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aABSTRACTThis paper des
ribes Themis, a programming model and run-time librarybeing designed to support 
ross-
omponent performan
e optimization throughexpli
it manipulation of the 
omputation's iteration spa
e at run-time.Ea
h 
omponent is augmented with \
omponent dependen
e metadata",whi
h 
hara
terizes the 
onstraints on its exe
ution order, data distributionand memory a

ess order. We show how this supports dynami
 adaptationof ea
h 
omponent to exploit the available resour
es, the 
ontext in whi
h itsoperands are generated, and results are used, and the evolution of the probleminstan
e.Using a 
omputational 
uid dynami
s visualization example as motivation,we show how 
omponent dependen
e metadata provides a framework in whi
ha number of interesting optimizations be
ome possible. Examples in
lude datapla
ement optimization, loop fusion, tiling, memoization, 
he
kpointing andin
rementalization.Keywords: Interpro
edural optimization, run-time optimization, libraries forparallel programming1 Introdu
tionIn many s
ienti�
 appli
ations, the use of sophisti
ated data stru
tures and elabo-rate, adaptive numeri
al methods 
an be highly e�e
tive in solving 
omputationalproblems that would otherwise be diÆ
ult or impossible to solve. Examples in
ludeadaptive multigrid and multipole methods, and 
oupled multiphysi
s simulations.Unfortunately, the software 
omplexity asso
iated with these te
hniques means thatthey are seldom exploited e�e
tively.The 
ru
ial issue whi
h we propose to address is the apparent 
on
i
t betweenthe goals of improving the quality of s
ienti�
 software and improving its perfor-man
e. The quest for more usable, higher quality s
ienti�
 software is re
e
ted ingrowing interest in 
omponent-based s
ienti�
 programming. Our aim is to reverse



the performan
e problems asso
iated with 
omposite programs whi
h arise from theuse of 
omponents whi
h are developed outside the 
ontext in whi
h they will beused.Components are self-des
ribing, separately-deployable units of software reuse.Expli
it support for 
omponent-based programming is being developed in the s
ien-ti�
 
omputing 
ommunity [1℄. In this paper we avoid the details of su
h te
hniquesand fo
us on the metadata needed to support 
ross-
omponent optimization.The key new idea behind this paper is to 
omplement data pla
ement meta-data [2,3,4,5℄ with a set of metadata that de�ne dependen
ies between 
omponents.Having a powerful 
omponent dependen
e 
al
ulus is key to the new dire
tions setout above whi
h we wish to explore.Contributions. The main 
ontributions of this paper are as follows:(i) We present a design for Component Dependen
e Metadata, a general frame-work for 
hara
terising the 
omputational stru
ture, exe
ution order and de-penden
e of software 
omponents.(ii) We show how Component Dependen
e Metadata 
an be used to implement avariety of optimizations, in
luding 
ross-
omponent loop fusion, tiling, datapla
ement optimization and automati
 derivation of one- and two-sided 
om-muni
ation plans.(iii) We illustrate the potential for the approa
h with referen
e to a 
omputational
uid dynami
s visualization appli
ation.(iv) We dis
uss the relationship between this approa
h and earlier work.2 Ba
kgroundComponent-based programming. Re
ently various resear
h groups have ap-plied 
omponent-based software engineering to s
ienti�
 
omputation. Examples in-
lude [1,6,7℄. Component-based programming infrastru
tures (eg Mi
rosoft's COMand .Net, Javabeans and the Corba Component Model) rely on dynami
ally-linkedlibraries, and indire
t (virtual) method 
alls. Both of these te
hniques presentbarriers for performan
e optimization, making run-time te
hniques essential. Animportant resear
h question is how to 
ommuni
ate the results of stati
 analysis tothe run-time optimizer [8℄.Skeletons. The starting point for the skeleton approa
h is to implement re
urringparallel stru
tures of 
omputation and 
ommuni
ation, so that implementation andoptimization te
hniques 
an be reused for a wide range of similar 
omputationalpatterns [9℄. It was qui
kly re
ognized that the key issue, after implementing oneskeleton eÆ
iently, is to a

ommodate programs 
onsisting of several skeleton in-stantiations. Skeleton programming languages su
h as SCL [10℄ and P3L [11℄ area
tually skeleton 
omposition languages. The task of the 
ompiler is to imple-ment 
omposition (sequential, parallel, pipelined or other) eÆ
iently. While mu
h



resear
h has been devoted to transforming skeleton programs (whi
h are generallyfun
tional) to improve performan
e, the most su

essful work so far [11℄ has 
on
en-trated on resour
e management: given a pipeline of two parallel 
omponents, howshould the available pro
essors be divided between them to mat
h their throughput?The promise of the approa
h we propose lies in developing these ideas to dealwith irregular data. Some prototypes have been built (for example [12℄), but littleprogress has been made on 
ross-
omponent optimization.Compilers. From the perspe
tive of 
onventional 
ompiler te
hniques, 
ross-
omp-onent optimization 
on
erns optimising a
ross sequen
es of loop nests, whi
h may ormay not be en
apsulated in subroutines. Data a

ess summary information, as usedfor interpro
edural analysis [13℄ forms \metadata" des
ribing ea
h 
omponent. Un-fortunately, with irregular data (even irregular multiblo
k), the a
tual dependen
ebetween two operations is data-dependent.The data alignment problem for regular data has been extensively studied [14,15℄.One natural approa
h is to exploit these powerful results in dealing with blo
ks,while using a run-time te
hnique to handle sets of blo
ks, and thereby blo
k-irregular appli
ations.Resour
e-, Context- and Problem-optimized Component CompositionTo build adaptive, high-performan
e s
ienti�
 appli
ations in the form of re-usable
omponents, we need to optimize the exe
ution of 
omposite programs. The needand opportunity for optimization arises from:� Heterogeneous and Varying Resour
es: We expe
t future high-performan
e
omputing resour
es to be heterogenous 
olle
tions of SMP 
lusters, linked byfast but heterogenous networks. Furthermore, the exa
t 
on�guration avail-able is likely to vary, at least from run-to-run.� The Context in whi
h Components are Used: This 
onsists of the datapla
ement and time s
hedule with whi
h a 
omponent's operands are pro-du
ed, and its results 
onsumed. The 
omponent may also be 
ontending forresour
es with other, 
on
urrently exe
uting 
omponents. Optimising 
om-ponents for their 
ontext is 
ompli
ated on systems that support multiplelevels of parallelism simultaneously, ea
h with its own 
hara
teristi
 level of
ommuni
ation granularity.� The Adaptive and Irregular Nature of Problem Domains: In irregularand adaptive appli
ations, 
omputation and 
ommuni
ation are fo
used onregions of interest whi
h may 
hange with time.In the next se
tion we des
ribe the programming model and run-time library thatsupport the development of resour
e-, 
ontext- and problem-optimized 
omposition.



void main() {Set<Region2> Domain;// Build an example multiblo
k iteration spa
eDomain.add(new Region2(0,100, 0,100));Domain.add(new Region2(100,200, 50,150));Domain.add(new Region2(200,300, 100,200));// De
lare mat
hing spa
eGrid2 W<double>(Domain);Set<Region2> Domain_expanded = ... 
ompute storage for U and V, see textGrid2 U<double>(Domain_expanded);Grid2 V<double>(Domain_expanded);// 
onstru
t Component Composition GraphTaskGraph T;taskgraph(T) {parameter(Grid2<double>, U);parameter(Grid2<double>, V);parameter(Grid2<double>, W);ja
obi2d(U, V, Domain); // S1ja
obi2d(V, W, Domain); // S2}// bind Component Composition Graph to a
tual in/out parametersT.setParameters("U",U, "V",V, "W",W, NULL);T.exe
ute();}Fig. 1: Sket
h of a sample multiblo
k two-dimensional Ja
obi appli
ation. The ja
obi2d 
ompo-nent (see Figure 2) iterates over three non-interse
ting but partially-abutting re
tangular regions.The Grid2 and Region2 types are based on KeLP's types of the same name. The TaskGraph isinitialized (using some C++ ma
ros for synta
ti
 sugar) to an abstra
t syntax tree for the Com-ponent Composition Graph. In this example, this simply 
onsists of two instan
es of the ja
obi2d
omponent de�ned in Figure 2.3 Component Dependen
e Metadata in ThemisComponent dependen
e metadata 
onsists of two parts | 
hara
terising the 
on-stituent 
omponents, and des
ribing how they are 
omposed:� Component Composition Graph. This data stru
ture represents the large-grain, inter-
omponent 
ontrol 
ow graph.� Component Dependen
e Summaries. These dependen
e metadata providean abstra
t des
ription of ea
h 
omponent's internal iteration spa
e, as afun
tion of the 
omponent's parameters, together with fun
tions mappingea
h iteration to the memory addresses it may use and de�ne.Figure 1 shows a simple example in whi
h a Ja
obi smoother is applied twi
e to amultiblo
k domain (ie a set of re
tangular submeshes). The Component Composi-tion Graph spe
i�es the intended exe
ution order of run-time 
omponent instan
es



| in this 
ase of \ja
obi2d". The a
tual dependen
e relationship between them
an be 
al
ulated in more detail by �nding the interse
tions between data a

essedin the �rst 
omponent instan
e, and data a

essed in the se
ond. Thus we 
apturedata dependen
e, and \storage" dependen
es, namely anti- and output-dependen
esarising from expli
it re-use of memorya.3.1 Representing Component Dependen
e SummariesFor our 
urrent purposes (pa
e the 
omponent-based programming 
ommunity),a 
omponent is a pro
edure whi
h operates on aggregate data. The pro
edure'soperands and results might simply be array subse
tions. More interestingly, itmight operate on a \multiblo
k" set of array subse
tions [16℄. Furthermore, ratherthan simply arrays we may have any indexed 
olle
tion type [17℄.To 
apture this variety, we generalize the notion of a multiblo
k array de
ompo-sition. Given a pro
edure P, we need to dis
uss P's properties and P's parameters :� Property: P.IterationSpa
eThis is the n-dimensional integer spa
e in whi
h iterations of P's exe
utionare enumeratedb.This is an inherent property of P representing the in�nite range of possibleexe
utions whi
h might take pla
e.� Parameter: P.IterationDomainThis des
ribes whi
h a
tual iterations of P should be exe
uted. This is repre-sented as a set of non-interse
ting IterationRegions. An IterationRegionis a polytope in P.IterationSpa
e, 
hara
terized as the interse
tion of a setof integer plane equations ea
h de�ning a half-spa
e.� Parameters: P.Operands and P.ResultsThese are the indexed data 
olle
tions on whi
h P operates.� Property: P.UsesFor ea
h of the parameter Operands, this maps ea
h point in the IterationSpa
eto the set of indi
es of the indexed 
olle
tion whi
h might be a

essed (read)by that iteration.For simple array and multiblo
k 
omputations, this 
an usually be representedas an aÆne fun
tion. In [5℄ we show how this 
an be extended to 
apturedata whi
h is a

essed by many iterations (leading to a broad
ast in a parallelimplementation).aIn [4℄ we des
ribe a run-time renaming s
heme whi
h 
an remove exe
ution order 
onstraintsdue to storage reuse | but expli
it 
ontrol remains important in many appli
ations to avoidrunning out of spa
e.bIn the 
ase where P 
onsists of an imperfe
t nest of loops, this is a simpli�
ation: a statementat an intermediate loop nesting level is represented by a set of points in the iteration spa
e. Thisappears not to interfere with the e�e
tiveness of the model.



� Property: P.DefinesThis is just the same as P.Uses but 
hara
terizes the data items (ie theelements of the P.Results 
olle
tions) whi
h might be written to by ea
hgiven iteration.Motivation. It is important to understand that it is not enough simply to 
har-a
terize the set of data items whi
h might be read/written by a 
omponent. Thiswould be enough to �nd out whether invo
ation of two 
omponents P followed byQ are dependent. However, we need to understand the dependen
e relationshipbetween 
orresponding iterations.For example, to determine whether the outermost loop of P 
an be fused withthe outermost (i) loop of Q, we need to determine whether every value needed byiteration i of Q is available by iteration i of P. We return to this important issue inSe
tion 3.2.
lass Region2 {publi
 int i_lower, i_upper, j_lower, j_upper;// Constru
torRegion2(int i_l,int i_u, int j_l,int j_u) {i_lower = i_l; i_upper = i_i;j_lower = j_l; j_upper = j_u;}}
lass Grid2<T> {Set<Region2> DataArrayShapes;Set<Array2<T>> DataArrays;// Constru
torGrid2(Set<Region2> RegionShapes) {forea
h (i=0; i<=RegionShapes.size; ++i) {DataArrayShapes.add(RegionShapes[i℄);DataArrays.add(new Array2(RegionShapes[i℄));}}}void ja
obi2d(Grid2<double> U, Grid2<double> V, Set<Region2> Domain) {// for ea
h region in the set of regionsforea
h(Region2 R, Domain){ // do the standard Ja
obi loopfor (int i=R.i_lower; i < R.i_upper; ++i)for (int j=R.j_lower; j < R.j_upper; ++i)V[i℄[j℄ = (U[i-1℄[j℄+U[i+1℄[j℄+U[i℄[j-1℄+U[i℄[j+1℄)*0.25;}}Fig. 2: Sket
h of example multiblo
k two-dimensional Ja
obi 
omponent. The 
omponent depen-den
e metadata for ja
obi2d is given in the text. The Ja
obi loop iterates over a set of regions.The Array2, Grid2 and Region2 types are based on KeLP's types of the same name.



3.2 Example: Multiblo
k Ja
obiFigure 2 shows a mu
h-simpli�ed example to illustrate the 
omponent dependen
emetadata and its appli
ation. Ea
h run-time instan
e of the ja
obi2d 
omponent
an be queried for the following metadata:� Property ja
obi2d.IterationSpa
e is simply the two-dimensional ve
torspa
e of positive integers [0 :1℄� [0 :1℄.� Parameter ja
obi2d.IterationDomain is a Set of three re
tangular se
tionsof ja
obi2d.IterationSpa
e.� For the �rst ja
obi2d instan
e in Figure 1, parameters ja
obi2d.Operandsand ja
obi2d.Results are U and V respe
tively.V is a Set of re
tangular arrays whose bounds mat
h the 
orresponding ele-ments of ja
obi2d.IterationDomain.This exa
t 
orresponden
e between the shape of the IterationDomain and theshape of the Result data stru
ture o

urs frequently | iteration (i; j) of theJa
obi loop assigns to lo
ation V[i℄[j℄.The situation for U is somewhat more 
ompli
ated, sin
e the Ja
obi loop readsa \halo" of lo
ations (often 
alled ghost 
ells) outside the range of iterations(i; j), owing to the i-1, i+1 and j-1, j+1 index expressions.To prevent these a

esses from being bounds errors (and to provide boundary
onditions), the storage for U must be somewhat larger | we need to growea
h of the 
onstituent regions by one in ea
h dire
tion. Although we 
oulddo this in an ad-ho
 fashion, it 
an be handled systemati
ally using the Usemappings below.� Property ja
obi2d.Defines 
onsists of a single mapping, being the iden-tity fun
tion from iteration (i; j) in ja
obi2d.IterationSpa
e to lo
ationV[i℄[j℄ in V. There is one mapping be
ause the Ja
obi loop has just oneassignment to V.� Property ja
obi2d.Uses 
onsists of four mappings:{ f1(i; j) = (i� 1; j) in U, owing to the memory referen
e U[i-1℄[j℄{ f2(i; j) = (i+ 1; j) in U, owing to the memory referen
e U[i+1℄[j℄{ f3(i; j) = (i; j � 1) in U, owing to the memory referen
e U[i℄[j-1℄{ f4(i; j) = (i; j + 1) in U, owing to the memory referen
e U[i℄[j+1℄In our prior work [2,3,4,5,15℄, 
omponent metadata des
ribes data pla
ement 
on-straints. In this framework, 
omponent dependen
e metadata 
aptures the available
exibility in exe
ution order.



Example. As an example of using the dependen
e information, 
onsider the pairof Ja
obi instan
es in Figure 1:ja
obi2d(U, V, Domain); // S1ja
obi2d(V, W, Domain); // S2Here, we apply the Ja
obi operation in statement S1 to an initial set of Grids U,yielding V, then a se
ond step S2 to produ
e W. This exe
ution order makes somewhatineÆ
ient use of 
a
he memory; it would be bene�
ial to fuse the two loops. Howevera simple 
al
ulation using the Uses mappings shows that the resulting single loopnest would fail to respe
t the dependen
es required | element V[i℄[j+1℄ is usedby iteration (i; j) of S2 but is generated in iteration (i; j + 1) of S1. We show howthe validity of loop fusion is tested in Se
tion 4.3.However, it turns out that these loops 
an be fused. The tri
k [18℄ is to renumberS2.IterationSpa
e by shifting it by 1 in both i and j. This aligns iteration(i+ 1; j + 1) of S1 with iteration (i; j) of S2. Now no dependen
e violation o

urs.4 Using Component Dependen
e MetadataThis se
tion illustrates how 
omponent dependen
e metadata 
an be used to solvesome simple 
ross-
omponent optimization problems. This should explain some ofthe motivation behind the approa
h.4.1 Deriving Data Pla
ement ConstraintsGiven a data distribution D whi
h spe
i�es a set of subse
tions of an array A whi
his a

essed by 
omponent P, we 
an 
al
ulate the required pla
ement of P's otheroperands/results as follows:(i) Find the iteration domain 
orresponding to the data de
omposition D. If Ais an operand, �nd the set of Uses mappings whi
h map iterations to uses ofA (if A is a result, �nd the 
orresponding Defines mappings).(ii) Invert these mappings to �nd the iterations whi
h use ea
h of the subse
tionsdes
ribed in D (assuming, of 
ourse, that the mappings are invertible).(iii) Now, �nd all the data a

essed by these iterations using the Uses and Definesmappings forwards.This allows us to derive Be
kmann's data pla
ement metadata when the mappingsare invertible. With repli
ation, the mappings are not invertible [5℄. Some furtherwork is needed to show how to 
al
ulate pla
ement 
onstraints in this 
ase.Comment: Enumerated versus 
losed-form domains. To implement themultiblo
k domain de
omposition of Figure 2, we simply enumerate the set of sub-domains. To represent a regular domain de
omposition, su
h as blo
k-wise, 
y
li
or blo
k-
y
li
, this would be unwieldy. Instead we plan to use an extension ofthe Set 
olle
tion type whi
h uses a 
losed-form generator fun
tion to produ
e its



elements on demand. Where appropriate, this generator fun
tion 
an be a

essedexpli
itly.For example, 
onsider the problem of �nding the data pla
ement 
onstraints ina regular array 
ontext as dis
ussed above. If the data de
omposition D above isgiven as a 
losed form, say a blo
kwise de
omposition, the inverse Use mappings
an be used to yield the IterationDomain also in 
losed form.4.2 Composing Parallel Components | Deriving A Data Communi
ation PlanTo exe
ute the Ja
obi example in parallel, we need to partition the IterationDomaina
ross the p pro
essors. Call this p-element set of IterationDomains the Iterat-ionDomainDe
omposition. Given some arbitrary partitioning, we need an eÆ
ientway to 
al
ulate the data 
ommuni
ations involved in a spe
i�ed 
omputation (inKeLP this is 
alled the \MotionPlan"). Consider our Ja
obi example again; assumethat the same partitioning is used to exe
ute both S1 and S2:// this loop exe
utes on
e on ea
h pro
essorforea
h (pro
, Pro
essorSet)S1: ja
obi2d(U, V, IterationDomainDe
omposition[pro
℄);// impli
it data redistribution required// this loop exe
utes on
e on ea
h pro
essorforea
h (pro
, Pro
essorSet)S2: ja
obi2d(V, W, IterationDomainDe
omposition[pro
℄);Now ea
h pro
essor i looks up IterationDomainDe
omposition to �nd the itera-tions it must exe
ute. However, when pro
essor i exe
utes S2, it needs some valuesfrom other pro
essors (due to the ghost 
ell halo). We 
an 
al
ulate whi
h valuesare needed, and where they are stored:(i) Use the Usesmappings of S2 to �nd the set usesi of memory lo
ations a

essedby pro
essor i's iterations.(ii) Use the Defines mappings of S1 to �nd the set defsj of memory lo
ationswritten to by ea
h pro
essor j.(iii) On ea
h pro
essor i, 
ompute the interse
tion of its usesi with the defsj ofea
h of the other parti
ipating pro
essors. This is the set of re
eive operationsrequired.(iv) On ea
h pro
essor j, 
ompute the interse
tion of its defsj with the usesi ofea
h of the other parti
ipating pro
essors. This is the set of send operationsrequired.An impli
it assumption here is that data needed by S2 but not produ
ed by S1 isalready available. This happens naturally, as it must have been generated by someearlier 
omponent, say S0 | we simply make sure this automati
 data distributedoperation is applied when S0 is 
omposed with S1; S2.



Data-dependent Uses mappings. Note that we assumed that ea
h pro
essor
an 
al
ulate the Uses mappings of all the other pro
essors. If it 
annot, the
ommuni
ations must be one-sided, initiated by the pro
essor whi
h needs the data.In some interesting examples (su
h as lo
ally-essential trees in implementations ofthe Barnes-Hut algorithm [19℄), we 
an 
onservatively approximate the set of dataneeded by a pro
essor.4.3 Cross-Component Loop FusionAs mentioned in Se
tion 3.2, a key motivation is to support 
ross-
omponent loopfusion and related ideas, in
luding tiling. To 
he
k the validity of loop fusion, weneed to know more than just the set of data items are a

essed by the two loops| we also need to know about the order in whi
h the elements are produ
ed andused.Assume that the IterationSpa
es of the two 
omponents S1 and S2 are thesame. To test whether a 
omponent S1 
an be fused with a 
omponent S2, we needto 
onstru
t the dependen
e equation for ea
h potential dependen
e (we dis
ussdata dependen
es here; anti- and output-dependen
es are similar):(i) Where a 
olle
tion A appears in both S1.Defines and S2.Uses, we introdu
ethe 
orresponding mappings �(~i) to model the a

ess patterns due to ea
hmemory referen
e:S1:Defines[A℄:�(~i) and S2:Uses[A℄:�(~i)(where ~i is a d-element ve
tor representing a point in the d-dimensionalIterationSpa
e).(ii) Now, 
onsider two distin
t iteration spa
e points, ~i and ~i0. A dependen
ebetween iteration ~i of S1 and iteration ~i0 of S2 o

urs when the dependen
eequation is satis�ed:S1:Defines[A℄:�(~i) = S2:Uses[A℄:�(~i0):(iii) To 
lassify the dependen
e, we need to 
hara
terize the solutions to this de-penden
e equation. There might be no dependen
e:� There may be no integer solution at all� The solutions may all lie outside the a
tual loop bounds (the IterationDomain)� In an IterationSpa
e with non-unit step, the solutions may o

ur onlyat non-exe
uted iterationsIf there is a dependen
e, we need to �nd out whether there exists a solutionfor whi
h ~i > ~i0 (under the lexi
ographi
 ordering).As explained earlier, the presen
e of su
h a dependen
e re
e
ts that when fused, S2would attempt to read a value before it has been generated by S1.
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Fig. 3: Stru
ture of the CFD visualization appli
ation.To solve the dependen
e equation, our prototype implementation uses Fourier-Moztkin elimination, a standard te
hnique [20℄. Although this 
an, in prin
iple,be 
omputationally hard, the equations found in pra
ti
e are almost always verysimple and the time taken has been minimal.5 Extended Example: Visualization in Computational Fluid Dynami
sTo provide a testbed for these ideas, we have been developing a simple visualizationtool for a three-dimensional 
omputational 
uid dynami
s appli
ation.Figure 3 shows the overall stru
ture of the appli
ation. The prototype is astraightforward implementation using standard tools; the user interfa
e is imple-mented in T
l/tk, the visualization uses vtk [21℄, and the CFD appli
ation isNaSt3DGP [22℄. The appli
ation essentially a simpli�ed version of SCIRun [23℄;the obje
tive is to motivate and demonstrate generi
 me
hanisms to support appli-
ations of this kind.The 
hallenge we fo
us on is to handle very large �nite-di�eren
e meshes at ea
htimestep, while supporting intera
tive exploration of the 
ow evolution over time.Our prototype allows the user to rotate, pan, zoom in and out to view the 
uidvolume, sli
e/sele
t 
uid subregions of interest, add spe
i�ed isosurfa
es (
ontours)and streamlines to show 
ow patterns and eddies, and use a slider to produ
e asmooth animation of the s
ene over a range of timesteps.To a
hieve intera
tive responsiveness, we plan to use Themis to explore a num-ber of performan
e enhan
ement te
hniques. For example:� Che
kpointing/memoization For interesting examples, the mesh repre-senting the 
ow state at ea
h timestep may be several gigabytes in size (eg512� 512� 512 8-byte doubles per state variable).Conventionally, at ea
h timestep the entire 
uid state mesh is written to disk.Espe
ially in a parallel system, �le a

ess 
an dominate exe
ution time bothfor 
ow 
al
ulation and subsequent visualization.



Instead, we propose to let the Themis run-time system de
ide whi
h results tostore, and whi
h to re
ompute on-demand. Thanks to the dependen
e infor-mation, Themis has a 
omplete re
ipe for ea
h intermediate value 
al
ulated.This approa
h 
an be 
ompared with periodi
 
he
kpointing of the 
uid sim-ulation. The dependen
e metadata gives Themis pre
ise details of what dataneeds to be stored.� S
heduling and pla
ement of malleable task graphs When the userrequests a timestep whose mesh has not been stored, we need to go ba
k tothe most re
ently stored 
uid state, and re-run the 
omputation from there.To do this qui
kly, we need instantaneous a

ess to multiple pro
essors. Unlessa large parallel 
omputer 
an be dedi
ated to the user, we need to make useof whatever resour
es are free at the time (see for example re
ent work atImperial [24℄).We propose to use Themis to de
ompose and s
hedule the 
omputation usingthe (possibly-heterogenous) pro
essors and network 
apa
ity available.A more sophisti
ated extension of this idea is to take into a

ount the dataalready available on the ma
hines in question. If a pro
essor is used for the�rst time, the s
heduler must a

ount for the time to ship the 
ode and datait needs. Subsequent uses 
an skip this step and perhaps also use 
a
hedintermediate results too.� In
rementalization If the user is viewing only a sli
e of the volume, we 
anpropagate the demand for data ba
k through the Component CompositionGraph, so that 
ontouring is applied only to the visible region | indeed onlythe visible region need be extra
ted from the 
uid simulation.When the user shifts the sli
e of the data to be rendered, we need to redo thisdemand propagation. The interesting 
hallenge is to make use of whateverparts of the intermediate values we already have.� Fusion, tiling and pipelining The straightforward implementation of Fig-ure 3 would load a mesh, then apply a 
ontouring algorithm, then apply astreamlining algorithm, then render the resulting polygons. These repeatedtraversals of the mesh make poor use of 
a
he (and virtual memory). Us-ing the loop fusion te
hniques des
ribed earlier, Themis should be able to
ombine multiple passes.This mixture of task- and data-parallelism 
reates a ri
h variety of alternativeparallel implementations, in
luding the 
lassi
al rendering pipeline. Themis
an use dependen
e information to implement these alternatives; we need todevelop optimization algorithms (for example, see [25℄ to �nd the best one forthe 
ir
umstan
es.By operating at run-time, these te
hniques (some of whi
h are, of 
ourse, 
onven-tional 
ompiler te
hnology) 
an be deployed adaptively, to rea
t to a
tual 
ompo-nent run-times, resour
e availability et
.



6 Related WorkWe dis
ussed the key published ba
kground work in Se
tion 2. Here we brie
y fo
uson a spe
i�
 point of referen
e | KeLP. Component dependen
e metadata and thedependen
e 
al
ulus have been heavily in
uen
ed by Baden's use of metadata forstru
tured irregular grids [16℄, whi
h is 
urrently being extended to unstru
turedmeshes. KeLP's data pla
ement metadata, the FloorPlan, de�nes the mapping of ablo
k-stru
tured irregular array onto an array of pro
essors. KeLP further providesa region 
al
ulus whi
h, given two di�erent FloorPlans for some blo
k-irregulararray, 
an derive an optimized data motion plan to perform the 
ommuni
ation forredistributing the data from one pla
ement to the other.Our Component Composition Graph is analogous to KeLP's MotionPlan, butrather than representing data movement, the Component Composition Graph rep-resents a large-grain, inter-
omponent data
ow graph.Regarded as an extension to KeLP, Component Dependen
e Metadata will al-low us to in
rease the s
ope for adaptive run-time s
heduling, as well as o�-lineoptimization. Further, the metadata will provide the infrastru
ture for automati
pla
ement of intermediate data, 
urrently not supported by KeLP.Another interesting point of referen
e is DUDE [26℄. In this C++ library, theprogrammer adds an expli
it des
ription of the dependen
e distan
e ve
tors 
on-ne
ting ea
h pair of dependent 
omponents. The DUDE run-time system 
an then
al
ulate what syn
hronization and 
ommuni
ation is needed. Thus, in DUDE,dependen
e information has to be added for ea
h 
omponent 
omposition. By 
on-trast, in Themis, the dependen
e metadata is asso
iated with ea
h 
omponent. Thedependen
es between 
omponents is automati
ally 
al
ulated from this information.In some sense, Themis 
an be regarded as an extension of Jade [27℄. Jade is aparallel obje
t-oriented language based on C++. Ea
h method has an asso
iateda

ess des
riptor whi
h des
ribes the obje
ts it may read or write. Jade's run-timesystem automati
ally arranges the syn
hronization and 
ommuni
ation required.In Jade, an a

ess to an obje
t in shared memory is potentially an a

ess to anypart of the obje
t. In Themis, the dependen
e metadata provides more re�nedinformation about whi
h 
onsituents of a 
hared 
olle
tion type might be a

essed.7 Implementation StatusThe Themis library has not yet been implemented, but many of the ideas have beeninvestigated in prototype form. Our \TaskGraph" library (implemented by Alis-tair Houghton [28℄) provides a 
onvenient syntax for the Component CompositionGraph using templates, overloading and ma
ros in C++. The library automati-
ally derives Component Dependen
e Summaries for simple loop pro
edures, andsummary metadata 
an be added manually for user-supplied fun
tions.On
e the TaskGraph has been optimized, it is printed as a C program, 
ompiled,then linked ba
k into the running appli
ation. Considerable performan
e advantageis gained from run-time 
ode generation, owing to spe
ialization and also by avoidingfun
tion and virtual fun
tion 
all overheads. The library automati
ally exploitsdependen
e information by fusing loops wherever possible.



Themis will extend this with a dependen
e 
al
ulus, for manipulating 
ompo-nent dependen
e metadata, together with a library for manipulating the iterationdomains of the 
omponents to generate optimized 
ode. This will provide the toolswith whi
h a programmer 
an implement the intera
tive visualization appli
ationas we have des
ribed.8 Con
lusionsWe have presented Themis, a software framework for 
ross-
omponent performan
eoptimization. The key idea is for ea
h 
omponent to 
arry Component Dependen
eMetadata whi
h gives an abstra
t and general 
hara
terization of how its itera-tion spa
e a

esses shared data. We present a design for Component Dependen
eMetadata whi
h links the a

essed data regions to the iteration spa
e, and wedemonstrate how this makes loop fusion possible.The main 
hallenge for future work is to provide 
exible, powerful, expli
it
ontrol of 
ross-
omponent optimization as we have des
ribed, without introdu
ingunmanageable 
omplexity.A
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