Reproducing inter-process
synchronization for performance
prediction using lightweight system call
tracing

Ariel N Burton Paul H J Kelly

Department of Computing, Imperial College, London, UK
{anb,phjk}@doc.ic.ac.uk

Abstract

This paper provides a brief overview of techniques and tools being
developed for monitoring and predicting the performance of UNIX server
configurations for given real-life workloads. We show how our system call
trace mechanism, called ULTra, captures a complete trace of a process’s
calls to the operating system with only minimal interference to the system
under study. Once captured, the traces can be used to reproduce the
captured workload’s behaviour in full.

Rerunning such multi-process workloads from their traces is compli-
cated because the inter-dependencies between the activities of the indi-
vidual constituent processes must be reproduced correctly if the overall
behaviour of the workload is to be reproduced successfully. We show
how our approach can be extended to meet this requirement, and allow
multi-process workloads to be traced and rerun. To illustrate the useful-
ness of our tools, we present a case study in which our traces are used to
predict the impact of file system caching on a multi-process WWW server’s
performance.

1 Introduction

Our aim in this work is to develop a tool for a system performance consultant
to use to characterize workloads that are complex and subject to external in-
fluences and stimuli which cannot be controlled, managed, or predicted easily.
The consultant would install the tool, and would monitor the system as it per-
forms its normal duties. The consultant would use the information captured
by the tool to evaluate the effectiveness of changes such as hardware upgrades,
adjustments to the system’s configuration or tuning parameters, or workload
redistribution to improve performance.

The evaluation methodology presented in this paper characterizes a workload
by the trace of its system calls. By rerunning the sequence of system calls in a
trace under different conditions, it becomes possible to study the performance of
the workload under different system configurations. We distinguish two modes
of rerunning traces: trace replay and reexecution. These are described below.



Trace replay In this simple rerun mode, each call in the trace is reissued
in turn, and user-level inter-system call execution time is simulated by simply
looping for the appropriate period as recorded in the trace. The actual time
taken to complete trace replay depends on the system call service times achieved
by the system under test.

Trace reexecution In some applications, spinning to account for user-mode
execution leads to inaccurate results because the application interacts with the
operating system in other, less explicit ways, for example, by causing TLB misses
or page faults, or by flushing operating system data from hardware caches. We
reproduce this behaviour by reexecuting the original application code.

In order to get reproducible results, we make sure that results returned
from system calls are recorded in the trace. The reexecuting application should
behave in a precisely reproducible way since it is fed precisely the same inputs.

The trace needed here is simpler since user-level execution times are not re-
quired. System call parameters need not be recorded since they will be supplied
by the reexecuting application. Results, however, must usually be recorded to
ensure that the application receives the same inputs.

Although most applications of interest can, at least in principle, be reexe-
cuted efficiently, some behaviours are problematic and we return to this question
when we discuss future developments in Section 6.1.

Multiprocess workloads Our earlier work [8, 9] focused on single-process
and sequential multi-process workloads. Here we examine workloads in which
several traced processes may be running concurrently and interacting with one
another. Each process logs its system calls to a different file, so the trace is
only partially ordered. However, we have to arrange synchronisation between
reexecuting processes for two reasons:

1. where one process waited for another at trace capture time, we should
reproduce this dependency at rerun so that only feasible execution orders
are exercised.

2. to keep the trace file size and trace capture overheads small, we avoid log-
ging data read from files whenever possible, relying instead on reexecuting
the read. For this to work, we have synchronise to ensure that the correct
data are used.

1.1 Contributions of this paper

The focus of this paper is the question of how to trace and rerun (both replay
and reexecute) multi-process applications:

1. We identify the constraints and problems in replaying or reexecuting con-
current traces, and demonstrate that timestamping system call entry and
exit is not adequate

2. We present, an off-line algorithm for finding synchronisation dependences
between traces, using semantic knowledge of the traced operations



3. We describe how modest changes to the OS kernel were systematically
applied to capture the information necessary to determine precedence be-
tween dependent, operations

4. We present our experience in developing an efficient technique for repro-
ducing the partial process dependence order at rerun time

Finally, we demonstrate the effectiveness of the performance evaluation tool
using a multi-process WWW server running with varying amounts of RAM for file
caching, and evaluate the predictive value of the technique.

2 Related work

Trace capture has been used for many years for performance evaluation. The
critical aspect of our work lies in capturing just enough information, in this case
system calls, to be able to reconstruct the complete computation by reexecution.
Rather than supplanting lower-level trace capture and analysis, for example by
hardware monitoring or modifying microcode, this facilitates it by making a
reproducible record of the original workload. We therefore focus our literature
review on trace capture and reexecution.

Intercepting system calls The ptrace() system call provides a mechanism
for one process to monitor the system call activity of another, but incurs large
overheads [8]. Jones [11, 12] describes a general technique for interposing agents
between an application and the operating system using a generic mechanism to
redirect calls to a specified handler. Ashton and Penny [1] developed INMON,
an “interaction network monitor”, designed to trace the activity in the kernel
caused by individual user actions. Tools of this nature complement our work in
that they provide an insight to activity within the kernel caused by a workload,
whereas we report trace capture in order to characterize the workload.

File access trace studies Ousterhout et al. [13], Baker et al. [3] and Bozman
et al. [7] used traces in file system performance analysis. Of more interest
is DFSTrace, used by Mummert and Satyanarayanan [15] in the evaluation
of the Coda file system, since they also replayed the traces using the timing
information given by the trace. Instead of modifying the operating system
kernel, Tourigny [17] and Blaze [6] exploited a remote file system architecture
to obtain traces of file system activity by monitoring the interactions between
clients and server.

By contrast, we aim in this paper to capture the entire system call trace,
and to use it to study the overall system performance by using it to reexecute
the application.

Logging reexecution for fault-tolerance Logging for reexecution or roll-
back has long been used for recovery from faults, and is common in transaction
processing systems. Closer to our work are attempts to do this via a standard
Unix-like APT; an interesting example is the QuickSilver system [16]. When
concurrent, processes are involved, techniques from checkpointing in distributed
systems (e.g., see Johnson and Zwaenepoel [10]) will also be relevant.



Replay for debugging The problem of reexecution of parallel UNIX pro-
cesses is similar to that of replaying parallel programs (e.g., see LeBlanc and
Mellor-Crummey [14]) for debugging purposes. Note, though, that we need to
be able to reproduce the original execution time as accurately as possible.

Finally, Bitar [5] gives a useful review of the validity issues in trace-driven
simulation of concurrent systems.

3 ULTra

For our approach to be viable and attractive, the tool must incur minimum risk
and interference to the system under examination, provide enough information
for the performance tuning mechanisms to be exercised properly, and lead to
results having adequate predictive accuracy

Trace capture ULTra (User Level Tracing) intercepts system calls and writes
trace information to a trace file. Its performance depends on two key factors:

1. an efficient mechanism for intercepting the workload’s system calls,

2. a buffering scheme to reduce the number of write operations required to
record the trace.

It is the second factor which complicates rerunning multi-process because each
process has its own trace file, and therefore the trace is only partially ordered.

To be easy to use, we need a simple mechanism for controlling tracing.
Having considered various alternatives, we chose to substitute the dynamically-
linked standard shared library providing UNIX system calls. In the ULTra ver-
sion the system call stubs are extended with modifications for trace capture and
reexecution.

3.1 Trace reexecution

In order to reproduce both the workload’s explicit and implicit interactions with
the operating system, the original application’s code is reexecuted. In order for
this to work, the application’s environment must be recreated from the traces.
System calls are reissued but the values returned to the application are taken
from the trace. Some system calls, however, will return different values because,
for example, the call returns a kernel-created handle for some resource (e.g.,
fork()). In general, there is no way of ensuring that when the call is reissued,
the kernel selects the same value. Calls of this type are handled by keeping a
translation table mapping trace capture values to trace reexecution values.

Handling synchronization A more important problem is that any inter-
process synchronization at trace capture time must be honoured. This synchro-
nization can be either explicit, or implicit:

Explicit this occurs when, at trace capture time, one process waited for an-
other.



Implicit this occurs when one process read data (e.g., file data or metadata)
which were modified by another process. The processes may not have
synchronized explicitly, and the effect we are trying to reproduce is the
outcome of a race.

The key issue is that for reexecution to succeed, we must ensure that these
synchronizations are reproduced and the processes enter each critical region
in the same order so that the overall behaviour of the workload is preserved.
This can overconstrain the order of events during reexecution, since as far as
an application is concerned it does not always matter in which order the events
occur, for example, when writing records to a log file.

Identifying inter-dependencies We post-process the traces to identify any
dependencies between the processes in the workload. In general, the order of
actions performed by two processes must be reproduced if they both refer to
the same object, and one of them modifies the object. To do this we modified
the operating system kernel to timestamp each operation on the underlying
resources. This instrumentation must be positioned carefully in the kernel for
two reasons:

1. if the timestamps were recorded at user-level the process could be de-
scheduled between this point and when the operation is initiated. In the
intervening period another process could access the resource.

2. the order in which the operations on a resource are started is not necessar-
ily the same as that in which they terminate. This is because operations
may overlap in the kernel, and the order in which the requests are pro-
cessed may depend on other factors, e.g., the current position of a disk
arm. The instrumentation to acquire the timestamps must be positioned
at the point(s) were the operation is committed.

The modifications are very straightforward, few in number, and can be applied
systematically (see Section 4).

Resource granularity We control the degree we allow the global ordering of
events during rerun to diverge from that at trace capture time by varying the
granularity of what we consider an object. For example, if we are interested in
reproducing the global order of events, we would consider the entire operating
system kernel as a single resource. It is more useful, however, to relax the
ordering during rerun as much as possible so as to allow the workload to execute
as naturally as possible on the new configuration. Providing the order of events
on each resource is preserved, the global ordering of the events during rerun can
be relaxed.

For our purposes it is sufficient to consider just the files (inodes) as the
resources in the system. We annotated the trace records for each operation
with its timestamp. Figure 3.1 shows an example in which a single resource
is used by five processes. The figure shows the user file descriptor tables and
file table entries that would be constructed by a conventional UNIX kernel [2].
Processes P, and P, are descended from a common ancestor that opened the file
for reading, and each accesses the file using an inherited file descriptor. Similarly



for processes Py and Ps. Process P3 opened the file independently for writing.
Events on other resources are not shown since these can proceed independently.

In this example there are a number of different handles, or file descriptors,
associated with the file. Operations using the same file descriptor must be se-
quenced correctly even in the case of reads because the file pointer is advanced
as a side effect. Reads using distinct file descriptors should be allowed to execute
in any order, providing their ordering relative to the writes is preserved. How-
ever, since the traces record only the sequence of operations on the underlying
file, the events must be rerun in the order shown. We term this coarse rerun.

user file
descriptor table

file table entry ® Readevent " Write event

Figure 1: Coarse vs fine dependence analysis. The left-hand graph shows the
coarsely ordered dependencies for a single resource, the right-hand graph shows
the same sequence of events ordered using the fine dependence analysis.

We can relax the constraints imposed by coarse ordering by post-processing
the traces. In this procedure the traces are fed through an analyzer which simu-
lates the effects of the file system related operations on the kernel’s tables. This
allows us to identify reads which use common file descriptors, and to arrange for
these operations to be sequenced correctly. Reads using other file descriptors are
allowed to proceed independently. Figure 3.1 shows on the right hand side the
same set, of operations, but with the revised dependencies after post-processing
the traces. It can be seen that under this ordering the workload is allowed
greater freedom to execute naturally in that reads by processes P, and P, are
allowed to proceed independently of the reads by processes Py and Ps. Note,
however, that the pair of processes P; and P» (and also Py and P5) must coordi-
nate their reads because they share the same file pointer. What we have done is
to use semantic knowledge of the UNIX kernel to identify which reads are truly
independent. Potentially, we could refine the post-processor to identify reads
and writes which refer to distinct regions of the file. This would allow us to
relax the relative ordering of these operations. We term this fine rerun.



3.2 Trace replay

In this form of trace rerun, we simply reissue the system calls made by the orig-
inal workload, and we simulate user-level execution time by spinning on a loop
for the appropriate period. We use the same techniques as trace reexecution
to handle inter-process synchronization. Trace replay exercises the operating
system as before, but as the user-level application code is not executed we can-
not reproduce behaviour which depends on processes’ memory access patterns.
Thus, trace replay is potentially less accurate than trace reexecution because
we cannot reproduce paging, caching, TLB, etc. effects. The extent to which
this is significant depends on the characteristics of the workload.

Measuring time - accounting for pre-emption For trace replay to be
accurate we must ensure that the system calls are reissued at the correct rate.
This happens naturally for trace reexecution, but for trace replay we need accu-
rate, high resolution measurements of the processes’ user-level inter-system call
execution times. This valuable information is not provided in standard Unix
implementations (user time is measured by sampling every few milliseconds).

We account for user time in the presence of other processes by modifying
the kernel to update a timer in its process table entry on each context switch
to, or from, user mode. To keep the overhead to a minimum, the cost of reading
the clock should be low. We describe how this is achieved in our implemen-
tation in section 4. This provides accounting for user-mode execution time at
clock-cycle resolution. The counter could be accessed via a system call, but we
improve performance by avoiding this. Instead, immediately prior to return-
ing from a system call the kernel writes the times to the ultra_area, a small,
pre-determined area of the process’s user level address space reserved for this
purpose. When the system call returns, these times can be read from the region
by ULtra, and recorded in the trace. It should be noted that if the application is
not being traced, then the times are simply ignored. The location of this region
is carefully chosen (for example, at the base of the stack) so that its presence is
transparent to both traced and untraced applications.

4 Implementing ULTra

UvTra is currently implemented as two components: a substitute for the 1ibc
(version 5.3.12) shared library running under LINUX version 2.0.35, and a small
number of kernel modifications. In addition we have developed a suite of tools
for analyzing our traces.

Kernel modifications The LINUX system call mechanism was modified to
include the time measurement extensions described in Section 3.2. To measure
time with high resolution and low overheads, we exploit the PENTIUM proces-
sor’s 64 bit Time Stamp counter. This is incremented on every clock cycle,
and can be read in a single instruction (rdtsc). This allows us to obtain fine-
grained times very efficiently. We use this feature to determine the number of
clock cycles a process spends executing at user level.

We also instrumented the kernel to generate timestamps for the resources
used by the workload. We identified the critical regions within the kernel where



it was important that we record the order in which events occurred to be those
that involved operations on inodes. About 60 points were identified and in-
strumentation was inserted to generate and assign a timestamp each time these
operations were performed. We could have used a simple counter, but instead
we used the value reported by rdtsc.

The user-level execution times and resource acquisition timestamps were
communicated to the user-level component of ULTra through the reserved
ultra_area described earlier. In all, the modifications were modest, amounting
to about 300 lines of C and PENTIUM assembler.

The library This component is responsible for marshalling and writing the
trace records. In a naive implementation, the trace records would be written
out as soon immediately. Doing so would double the number of real system
calls made by the workload, leading to poor performance. Consequently buffer-
ing is used to reduce this overhead. Surprisingly, buffering is ULTra’s main
source of complexity. The areas most affected are process creation ((v)fork())
and program invocation (execve()) where the buffer must be handled carefully
to protect it from corruption. Trace capture, reexecution, and replay are all
affected, but there is insufficient space to explain the details here.

4.1 Implementing trace rerun

An important consequence of our decision to use buffering to improve perfor-
mance is that each process in the workload has its own trace, and therefore
the traces are only partially ordered. We post-process the traces to identify the
dependencies between the processes. The traces are modified so that records for
system calls which use shared resources are augmented with the identity of the
operations on which they depend. The rerunning processes synchronize their
accesses to the resources using a table in shared memory. Entries are posted in
the table when a process completes an operation. A process about to attempt
an operation examines the table to determine whether the events on which it
depends have completed. If so, then it initiates the operation, otherwise it waits
(by yielding the CpU) until the events in question have been posted.

5 Using ULTra to predict performance

Choice of benchmark Uttra is designed for workload characterisation in sit-
uations where the application is interacting with its environment in complicated
ways which make it difficult to redo performance experiments with precisely re-
producible results. However, for the purposes of this paper, we need to be able
to compare the execution time of a particular workload with the execution time
using replay or reexecution of an ULTra trace. Thus we need to be able to
reproduce the actual workload as well.

We chose the apache web server as the benchmark in order to overcome this
problem; it has the advantage that we can rerun it with a repeated sequence of
HrTP “GET” requests, and get exactly the same behaviour (a simple illustra-
tive example of a situation where this would not work would be where apache
is configured to operate as a WWW proxy cache; it is difficult to get precisely
reproducible results because cached data expires as time elapses).



Two workloads We configured apache (version 1.2b6) to manage a copy of
the 11,110 managed by the WWW server of the Advanced Languages and Archi-
tectures (ALA) section of the Department of Computing at Imperial College.
This amounted to approximately 175MB. The apache server was configured to
run in multi-process mode, with five processes to handle the HTTP requests
from the clients. In order to conduct repeatable experiemnts, a set of simple
clients running on the same CPU were used to issue a sequence of 5,000 requests
derived from the access logs of the ALA server. Deriving the requests in this
way ensured that the patterns of access to the documents were realistic.

In order to illustrate a richer range of behaviours, a further workload for
apache was used. This workload was designed to have higher demands on mem-
ory (see ‘Configuration modification’ below). In this variant, the server was con-
figured to manage about 4,900 documents, amounting to approximately 32MB.
A list of queries was constructed so that each document was accessed once.
Different random permutations of this list was used by each of the clients. As
before, apache was configured as five processes.

Configuration modification apache is highly file intensive, and there is
potential for caching since certain URLs are requested repeatedly during the
experiment. apache relies on the underlying file system to cache repeatedly-
used files, and this depends on having enough memory. As an illustration of the
potential value of the approach, we show here that the ULTra trace can be used
to predict the performance of the workload on configurations with a range of
RAM sizes. We booted LINUX with various amounts of RAM, and compared the
execution time of the actual workload with the time taken to replay the ULTra
trace, and to reexecute it. The same rerun trace was used for each memory size,
captured from a run with the minimum 8MB configuration. Coarse ordering
was used when rerunning the traces.

5.1 Results

The experiments reported here were performed on an unloaded IBM-compatible
PC with a 166 MHz Intel PENTIUM CPU, 32MB of EDO RAM, and a 512KB
pipeline burst-mode secondary cache, running LINUX version 2.0.25 (or variants
thereof). All application file input and output was to a local disk, with ULTra
traffic directed to a second, local disk. FElapsed times were measured using
a statically linked instance of version 1.7 of the GNU standard UNIX timing
utility, /usr/bin/time. apache was built using the default configuration and
make options, though a small modification was made to the source to ensure
that termination could be handled conveniently.

Figure 2 shows the actual and predicted time achieved by apache for the
two workloads. It can be seen that both trace reexecution and trace replay
are successfully predicting the effect varying the availability of RAM has on
apache’s performance. The accuracy of the artificial workload is considerably
better than that for the ALA workload. The reason for this difference lies in
how the two workloads are affected by the file cache. It can be seen that the
working set of the ALA workload can be accommodated in memory for RAM
sizes greater than or equal to 20MB. This is being identified correctly by ULTra.
Under LINUX, file system operations that can be satisified from the cache do not
block, and usually return directly to the calling application. This affects the



2000 —

Untraced execution time —— 3 Untraced execution time ——
Time predicted by reexecution -+ Time predicted by reexecution -+
’\ Time predicted by rdtsc -= * Time predicted by rdtsc -=

1500 |

500

400 |

300
1000

Time (secs)
Time (secs)

200

500 -
100 -

5 10 15 20 25 30 35 5 10 15 20 25 30 35
RAM size (MB) RAM size (MB)

(a) ALA workload (b) Artificial workload

Figure 2: apache performance with varying RAM—predicted and actual

ALA workload because processes which have yielded are subject to following
effects caused by the yield mechanism used to order the events during rerun:

1. When a process yields, its dynamic priority is cleared. The LINUX sched-
uler does not recalculate the process’s priority until the time-slices of all
runnable proceeses in the systen have expired [4]. One consequence of this
is that a process may be forced to wait until long after the event for which
it is waiting has occurred. This, in turn, can affect the other processes
in the workload, which may depend on events to be performed by this
process.

2. In this scheme, there can be only one operation pending on a resource at
any one time since an event is not started until the previous ones have
completed fully. This excludes the possibility of overlapping operations in
the kernel.

In particular, recalculation of the processes’ priorities, and hence their oppor-
tunity to run, is delayed. In contrast, the artificial workload has a very much
larger working set, and therefore file system operations block more frequently.
This allows the yielded processes to execute more frequently, thereby reducing
the effects of delays introduced by the rerun mechanism. Additionally, since
there is less locality in the artificial workload the loss of opportunity to overlap
operations in the kernel is less significant. apache is particularly affected by
these effects because the processes synchronize frequently using a lock file to
coordinate their use of a shared network socket from which the HTTP requests
are read.

6 Conclusions

We have presented the design of ULTra an efficient, portable technique for cap-
turing traces of system call activity of multi-process UNIX workloads. ULTra’s
efficiency is achieved by running at user level as part of the standard libraries
linked to applications, and also by buffering the output of trace information.
We describe how we can determine the inter-process dependencies by post-
processing the traces, and instrumenting a small number of kernel critical re-
gions.



An important area where ULTra may be applied usefully is in the perfor-
mance evaluation, tuning and comparison of operating systems and file systems.
We present a case study illustrating this, and demonstrate that ULTra can be
used to capture the workload without substantial interference, and can be used
to give fairly accurate predictions of the effect of configuration changes on ap-
plication throughput.

6.1 Further work

Paging activity Trace replay is potentially inaccurate compared with re-
execution because it does not capture paging behaviour. We are working on
introducing additional instrumentation to track a process’s memory access be-
haviour. Preliminary results are very promising.

Asynchronous signals Workload-determined signals, such as timer inter-
rupts, are problematic since there is potential for inconsistent results when the
trace is replayed on a faster or slower system. Implementation-determined sig-
nals, such as synchronisation between processes, are easily traced. For reexecu-
tion, it is vital for the signal to be delivered at precisely the same instruction
execution point as during trace capture. Pre-emptively scheduled threads can
be handled by a similar mechanism.

Given that it is difficult or impossible to create a reexecutable trace for
absolutely any application, our aim is to be able to detect whether an application
behaves in a way which invalidates the trace.

References

[1] P. Ashton. The Amoeba interaction network monitor—initial results. Tech-
nical Report TR-COSC 09/95, Deptartment of Computer Science, Univ.
of Canterbury, New Zealand, Oct 1995.

[2] M. J. Bach. The Design of the UNIX Operating System. Prentice-Hall,
1986.

[3] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K.
Ousterhout. Measurements of a distributed file system. In Proc. 13" ACM
Symposium on Operating System Principles, pages 198-212, Oct 1991.

[4] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Ver-
worner. LINUX Kernel Internals. Addison-Wesley, second edition edition,
1998. Translated from the German.

[5] P. Bitar and A. M. Despain. Multiprocessor cache synchronisation; issues,
innovations, evolution. Computer Architecture News, 14(2), June 1986.
13" Annual International Symposium on Computer Architectures.

[6] M. Blaze. NFS tracing by passive network monitoring. In USENIX Winter
Conference, pages 333-334, 1992.

[7] G.Bozman, H. Ghannad, and E. Weinberger. A trace-driven study of CMS
file references. IBM Journal of Research and Development, 35(5/6):815—
828, Sept/Nov 1991.



(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. N. Burton and P. H. J. Kelly. Workload characterization using
lightweight system call tracing and reexecution. In IEEE International

Performance, Computing and Communications Conference, pages 260—-266.
IEEE, February 1998.

A.N. Burton and P. H. J. Kelly. Tracing and reexecuting operating system
calls for reproducible performance experiments. Journal of Computers and
Electrical Engineering—Special Issue on Performance Evaluation of High
Performance Computing and Computers, 1999. To appear.

D. Johnson and W. Zwaenepoel. Recovery in distributed systems using
optimistic message logging and checkpointing. J. of Algorithms, (11), 1990.

M. B. Jones. Transparently Interposing User Code at the System Interface.
PhD thesis, School of Computer Science, Carnegie Mellon University, Sept
1992.

M. B. Jones. Interposition agents: Transparently interposing user code at
the system interface. Proc. 14" ACM Symposium on Operating System
Principles, 27(5):80-93, Dec 1993.

J. K.Ousterhout, H. D. Costa, D. Harrison, J. A. Knuze, M. Kupfer, and
J. G. Thompson. A trace-driven analysis of the UNIX 4.2BSD file system.
In Proc. 10" ACM Symposium on Operating System Principles, pages 15—
24, Dec 1985.

T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs
with instant replay. IEEE Trans. on Computers, C-36(4):471-482, Apr.
1987.

L. Mummert and M. Satyanarayanan. Long term distributed file reference
tracing: Implementation and experience. Software—Practice and Experi-
ence, 26(8):705-736, June 1996.

F. Schmuck and J. Wyllie. Experience with transactions in QuickSilver. In
Proc. 13" ACM Symposium on Operating System Principles, pages 239-53,
Oct. 1991.

S. R. Tourigny. Characterising the workload of a distributed file
server. Master’s thesis, Deptartment Computational Science, Uni. of
Saskatchewan, Canada, Sept 1988.



