how
effective these methods can be.

Table 1 provides information on our benchmark suite.
All are part of the GNU system and, as a result, their full
source can be obtained froht t p: / / www. gnu. or g.

The SUIF 2.0 research compiler from Stanford [2] was

deployed as the frontend for generating constraint sets.

In all cases, we were able to compile the benchmarks
with only superficial modifications, such as adding extra
“#i ncl ude” directives for missing standard library head-
ers.

The constraint generator operates on the full ‘C’ lan-
guage and a few points must be made about this:

e Heap modet A single heap object per static allocation
site was used.

e Structs- All elements of a structure were mapped to a
single constraint variable.

e Arrays- Treated in a similar fashion to structs, by ig-
noring the index expression.

procedure solve()
foreachn € V do
W U= {n}; A(n) = Sol(n); Sol(n) = 0;

while |W| > 0 do
n = selec{iV);
/l compute actual change in solution
0 = A(n) — Sol(n);
Sol(n) U= d; A(n) = B;

I/ process constraints involvingn
foreachc € C(n) do
casec of
*n D w:
foreachk € 0 do
ifw—k ¢ Edo
Eu=w—k;
A(k) U= Sol(w);
if A(k) changedhen W U= {k};
w D *n:
foreachk € 0 do
if k>w ¢ Edo
E U= k—w;
A(w) U= Sol(k);
if A(w) changedhen W U= {w};

I/ propagate) to successors of n
foreachn —»w € E do

A(w) U= 6;
if A(w) changedhen W U= {w};
// end while

Figure 7. The Difference propagating worklist
solver. Sol and C are initialised the same as
for Figure 2.

e String Constants These were preserved intact and not
ignored or combined into a single object.

¢ Indirect Calls - Indirect calls were handled using a
mechanism similar to processing the complex con-
straints. Exact details are, unfortunately, beyond the

scope of this paper.

External Library Functions These, almost entirely,
came from the GNU C library and were modelled us-
ing hand crafted summary functions, which captured
only aspects relevant to pointer analysis.

The results, listed in Tables 2 and 3, were generated on a
900Mhz Athlon based machine with 1Gb of main memory,
running Redhat 8.0 (Pysche). The executables were com-
piled using gcc 3.2, with optimisation level “-O2”. Timing



Benchmark L.O.C. Constraints Set # Cycles Avg Set

Name \ersion Triv  Simp Comp  Added #Var Initial Final Size

bool 0.11 3246| 138 796 266 3001 1031 26/(190) 17/(294) 7.43
time 1.7 1244 92 530 11 2 848 5/(16) 5/(16) 0.44
bc 1.06 7079 396 1324 358 2468 1608 53/(208) 52/(342) 5.03
chess 5.02 7451 953 851 27 23 1658 15/(139) 17/(150) 1.24
grep 2.0 7243 | 327 1937 501 552 2298 49/(349) 45/(414) 1.48

make 3.79.1 | 16164| 1019 4030 1320 20617 4105103/(595) 89/(837) || 33.07

uucp  1.06.1 || 10256| 625 2595 586 14970 299 46/(250)  41/(505) | 17.8

gawk 3.1.0 19598( 1320 7054 1511 280972 654P110/(1422) 86/(2311) 221.45

bash  2.05 55324 2813 11636 2365 240331 10649211/(1203) 201/(2154) 111.85

Table 1. The Benchmark Suite. L.O.C. reports non-blank, non  -comment lines only. Constraints are
counted as Trivial ( p D {a}), simple (p D ¢), Complex (involving * «’) or Added [during convergence].

The number of cycles in the initial and final constraint graph s are provided, along with the total
number of variables involved in a cycle (shown in brackets). The last column provides the average
size of a target set in the solution.
| | bool time bc chess grep  make uucp gawk  bakh
WL 0.0205 0.000364 0.0216 0.00123 0.00518 0.609 1.07 656.0 .0207
WF 0.0156 0.000366 0.0146 0.00127 0.00579 0.627 0.833 190.0 .4 46

4
WR 0.0168 0.000427 0.0183 0.00179 0.00609 0.465 0.465 58.6 4 49.
WDL 0.0241 0.000537 0.0245 0.00227 0.00729 0.436 0403 711 1 33.
WDF 0.019 0.000509 0.0191 0.00227 0.00655 0.386 0.327 41.1 17.7
WDR 0.019 0.000604 0.023 0.00253 0.00767 0.41 0.26 37.6 26.4
WSL 0.0188 0.000326 0.0194 0.000955 0.00446 0.564 1.08 566.09.019
WSF 0.0135 0.000338 0.0124 0.000998 0.00456 0.449 0.809 207.06.3 5%

WSR 0.014 0.00039 0.0169 0.00119 0.00461 0.329 0.283 44.7 34.9
WDSL || 0.0193 0.000456 0.0206 0.00225 0.00574 0.394 0.383 549 7 36.
WDSF || 0.0152 0.000504 0.0173 0.00271 0.00576 0.309 0.3 34.1 17.2
WDSR || 0.0157 0.000522 0.0207 0.00209 0.0064 0.336 0.214 311 19.7
WCL 0.105 0.000347 0.0542 0.00148 0.0238 155 0.616 166.0 87.9
WCF 0.0459 0.000381 0.0456 0.00187 0.0241 0.666 0.558 150.0 7 34

WCR 0.0313 0.00081 0.041 0.00165 0.023 0.367 0.16 5.14 /.05
WDCL || 0.0379 0.000506 0.0402 0.00242 0.0254 1.0 0.337 29.0 3.2
WDCF || 0.0246 0.000517 0.0359 0.0025 0.025 0.714 0.229 113 12.7
WDCR || 0.0341 0.000534 0.0482 0.00256 0.0257 0.437 0.182 5.85 7.09

N

Table 2. Empirical data showing the effects of various conve rgence techniques. The various algo-
rithms are on the left hand side and the key is: W=Worklist, S= Static cycle detection, C=online Cycle
detection, D=Difference propagation and L,F,RindicatealL  IFO, FIFO and LRF worklist selection strat-
egy respectively. Section 3 details the specifics of each tec hnique. The data was averaged over five
runs with a very low variance being observed.
| | WL|] WF|] WR| WDL| WDF| WDR| WCL | WCR | WDCL | WDCR |

bool 2302 | 2176| 2057 3876 | 2524| 2349 1573 | 1338 2401 1372

bc 4499 | 3373| 3225 8357 | 4393| 3711 3369 | 2141 5583 2641
chess| 2189| 2191| 1896 2394 | 2241| 1947 1951 | 1662 2016 1691
grep 4425 | 4274| 3644 5645| 4774| 3857 3628 | 2874 4385 3086
make | 16615| 15194 | 12904| 45293| 20287 | 14270| 11364| 6512| 35795 7138
gawk | 140440| 36261 | 22805| 5899208| 96296 | 25230| 58790| 9289| 119725| 10007
bash | 231507 | 46385| 43131 | 2173446| 82963 | 45813 | 156996| 21534 | 310919| 23583

Table 3. The values are the number of times any node was taken o ff the worklist. This is the visit
count. Space alone has prevented us from showing data for all benchmarks and algorithms



was performed using thget t i neof day function and the
implementation was in C++, making extensive use of the Difference Propagation - For the large benchmarks,

Standard Template LibrargndBoost Library[1]. the results in Table 2 show that difference propagation
is always an improvement over the baseline. The exact
4.1 Discussion opposite holds for the small benchmarks. We note with

curiosity that, for the two largest benchmarks, WDL and
WDF go significantly faster than WCL and WCF, but that
WDR is much slower than WCR. We also see that adding
difference propagation to the WS family almost always
yields something better for the large benchmarks, but that
WDCR is worse than WCR in all but one. Finally, Table

3 shows that difference propagation causes the expected
increase in visit count.

Selection Strategy- Looking at Table 2 and the baseline Comments: Again, this technique introduces an over-

algorithms WL, WF and WR we observe that LRF is never head Whic_h appears unjustified on the Sma”er benchmarks.
optimal for the small benchmarks, but is generally best Hoyvever, Ilt doeshaprp])ee\l/rvg)cs;ovlv prlot:nlsz, althou%h |Lre-
for the large ones. This trend is repeated throughout theMains unclear why the algorithm does not do bet-

WD. WS and WDS families and. in the WC and wDC te" The data fobash shows a sizeable increase in visit
categories, we see LRF gaining a significant advantagecoum’ with _o_nIy a small drop in performa_nce. Th'? Sug-
over LIFO and FIFO. Table 3 suggests that LRF always gests that visit count may not be relevant in explaining the

has a lower visit count than the other strategies. However,prOblemd' ,?]nd S0, we caln only specurllatec';hatbw!th cy_cl_esd
we note that this reduction is not always significant for the removed, there are simply not enough nodes being visite
smaller benchmarks. more than once. This may be supported by the data from Ta-

Comments: The LRF scheme requires the use of a ble 1, which indicates that the final constraint graphs have
priorityqueue; giving it a higher overhead. Hence, it seems & high outdegree and thus will propagate their solution to

reasonable to conclude that this can outweigh any smallmany nodes in a single visit.
saving in visit count.

We will now point out key features of the data, along
with some remarks. In doing this, it is helpful to split the
benchmarks into two categories: the small onlesa{ ,
time, bc, grep andchess) and the large onesréke,
uucp, gawk andbash). Also, note that we regard WL,
WF and WR as the baseline solvers.

5 Conclusion
Cycle Detection - From the data in Table 2, we see
that the WS algorithms almost always beat their baseline We have explored the use of some existing and some
counterparts. We also see from Table 2 that online detec'uonoriginal methods for improving the convergence time of
does npt perform well on the small benchmarks. However, inclusion-constraint solvers in the field of pointer anidys
WCR is usually better than WSR on the large ones. In Our results indicate that worklist selection strategy is im
particular, WCR and WDCR are by far the fastest solvers portant, that online cycle detection is feasible and eiffect
for the two largest benchmarkgawk andbash. Table 3

. . . . and, finally, that difference propagation has potential.
indicates that online cycle detection dramatically reduce .

. X ) . In the future we hope to look at larger benchmarks, in-
the visit count, irrespective of benchmark size.

c tsOnli le detection | . dth vestigate the difference propagation technique furthed, a
-~ommentsioniine cycle detection IS expensive and fus -, implementation of the Heintze-Tardieu solver and intro-
a high return is needed to show any improvement in run-

: : o . . . duce flow-sensitivity.
time. Looking at visit count alone is not sufficient to explai
why it only pays off on the larger benchmarks. We must also
consider the relative cost of visiting a node and the finalcol 6 Acknowledgements
umn of Table 1 attempts to measure this. The figures show

only the average set size once convergence is complete, but p5yid J. Pearce is supported by a PhD studentship

we believe this gives an indication of the set sizes involved ¢,om the U K. Engineering and Physical Sciences Research
during convergence. Thus, in Table 1 we observe that thecqncil (EPSRC).
t

larger benchmarks have a significantly greater average se
size. We feel this implies the cost per visit to be relatively
bigger for the larger benchmarks and, hence, more is gainedReferences
by reducing the number of visits.
The performance of the online cycle detector, in general, [1] Boost C++ libraries, http://www.boost.org.
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efficient and beneficial over static detection. http://suif.stanford.edu.
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