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.ukAbstra
tThis paper provides a brief overview of te
hniques and tools beingdeveloped for monitoring and predi
ting the performan
e of Unix server
on�gurations for given real-life workloads. We show how our system 
alltra
e me
hanism, 
alled Ultra, 
aptures a 
omplete tra
e of a pro
ess's
alls to the operating system with only minimal interferen
e to the systemunder study. On
e 
aptured, the tra
es 
an be used to reprodu
e the
aptured workload's behaviour in full.Rerunning su
h multi-pro
ess workloads from their tra
es is 
ompli-
ated be
ause the inter-dependen
ies between the a
tivities of the indi-vidual 
onstituent pro
esses must be reprodu
ed 
orre
tly if the overallbehaviour of the workload is to be reprodu
ed su

essfully. We showhow our approa
h 
an be extended to meet this requirement, and allowmulti-pro
ess workloads to be tra
ed and rerun. To illustrate the useful-ness of our tools, we present a 
ase study in whi
h our tra
es are used topredi
t the impa
t of �le system 
a
hing on a multi-pro
ess WWW server'sperforman
e.1 Introdu
tionOur aim in this work is to develop a tool for a system performan
e 
onsultantto use to 
hara
terize workloads that are 
omplex and subje
t to external in-
uen
es and stimuli whi
h 
annot be 
ontrolled, managed, or predi
ted easily.The 
onsultant would install the tool, and would monitor the system as it per-forms its normal duties. The 
onsultant would use the information 
apturedby the tool to evaluate the e�e
tiveness of 
hanges su
h as hardware upgrades,adjustments to the system's 
on�guration or tuning parameters, or workloadredistribution to improve performan
e.The evaluation methodology presented in this paper 
hara
terizes a workloadby the tra
e of its system 
alls. By rerunning the sequen
e of system 
alls in atra
e under di�erent 
onditions, it be
omes possible to study the performan
e ofthe workload under di�erent system 
on�gurations. We distinguish two modesof rerunning tra
es: tra
e replay and reexe
ution. These are des
ribed below.



Tra
e replay In this simple rerun mode, ea
h 
all in the tra
e is reissuedin turn, and user-level inter-system 
all exe
ution time is simulated by simplylooping for the appropriate period as re
orded in the tra
e. The a
tual timetaken to 
omplete tra
e replay depends on the system 
all servi
e times a
hievedby the system under test.Tra
e reexe
ution In some appli
ations, spinning to a

ount for user-modeexe
ution leads to ina

urate results be
ause the appli
ation intera
ts with theoperating system in other, less expli
it ways, for example, by 
ausing TLB missesor page faults, or by 
ushing operating system data from hardware 
a
hes. Wereprodu
e this behaviour by reexe
uting the original appli
ation 
ode.In order to get reprodu
ible results, we make sure that results returnedfrom system 
alls are re
orded in the tra
e. The reexe
uting appli
ation shouldbehave in a pre
isely reprodu
ible way sin
e it is fed pre
isely the same inputs.The tra
e needed here is simpler sin
e user-level exe
ution times are not re-quired. System 
all parameters need not be re
orded sin
e they will be suppliedby the reexe
uting appli
ation. Results, however, must usually be re
orded toensure that the appli
ation re
eives the same inputs.Although most appli
ations of interest 
an, at least in prin
iple, be reexe-
uted eÆ
iently, some behaviours are problemati
 and we return to this questionwhen we dis
uss future developments in Se
tion 6.1.Multipro
ess workloads Our earlier work [8, 9℄ fo
used on single-pro
essand sequential multi-pro
ess workloads. Here we examine workloads in whi
hseveral tra
ed pro
esses may be running 
on
urrently and intera
ting with oneanother. Ea
h pro
ess logs its system 
alls to a di�erent �le, so the tra
e isonly partially ordered. However, we have to arrange syn
hronisation betweenreexe
uting pro
esses for two reasons:1. where one pro
ess waited for another at tra
e 
apture time, we shouldreprodu
e this dependen
y at rerun so that only feasible exe
ution ordersare exer
ised.2. to keep the tra
e �le size and tra
e 
apture overheads small, we avoid log-ging data read from �les whenever possible, relying instead on reexe
utingthe read. For this to work, we have syn
hronise to ensure that the 
orre
tdata are used.1.1 Contributions of this paperThe fo
us of this paper is the question of how to tra
e and rerun (both replayand reexe
ute) multi-pro
ess appli
ations:1. We identify the 
onstraints and problems in replaying or reexe
uting 
on-
urrent tra
es, and demonstrate that timestamping system 
all entry andexit is not adequate2. We present an o�-line algorithm for �nding syn
hronisation dependen
esbetween tra
es, using semanti
 knowledge of the tra
ed operations



3. We des
ribe how modest 
hanges to the OS kernel were systemati
allyapplied to 
apture the information ne
essary to determine pre
eden
e be-tween dependent operations4. We present our experien
e in developing an eÆ
ient te
hnique for repro-du
ing the partial pro
ess dependen
e order at rerun timeFinally, we demonstrate the e�e
tiveness of the performan
e evaluation toolusing a multi-pro
ess WWW server running with varying amounts of RAM for �le
a
hing, and evaluate the predi
tive value of the te
hnique.2 Related workTra
e 
apture has been used for many years for performan
e evaluation. The
riti
al aspe
t of our work lies in 
apturing just enough information, in this 
asesystem 
alls, to be able to re
onstru
t the 
omplete 
omputation by reexe
ution.Rather than supplanting lower-level tra
e 
apture and analysis, for example byhardware monitoring or modifying mi
ro
ode, this fa
ilitates it by making areprodu
ible re
ord of the original workload. We therefore fo
us our literaturereview on tra
e 
apture and reexe
ution.Inter
epting system 
alls The ptra
e() system 
all provides a me
hanismfor one pro
ess to monitor the system 
all a
tivity of another, but in
urs largeoverheads [8℄. Jones [11, 12℄ des
ribes a general te
hnique for interposing agentsbetween an appli
ation and the operating system using a generi
 me
hanism toredire
t 
alls to a spe
i�ed handler. Ashton and Penny [1℄ developed INMON,an \intera
tion network monitor", designed to tra
e the a
tivity in the kernel
aused by individual user a
tions. Tools of this nature 
omplement our work inthat they provide an insight to a
tivity within the kernel 
aused by a workload,whereas we report tra
e 
apture in order to 
hara
terize the workload.File a

ess tra
e studies Ousterhout et al. [13℄, Baker et al. [3℄ and Bozmanet al. [7℄ used tra
es in �le system performan
e analysis. Of more interestis DFSTra
e, used by Mummert and Satyanarayanan [15℄ in the evaluationof the Coda �le system, sin
e they also replayed the tra
es using the timinginformation given by the tra
e. Instead of modifying the operating systemkernel, Tourigny [17℄ and Blaze [6℄ exploited a remote �le system ar
hite
tureto obtain tra
es of �le system a
tivity by monitoring the intera
tions between
lients and server.By 
ontrast, we aim in this paper to 
apture the entire system 
all tra
e,and to use it to study the overall system performan
e by using it to reexe
utethe appli
ation.Logging reexe
ution for fault-toleran
e Logging for reexe
ution or roll-ba
k has long been used for re
overy from faults, and is 
ommon in transa
tionpro
essing systems. Closer to our work are attempts to do this via a standardUnix-like API; an interesting example is the Qui
kSilver system [16℄. When
on
urrent pro
esses are involved, te
hniques from 
he
kpointing in distributedsystems (e.g., see Johnson and Zwaenepoel [10℄) will also be relevant.



Replay for debugging The problem of reexe
ution of parallel Unix pro-
esses is similar to that of replaying parallel programs (e.g., see LeBlan
 andMellor-Crummey [14℄) for debugging purposes. Note, though, that we need tobe able to reprodu
e the original exe
ution time as a

urately as possible.Finally, Bitar [5℄ gives a useful review of the validity issues in tra
e-drivensimulation of 
on
urrent systems.3 ULTraFor our approa
h to be viable and attra
tive, the tool must in
ur minimum riskand interferen
e to the system under examination, provide enough informationfor the performan
e tuning me
hanisms to be exer
ised properly, and lead toresults having adequate predi
tive a

ura
yTra
e 
apture Ultra (User Level Tra
ing) inter
epts system 
alls and writestra
e information to a tra
e �le. Its performan
e depends on two key fa
tors:1. an eÆ
ient me
hanism for inter
epting the workload's system 
alls,2. a bu�ering s
heme to redu
e the number of write operations required tore
ord the tra
e.It is the se
ond fa
tor whi
h 
ompli
ates rerunning multi-pro
ess be
ause ea
hpro
ess has its own tra
e �le, and therefore the tra
e is only partially ordered.To be easy to use, we need a simple me
hanism for 
ontrolling tra
ing.Having 
onsidered various alternatives, we 
hose to substitute the dynami
ally-linked standard shared library providing Unix system 
alls. In the Ultra ver-sion the system 
all stubs are extended with modi�
ations for tra
e 
apture andreexe
ution.3.1 Tra
e reexe
utionIn order to reprodu
e both the workload's expli
it and impli
it intera
tions withthe operating system, the original appli
ation's 
ode is reexe
uted. In order forthis to work, the appli
ation's environment must be re
reated from the tra
es.System 
alls are reissued but the values returned to the appli
ation are takenfrom the tra
e. Some system 
alls, however, will return di�erent values be
ause,for example, the 
all returns a kernel-
reated handle for some resour
e (e.g.,fork()). In general, there is no way of ensuring that when the 
all is reissued,the kernel sele
ts the same value. Calls of this type are handled by keeping atranslation table mapping tra
e 
apture values to tra
e reexe
ution values.Handling syn
hronization A more important problem is that any inter-pro
ess syn
hronization at tra
e 
apture time must be honoured. This syn
hro-nization 
an be either expli
it, or impli
it:Expli
it this o

urs when, at tra
e 
apture time, one pro
ess waited for an-other.



Impli
it this o

urs when one pro
ess read data (e.g., �le data or metadata)whi
h were modi�ed by another pro
ess. The pro
esses may not havesyn
hronized expli
itly, and the e�e
t we are trying to reprodu
e is theout
ome of a ra
e.The key issue is that for reexe
ution to su

eed, we must ensure that thesesyn
hronizations are reprodu
ed and the pro
esses enter ea
h 
riti
al regionin the same order so that the overall behaviour of the workload is preserved.This 
an over
onstrain the order of events during reexe
ution, sin
e as far asan appli
ation is 
on
erned it does not always matter in whi
h order the eventso

ur, for example, when writing re
ords to a log �le.Identifying inter-dependen
ies We post-pro
ess the tra
es to identify anydependen
ies between the pro
esses in the workload. In general, the order ofa
tions performed by two pro
esses must be reprodu
ed if they both refer tothe same obje
t, and one of them modi�es the obje
t. To do this we modi�edthe operating system kernel to timestamp ea
h operation on the underlyingresour
es. This instrumentation must be positioned 
arefully in the kernel fortwo reasons:1. if the timestamps were re
orded at user-level the pro
ess 
ould be de-s
heduled between this point and when the operation is initiated. In theintervening period another pro
ess 
ould a

ess the resour
e.2. the order in whi
h the operations on a resour
e are started is not ne
essar-ily the same as that in whi
h they terminate. This is be
ause operationsmay overlap in the kernel, and the order in whi
h the requests are pro-
essed may depend on other fa
tors, e.g., the 
urrent position of a diskarm. The instrumentation to a
quire the timestamps must be positionedat the point(s) were the operation is 
ommitted.The modi�
ations are very straightforward, few in number, and 
an be appliedsystemati
ally (see Se
tion 4).Resour
e granularity We 
ontrol the degree we allow the global ordering ofevents during rerun to diverge from that at tra
e 
apture time by varying thegranularity of what we 
onsider an obje
t. For example, if we are interested inreprodu
ing the global order of events, we would 
onsider the entire operatingsystem kernel as a single resour
e. It is more useful, however, to relax theordering during rerun as mu
h as possible so as to allow the workload to exe
uteas naturally as possible on the new 
on�guration. Providing the order of eventson ea
h resour
e is preserved, the global ordering of the events during rerun 
anbe relaxed.For our purposes it is suÆ
ient to 
onsider just the �les (inodes) as theresour
es in the system. We annotated the tra
e re
ords for ea
h operationwith its timestamp. Figure 3.1 shows an example in whi
h a single resour
eis used by �ve pro
esses. The �gure shows the user �le des
riptor tables and�le table entries that would be 
onstru
ted by a 
onventional Unix kernel [2℄.Pro
esses P1 and P2 are des
ended from a 
ommon an
estor that opened the �lefor reading, and ea
h a

esses the �le using an inherited �le des
riptor. Similarly



for pro
esses P4 and P5. Pro
ess P3 opened the �le independently for writing.Events on other resour
es are not shown sin
e these 
an pro
eed independently.In this example there are a number of di�erent handles, or �le des
riptors,asso
iated with the �le. Operations using the same �le des
riptor must be se-quen
ed 
orre
tly even in the 
ase of reads be
ause the �le pointer is advan
edas a side e�e
t. Reads using distin
t �le des
riptors should be allowed to exe
utein any order, providing their ordering relative to the writes is preserved. How-ever, sin
e the tra
es re
ord only the sequen
e of operations on the underlying�le, the events must be rerun in the order shown. We term this 
oarse rerun.
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Figure 1: Coarse vs �ne dependen
e analysis. The left-hand graph shows the
oarsely ordered dependen
ies for a single resour
e, the right-hand graph showsthe same sequen
e of events ordered using the �ne dependen
e analysis.We 
an relax the 
onstraints imposed by 
oarse ordering by post-pro
essingthe tra
es. In this pro
edure the tra
es are fed through an analyzer whi
h simu-lates the e�e
ts of the �le system related operations on the kernel's tables. Thisallows us to identify reads whi
h use 
ommon �le des
riptors, and to arrange forthese operations to be sequen
ed 
orre
tly. Reads using other �le des
riptors areallowed to pro
eed independently. Figure 3.1 shows on the right hand side thesame set of operations, but with the revised dependen
ies after post-pro
essingthe tra
es. It 
an be seen that under this ordering the workload is allowedgreater freedom to exe
ute naturally in that reads by pro
esses P1 and P2 areallowed to pro
eed independently of the reads by pro
esses P4 and P5. Note,however, that the pair of pro
esses P1 and P2 (and also P4 and P5) must 
oordi-nate their reads be
ause they share the same �le pointer. What we have done isto use semanti
 knowledge of the Unix kernel to identify whi
h reads are trulyindependent. Potentially, we 
ould re�ne the post-pro
essor to identify readsand writes whi
h refer to distin
t regions of the �le. This would allow us torelax the relative ordering of these operations. We term this �ne rerun.



3.2 Tra
e replayIn this form of tra
e rerun, we simply reissue the system 
alls made by the orig-inal workload, and we simulate user-level exe
ution time by spinning on a loopfor the appropriate period. We use the same te
hniques as tra
e reexe
utionto handle inter-pro
ess syn
hronization. Tra
e replay exer
ises the operatingsystem as before, but as the user-level appli
ation 
ode is not exe
uted we 
an-not reprodu
e behaviour whi
h depends on pro
esses' memory a

ess patterns.Thus, tra
e replay is potentially less a

urate than tra
e reexe
ution be
ausewe 
annot reprodu
e paging, 
a
hing, TLB, et
. e�e
ts. The extent to whi
hthis is signi�
ant depends on the 
hara
teristi
s of the workload.Measuring time - a

ounting for pre-emption For tra
e replay to bea

urate we must ensure that the system 
alls are reissued at the 
orre
t rate.This happens naturally for tra
e reexe
ution, but for tra
e replay we need a

u-rate, high resolution measurements of the pro
esses' user-level inter-system 
allexe
ution times. This valuable information is not provided in standard Uniximplementations (user time is measured by sampling every few millise
onds).We a

ount for user time in the presen
e of other pro
esses by modifyingthe kernel to update a timer in its pro
ess table entry on ea
h 
ontext swit
hto, or from, user mode. To keep the overhead to a minimum, the 
ost of readingthe 
lo
k should be low. We des
ribe how this is a
hieved in our implemen-tation in se
tion 4. This provides a

ounting for user-mode exe
ution time at
lo
k-
y
le resolution. The 
ounter 
ould be a

essed via a system 
all, but weimprove performan
e by avoiding this. Instead, immediately prior to return-ing from a system 
all the kernel writes the times to the ultra area, a small,pre-determined area of the pro
ess's user level address spa
e reserved for thispurpose. When the system 
all returns, these times 
an be read from the regionby Ultra, and re
orded in the tra
e. It should be noted that if the appli
ation isnot being tra
ed, then the times are simply ignored. The lo
ation of this regionis 
arefully 
hosen (for example, at the base of the sta
k) so that its presen
e istransparent to both tra
ed and untra
ed appli
ations.4 Implementing ULTraUltra is 
urrently implemented as two 
omponents: a substitute for the lib
(version 5.3.12) shared library running under Linux version 2.0.35, and a smallnumber of kernel modi�
ations. In addition we have developed a suite of toolsfor analyzing our tra
es.Kernel modi�
ations The Linux system 
all me
hanism was modi�ed toin
lude the time measurement extensions des
ribed in Se
tion 3.2. To measuretime with high resolution and low overheads, we exploit the Pentium pro
es-sor's 64 bit Time Stamp 
ounter. This is in
remented on every 
lo
k 
y
le,and 
an be read in a single instru
tion (rdts
). This allows us to obtain �ne-grained times very eÆ
iently. We use this feature to determine the number of
lo
k 
y
les a pro
ess spends exe
uting at user level.We also instrumented the kernel to generate timestamps for the resour
esused by the workload. We identi�ed the 
riti
al regions within the kernel where



it was important that we re
ord the order in whi
h events o

urred to be thosethat involved operations on inodes. About 60 points were identi�ed and in-strumentation was inserted to generate and assign a timestamp ea
h time theseoperations were performed. We 
ould have used a simple 
ounter, but insteadwe used the value reported by rdts
.The user-level exe
ution times and resour
e a
quisition timestamps were
ommuni
ated to the user-level 
omponent of Ultra through the reservedultra area des
ribed earlier. In all, the modi�
ations were modest, amountingto about 300 lines of C and Pentium assembler.The library This 
omponent is responsible for marshalling and writing thetra
e re
ords. In a na��ve implementation, the tra
e re
ords would be writtenout as soon immediately. Doing so would double the number of real system
alls made by the workload, leading to poor performan
e. Consequently bu�er-ing is used to redu
e this overhead. Surprisingly, bu�ering is Ultra's mainsour
e of 
omplexity. The areas most a�e
ted are pro
ess 
reation ((v)fork())and program invo
ation (exe
ve()) where the bu�er must be handled 
arefullyto prote
t it from 
orruption. Tra
e 
apture, reexe
ution, and replay are alla�e
ted, but there is insuÆ
ient spa
e to explain the details here.4.1 Implementing tra
e rerunAn important 
onsequen
e of our de
ision to use bu�ering to improve perfor-man
e is that ea
h pro
ess in the workload has its own tra
e, and thereforethe tra
es are only partially ordered. We post-pro
ess the tra
es to identify thedependen
ies between the pro
esses. The tra
es are modi�ed so that re
ords forsystem 
alls whi
h use shared resour
es are augmented with the identity of theoperations on whi
h they depend. The rerunning pro
esses syn
hronize theira

esses to the resour
es using a table in shared memory. Entries are posted inthe table when a pro
ess 
ompletes an operation. A pro
ess about to attemptan operation examines the table to determine whether the events on whi
h itdepends have 
ompleted. If so, then it initiates the operation, otherwise it waits(by yielding the Cpu) until the events in question have been posted.5 Using ULTra to predi
t performan
eChoi
e of ben
hmark Ultra is designed for workload 
hara
terisation in sit-uations where the appli
ation is intera
ting with its environment in 
ompli
atedways whi
h make it diÆ
ult to redo performan
e experiments with pre
isely re-produ
ible results. However, for the purposes of this paper, we need to be ableto 
ompare the exe
ution time of a parti
ular workload with the exe
ution timeusing replay or reexe
ution of an Ultra tra
e. Thus we need to be able toreprodu
e the a
tual workload as well.We 
hose the apa
he web server as the ben
hmark in order to over
ome thisproblem; it has the advantage that we 
an rerun it with a repeated sequen
e ofHttp \Get" requests, and get exa
tly the same behaviour (a simple illustra-tive example of a situation where this would not work would be where apa
heis 
on�gured to operate as a WWW proxy 
a
he; it is diÆ
ult to get pre
iselyreprodu
ible results be
ause 
a
hed data expires as time elapses).



Two workloads We 
on�gured apa
he (version 1.2b6) to manage a 
opy ofthe 11,110 managed by the WWW server of the Advan
ed Languages and Ar
hi-te
tures (ALA) se
tion of the Department of Computing at Imperial College.This amounted to approximately 175MB. The apa
he server was 
on�gured torun in multi-pro
ess mode, with �ve pro
esses to handle the Http requestsfrom the 
lients. In order to 
ondu
t repeatable experiemnts, a set of simple
lients running on the same Cpu were used to issue a sequen
e of 5,000 requestsderived from the a

ess logs of the ALA server. Deriving the requests in thisway ensured that the patterns of a

ess to the do
uments were realisti
.In order to illustrate a ri
her range of behaviours, a further workload forapa
he was used. This workload was designed to have higher demands on mem-ory (see `Con�guration modi�
ation' below). In this variant, the server was 
on-�gured to manage about 4,900 do
uments, amounting to approximately 32MB.A list of queries was 
onstru
ted so that ea
h do
ument was a

essed on
e.Di�erent random permutations of this list was used by ea
h of the 
lients. Asbefore, apa
he was 
on�gured as �ve pro
esses.Con�guration modi�
ation apa
he is highly �le intensive, and there ispotential for 
a
hing sin
e 
ertain URLs are requested repeatedly during theexperiment. apa
he relies on the underlying �le system to 
a
he repeatedly-used �les, and this depends on having enough memory. As an illustration of thepotential value of the approa
h, we show here that the Ultra tra
e 
an be usedto predi
t the performan
e of the workload on 
on�gurations with a range ofRAM sizes. We booted Linux with various amounts of RAM, and 
ompared theexe
ution time of the a
tual workload with the time taken to replay the Ultratra
e, and to reexe
ute it. The same rerun tra
e was used for ea
h memory size,
aptured from a run with the minimum 8MB 
on�guration. Coarse orderingwas used when rerunning the tra
es.5.1 ResultsThe experiments reported here were performed on an unloaded IBM-
ompatiblePC with a 166 MHz Intel Pentium Cpu, 32MB of EDO RAM, and a 512KBpipeline burst-mode se
ondary 
a
he, running Linux version 2.0.25 (or variantsthereof). All appli
ation �le input and output was to a lo
al disk, with UltratraÆ
 dire
ted to a se
ond, lo
al disk. Elapsed times were measured usinga stati
ally linked instan
e of version 1.7 of the Gnu standard Unix timingutility, /usr/bin/time. apa
he was built using the default 
on�guration andmake options, though a small modi�
ation was made to the sour
e to ensurethat termination 
ould be handled 
onveniently.Figure 2 shows the a
tual and predi
ted time a
hieved by apa
he for thetwo workloads. It 
an be seen that both tra
e reexe
ution and tra
e replayare su

essfully predi
ting the e�e
t varying the availability of RAM has onapa
he's performan
e. The a

ura
y of the arti�
ial workload is 
onsiderablybetter than that for the ALA workload. The reason for this di�eren
e lies inhow the two workloads are a�e
ted by the �le 
a
he. It 
an be seen that theworking set of the ALA workload 
an be a

ommodated in memory for RAMsizes greater than or equal to 20MB. This is being identi�ed 
orre
tly by Ultra.Under Linux, �le system operations that 
an be satisi�ed from the 
a
he do notblo
k, and usually return dire
tly to the 
alling appli
ation. This a�e
ts the
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(a) ALA workload (b) Arti�
ial workloadFigure 2: apa
he performan
e with varying RAM|predi
ted and a
tualALA workload be
ause pro
esses whi
h have yielded are subje
t to followinge�e
ts 
aused by the yield me
hanism used to order the events during rerun:1. When a pro
ess yields, its dynami
 priority is 
leared. The Linux s
hed-uler does not re
al
ulate the pro
ess's priority until the time-sli
es of allrunnable pro
eeses in the systen have expired [4℄. One 
onsequen
e of thisis that a pro
ess may be for
ed to wait until long after the event for whi
hit is waiting has o

urred. This, in turn, 
an a�e
t the other pro
essesin the workload, whi
h may depend on events to be performed by thispro
ess.2. In this s
heme, there 
an be only one operation pending on a resour
e atany one time sin
e an event is not started until the previous ones have
ompleted fully. This ex
ludes the possibility of overlapping operations inthe kernel.In parti
ular, re
al
ulation of the pro
esses' priorities, and hen
e their oppor-tunity to run, is delayed. In 
ontrast, the arti�
ial workload has a very mu
hlarger working set, and therefore �le system operations blo
k more frequently.This allows the yielded pro
esses to exe
ute more frequently, thereby redu
ingthe e�e
ts of delays introdu
ed by the rerun me
hanism. Additionally, sin
ethere is less lo
ality in the arti�
ial workload the loss of opportunity to overlapoperations in the kernel is less signi�
ant. apa
he is parti
ularly a�e
ted bythese e�e
ts be
ause the pro
esses syn
hronize frequently using a lo
k �le to
oordinate their use of a shared network so
ket from whi
h the Http requestsare read.6 Con
lusionsWe have presented the design of Ultra an eÆ
ient, portable te
hnique for 
ap-turing tra
es of system 
all a
tivity of multi-pro
ess Unix workloads. Ultra'seÆ
ien
y is a
hieved by running at user level as part of the standard librarieslinked to appli
ations, and also by bu�ering the output of tra
e information.We des
ribe how we 
an determine the inter-pro
ess dependen
ies by post-pro
essing the tra
es, and instrumenting a small number of kernel 
riti
al re-gions.



An important area where Ultra may be applied usefully is in the perfor-man
e evaluation, tuning and 
omparison of operating systems and �le systems.We present a 
ase study illustrating this, and demonstrate that Ultra 
an beused to 
apture the workload without substantial interferen
e, and 
an be usedto give fairly a

urate predi
tions of the e�e
t of 
on�guration 
hanges on ap-pli
ation throughput.6.1 Further workPaging a
tivity Tra
e replay is potentially ina

urate 
ompared with re-exe
ution be
ause it does not 
apture paging behaviour. We are working onintrodu
ing additional instrumentation to tra
k a pro
ess's memory a

ess be-haviour. Preliminary results are very promising.Asyn
hronous signals Workload-determined signals, su
h as timer inter-rupts, are problemati
 sin
e there is potential for in
onsistent results when thetra
e is replayed on a faster or slower system. Implementation-determined sig-nals, su
h as syn
hronisation between pro
esses, are easily tra
ed. For reexe
u-tion, it is vital for the signal to be delivered at pre
isely the same instru
tionexe
ution point as during tra
e 
apture. Pre-emptively s
heduled threads 
anbe handled by a similar me
hanism.Given that it is diÆ
ult or impossible to 
reate a reexe
utable tra
e forabsolutely any appli
ation, our aim is to be able to dete
t whether an appli
ationbehaves in a way whi
h invalidates the tra
e.Referen
es[1℄ P. Ashton. The Amoeba intera
tion network monitor|initial results. Te
h-ni
al Report TR-COSC 09/95, Deptartment of Computer S
ien
e, Univ.of Canterbury, New Zealand, O
t 1995.[2℄ M. J. Ba
h. The Design of the UNIX Operating System. Prenti
e-Hall,1986.[3℄ M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirri�, and J. K.Ousterhout. Measurements of a distributed �le system. In Pro
. 13th ACMSymposium on Operating System Prin
iples, pages 198{212, O
t 1991.[4℄ M. Be
k, H. B�ohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Ver-worner. LINUX Kernel Internals. Addison-Wesley, se
ond edition edition,1998. Translated from the German.[5℄ P. Bitar and A. M. Despain. Multipro
essor 
a
he syn
hronisation; issues,innovations, evolution. Computer Ar
hite
ture News, 14(2), June 1986.13th Annual International Symposium on Computer Ar
hite
tures.[6℄ M. Blaze. NFS tra
ing by passive network monitoring. In USENIX WinterConferen
e, pages 333{334, 1992.[7℄ G. Bozman, H. Ghannad, and E. Weinberger. A tra
e-driven study of CMS�le referen
es. IBM Journal of Resear
h and Development, 35(5/6):815{828, Sept/Nov 1991.



[8℄ A. N. Burton and P. H. J. Kelly. Workload 
hara
terization usinglightweight system 
all tra
ing and reexe
ution. In IEEE InternationalPerforman
e, Computing and Communi
ations Conferen
e, pages 260{266.IEEE, February 1998.[9℄ A. N. Burton and P. H. J. Kelly. Tra
ing and reexe
uting operating system
alls for reprodu
ible performan
e experiments. Journal of Computers andEle
tri
al Engineering|Spe
ial Issue on Performan
e Evaluation of HighPerforman
e Computing and Computers, 1999. To appear.[10℄ D. Johnson and W. Zwaenepoel. Re
overy in distributed systems usingoptimisti
 message logging and 
he
kpointing. J. of Algorithms, (11), 1990.[11℄ M. B. Jones. Transparently Interposing User Code at the System Interfa
e.PhD thesis, S
hool of Computer S
ien
e, Carnegie Mellon University, Sept1992.[12℄ M. B. Jones. Interposition agents: Transparently interposing user 
ode atthe system interfa
e. Pro
. 14th ACM Symposium on Operating SystemPrin
iples, 27(5):80{93, De
 1993.[13℄ J. K.Ousterhout, H. D. Costa, D. Harrison, J. A. Knuze, M. Kupfer, andJ. G. Thompson. A tra
e-driven analysis of the UNIX 4.2BSD �le system.In Pro
. 10th ACM Symposium on Operating System Prin
iples, pages 15{24, De
 1985.[14℄ T. J. LeBlan
 and J. M. Mellor-Crummey. Debugging parallel programswith instant replay. IEEE Trans. on Computers, C-36(4):471{482, Apr.1987.[15℄ L. Mummert and M. Satyanarayanan. Long term distributed �le referen
etra
ing: Implementation and experien
e. Software|Pra
ti
e and Experi-en
e, 26(8):705{736, June 1996.[16℄ F. S
hmu
k and J. Wyllie. Experien
e with transa
tions in Qui
kSilver. InPro
. 13th ACM Symposium on Operating System Prin
iples, pages 239{53,O
t. 1991.[17℄ S. R. Tourigny. Chara
terising the workload of a distributed �leserver. Master's thesis, Deptartment Computational S
ien
e, Uni. ofSaskat
hewan, Canada, Sept 1988.


