
Accelerating a C++ Image
Processing Library with a GPU

Jay L. T. Cornwall
Department of Computing
Imperial College London

United Kingdom
Email: jay.cornwall@imperial.ac.uk

Olav Beckmann
Department of Computing
Imperial College London

United Kingdom
Email: o.beckmann@imperial.ac.uk

Paul H. J. Kelly
Department of Computing
Imperial College London

United Kingdom
Email: p.kelly@imperial.ac.uk

Abstract— This paper presents work-in-progress towards a
C++ source-to-source translator that automatically seeks par-
allelisable code fragments and replaces them with code for
a graphics co-processor. We report on our experience with
accelerating an industrial image processing library. To increase
the effectiveness of our approach, we exploit some domain-specific
knowledge of the library’s semantics.

We outline the architecture of our translator and how it uses
the ROSE source-to-source transformation library to overcome
complexities in the C++ language. Techniques for parallel analysis
and source transformation are presented in light of their uses in
GPU code generation.

We conclude with results from a performance evaluation of two
examples, image blending and an erosion filter, hand-translated
with our parallelisation techniques. We show that our approach
has potential and explain some of the remaining challenges in
building an effective tool.

I. I NTRODUCTION

Parallel computing, a field once dominated by supercomput-
ers and clusters, is experiencing a surge of interest in the low-
cost computing mass market; not just in symmetric multicore
processors, but also in heterogeneous configurations with
data paths specialised for particular algorithmic structures.
Multimedia instruction set extensions (SSE, AltiVec, etc.) are
being augmented with parallel and vector accelerators such as
graphics co-processors (GPUs), games physics engines and,
for example, the IBM/Sony/Toshiba cell processor. Massive
advances in their performance and flexibility are offering an
increasingly attractive and widespread source of processing
power to application developers.

With these advances in technology comes a heavier bur-
den on the programmer to manage their available process-
ing resources efficiently and to employ them effectively in
problem-solving. Much of today’s software is written with
the CPU’s serial processing paradigm in mind, limiting the
usefulness of parallel devices. Although the GPU was orig-
inally intended purely for graphics applications, a growing
number of promising performance results have been achieved
in more general applications [1]. As we demonstrated in an
earlier paper [2], recent developments, notablyframebuffer
objects, have increased the GPU’s scope, flexibility and ease of
programming. Later on in this paper we present results which
illustrate the performance potential of a GPU-based solution.
We also present results which show that high performance is

often elusive. The barriers to uptake lie to some extent in the
shortage of skilled programmers, but also in the architectural
limitations of GPU designs, and in the restructuring of source
code that is required.

We aim to tackle this problem by developing a tool to
perform the transformation from serial processing to parallel
processing on graphics hardware automatically. Our source
language is C++, giving what we believe to be the broadest
applicability. Language complexities, such as templates and
classes, have inhibited previous attempts to analyse C++
programs effectively; we take advantage of ROSE [3], a pow-
erful source-to-source transformation library, to assist in our
analyses and to perform the bulk of our code transformations.

Generic C++ parallelisation is a very complex problem and
we do not aim to solve the general problem directly. Instead
we focus on the computationally-intensive libraries within
an application and use domain-specific knowledge of their
interfaces in order to reduce the problem space. This approach
is very promising for the image processing library presented
in Section II, producing a feasible automated parallelisation
with very little domain-specific knowledge.

The main contributions of this paper are:

• Parallelisation with ROSE. We employ the ROSE source-
to-source transformation library in the analysis and trans-
formation of C++ code, to detect and expose inherent
parallelism in the algorithms. Section III highlights some
of the challenges in analysing the semantics of a C++
program and explains briefly how we overcome them.
Section IV gives an overview of our translator’s design
and describes in more detail how the ROSE library
integrates with the analysis and transformation process.

• Performance Evaluation. An evaluation of the perfor-
mance experienced with our translation methods is pre-
sented in Section V, indicating the practicality of auto-
mated parallelisation for a library in our problem domain.
We explain some of the problems that we encountered in
attaining an optimal solution and demonstrate the GPU’s
potential with an erosion filter. Section VI discusses
a potential method to overcome the large overheads
encountered in data transfer, and shows how the library
paradigm greatly simplifies this problem.

II. PROBLEM DOMAIN

This work arises from a collaboration with a visual effects
software company, The Foundry1, aiming to accelerate a large
range of image processing applications by translating much of
their C++ class library to run on GPUs found in commodity
PCs. This is an interesting and challenging exercise, based on
industrial code “captured from the wild” that uses much of the
power of C++.

Our focus is on a small part of the library’s functionality,
called image blending. This feature merges two images into a
single image, with a user-selectable combination method. The
image data is an array of floating-point elements in memory,
and we treat it as such in our translations. No special status
is given to the image data when performing operations on the
GPU, and we handle it in the same way as we would numeric
data.

On the other hand, the image data structures do lend
themselves well to the GPU architecture. The basic data type,
single precision IEEE floating-point, can be represented and
manipulated precisely in the GPU pipeline. Structural grouping
of the components into RGB objects maps well to the GPU’s
vector processing ability, enabling us to pack the data for
simultaneous computation by vector instructions.

The library’s heavy use of advanced C++ features, such
as classes and templates, exercises the capabilities of the
ROSE library. These structural features are typical of modern
software and present a fresh challenge to program analysis.
To help overcome these problems, we have asserted semantic
properties that can be derived from the library’s interface
documentation.

Our main assumption is that pointer aliasing does not
occur in the input parameters. The library accepts pointers
as parameters to image data held in memory. An implicit
assumption in the logic of the library’s features is that these
areas of image data do not overlap. In cases where this
is not true, the library produces results that are not useful;
more importantly, loop-carried dependencies arise in the code
and greatly obstruct the parallelisation process. We make the
assumption that pointers do not refer to overlapping blocks of
memory.

This constraint can be enforced at the library interface
in order to guarantee that all implementations will satisfy
it. By making this constraint explicit, which was already
assumed in the library’s design, we provide valuable additional
information to our parallelisation analyses.

III. C HALLENGES TO AUTOMATIC PARALLELISATION

It is worth noting some of the challenges that this library
presents to automated parallelisation. Listing 1 demonstrates
how the key data structure, an array of floating-point image
components, is obscured by several layers of abstraction. The
immediate typedef in the class RGBColorF presents no great
problem; more troubling is the class’s use as a template para-
meter to the image class FnTexture, which subsequently refers

1www.thefoundry.co.uk

to the array as a single pointer with no bounds information.
Extensive analysis is needed to rescue the semantics of the
library code operating on these classes.

c l a s s RGBColorF {
pub l i c :

t ypede f f l o a t Component ;
Component r , g , b ;
. . .

} ;
. . .
templa te <c l a s s SrcPix ,c l a s s SrcAr>
c l a s s FnTex tu re {

. . .
S rcP i x ∗ d a t a ;
. . .

} ;

Listing 1. Obscured floating-point image array.

ROSE offers several facilities to ease this analysis. In the
parsing phase, templated classes are expanded with all of the
implementations that the program will use, each appearing as
a separate structure in the AST. We are able to directly link the
data pointer to the base typeRGBColorF through a simple

call to the member variable’s AST node. ROSE provides an
iterative method to analyse the members of the RGBColorF
class, so we can determine thatdata points to an array of
three-float components.

The excerpt in Listing 2 highlights a loop structure which
differs from the conventional two-dimensional nested loop.
It is designed to support image formats with padding, stride
and other awkward features. The horizontal iteration is imple-
mented in a while loop, traversing a predefined span of pixels
with a pointer increment supplied by the image class. This
layout precludes template-matching approaches to parallel
analysis, demanding instead a pointer and data-flow analysis.

f o r (i n t y = y s t a r t ; y < yend ; ++y) {
i f (t h i s−>i s I n t e r r u p t e d ()) {

break ;
}

SrcP ix ∗dPix = dst Img−>DstP ixe lAddr (xmin , y) ;

f o r (i n t x = xmin ; x < xmax ;) {
i n t span = xmax− x ;
i n t i n c ;

S rcP ix ∗sP ix = srcImg−>
GetXSpanClampedFal lback (x , y , inc , span) ;

x += span ;

whi le (span−−) {
. . .

}
}

}

Listing 2. Unconventional loop structure.

The ROSE library provides several built-in data-flow analy-
ses and frameworks on which to build custom analyses. Our
array recovery algorithm (see Section IV-E), for example, uses
ROSE’s control-flow analysis to trace paths through the loops
and reconstruct array indices from pointer adjustments. We
use ROSE’s AST manipulation facilities to restructure the
loops into a perfect nest, while retaining the ability to produce
minimally-changed source code back from the AST.

Source
Files

ROSE
Frontend Parser

C++
Source AST

ROSE
Backend Unparser

Transformed
Source Files

C++
Source

GLSL
Generator

GLSL
Source

Potentially-Parallel
Assignment Search

Assignments

Enclosing
Loops

Function
Inliner

Inlined
Enclosing Loops

Assignment
Analysis

Code
Transformation

Loops
Annotated Loop
AST Fragments

Loop-Substituted
AST

Fig. 1. High-level structure and data-flow of the translator.

Listing 3 demonstrates a subtler problem, related to GPU
performance. The call to this merge function occurs on a per-
pixel basis deep inside the loops shown in the previous exam-
ple. Branch prediction minimises the penalty incurred when
this algorithm runs on the CPU, but graphics hardware cannot
employ this technique when a branch diverges within vector-
sized data units; it must execute both branches regardless. It
is in our interest, therefore, to lift this conditional switch to a
place outside the loop using the ROSE library.

templa te <c l a s s SrcPix ,c l a s s SrcAr>
c l a s s FnColorBlend {
pub l i c :

. . .
s t a t i c SrcAr merge (SrcAr &a , SrcAr &b ,

ColorBlendType t ,f l o a t mix)
{

sw i tch (t) {
case eBlendHue : re turn blendHue (a , b) ;
case eB lendL igh ten : re turn b l e n d L i g h t e n (a , b) ;
. . .

}
}

} ;

Listing 3. Conditional switch nested deep inside a loop.

IV. T RANSLATOR ARCHITECTURE

In this section we present the source-to-source C++ transla-
tor. Figure 1 provides an overview of the translator’s structure
and the data flow between its components. The ROSE library
provides two of the main components – conversion from
source code to AST and back – and much of the supplementary
functionality for the other components. One of ROSE’s most
valuable features is that comments and the layout of input
source code are largely preserved in the output. This is a
desirable quality where coding standards must be enforced.

A. Overview of the Translation Process

The first stage of our translation process is a search for
potentially-parallel assignments (PPAs). We walk the AST and
record the set of assignment statements that might be carried
out in parallel: those which assign to arrays or to pointers and
which are enclosed within loops. Enclosing loops are defined
as those loops whose induction variables affect the offset of
the assignment into the array. We record the enclosing loops
with each assignment to define the scope of code that must be
replicated on the GPU. At this stage we aim to find potentially-
parallel loops (PPLs), which are then the focus of inlining and
other transformations.

Inlining is applied to the bodies of each PPL as a precursor
to analysis. This eliminates the need to perform interprocedural
analyses and localises statements to the loop body. Further
analysis of the set of PPAs and enclosing PPLs can then begin.
We aim to confirm parallelism and to determine parameters
which define the parallel assignments: contiguity, lower and
upper array assignment bounds, input and output array sets,
etc. This information decorates the AST for retrieval at a later
stage.

We apply a range of code transformations throughout analy-
sis to expose parallelism and to hoist undesirable features
out of the loop. Switch statements, for example, are lifted
through loop unswitching to avoid the penalties of branching
on the GPU. These transformations are applied on-demand in
response to patterns recognised by the assignment analysis. A
switch statement inside a loop, for example, will trigger loop
unswitching and initiate a reanalysis of the generated loops.

Once analysis is complete, the annotated AST fragments
for each confirmed parallelisable loop are fed to the OpenGL
Shading Language (GLSL) generation stage. The AST is
walked for each loop and equivalent code for the GPU is pro-
duced. Annotations of the AST fragments are used to generate
small C++ stub functions which marshall the input and output
data and execute the GLSL program. These functions are
substituted into the original AST, replacing each parallelisable
loop.

The GLSL program is encapsulated in a C++ source file
which can be added to the user’s project and compiled as
normal. A run-time system is provided in a linkable li-
brary, controlling the GPU’s memory management, program
compilation and execution. This component greatly dictates
the performance of the resulting code and can be upgraded
independently of the static compilation process. An example
of a GLSL program, for one mode of the image blending
library, is shown in Listing 4.

We now consider the most interesting aspects of the trans-
lator in detail.

un i fo rm samp le rRec t s rc1 , s r c 2 ;

vo id main () {
vec3 s r c 1 0 0 =

t e x t u r e R e c t (s rc1 , g lTexCoord [0] . s t) . rgb ;
vec3 s r c 2 0 0 =

t e x t u r e R e c t (s rc2 , g lTexCoord [0] . s t) . rgb ;

g l F r a g C o l o r = clamp (s r c 10 0 + s r c 2 0 0 , 0 . 0 , 1 . 0) ;
}

Listing 4. A GLSL program for one mode of image blending.

B. Potentially-Parallel Assignment Search

Implemented as a complete traversal of the AST, this stage
generates a set of assignments with their surrounding loops and
decorates each assignment with information about the array
involved. Our run-time system supports assignments of up to
four floating-point elements at a time, reflecting the vector size
of the GPU; operations upon more elements would require a
segmentation algorithm to split them into vector-sized chunks.
AST decorations record the number of floating-point variables

per array element; just one in the case of a float[] array and
potentially more where arrays of classes are used.

We can directly link a pointer or array used in an assignment
to its base type with ROSE. When this base type is a class, we
iterate over the members of the class and count the number
of floating-point variables; other member types cause the
assignment to be marked as unparallel, because they introduce
padding into the array. In theory, we might handle this padding
in the memory unmarshalling stage, but we choose not to at
this point until we have addressed performance concerns.

C. Loop Restructuring

Our need to produce parallel programs from multidimen-
sional loop nests drives a desire for perfectly-nested loops
with easily-derived bounds. This is reflected in the loop
restructuring stage of our translator, which aims to transform
an arbitrary loop nest into perfectly-nestedfor loops. In this
form we can simply copy the loop bodies, with appropriate
syntactic changes, to produce GPU algorithms. Listing 2
shows an example of the unfortunate loop nest that appears in
the problem domain library.

We currently approach perfect-nesting with a limited set of
methods. ROSE’s inlining feature serves to remove the three
function calls in the outer loop bodies. The first call is replaced
by a conditional that always fails; our translator employs dead
code removal to eliminate this statement. The second and third
calls collapse into local variable declarations and our array
recovery algorithm (see Section IV-E) removes them. We are
left with the code shown in Listing 5.

f o r (i n t y = y s t a r t ; y < yend ; ++y) {
/ / i f (f a l s e) {
/ / b reak ;
/ / }

/ / S rcP ix ∗dPix = &dst Img−> d a t a [y∗dst Img−> w i d t h
/ / +xmin] ;

f o r (i n t x = xmin ; x < xmax ;) {
i n t span = xmax− x ;
i n t i n c ;

/ / S rcP ix ∗sP i x = &srcImg−> d a t a [y∗srcImg−> w i d t h
/ / +x] ;

x += span ;

whi le (span−−) {
. . .

}
}

}

Listing 5. The core loops after inlining and dead code removal.

To complete the restructuring process, the translator must
consolidate the innermostwhile loop into the secondfor loop.
It achieves this by first rewriting thewhile loop as afor loop;
the loop test dictates the conditional and update statements,
and the initialiser is a derived induction variable of the outer
loop. The inner loop is then reversed, noting that there are no
loop-carried dependencies, and merged by reducing the outer
loop’s step. We obtain a perfect nest offor loops as a result.

D. Loop Parallelisation

Once a set of PPAs has been obtained, we undertake detailed
analyses of these assignments and their surrounding code
to produce a set of parallelisable assignments. This stage is
interwoven with code transformations that aim to increase the
parallelism of the assignments, by moving invariant statements
out of the loop body. We currently support only a limited
subset of transformations; we plan to build on these as new
code examples pose different challenges to parallelism.

Listing 6 shows a fragment of this process, handling assign-
ment statements within the innermost loop. Prior to this stage
we assume that inlining, loop restructuring (see Section IV-C)
and array recovery (see Section IV-E) have taken place and
that a perfectly-nested loop is the result. If this condition is
not met, we abandon the parallelisation.

For each CFA pa th th rough t h e i n n e r loop
For each s t a t e m e n t i n t h e pa th

Swi tch (t ype of s t a t e m e n t)
Case ’ ass ignmen t ’

I f LHS i s not an a r r a y
I f LHS d e c l a r e d o u t s i d e loop scope

At tempt t o h o i s t ass i gnmen t
I f h o i s t f a i l e d

Abandon p a r a l l e l i s a t i o n
E lse

I f LHS type i s not ’ f l o a t ’ or ’ i n t ’
Abandon p a r a l l e l i s a t i o n

EndI f
E l se

Record o u t p u t a r r a yand i ndex e x p r e s s i o n
Record a r r a y s and i n p u t v a r i a b l e s i n RHS

EndI f
Case . . .
D e f a u l t

Abandon p a r a l l e l i s a t i o n

I f o u t p u t a r r a y s d i f f e r between two CFA p a t h s
Abandon p a r a l l e l i s a t i o n

I f a s s i g n m e n t s a r enot c o n t i g u o u s
Abandon p a r a l l e l i s a t i o n

Listing 6. Pseudo-code for loop parallelisation.

The algorithm considers each possible control flow path
through the loop and compares the analyses of all the paths
afterwards. This is necessary to ensure that, regardless of
conditions, the same set of arrays is written to. There is no
efficient equivalent to not writing to an output array on the
GPU; instead we would have to feed the initial state of the
array as input and read from it to generate the same output. We
choose instead to abandon the parallelisation for performance
reasons, although we may later revise this decision if the
impact is found to be small in comparison to the computation
time.

Assignment statements are the most interesting elements
of the loop body since they are the only effects of an
algorithm on the GPU. Clearly we must also consider the side-
effects of other statements in the body, and these are handled
conservatively; where we cannot reproduce them in the GPU
algorithm or hoist them out of the loop, the parallelisation fails.
The cases for these statements have been omitted from the
listing for brevity, although they are largely direct translations
from C++ into the C-like GLSL.

We support assignments to variables which are live only
within the scope of the loop, because they can be contained en-
tirely within the GPU algorithm. Assignments to variables that
are live-out at the end of the loop are not supported, since we
have no efficient mechanism of extracting them from the GPU;
instead we try to hoist these out of the loop. Hoisting itself may
cause problems if the variable is used inside the loop; we mark
the variable as dirty and abandon any parallelisation whose
assignments reference it. On reflection, we could later support
a subset of these problematic loops if the dirty variables follow
strict incremental patterns throughout the loop; we can emulate
these with the GPU’stexture coordinates.

In addition to collecting input and output arrays for mar-
shalling purposes, we record the index expressions used in
array assignments. We analyse these expressions and deter-
mine if the assignments form a contiguous block. Where this
is the case, we use the same expressions to derive upper and
lower bounds for the assignments to each output array.

E. Array Recovery from Pointers

A key requirement of the parallelisation algorithm described
above is knowledge of the bounds and steps of array accesses.
This information is crucial in establishing that assignments to
an array form a contiguous block – a prerequisite for efficient
GPU processing – and in defining the sizes and locations
of input and output data. We derive these characteristics by
performing analyses on the array index expressions and on
their corresponding loop induction variables.

This method works for well-structured programs but fails
for the large body of pointer-based software. In order to
alleviate these problems we apply an array recovery algorithm,
temporarily converting pointer dereferences into array accesses
for analysis. We based our algorithm on a similar technique
[4] from the digital signal processing field.

Listing 7 shows how the image processing library uses
pointers to manipulate image data. Information such as assign-
ment bounds and step is not immediately derivable from the
pointer assignment statements. Conversely, the semantically-
equivalent code fragment in Listing 8 directly links assignment
offsets in the array to induction variables of the surrounding
loops. Our algorithm performs this transformation automati-
cally.

f o r (i n t y = y s t a r t ; y < yend ; ++ y) {
f o r (i n t x = xmin ; x < xmax ;) {

i n t span = xmax− x ;

S rcP ix ∗dPix = &dst Img−> d a t a [y∗dst Img−> wid th
+xmin] ;

whi le (span−−) {
. . .
dPix−>SetClamped (bPix) ;
++ dPix ;

}
}

}

Listing 7. Pointer use in the image processing library.

f o r (i n t y = y s t a r t ; y < yend ; ++ y) {
f o r (i n t x = xmin ; x < xmax ;) {

i n t span = xmax− x ;

whi le (span−−) {
. . .
dst Img−> d a t a [(y∗dst Img−> wid th +xmin)+

(xmax−x)−span] . SetClamped (bPix) ;
}

}
}

Listing 8. After array recovery and substitution.

V. PERFORMANCEEVALUATION

At this early stage of development we evaluate the perfor-
mance of hand-translated examples. These conform strictly to
the achievable and intended output of the completed translation
software, giving representative performance of automatically-
translated code. We deliberately omitted optimisations that
would improve performance but which would not be imple-
mented in the short term.

Each benchmark was run on a 3.2GHz Pentium 4 (2MB
Cache) with 1GB RAM. The GPU was provided by a GeForce
7800GTX 256MB (430MHz core clock, 1.2GHz memory
clock) attached to a PCI Express x16 bus. Windows XP
Professional with Service Pack 2, Visual C++ .NET 2003 (7.1)
and Intel C++ 9.0 were used to build and run the benchmarks,
with NVIDIA’s 81.95 drivers supporting the GPU. In some
cases the Intel compiler generated faster code, and in others
the Microsoft compiler did; when we report CPU timings, we
present the faster of the two.

Figure 2 shows the performance of one mode (soft-light)
of our domain library’s image blending feature on the CPU
and, following hand-translation, on the GPU. A range of data
set sizes were tested, each consisting of two square arrays of
four-float components of a width indicated on the horizontal
axis. Two sets of data are provided for the GPU; this accounts
for the extra overheads of context creation, data capture2

initialisation and program compilation incurred on the first
run of the algorithm, and incurred partially on the first run
following a change in the size of the output data sets.

This is the most computationally-intensive mode of the
library and consequently the best case for the GPU. While
we see disappointing results in the initial run, with the GPU
consistently slower than the CPU for all sizes of input data,
on subsequent runs the GPU outperforms the CPU by an
amount varying between 0-120ms. Setup overheads account
for a roughly constant 200ms, from the difference between the
two sets of GPU timings, independent of the data set sizes.

In the worst case we see the performance shown in Figure 3.
This benchmarks the simplest mode of blending (linear-dodge)
and produces disappointing results on the GPU, which is
slower than the CPU in all of the cases tested. A reduction in

2Data capture here refers to directing the results of a GPU calculation to a
general-purpose area of GPU memory, from where it can be used as an input
to a subsequent computation. By default, the results of GPU computations are
not necessarily stored in such a general-purpose region of memory but are
instead sent to a special-purpose output-only storage region.

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

T
im

e
(m

s)

Data set width (RGBA 4-float elements)

CPU
GPU (first run)

GPU (subsequent runs)

Fig. 2. Complex (soft-light) blending on two square arrays of four-element
(RGBA) 32-bit floating-point values. Visual C++ 7.1 produced the fastest
implementation among our compilers.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

T
im

e
(m

s)

Data set width (RGBA 4-float elements)

CPU
GPU (first run)

GPU (subsequent runs)

Fig. 3. Simple (linear-dodge) blending on two square arrays of four-
element (RGBA) 32-bit floating-point values. Intel C++ 9.0 produced the
fastest implementation among our compilers.

the setup overheads to about 140ms reflects the smaller pro-
gram compilation time. In comparison with the previous graph
we see that the GPU execution time is almost unchanged; the
notable difference here is that the CPU’s execution time has
been reduced.

In order to understand why the GPU is unaffected by this de-
crease in computational complexity, it is necessary to consider
the structure of the execution process in graphics hardware.
Figure 4 provides a breakdown of the three primary stages
involved: moving input data into video memory, executing the
program and moving the results back into main memory. A
mere 30-35% of the total computation time is spent executing
the program in this example; the rest of the time is dependent
only on the sizes of the input and output data sets.

While one might expect an increase in the execution time to
have perhaps a third as much impact on the total computation
time, this does not fully account for the GPU’s similar perfor-

Upload,
47.6%

Upload,
44.5%

Execution,
31.0%

Execution,
35.0%

Download,
21.4%

Download,
20.5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Complex
Blending

Simple
Blending

Fig. 4. Breakdown of GPU computation time for two image blending modes,
on 2048x2048 data sets. Upload refers to the transfer of data to the GPU,
download refers to the retrieval of results back into main memory.

mance in each mode. To put this into perspective, the simpler
program consists of 3 instructions while the complex program
has 59 instructions; we don’t see a proportional increase
in the execution time. In fact, in both cases the algorithms
are memory-bound; we confirmed this by reducing the core
and memory clock speeds and by observing the impact on
performance. Increasing the computational complexity serves
largely to fill unused execution units whilst stalling for mem-
ory accesses.

Our second example shows more promise. Figure 5 demon-
strates the performance of an erosion filter – a minimising
convolution – on the CPU and on the GPU. Again, we
employ hand-translation with the capabilities of our translator
in mind. Here we see that the GPU offers large performance
benefits over the CPU, even with the overheads of the first run
included. The two-dimensional texture cache prefetch of the
GPU allows us to incur only small penalties when accessing
the image data vertically, for the kernel overlay, while the CPU
appears to suffer considerably.

A breakdown comparison with the simple (linear-dodge)
blending mode is offered in Figure 6. An interesting feature
to note here is that the proportion of time spent uploading the
input data is heavily reduced in convolution. The data behind
this graph suggests that the convolution program’s upload time
is less than 15% of that of the blending algorithm. We might
expect this figure to be 50% of the blending program, since
we are dealing with only a single set of input data, but there
are clearly more factors at play. This suggests that there is
considerable inefficiency in streaming multiple sets of data into
video memory serially. A recent paper [5] by NVIDIA offers a
reason for this and proposes an alternative upload mechanism
(pixel buffer objects), which we have not yet explored.

VI. D ELAYED DATA RETRIEVAL

One of the most common complaints of programmers in
the general-purpose GPU (GPGPU) field is that data transfer

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

T
im

e
(m

s)

Data set width (floats)

CPU
GPU (first run)

GPU (subsequent runs)

Fig. 5. An 8x8 erosion filter (convolution) on a square array of 32-bit floating-
point values. Visual C++ 7.1 produced the fastest implementation among our
compilers.

Upload,
47.6%

Upload,
10.8%

Execution,
31.0%

Execution,
57.4%

Download,
21.4% Download,

31.8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ConvolutionBlending

Fig. 6. Breakdown of GPU computation time for blending and convolution,
on 2048x2048 data sets. Upload refers to the transfer of data to the GPU,
download refers to the retrieval of results back into main memory.

times often dominate or severely impact the total computation
time, in many cases making a GPU implementation slower
than the CPU. We’ve highlighted the degree of this problem
in Figures 4 and 6, where the data transfer overheads varied
between 30% and 70% of the total computation time. This
inhibits the usefulness of the GPU in this domain and in many
others.

In fact, we can overcome much of this overhead by avoiding
the unnecessary transfer of input and output data between main
memory and video memory. By localising this movement to
video memory we can take advantage of the much higher
bandwidth and lower latency offered by the hardware. While
this may seem an obvious optimisation, determining when it
is safe to hold the results of a computation in video memory
is a difficult problem.

In the context of our localised loop parallelisations, the input
data is uploaded just before the original loop and the results

are download into arrays just afterwards. This ensures that
any use of the output arrays will operate on the results of the
GPU computation. In cases where the output data is not used
directly, but is instead used as input to another GPU algorithm,
we waste time moving the data from video memory to main
memory and back again. This is a simple approach, but clearly
suboptimal.

A better method is to delay the retrieval of the results of
a GPU computation until they are used by the program. In
cases where they are not used, and are simply fed as input
to another GPU algorithm, we bypass the redundant transfer
between video memory and main memory. This is similar to a
delayed execution model except that there is no real benefit in
delaying the program execution, rather we delay the retrieval
of its results.

Implementing such a system in C++ is problematic due to
the wide number of ways in which the data might be accessed;
through arrays, references, through pointers and pointers-to-
pointers, all with potentially overlapping areas of memory.
While intrusive solutions to this problem exist, the library
paradigm offers a cleaner opportunity. By encapsulating the
output data structures in the library and abstracting their access
through library calls, we can insert optimally-placed trigger
points to initiate data retrieval from video memory.

This is an optimisation that we plan to explore in the future.
Automating this process would require extensive analysis to
ensure that access to the data structure couldn’t be leaked
without a library call, and to identify all of the points in
which to insert triggers. The benefits of this work, however,
could widely increase the range of algorithms suitable for GPU
processing.

VII. C ONCLUSIONS ANDFURTHER WORK

This paper offers a report on work in progress towards a
general-purpose tool, and a methodology, for using streaming
accelerators to enhance the performance of libraries in C++.
We have discussed some of the code features that have proven
troublesome, and we have briefly explored how semantic
properties (or assumptions) of the library’s API can play a
part in the process. Finally, we present performance results
which illustrate some of the potential of the approach – and
show that although very high performance is surely possible, at
least soon, it is not always easy to achieve on real applications.

Our plans for this work begin with completing the automatic
translation process. Whilst our translator currently supports
simple parallelisations, more work is needed to automate
parallelisation of the image processing library and of other
complex examples. We plan to implement an interprocedural
analysis to trace temporary variables through potentially-
virtual function calls back to operations on data sets of interest.
Greater flexibility is needed in the induction variable analysis
to include affine transformations of loop control variables.
Switch hoisting still needs to be implemented to generate
efficient GPU code, although ROSE provides most of this
functionality.

In the mid-term we aim to expand our application focus
to other libraries. Intel’s Computer Vision Library offers
a range of computationally-intensive computer vision algo-
rithms. These algorithms offer good potential for GPU optimi-
sation and their performance-oriented source code presents an
interesting challenge to the translator. This is a different form
of parallel analysis: not through unravelling layers of structural
obscurity, but through extensive loop and pointer analysis to
recover the algorithm semantics.

Our long-term plans are to introduce predictive performance
analysis into the translator to identify algorithms with high
computation to memory access ratios and other desirable
qualities for the GPU. By introducing a delayed execution
mechanism we hope to fuse multiple parallel operations to-
gether to take advantage of the high bandwidth interconnects
local to the GPU, avoiding slower routes back to main memory
with intermediate results. We also aim to expand our back-end
to support other parallel devices, such as the cell processor and
FPGAs. Through careful scheduling, we can deploy parallel
algorithms to multiple – perhaps heterogeneous – devices
simultaneously to maximise use of the available processing
resources.

VIII. R ELATED WORK

Generating code for streaming architectures like GPUs
is essentially vectorisation, and is well-covered in standard
textbooks such as [6]. It differs from code generation for
multimedia instruction set extensions (SSE, AltiVec etc),
which can be handled using sophisticated instruction selection
techniques [7]. It instead resembles classical vectorisation for
long-vector machines such as the Cray-1 and its successors.

The particular problems introduced by C have been tackled
in many commercial compilers, and are the focus of [4] as we
discussed earlier. The particular problems of (and opportunities
offered by) C++ have been the focus for the development
of the ROSE tool which we have used. ROSE is designed
to support library-specific optimisations [3], and is motivated
by the need to support scientific computing users coding
with the full abstractive power of C++, while retrieving the
performance attained by vectorizing and parallelizing Fortran
compilers.

Exploiting the GPU for general-purpose computation is the
focus of the GPGPU [1] community. Popular abstractions
for general-purpose GPU programming, such as the C-like
Brook [8] streaming language and the Sh [9] C++ constructs,
offer simple programming interfaces with low graphics knowl-
edge requirements.

IX. A CKNOWLEDGEMENTS

We would like to thank The Foundry for their support for
this project. This work was partly funded by the EPSRC (ref
EP/C549481).

REFERENCES

[1] “General-purpose computation on graphics hardware,”
http://www.gpgpu.org/.

[2] J. L. Cornwall, “Efficient multiple pass, multiple output algorithms on the
GPU,” in 2nd European Conference on Visual Media Production (CVMP
2005), December 2005.

[3] M. Schordan and D. Quinlan, “A source-to-source architecture for user-
defined optimizations,” inProceedings of the Joint Modular Languages
Conference (JMLC’03), Lecture Notes in Computer Science, vol. 2789.
Springer-Verlag, Aug 2003, pp. 214–223.

[4] B. Franke and M. O’Boyle, “Array recovery and high-level transforma-
tions for DSP applications,”ACM Trans. on Embedded Computing Sys.,
vol. 2, no. 2, pp. 132–162, 2003.

[5] “Fast texture downloads and readbacks using pixel buffer objects in
OpenGL,” http://developer.nvidia.com/object/fasttexturetransfers.html,
2005.

[6] M. Wolfe, High Performance Compilers for Parallel Computing.
Addison-Wesley Publishing Company, 1995.

[7] A. Krall and S. Lelait, “Compilation techniques for multimedia proces-
sors,” Int. J. Parallel Program., vol. 28, no. 4, pp. 347–361, 2000.

[8] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, “Brook for GPUs: stream computing on graphics hardware,”
ACM Trans. Graph., vol. 23, no. 3, pp. 777–786, 2004.

[9] M. D. McCool, Z. Qin, and T. S. Popa, “Shader metaprogramming,” in
HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS con-
ference on Graphics hardware. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2002, pp. 57–68.

