
Performance prediction of paging workloads using lightweight tracing

Ariel N Burton1
Paul H J Kelly

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK

p.kelly@imperial.ac.uk

Abstract

A trace of a workload’s system calls can be obtained with
minimal interference, and can be used to drive repeatable
experiments to evaluate system configuration alternatives.
Replaying system call traces alone sometimes leads to inac-
curate predictions because paging, and access to memory-
mapped files, are not modelled.

This paper extends tracing to handle such workloads.
At trace capture time, the application’s page-level virtual
memory access is monitored. The size of the page access
trace, and capture overheads, are reduced by excluding
recently-accessed pages. This leads to a slight loss of ac-
curacy. Using a suite of memory-intensive applications, we
evaluate the capture overhead and measure the predictive
accuracy of the approach.

1 Introduction

We aim to develop a tool for a system performance con-
sultant to characterize workloads that are complex and sub-
ject to external influences and stimuli which cannot be con-
trolled or predicted easily. The consultant would install the
tool, and would monitor the system as it performs its normal
duties. The consultant would use the information captured
by the tool to evaluate the effectiveness of changes such as
hardware upgrades, adjustments to the system’s configura-
tion or tuning parameters, or workload redistribution to im-
prove performance.

The evaluation methodology presented in this paper
characterizes a workload by the trace of its system calls.
By rerunning the sequence of system calls in a trace under
different conditions it becomes possible to study the perfor-
mance of the workload under different system configura-
tions. We distinguish two modes to rerunning traces: trace
replayand tracereexecution:� System call trace replay

1Ariel Burton is now with Etnus, Inc.

The trace contains descriptions of each of the system
calls issued by the application, including parameters,
and fine-grained timings of the application’s (user-
mode) execution times between system calls. The sys-
tem under test is exercised by re-issuing the system
calls. The application’s activity is modelled by loop-
ing for the appropriate amount of time between issuing
each call.� System call trace trace reexecution

In some circumstances looping to account for user-
mode execution time leads to inaccurate results be-
cause the application interacts with the operating sys-
tem implicitly, for example, by causing TLB misses,
page faults, or by flushing operating system code and
data from the hardware caches. We can reproduce this
behaviour by reexecuting the original application code.

In order for the original application code to behave as
it did originally, the results returned from the applica-
tion’s system calls are recorded in the trace. The reex-
ecuting application code should behave in a precisely
reproducible way since it is fed precisely the same in-
puts.

Trace reexecution should give more accurate performance
predictions than trace replay because a workload’s be-
haviour is reproduced more completely. However, not
all applications are easily reexecuted. Threads and asyn-
chronous signals present difficulties. Shared-memory re-
gions and multi-processor applications are extremely hard
to trace efficiently.

Furthermore, confidentiality or size constraints may for-
bid the workload’s input data from being copied and used
during the performance analysis.

In such cases, the only trace rerun option available is the
potentially less accurate trace replay. Our earlier work [3, 4]
focused on workloads which interact with the operating sys-
tem predominately through the system call interface. These
workloads were adequately characterized by trace replay. In
contrast, in this paper we examine workloads which exer-

1



cise the operating system as a consequence of their memory
referencing behaviour. We show how our user-level trace
capture tools can be extended to include paging informa-
tion.

It would be easy to log the actual page faults that oc-
cur. However, this fails to characterise the application’sbe-
haviour - what if more, or less RAM were available to this
process? Instead, we need to log the application’s memory
access pattern – in sufficient detail for paging behaviour on
different configurations to be faithfully predicted.

With this information recorded in the traces, trace re-
play can be extended to reproduce a workload’s memory
referencing behaviour at the page level, thereby improving
the accuracy of the predictions that can be made with this
method.

1.1 Contributions of this paper

1. We evaluate the idea of recording a computer system’s
workload for later replay by tracing system calls, and
measure the impact of trace capture on the applica-
tion’s performance

2. Using a suite of example applications, we explore how
faithfully performance of alternative system configura-
tions can be predicted using recorded workload traces

3. We present a technique for enhancing system call trac-
ing to capture an application’s paging behaviour, and
evaluate the capture overheads and predictive value of
the approach.

Our earlier paper [4] (an extended version of [3]) explores
system call tracing for workload characterisation. This pa-
per extends this to include paging behaviour.

2 Related work

Trace capture is a well established technique for perfor-
mance evaluation. The critical aspect of our work lies in
identifying and capturing the very minimum information,
i.e., system calls, to be able to reconstruct the original work-
load by reexecution. This means a real, interactive workload
can be recorded — then repeatably replayed.

Jones [7] describes a general technique for interposing
agents between an application and the operating system.
One example presented is tracing system calls. DynInst [5],
and the ptrace system call offer a similar capability.

CASPER, a general-purpose trace capture package for
kernel developers, was used to improve the performance of
individual system calls [2] and also to obtain samples of
processes’ memory references. Ashton and Perry [1] devel-
oped INMON, an “interaction network monitor” for dis-
tributed systems. INMON is designed to follow the flow of

control as it passes from process to process, kernel to ker-
nel, and machine to machine in response to individual user
actions.

To capture a workload’s memory access pattern, many
researchers have traced memory access instructions, either
using a simulator or by augmenting binary code. Using
control-flow analysis the quantity of information generated
at trace capture time can be reduced substantially. The full
traces are recreated by combining the captured trace with
the original application [8].

3 Background: system call tracing

For our approach to be viable and attractive, the tool
must incur minimum risk to the system under examination,
provide enough information for performance tuning mech-
anisms to be exercised properly, and lead to results having
adequate predictive accuracy. In this section we focus on
the issues of trace capture, trace reexecution, and trace re-
play. For further details see [4].

3.1 Trace capture

ULTra (User Level TRAcing) intercepts system calls and
writes trace information to a trace file. Having considered
various alternatives, we chose to substitute the dynamically-
linked standard shared library implementing the UNIX sys-
tem call interface. In the ULTra version, the system call
stubs are extended with modifications for trace capture.

3.2 Trace reexecution

For re-execution to work we must recreate the work-
load’s environment from its traces. The workload’s system
calls will be reissued naturally as the application code is re-
executed, but the values returned are taken from the trace.
Some system calls, however, will return different values be-
cause, for example, the call returns a kernel-created handle
for some resource (e.g., fork()). Calls of this type are
handled by keeping a translation table mapping trace cap-
ture values to trace reexecution values.

3.3 Trace replay

In this form of trace rerun we reissue the system calls
made by the original workload. We simulate the user-level
execution times between system calls by looping for the ap-
propriate period. We use the same techniques as trace reex-
ecution to handle translation of trace capture identifiers to
trace replay identifiers.

For trace replay to be accurate we must ensure that the
system calls are reissued at the correct rate. This happens
naturally for trace reexecution, but for trace replay we need

2



accurate, high-resolution measurements of the processes’
user-mode inter-system call execution times. This essential
information is not provided in standard UNIX implementa-
tions.

We account for a process’s user execution time in the
presence of other processes by modifying the kernel to up-
date a timer (using the hardware timestamp counter) in its
process table entry on each context switch to, or from, user
mode.

4 Capturing paging

The challenge in extending ULTra replay to reproduce
a workload’s paging activity is to do it efficiently, at user
level, and with unmodified applications.

4.1 A simple algorithm

Figure 1 outlines a simple algorithm for capturing an ap-
plication’s page-level memory access at user level (we im-
prove on this shortly). The ULTra runtime library is mod-
ified so that before the application is allowed to start, a
signal handler is installed to catch invalid memory refer-
ences (step 1). In addition, the permissions to the regions in
the process’s address space are modified to disable access
(step 2). When the application starts (step 3), its first mem-
ory reference will cause a fault to be raised (step 4). This
will be caught by the handler installed in step 1. The han-
dler identifies the address and access mode of the reference
which caused the fault, and records this information in the
trace. Before returning to the application (step 7), the han-
dler enables access to the page on which the fault was raised
(step 5). This allows the application to continue until it at-
tempts to access a different page. When this occurs, a fault
is raised as before. This is handled in the manner described
above, with the exception that before allowing the applica-
tion to continue, access to the previously enabled page is
disabled (step 6).

This simple algorithm illustrates how a full trace of an
application’s page referencing behaviour can be captured
entirely at user level. However:

1. The overheads of trace capture are very large, since a
signal must be raised every time the application refers
to a new page.

2. The traces will be very large, since a record is written
for each page used by the application. Dealing with
the inflated traces will further increase the overheads
of trace capture.

These problems can be overcome by applying a trace reduc-
tion technique originally developed to reduce the number of
records which must be examined during the analysis of a
full trace.

1. Install a signal handler to catch invalid memory refer-
ences.

2. Modify the permissions of all the regions in the pro-
cess’s address space to deny access. This will cause a
fault to be raised when a protected page is accessed.

3. Allow the application to start.

4. When a fault occurs, record the address and access
type which caused the fault in the ULTra trace.

5. Enable access to the page on which the fault was
raised.

6. Disable access to the currently enabled page.

7. Return to the application.

Figure 1. Simple algorithm for tracing page-
level memory accesses at user level

4.2 Trace reduction using stack deletion

Smith [12] proposed a method called Stack Deletion to
reduce the cost of analyzing memory trace data. Stack Dele-
tion exploits the principle of locality to reduce the number
of trace records which must be examined during trace anal-
ysis.

The reduced memory traced is obtained by using the full
trace to drive a simulated LRU stack memory. Each time
a page is referenced, the page is moved to the top of the
stack, and all elements above its former location descend
one position. For trace deletion parameterD, references
which hit in the topD levels of the stack are deleted from
the trace. The reduced trace consists of the remaining refer-
ences which miss the topD entries.

The reduced trace describes every entry into the locality
defined by theD most recently used pages. However, since
references which hit the top of the stack are deleted, all in-
formation about the usage history of these pages is lost. To
see how this affects the accuracy of the subsequent analysis,
consider the topD�1 elements of the memory stack that re-
sults from the reduced trace. The element in positionD� 1
could really belong in position 1 of the true LRU stack, and
vice versa. More generally, at any time during the analysis,
the order of the topD�1 elements of the memory stack ob-
tained using the reduced trace will be some permutation of
the true order. This affects the order of the rest of the stack,
since the entry at positioni is either at positioni+ 1 or po-
sition 1 after the following trace record has been processed.
One consequence of this is that the elements expelled from
a simulated memory of a given size will be different for
the full and reduced traces. Smith [12] compared the fault
rates predicted by the reduced and full traces for a variety

3



of page replacement policies, including LRU and CLOCK,
and found the error introduced by incompleteness of the in-
formation in the reduced trace to be less than 5%, and that
Stack Deletion reduced the length of the trace by up to two
orders of magnitude.

4.3 Applying stack deletion to improve the perfor-
mance of trace capture

In this section we use Stack Deletion to improve the per-
formance of trace capture.

We extend the ULTra library to follow the simple algo-
rithm described earlier, but with the exception that the ap-
plication is allowed access to a set of pages, rather than just
one. The function of this pool of pages is the same as that of
the LRU stack memory: to filter out intermediate references
to the locality represented by the set of pages.

In order to mimic stack deletion faithfully, the page that
is discarded from the pool should be the one that has been
least recently used. This is easy when stack deletion is used
to reduce a full trace, but more difficult in our case because
the information needed to determine the identity of the least
recently used page is not available. This is because the in-
termediate references which define the usage history of the
pages in the pool do not cause faults, and therefore they are
not visible to ULTra. Although the operating system should
have some information about the process’s memory usage,
there are usually no facilities for obtaining this information.
Thus, we cannot use LRU as the replacement policy for the
pages in the filter.

Instead, we use FIFO, and expel the page which entered
the filter first. Poon [10] demonstrated that the numbers of
faults predicted by reduced traces derived from a FIFO filter
were within 2% of the corresponding numbers predicted by
the full traces for fully-associative memories implementing
LRU and CLOCK replacement policies. This is not unex-
pected, since FIFO does not do as well as LRU in keeping
recently used pages in the filter. Consequently, the number
of misses from a FIFO filter would be expected to be larger
than the number from a filter using LRU. The effect of this
is that FIFO does not reduce the size of the trace as well
as LRU, but the trace does contain more information.

4.4 Replaying paging behaviour

As before, the “spinner” reads the trace record by record.
System calls are treated in the same way as ordinary trace
replay. When a memory reference is encountered, the “spin-
ner” either reads from, or writes to, the location specified,
thus causing the page to be touched in the same way as at
the time of trace capture.

5 Implementation

ULTra is currently implemented as two major compo-
nents: a substitute for thelibc (version 5.3.12) shared
library running under LINUX version 2.0.35, and a small
number of kernel modifications.

5.1 Kernel modifications

The LINUX system call mechanism was modified to in-
clude the time measurement extensions described in Sec-
tion 3.3. We use the PENTIUM processor’s 64 bit Time
Stamp counter to determine the number of clock cycles a
process spends executing at user level. The user-level exe-
cution times are communicated to the user-level component
of ULTra using a memory region at the base of the stack. In
all, the modifications were modest, amounting to about 200
lines ofC and PENTIUM assembler.

5.2 Implementing extended ULTra

Implementing extended ULTra is relatively straightfor-
ward, though there were a number of issues, mainly affect-
ing trace capture, which must be handled extremely care-
fully. Although there is insufficient space to describe these
in detail, the salient points are summarized below.

Excluding ULT ra’s memory activity Memory activity
caused by ULTra must be excluded from the trace. The
memory used by ULTra falls into two categories: memory
private to ULTra, e.g., the trace buffer and its management
routines, and memory used by both ULTra and the applica-
tion, e.g., standard library routines.

For reasons of efficiency, accesses by ULTra to its pri-
vate code and data should not raise faults. This is achieved
by excluding these areas from the memory to which access
is disabled during initialization. Determining the addresses
from C level is easy, though care is needed since the com-
piler or linker may rearrange the memory map. In addition,
the indirection tables required to locate position indepen-
dent dynamically linked code and data must also be handled
carefully.

Memory used by both ULTra and the application cannot
be handled in this way, since none of the application’s refer-
ences will appear in the trace. To ensure that ULTra’s refer-
ences are excluded, a counter is incremented on every entry
into, and decremented on every exit from, ULTra. When a
fault is raised, the counter is inspected by the handler; if the
fault was caused by ULTra, access to the page is enabled,
but the page is not added to the filter, and instead to a sep-
arate data structure. On the last exit from ULTra, access to
any pages in this page is disabled.

4



System calls which pass arguments by referenceA
number of system calls accept arguments or return results
by reference. These calls will fail where they might other-
wise succeed if access to the parameters has been disabled
by ULTra. The system call is allowed to proceed, but if it
fails because the parameters could not be accessed, access
is enabled and the system call retried.

Modifications to the address space The UNIX API pro-
vides a number of system calls which allow a process to
manipulate its address space. These system calls include
operations to add or remove regions, as well as change their
access protections. In general, when additions are made to
the process’s address space, access to the new areas is dis-
abled. When regions are removed, all pages from that re-
gion which are present in the filter are removed.

6 Experimental evaluation

The experiments reported here were performed on an
unloaded IBM-compatible PC with a 166MHz Intel Pen-
tium CPU, 32MB EDO RAM and 512KB pipeline burst-
mode secondary cache, running LINUX 2.0.25 (or variants
thereof). All application file input and output was to a lo-
cal disk, with ULTra traffic directed to a second, local disk.
Elapsed execution times were measured using a statically
linked instance of version 1.7 of the GNU standard UNIX

timing utility /usr/bin/time.

6.1 The benchmark suite

The experiments used the following applications:� qsort. An in-core sort of 2,000,000 pseudo-random
integers using theqsort() function supplied with
theC standard library.� C4.5. Given a training set and a set of pre-defined
classes,C4.5 [11] attempts to generate a function
which maps the data items in a database into the pre-
defined classes, by constructing an optimal decision
tree. The data set used in these experiments was the
‘Connect-4 Opening Database’ [9].� mSQL. This experiment involved running part of
the AS3AP[13] SQL benchmark on version 2.0.3 of
mSQL[6], a lightweight database engine. The data
managed by the SQL server were generated using
as3ap gen, a utility written for this purpose. As
mSQL implements only a subset of SQL, the AS3AP
benchmark suite was modified accordingly.

For the experiments, each of the four major relations
specified by AS3AP included 10,000 tuples, averag-
ing approximately 100 bytes each. Together with the

management overheads introduced by mSQL, and also
the overflow buffers required to store variable length
fields, this amounted to approximately 8MB. In addi-
tion, during the course of the experiment, mSQL ma-
nipulated at least 15 index files, each averaging at least
0.5MB in size.

In the experiments, the SQL requests were issued to the
server over a UNIX domain connection by the interac-
tive monitor distributed with mSQL. The replay and
reexecution cases were handled slightly differently:

reexecution: in this case, only the server was traced.
On rerun, the server was reexecuted from the traces.
The requests were reproduced by reexecuting the in-
teractive monitor.

replay: The behaviour of the monitor depends on the
responses it receives from the server. On replay, al-
though the communication link and sequence of mes-
sages could be reproduced easily, the contents of the
messages could not.

This problem was solved by tracing both the server and
the monitor, and driving both sides of the communica-
tion from the traces.

This problem would not arise in a more comprehen-
sive implementation, since network input would be
recorded by a network snooper, and replayed from an
external source. The problem described here is sim-
ply a consequence of using the monitor to replay the
network inputs to the server.

These benchmarks were selected because they use memory
in a variety of ways.qsort makes very few system calls,
and because it is very memory intensive, its performance is
likely to depend very heavily on the availability of RAM .
C4.5 uses the file system for its first and third phases, but
includes a very memory intensive second phase. mSQL was
chosen because it is very complex, and interacts with the
underlying system in a number of different and subtle ways.

The applications were built from source using the default
make and compile options, using version 2.7.2 of the GNU

C compiler,gcc, and linked to version 5.2.12 of the GNU

standard library,glibc.

6.2 Overhead of trace capture

Extended ULTra is intended for use in circumstances
where a workload’s paging activity forms a significant part
of the load on the system. For this reason, in these experi-
ments, each of the benchmarks was traced on system con-
figurations which experience had shown ordinary replay to
be inadequate. These are are summarized in Table 1. Also
shown are the sizes of the filters used in each case; in each
case the filter represents about an eighth of the minimum

5



Application System configuration Filter size
No. pages MB

mSQL Database & index files local 512 2
qsort RAM size set to 8MB 256 1
C4.5 RAM size set to 15MB 512 2

Page size = 4096 bytes

Table 1. System configurations for each of the
benchmarks

RAM size on which the traces were to be replayed (see
later).

Table 2 shows the untraced and traced execution times
for each of the benchmarks and flavours of ULTra.

Capture overheads for system call tracing In general,
the overheads of trace capture for ordinary replay are larger
than those for trace reexecution. Firstly, the trace records
are larger since they must include the inter-system call ex-
ecution times necessary for replay. Secondly, these times
must be copied from theultra area after each call. This
component of the overhead is dominated by the need to
check the validity of the destination before the data may
be copied. Additionally, in mSQL, replay involved more
ULTra activity since both client and server were traced. The
overheads for reexecution and ordinary replay forC4.5 are
interesting since earlier experiments showed overheads of
approximately 1%. One reason for the increase seen here
is that on small RAM configurations, the performance of
C4.5 is very sensitive to the availability of memory. For ex-
ample, untraced execution time at 14.5MB and 15MB are
about 2400 and 250 seconds, respectively. (See also Fig-
ure 2(b).) The ULTra versions of the standard library are
larger than those of the uninstrumented version, and there-
fore when it is traced, there is less memory available for the
application.

Overheads of capturing paging The overheads for ex-
tended replay are higher than those for both reexecution and
ordinary replay. This is a consequence of the considerably
more ULTra activity associated with dealing with the faults,
and I/O required for the much larger traces (see Table 3).
The overheads forqsort are reasonable, though mSQL

andC4.5 show large increases. This is a little surprising in
the case of mSQL, where paging information accounts for
a very smaller proportion of the contents of the trace than
with the other benchmarks.

Examination of the mSQL traces showed that the num-
ber of pages in the filter rarely exceeded 120 (420KB),
even though the application used considerably more mem-
ory. The reason for this lies in how mSQL uses its files.

Application Method Time % of untraced
(secs) time

mSQL untraced 92.4
for reexecution 112.2 121%
for ordinary replay 125.0 135%
for extended replay 158.8 172%

qsort untraced 383.3
for reexecution 396.3 103%
for ordinary replay 397.3 104%
for extended replay 414.2 108%

C4.5 untraced 250.9
for reexecution 485.2 193%
for ordinary replay 771.5 307%
for extended replay 1300.4 518%

Table 2. Overheads of trace capture

Application Filter size No. faults No. records
No. pages MB

mSQL 512 2 58,373 439,390
qsort 256 1 39,852 39,863
C4.5 512 2 3,268,012 3,273,339

Table 3. Number of faults and total number of
trace records for the benchmark applications

mSQL maps its files into its address space usingmmap().
Once mapped, the contents of the file can be accessed using
ordinary memory operations. However, the file cannot be
extended, and therefore when this is necessary, mSQL un-
maps the file, extends it by writing to it, and then remaps the
file. When the file is unmapped, any pages from that region
must be removed from the filter. In our implementation this
required a sequential traversal of the array representing the
filter. This behaviour also accounts for the small number of
pages in the filter.

C4.5 takes a large number of faults (see Table 3). Exam-
ination of the traces showed that this is becauseC4.5 makes
many sequential scans through its data. Thus, asC4.5 has
little locality, the filter is repeatedly flushed, and overheads
rise.

The results show that the overhead per fault is about
300�s. A proportion of this can be attributed to the reduced
availability of memory, and to the I/O required to deal with
the substantially larger traces. The remainder is the time re-
quired to take and process the fault, which further investiga-
tion showed to be about 80�s. Microbenchmarking showed
that the irreducible overhead of taking a fault and calling
mprotect() twice (once to enable access to the faulted
page, and a second to disable access to the page removed
from the filter) is about 45�s. The remainder is time spent

6



preparing the trace record and updating data structures such
as a filter; this can be reduced with a more careful and opti-
mized implementation.

7 Using ULTra to predict performance

In this section we study the value of using traces to pre-
dict performance of different configurations.

ULTra is designed for workload characterization in situ-
ations where an application is interacting with its environ-
ment in complicated ways which make it difficult to redo
experiments with precisely reproducible results. However,
if we are to be able to determine the accuracy of the predic-
tions made by ULTra, the trace rerun execution times must
be compared with the actual time taken to execute the work-
load on the alternative configuration.

The traces used in these predictive experiments were
those captured during the experiments described earlier.
Then, for each alternative configuration, the trace was re-
run and the application was also executed. We evaluated
ULTra for two example scenarios:

1. using an NFS-mounted file system in place of a local
disk;

2. changing the amount of RAM available to the work-
load.

We describe these experiments in the following sections.

7.1 Predicting effect of changing the file system

The performance of an application can depend very
heavily on the type of file system on which its files reside.
In these experiments, ULTra was used to predict the effect
of storing an application’s files on a remote machine has on
its performance. Our aim in these experiments was to see
how well each of the different forms of ULTra is able to
predict this effect.

For this experiment we used the mSQL benchmark. The
traces used here were those captured with the files stored
locally. The system was then reconfigured so that mSQL’s
files resided on a remote machine, and were accessed us-
ing NFS. The server used for this purpose was an IBM-
compatible PC with a 233 MHz Intel PENTIUM II CPU,
256KB level 2 cache, 128MB SDRAM, running LINUX

version 2.0.30. For the purposes of the experiments, the
server was unloaded, and other network traffic was elimi-
nated by ensuring that only the client and server were con-
nected to the network.

Table 4 shows the actual execution time achieved by
mSQL on the modified configuration, and also those pre-
dicted by ULTra. Ordinary replay has significantly under-
estimated the execution time. The reason for this is that, as

Method Time % of actual
(secs) time

actual 184.7
time predicted by reexecution 196.8 107%
time predicted by ordinary replay 120.6 65%
time predicted by extended replay 189.3 102%

Table 4. Actual and predicted execution times
for m SQL with files located on a remote vol-
ume.

noted earlier, mSQL usesmmap() to map some of its files
into its address space, which are then accessed as ordinary
memory. In this case, however, the system activity that is
caused as the files are used is related to network I/O. Or-
dinary replay cannot reproduce the memory accesses, and
therefore the time predicted will exclude that accounted for
by this I/O. Since a large proportion of mSQL’s file accesses
use this mechanism, the discrepancy is large.

The predictions by reexecution and extended replay are
close to the actual times. This is not unexpected in the case
of reexecution, as this method is better able to reproduce
this component of the workload because the memory ref-
erences are reproduced naturally as the original application
code is reexecuted. The result for extended replay indicates
that the deficiencies of ordinary replay have been overcome
successfully.

7.2 Predicting effect of adding more memory

In these experiments, the machine was booted with vary-
ing amounts of RAM . Traces were captured of the applica-
tions executing with the minimum RAM size. These were
then rerun on configurations with more memory. As before,
in order allow the accuracy of ULTra’s predictions to be
quantified, the applications were also executed on each con-
figuration with all tracing disabled. The application bench-
marks we used for this experiment wereqsort andC4.5,
which are both memory intensive.

Figure 2 shows the results. As expected, trace reexe-
cution successfully and consistently predicts the effect of
increasing the amount of RAM . Ordinary replay fails spec-
tacularly, since for these workloads the effect of adding
RAM is to reduce paging. The results for extended replay
are more encouraging, again showing that our approach is
able to overcome the incompleteness seen with ordinary re-
play. The predictions forqsort are near perfect, but less
so forC4.5. Extended ULTra successfully predicts the trend
of increasing the size of RAM and correctly identifies the
point at which the application no longer pages. However,
the asymptotic behaviour indicates that the mechanism used
for calculating user-level execution time is overestimating

7



0

50

100

150

200

250

300

350

400

450

10 15 20 25 30

T
im

e 
(s

ec
s)

RAM size (MB)

Untraced
Reexecution

Ordinary replay
Extended replay with 1MB filter

0

100

200

300

400

500

600

14 15 16 17 18 19 20 21 22

T
im

e 
(s

ec
s)

RAM size (MB)

Untraced
Reexecution

Ordinary replay
Extended replay with 2MB filter

(a)qsort (b) C4.5

Figure 2. Performance with varying RAM—actual and predicted

the time between events. Analysis of the traces showed that
when summed, the inter-event execution times considerably
exceeded the total execution time of the application. This
discrepancy is caused by a small element of mis-attribution
of user-level execution time to the application, which could
be compensated to some extent by careful calibration.

8 Conclusions

System call tracing can be a very effective way of cap-
turing an interactive workload. Trace-driven re-execution of
the application can give very accurate predictions of appli-
cation performance under varying configurations, but is not
always applicable because of hard-to-reproduce phenom-
ena. Trace replay is always applicable, but where paging
is significant, has poor predictive value. We have presented
a scheme which largely overcomes this problem.

The main remaining shortcoming of the approach is that
for some applications – those with very poor locality – the
trace capture overheads can be very large. This can be ame-
liorated to some extent by selecting an appropriate filter
size.

Clearly, further work is needed to turn this work into an
easy-to-use tool. Particular issues include reproducing syn-
chronisation constraints in multi-process workloads, han-
dling asynchronous signals, and handling events whose tim-
ing is determined externally.

References

[1] P. Ashton and J. Penny. A tool for visualizing the execution inter-
actions on a loosely-coupled distributed system.Software—Practice
and Experience, 25(10):1117–1140, October 1995.

[2] R. E. Barkley and C. F. Schimmel. A performance study of the
UNIX system V fork system call using CASPER.AT&T Tech. J.,
67(5):100–109, 1988.

[3] A. N. Burton and P. H. J. Kelly. Workload characterization using
lightweight system call tracing and reexecution. InIEEE Interna-
tional Performance, Computing and Communications Conference,
pages 260–266. IEEE, February 1998.

[4] A. N. Burton and P. H. J. Kelly. Tracing and reexecuting operat-
ing system calls for reproducible performance experiments. Journal
of Computers and Electrical Engineering—Special Issue on Perfor-
mance Evaluation of High Performance Computing and Computers,
26(3–4):261–278, April 2000.

[5] J. K. Hollingsworth, B. P. Miller, and J. Cargille. Dynamic program
instrumentation for scalable performance tools. InProceedings of
SHPCC’94, May 1994.

[6] Hughes Technologies Pty Ltd, P.O. Box 432, Main Beach, Queens-
land 4217, Australia. Mini SQL User Guide, 2.0v1 edition, July
1997.

[7] M. B. Jones. Interposition agents: Transparently interposing user
code at the system interface.Proc. 14th ACM Symposium on Oper-
ating System Principles, 27(5):80–93, Dec 1993.

[8] J. R. Larus. Abstract execution: A technique for efficiently tracing
programs. Software—Practice and Experience, 20(12):1241–1258,
December 1990.

[9] C. Merz and P. Murph. UCI repository of machine learn-
ing databases. http://www.ics.uci.edu/�mlearn/-
MLRepository.html, 1998.

[10] A. Poon. Performance prediction using file-system traces and mem-
ory access patterns. Master’s thesis, Department of Computing,
Imperial College of Science, Technology and Medicine, London,
United Kingdom, June 1997. MEng Final Report.

[11] J. R. Quinlan.C4.5: Programs for Machine Learning. The Morgan
Kaufman series in Machine Learning. Morgan Kaufman Publishers,
1993.

[12] A. J. Smith. Two methods for the efficient analysis of memory ad-
dress trace data.IEEE Transactions on Software Engineering, SE–
3(1):94–101, January 1977.

[13] C. Turbyfill, C. Orji, and D. Bitton. AS3AP: An ANSI SQL standard
scaleable and portable benchmark for relational database systems. In
J. Gray, editor,The Benchmark Handbook: for database and transac-
tion processing, chapter 4, pages 167–206. Morgan Kaufmann Pub-
lishers, Inc., 2929 Campus Drive, Suite 260, SanMateo, CA 94403,
USA, 1991.

8


