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.ukAbstra
t. We have developed a prototype tool that supports instru-mentation of distributed Java appli
ations by on-the-
y deployment ofinterposition 
ode at user-sele
table program points. This paper exploresthe idea, originated in the Paradyn Performan
e Consultant, of system-ati
ally sear
hing for performan
e bottlene
ks by progressive re�nement.We present the 
allgraph sear
h algorithm in detail, and dis
uss a num-ber of short
omings with the approa
h, some of whi
h 
an be addressedby improving the sear
h strategy. We support our 
on
lusions with twoappli
ation examples. This is a report of work in progress, aimed atstimulating further investigation of this interesting approa
h.1 Introdu
tionThe idea of dynami
ally pat
hing instrumentation 
ode into a program while it isrunning immediately leads to the idea of deploying instrumentation in responseto earlier measurements. For diagnosing performan
e problems, the obje
tivein doing this is to dire
t the programmer towards opportunities for improvingperforman
e. The idea was pioneered in the Paradyn Performan
e Consultant [9℄,whi
h uses a 
allgraph-based bottlene
k sear
h strategy [4℄.This paper presents our progress in exploring this approa
h in the Java 
on-text. We address the following issues:{ Implementing dynami
 instrumentation within a Java Virtual Ma-
hine. Several options are available; our implementation used our VeneerVirtual JVM, whi
h o�ers the prospe
t of automati
ally optimising the bot-tlene
k 
ode on
e it has been identi�ed.{ The 
allgraph sear
h strategy. We give a detailed exposition of the 
all-graph sear
h strategy, whi
h 
lari�es some of the diÆ
ulties of the approa
h.{ Sear
h strategy enhan
ements. To address some of these diÆ
ulties,\deep start" enhan
ements to the 
allgraph strategy have been proposed [12℄.Random 
all-sta
k sampling has been shown to be e�e
tive but for Java itis diÆ
ult to implement; we study a 
all 
ount alternative.We demonstrate the usefulness of our prototype tools, Judi (Java utility fordynami
 instrumentation) and JBolt (Java bottlene
k lo
ator toolkit) usingtwo non-trivial appli
ations.2 Ba
kgroundThe Performan
e Consultant (PC), in Paradyn [9℄, stru
tures the sear
h forperforman
e \bottlene
ks" in terms of experiments; ea
h experiment tests a



hypothesis. A hypothesis is an assertion that the appli
ation spends a substantialamount of time behaving in some pathologi
al way whi
h might be addressed bythe performan
e engineer. Ea
h experiment is targeted on a \fo
us". For ea
hexperiment, the PC uses dynami
 instrumentation to 
olle
t data to evaluatewhether the experiment's hypothesis holds true for this fo
us.If an experiment results in support for the hypothesis at the spe
i�ed fo
us,a further experiment 
an be formulated to identify the problem more pre
isely.The experiment 
an be re�ned in two ways - by re�ning the hypothesis (forexample by distinguishing di�erent kinds of syn
hronisation problem), or byre�ning the fo
us. A natural fo
us re�nement is to test whether the problem iswithin a fun
tion, or within one of its 
allees. Other fo
us re�nements might beto distinguish parti
ular threads or transa
tion types.An alternative to using dynami
 instrumentation might be to instrumentthe binary to generate data on all possible hypotheses at all fo
i. The PC aimsto get essentially the same result, with mu
h lower overhead. The approa
hrelies on sampling, and works on long-running appli
ations provided behaviouris statisti
ally fairly stable (we return to this issue shortly). The PC monitors theinterferen
e 
aused by the instrumentation it inserts, and throttles the numberof ongoing experiments in order to keep the interferen
e within spe
i�ed limits.Re�ning the fo
us by tra
ing the appli
ation's 
allgraph 
on�nes the sear
h to
ode whi
h is a
tually exe
uted (explored in [4℄).For �nding CPU bottlene
ks, this approa
h is not 
learly better than 
onven-tional approa
hes, su
h as sampling the program 
ounter at random intervals.The real potential for the idea lies in bottlene
ks whi
h are harder to 
hara
terise| where instrumenting for all hypotheses would lead to ex
essive interferen
e.DynInst [3℄ is an example of a portable library for dynami
 instrumentation,derived from the dynami
 instrumentation te
hnology [6℄ developed as part ofParadyn. In DynInst, a \point" is a lo
ation in a program where instrumenta-tion 
an be inserted. A \snippet" is an abstra
t syntax tree representing someexe
utable 
ode whi
h is to be inserted into a program at a point. Snippets 
anin
lude 
onditionals, fun
tions 
alls, and loops. Snippets are translated to binaryinstru
tions then 
opied into an array in the appli
ation's address spa
e. Theappli
ation then has to be modi�ed to bran
h into the snippet 
ode, using 
odethey term a \trampoline".Dynami
 instrumentation for Java 
annot be implemented this way, with-out exposing low-level implementation details of the JVM (for example, pro�le-dire
ted re-optimisation). There are several alternative approa
hes:{ Re-de�ne the 
lass using the Java Debug Interfa
e (JDI) 
all VirtualMa
hine.redefineClasses(), introdu
ed in Sun's JDK 1.4. This approa
his used in ProbeMeister [10℄. The overhead to do this is reported to be around20 millise
onds for a small example, but in
reases with large 
lasses sin
emethods 
annot be rede�ned individually, and JIT optimisation must be re-done. To redu
e the overheads, Dmitriev [5℄ advo
ates re�ning the JDI witha 
all to rede�ne methods individually.{ Run the JVM in debugging mode, and set breakpoints to insert instru-mentation. This is the approa
h taken by Popovi
i et al [11℄. Histori
ally,



JVMs have run substantially slower than normal in debugging mode, whetherbreakpoints are present or not; modern JVMs appear to make this approa
hmore 
ompetitive.{ Run the Java appli
ation in a virtual JVM. This is the approa
hused in our Judi tool [16℄. We use the native JVM to exe
ute appli
ationbyte
ode as mu
h as possible, but have to inter
ept exe
ution in order toretain 
ontrol. The s
heme su�ers some overhead (see Se
tion 5) on exe
utionof all the appli
ation's 
ode (apart from system libraries), but runs with JIToptimisation.2.1 The Veneer Virtual Java Virtual Ma
hine (vJVM)When extending the Java platform, it is often desirable to implement new fea-tures dire
tly into the Java Virtual Ma
hine. However, su
h modi�
ations aretied to a spe
i�
 JVM, and the 
omplexity and size of many JVM implementa-tions 
an make this a diÆ
ult and time-
onsuming task. One way to over
omethe portability problem might be to write a JVM in Java, that runs on top of anunderlying JVM. This has been done before in proje
ts su
h as JavaInJava [14℄.However, su
h implementations have a tenden
y to be extremely slow, sin
e theyattempt to emulate all aspe
ts of a JVM.Our approa
h, similar to the Dynamo/Rio proje
ts [1, 2℄, is to build a JavaVirtual Ma
hine using Java that uses the underlying JVM to dire
tly exe
ute asmu
h of the program 
ode as possible, only seizing 
ontrol of the system whenwe wish the behaviour to deviate from that of the underlying JVM [17℄. It allowsus to run most of the appli
ation 
ode dire
tly (i.e. jumps to the 
orrespondingbyte
ode), but the vJVM maintains 
ontrol over exe
ution by inter
epting 
on-trol 
ow. Veneer is mu
h more powerful than is needed for dynami
 instrumenta-tion alone { our long-term goal is to use it to diagnose performan
e improvementopportunities automati
ally, then optimise dynami
ally.The 
ontrol 
ow is inter
epted by \fragmenting" ea
h method. There are anumber of di�erent fragmentation poli
ies: by basi
 blo
k, at method level (usedby the JBolt extension to JUDI, see Se
tion 3), and at RMI invo
ations (usedfor our work on RMI optimisation [17℄). The method body is split into blo
ks,and the method entry is repla
ed by an \exe
utor loop" that walks the 
ontrol
ow graph, invoking ea
h blo
k in turn. A method's 
ontrol 
ow graph 
an beupdated \on-the-
y" (i.e. as the appli
ation is running), allowing us to use thisas a framework for dynami
 instrumentation.The fragmentation pro
ess (whi
h is based on the SOOT framework [15℄)in
ludes use/def and liveness analyses. Ea
h fragment 
arries this as dependen
emetadata, whi
h 
an be used in a run-time optimiser.2.2 Java Utility for Dynami
 Instrumentation (JUDI)JUDI is a prototype dynami
 instrumentation tool for Java [16℄. It has a 
lientgraphi
al user interfa
e (GUI) whi
h 
onne
ts to a set of remote vJVM's run-ning fragmented 
ode. The GUI allows the user to browse the remote systems'methods, and to upload \instruments" to the remote systems, where they arepat
hed into the running 
ode. The instruments are simple Java obje
ts that 
an



be 
ompiled and loaded on-the-
y. The tool 
onsists of two 
omponents, whi
h
an run on separate hosts to avoid interferen
e:{ JUDI-StartApp is responsible for starting the appli
ation and registering itwith the RMI registry.{ JUDI-GUI allows the user to insert instruments dynami
ally into the appli-
ation.The instrumentation strategy used for the CPU Time bottlene
k sear
h (seeSe
tion 3) is designed to produ
e an in
lusive timing of instrumented methods.Instruments are pla
ed at the method entry point and at every return statementin the method. The instruments at the return statements are twinned with thesingle instrument at the entry, and when exe
uted obtain the elapsed time onthe HPTimer1 of the entry point instrument.JUDI's unit of instrumentation deployment is an \Instrumentation StrategyComponent" (ISC). This 
onsists of:{ A set of Instruments - sub
lasses of a generi
 Instrument plan blo
k. Instru-ments typi
ally start, stop and log timers, or generate a log entry re
ording
ontrol 
ow, or data values.{ An Instrumentation strategy. This is usually just whether the instrumentis to be exe
uted \before", \after", or \around" its target blo
k, and whetherit applies to the whole method, or every basi
 blo
k in the method.{ Instrumentation targets: the set of program obje
ts (methods, 
lasses)to whi
h the instrumentation strategy should be applied. If not the entireprogram, this is sele
ted expli
itly through the GUI.{ Instrumentation data 
lass: instruments generate data, usually either alog or some kind of histogram.{ Instrumentation analyser: this is a GUI 
omponent for viewing the re-sults from the experiment.3 The basi
 bottlene
k sear
h algorithmAutomati
 bottlene
k sear
h is implemented as a JUDI ISC 
alled JBolt, theJava bottlene
k lo
ator toolkit. Fig. 4 shows, in outline form, the automati
bottlene
k sear
h algorithm (des
ribed informally in [4℄). The algorithm startswith an appli
ation ready to run:{ It installs instrumentation at the root of the 
all graph (line 10), then allowsexe
ution to pro
eed.{ When an appli
ation thread exe
utes a timer instrument, the appli
ationthread blo
ks and the a
tive instrument obje
t is passed to the sear
h algo-rithm (line 19).{ The algorithm maintains a pro�le database whi
h re
ords instrumentationdata a

umulated so far. At line 24 the algorithm determines whether thenew measurement allows us to 
lassify this 
andidate program point as abottlene
k.1 The timer 
lass used to obtain in
lusive time measurements, HPTimer, was devel-oped by Kwok Yeung [17℄. It o�ers nanose
ond resolution.



{ When a bottlene
k method is identi�ed (line 25), we add it to the outputset (line 30), then the instrumentation is re�ned to determine whi
h, if any,of the method's 
allees is responsible (line 33).{ We may instead 
on
lude that we have enough data to de
ide this methodis not a bottlene
k (line 36). The instrument is therefore removed.{ Finally, we may de
ide to leave the instrument in pla
e to a

umulate furtherpro�le data.The output 
onsists of a list of bottlene
k methods, prioritised by severity andspe
i�
ity. This is 
onveniently presented to the user by 
olouring the nodes ofthe 
all graph, as shown in Fig. 2.The algorithm in Fig. 4 is in
omplete in two important ways:{ The algorithm fails to �nd some bottlene
ks { where a bottlene
k method is
alled from many di�erent points, but none of its 
allers is itself a bottlene
k(e.g. see Fig. 1). We return to this issue in Se
tion 4.{ The algorithm assumes that we know ea
h method's 
allees.3.1 Finding the 
allee setThe algorithm maintains two key data stru
tures:{ Fo
us: This is the set of methods whi
h have been identi�ed as bottlene
ks,and whose 
allees are being instrumented to determine whether a re�nedbottlene
k hypothesis holds { i.e. whether the problem lies in one of the
allees. Fo
us methods are not instrumented.{ Frontier: This is the set of methods 
urrently being instrumented. A methodis in the frontier if its 
aller is in the fo
us (we ignore re
ursion for simpli
ityof presentation).The problem is that this de�nition is retrospe
tive: by the time we �nd outthat a method is a bottlene
k, it is too late to instrument its 
allees. This is afundamental problem, but there are several measures whi
h help:1. We 
ould analyse ea
h method to �nd 
all sites where the target methodis stati
ally known. This te
hnique is used in Paradyn, but does not handleJava's prevalent virtual methods well. Callee methods identi�ed this way
an, in prin
iple, be added to the frontier as soon as the 
aller rea
hes thebottlene
k threshold. A method 
an be in
luded in the 
allee set but nota
tually 
alled, at the 
ost of some redundant instrumentation.2. We 
ould instrument ea
h bottlene
k method, with 
ode to re
ord its 
alleesand add them to the frontier. This is how Paradyn deals with virtual andindire
t method 
alls. This does lead to some interferen
e: the 
allee loggingoverheads are in
luded in the 
aller method measurement.3. We add a simple instrument to all methods, whi
h 
he
ks whether the 
alleris in the fo
us. If so, the 
allee is added to the frontier. Our 
urrent prototypeuses this te
hnique, but we plan to investigate alternatives.4. Some bottlene
k methods are exe
uted only on
e in a run of the appli
ation.To instrument their 
allees, we have to re-run the appli
ation. The needfor this is alleviated to some extent by augmenting the 
allgraph sear
h asdes
ribed in Se
tion 4.



5. We 
ould instrument the appli
ation to 
onstru
t its 
all graph, then re-runthe appli
ation and use this 
all graph to guide bottlene
k sear
h. The �rstrun would be slowed down due to heavy instrumentation, but the se
ondrun would su�er minimum interferen
e. This s
heme relies on the 
all graphbeing very similar on both runs. This is an attra
tive alternative strategyfor our prototype.3.2 Bottlene
k identi�
ation 
riterionThe obje
tive is to �nd and prioritise bottlene
ks. The 
riterion for in
ludingan 
andidate bottlene
k would ideally be the proportion of the appli
ation'stotal run-time attributable to that 
andidate. However, to dire
t the bottlene
ksear
h, we need to 
lassify 
andidates before the program has �nished. For theexperiments reported here we used a simple threshold of 10% of the exe
utiontime so far. We found that this strategy lead to some problems:{ Obje
t 
onstru
tors often evaluate as bottlene
ks when the appli
ation isstarting up. When a 
onstru
tor is 
alled from the `main' method of theappli
ation, it is instrumented sin
e the `main' method is initially in thesear
h fo
us. Later on, when seen in the 
ontext of the entire program run,it will probably represent only a small fra
tion of the total CPU time.{ Small methods that are 
alled very frequently often do not initially appearto be bottlene
ks. When instrumented and a time obtained, the method'srelatively short exe
ution time does not make it appear to be a bottlene
k.However later on in the program, on
e that method has been 
alled manytimes, the 
ombination of high frequen
y 
alls and short but un-negligibleexe
ution time may mean it is a bottlene
k.In either 
ase, the root 
ause of the initial misinterpretation of the metri
 
an beattributed to a la
k of 
ontext; the method 
an really only be properly evaluatedas a bottlene
k in the 
ontext of the whole program. For this reason, JBolt peri-odi
ally re-evaluates (
urrently at the end of ea
h run through the appli
ation)all instrument data, in order to get a balan
ed view for ea
h method.4 Sear
hing upwards through the 
all graphFig. 1 shows how the 
allgraph-based bottlene
k sear
h algorithm fails to �ndsome bottlene
ks. The 
allees of a method are in
luded in the sear
h only if the
aller's exe
ution time indi
ates a bottlene
k is present. If a method is 
alled byseveral non-bottlene
k methods, it 
ould still a

ount for a large proportion ofthe run-time.The idea proposed by Roth and Miller [12℄ is to augment the sear
h usingadditional information, and use this to target the sear
h on \deep starters". Rothand Miller 
hoose deep starters, using 
all sta
k sampling, from informationwhi
h their implementation already 
olle
ts. In our vJVM implementation, itis possible to 
apture sta
k samples but rather expensive. Instead we use asimple instrument to 
ount method exe
utions (the same instrument builds the
all graph in order to provide 
allee information). In our implementation, deepstarters are methods whose exe
ution frequen
y ex
eeds our 
hosen threshold(10%).



Caller1 Caller2 Caller3

Bottleneck

Callgraph search
terminates at this
level; no methods
are bottlenecks.Fig. 1. Bottlene
k hidden from the 
allgraph sear
hWe use a deep-starter to target the 
allgraph sear
h, by �nding all the pathsthrough the 
all graph that 
onne
t a fo
us node to the deep starter. All methodson these paths 
an be added to the frontier, and thus be instrumented. Whenexe
uted, these instruments generate method timings (
olle
ted at line 19 inFig. 4). If a method ex
eeds the bottlene
k threshold, it is added to the frontier.The timing instrument is an \around advi
e" [7℄: the timer is started onentry, and logged on exit. However, the deep-starter s
heme above adds methodsfrom the 
all paths to the instrumentation frontier before those methods havereturned. If we use only \around" instruments, we will not get any measurementsuntil these methods are re-entered. Methods whi
h are 
alled just on
e willhave to wait until the appli
ation is restarted. To improve this situation weexperimented with \late instruments" { if a method is already on the 
all sta
k,we add an \after" instrument. This is used to measure the time between addingthe instrument and method exit. The a
tual method exe
ution time is sure tobe more, but if this lower bound ex
eeds the threshold we 
an add the methodto the fo
us immediately. We found that late instruments speed up the sear
hsubstantially, at the expense of less reliable quantitative results (see Se
tion 5.3).5 Experimental evaluationThis se
tion presents two examples of using JBolt to dete
t performan
e bottle-ne
ks, and validates the results against Sun's hprof pro�ler. RouteFinder is a rail-way route planning tool based on Dijkstra's shortest path algorithm. It is single-threaded and 
onsists 3823 lines of 
ode (55 
lasses, 74 methods). Spe
JVM98208 db (data management) is taken from the Spe
JVM98 ben
hmark suite [13℄.The program performs a variety of database operations on a memory-residentdatabase of name, address and phone number re
ords. It is also single-threaded,and 
onsists of 8541 lines of 
ode (24 
lasses, 40 methods).We used the Sun Java 2 platform, standard edition version 1.4 02, runningon SuSE Linux 7.2. Most of the experiments were 
arried out on on a systemwith a single 1400MHz AMD Athlon pro
essor, with separate 64KB L1 data& instru
tion 
a
hes, uni�ed 256KB L2 
a
he, and 512MB memory. Hprof [8℄samples at a 
onstant rate, so the results are more a

urate on a slower system.To 
ompare measured method timings we used a slower ma
hine, with a 450 MHzPentium III pro
essor, with separate L1 data & instru
tion 
a
hes of 16Kbytes,L2 uni�ed 
a
he 512Kbytes, and 256Mbytes memory.Table 1 shows the impa
t of JBolt and hprof on the two appli
ations' exe
u-tion time. For 209 db, the slowdown is fairly small, and JBolt does better than



Table 1. Ben
hmark OverheadsRouteFinder Spe
JVM98 209 dbTime(se
s) Slowdown fa
tor Time(se
s) Slowdown fa
torUnfragmented Appli
ation 3.73 1.00 22.02 1.00Fragmented Appli
ation 28.13 7.54 24.30 1.10Pro�led with JBolt 105.14 28.19 26.96 1.22Pro�led with hprof 71.74 19.23 51.30 2.33hprof. However, for RouteFinder, the slowdown is very severe with both pro�lers,with JBolt somewhat worse. We believe the reason is that RouteFinder's bot-tlene
k method is exe
uted many times (7 million), while 209 db spends mostof its time in a method whi
h is 
alled a small number of times. In both pro�l-ers, method entry is the main sour
e of overhead, but hprof in
urs performan
eoverheads on primitive Java 
lasses, whi
h Veneer runs at full speed.5.1 Route�nder resultsFig. 2 shows the view displayed at the end of JBolt's sear
h for bottlene
ks inRouteFinder. There is only one sear
h strand in the appli
ation, bran
hing atAlgorithm.�ndNextNode, and joining again at Edge.isMe. Both hprof and JBoltagree on the bottlene
k. As a result, the method Edge.isMe was modi�ed. Run-ning the new version of the program (with a larger rail network) gave a time of12.07 se
onds, as opposed to 25.13 se
onds before optimisation (ea
h averagedover �ve runs), i.e. a speedup of just over two.Fig. 3 illustrates the eÆ
ien
y of the hybrid sear
h (top-down + deep-startstrategies) in 
omparison with the 
allgraph (just top-down) sear
h. The hybridsear
h lo
ates all the bottlene
ks in approximately 55% of the time taken by the
allgraph sear
h on its own.5.2 Spe
JVM98 209 db resultsAgain, hprof and JBolt agree on the main bottlene
k for this appli
ation; themethod DataBase.shell sort. JBolt overheads are low be
auseDataBase.shell sortis 
alled a small number of times.For the DataBase.read db method, JBolt only attributes 4.43% of total CPUtime on average to this method, 
ompared to hprof's 9.8%. Although JBolt andhprof agree on where the bottlene
ks are in both appli
ations, their attributionof time to methods varies substantially. In general, 
ompared to hprof, JBoltunderestimates time spent in short-running methods, and over-estimates timespent in longer-running methods.5.3 Dis
ussionOur experiments show that JBolt is able to identify the same CPU bottlene
ks asa 
onventional pro�ler. However, appli
ations 
an run very slowly under JBolt.This is largely the overhead of fragmentation. We are implementing a number ofimprovements to Veneer's basi
 me
hanisms. Another strategy whi
h 
ould helpwould be to swit
h between unfragmented and fragmented method variants asinstrumentation is added and removed.



Fig. 2. RouteFinder - bottlene
ks identi�ed by JBolt. The path down the right-handside (displayed in red on the JUDI GUI) identi�es the method Edge:isMe as the mainbottlene
k in this appli
ation.

0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

%
 o

f B
ot

tle
N

ec
ks

 L
oc

at
ed

Search Time (ms)

RouteFinder BottleNeck Search

Hybrid
CallGraph

0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

%
 o

f B
ot

tle
N

ec
ks

 L
oc

at
ed

Search Time (ms)

RouteFinder BottleNeck Search

Hybrid
CallGraph

Fig. 3. RouteFinder - the hybrid sear
h �nds all bottlene
ks in approximately 55% ofthe time taken by the 
allgraph-only sear
h.



JBolt pro�les the fragmented version of the appli
ation, not the real appli-
ation. Comparing the method timings given by JBolt and hprof suggests thatthere are di�eren
es, so it is un
lear how mu
h of the variation in method timingsand bottlene
k ranking are due to di�eren
es in the performan
e 
hara
teristi
sof fragmented 
ode, and how mu
h is due to ina

ura
ies in the data samplingand analysis. Fragmentation appears to distort results for short lived methods.Short-running appli
ations like the ben
hmarks 
hosen here have to be re-exe
uted several times (up to four), for JBolt to �nish its sear
h for bottlene
ks.The main reason for this is to a

ount for methods whi
h are 
alled only on
eper run.The 
allgraph strategy has the desireable property that instrumentation over-heads are never in
luded in measurements. However, the upward sear
h s
hemesintrodu
e \late instruments" whi
h are added while measurements higher in the
allgraph are in pla
e. We heuristi
ally alleviated this problem by allowing onlyone late instrument to be in pla
e at a time; we maintain a late instrumentqueue, and always sele
t the deepest late instrument in the 
all graph. Relax-ing this 
onstraint leads to serious measurement errors, but enormously faster
onvergen
e: most appli
ations saw all the bottlene
ks identi�ed within the �rstrun. A more sophisti
ated instrument pla
ement strategy should help here.6 Con
lusions and Further WorkWe have reported on our exploration of sear
h strategies for using dynami
 in-strumentation to lo
ate and 
hara
terise performan
e bottlene
ks. This workforms part of our longer-term obje
tive to explore automati
 pro�le-driven op-timisation, and it is 
onstru
ted on top of the Veneer framework whi
h we builtfor this purpose.Our results are not entirely positive. The main purpose of dynami
 instru-mentation is to avoid the performan
e impa
t of stati
 approa
hes. We expe
tto redu
e the performan
e impa
t of Veneer dramati
ally with further develop-ment. There are also serious 
on
erns about the statisti
al signi�
an
e of JBolt'sresults. This seems inherent in the approa
h: sampling is driven by earlier mea-surements, so is not very random. For very long-running appli
ations, or appli-
ations with a known repetitive stru
ture, this 
an, perhaps, be over
ome.Perhaps the most promising prospe
t lies in sear
hing for more subtle per-forman
e bottlene
ks. Miller et al [9℄ observe that the sear
h for a bottlene
k
an involve re�nement in three dimensions; they 
all this the W3 model:{ When: Is the performan
e problem 
on�ned to a parti
ular phase of the
omputation? A parti
ular time of day?{ Where: at what 
lass, method, module, server, 
omponent or line of 
odedoes the problem o

ur? The 
allgraph (for example as shown in Fig. 2)shows a natural example. Others are possible: whi
h threads? Whi
h users?Whi
h transa
tion types?{ Why: What is the reason for the performan
e problem?In ea
h dimension (when, where, why), the hierar
hy provides a way to stru
turethe sear
h, leading to a su

essively more re�ned 
hara
terisation of the problem.



This should allow us to target expensive instrumentation on just the parts ofthe 
ode and the phases of the 
omputation where subtle performan
e problemsare likely to o

ur.A
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e, June 2003.1 // Initially no bottlene
ks, no frontier, & fo
us is just appli
ation's Main method2 Set<MethodId> bottlene
kSet, fo
us; fo
us.add(mainId);3 Set<Instrument> frontier;45 // Frontier tells us whi
h methods have been instrumented and maintains a list6 // of ea
h method's instrument obje
ts. Initialise frontier to 
ontain just7 // the methods 
alled by Main, and add instrumentation to this initial frontier89 Set<MethodId> mainCallees = mainId.
alleeSet();10 frontier.add(TimerInstrumentFa
tory(mainCallees));1112 // Now run appli
ation. As it runs it will en
ounter instruments we put in pla
e.13 app.start();1415 while (!app.finished()) {16 // wait for appli
ation to exe
ute an instrument; resulting 
allba
k17 // enqueues instrument obje
t that has been a
tivated1819 Instrument m = app.getNextA
tivatedInstrument();2021 // Consult profile database to determine whether we have enough22 // information to 
on
lude that this method is a bottlene
k2324 swit
h (profileDatabase.isBottlene
k(m)) {25 
ase YES:26 // This method turns out to be a bottlene
k. Add this method to list of27 // known bottlene
ks, remove it from sear
h frontier, remove its instrument-28 // ation, & instead add its 
allees to the sear
h frontier and instrument them2930 bottlene
kSet.add(m.methodId, m.measurement);31 frontier.remove(m);32 fo
us.add(m.methodId);33 frontier.add(TimerInstrumentFa
tory(m.methodId.
alleeSet()));34 break;3536 
ase NO:37 // This method turns out not to be a bottlene
k. Remove it from38 // sear
h frontier, remove its instrumentation.3940 frontier.remove(m);41 break;4243 
ase MAYBE:44 break; // leave instrumentation as it is for a while45 }46 // Update profile database for future referen
e47 profileDatabase.update(m.methodId, m.measurement);4849 // Remove parent method from fo
us if none of its 
allees remain in the frontier50 if (frontier.isIn(methodId.parent().
alleeSet())) fo
us.remove(parent);51 }Fig. 4. Pseudo
ode outline of the 
allgraph-based bottlene
k sear
h algorithm.


