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the performane problems assoiated with omposite programs whih arise from theuse of omponents whih are developed outside the ontext in whih they will beused.Components are self-desribing, separately-deployable units of software reuse.Expliit support for omponent-based programming is being developed in the sien-ti� omputing ommunity [1℄. In this paper we avoid the details of suh tehniquesand fous on the metadata needed to support ross-omponent optimization.The key new idea behind this paper is to omplement data plaement meta-data [2,3,4,5℄ with a set of metadata that de�ne dependenies between omponents.Having a powerful omponent dependene alulus is key to the new diretions setout above whih we wish to explore.Contributions. The main ontributions of this paper are as follows:(i) We present a design for Component Dependene Metadata, a general frame-work for haraterising the omputational struture, exeution order and de-pendene of software omponents.(ii) We show how Component Dependene Metadata an be used to implement avariety of optimizations, inluding ross-omponent loop fusion, tiling, dataplaement optimization and automati derivation of one- and two-sided om-muniation plans.(iii) We illustrate the potential for the approah with referene to a omputationaluid dynamis visualization appliation.(iv) We disuss the relationship between this approah and earlier work.2 BakgroundComponent-based programming. Reently various researh groups have ap-plied omponent-based software engineering to sienti� omputation. Examples in-lude [1,6,7℄. Component-based programming infrastrutures (eg Mirosoft's COMand .Net, Javabeans and the Corba Component Model) rely on dynamially-linkedlibraries, and indiret (virtual) method alls. Both of these tehniques presentbarriers for performane optimization, making run-time tehniques essential. Animportant researh question is how to ommuniate the results of stati analysis tothe run-time optimizer [8℄.Skeletons. The starting point for the skeleton approah is to implement reurringparallel strutures of omputation and ommuniation, so that implementation andoptimization tehniques an be reused for a wide range of similar omputationalpatterns [9℄. It was quikly reognized that the key issue, after implementing oneskeleton eÆiently, is to aommodate programs onsisting of several skeleton in-stantiations. Skeleton programming languages suh as SCL [10℄ and P3L [11℄ areatually skeleton omposition languages. The task of the ompiler is to imple-ment omposition (sequential, parallel, pipelined or other) eÆiently. While muh



researh has been devoted to transforming skeleton programs (whih are generallyfuntional) to improve performane, the most suessful work so far [11℄ has onen-trated on resoure management: given a pipeline of two parallel omponents, howshould the available proessors be divided between them to math their throughput?The promise of the approah we propose lies in developing these ideas to dealwith irregular data. Some prototypes have been built (for example [12℄), but littleprogress has been made on ross-omponent optimization.Compilers. From the perspetive of onventional ompiler tehniques, ross-omp-onent optimization onerns optimising aross sequenes of loop nests, whih may ormay not be enapsulated in subroutines. Data aess summary information, as usedfor interproedural analysis [13℄ forms \metadata" desribing eah omponent. Un-fortunately, with irregular data (even irregular multiblok), the atual dependenebetween two operations is data-dependent.The data alignment problem for regular data has been extensively studied [14,15℄.One natural approah is to exploit these powerful results in dealing with bloks,while using a run-time tehnique to handle sets of bloks, and thereby blok-irregular appliations.Resoure-, Context- and Problem-optimized Component CompositionTo build adaptive, high-performane sienti� appliations in the form of re-usableomponents, we need to optimize the exeution of omposite programs. The needand opportunity for optimization arises from:� Heterogeneous and Varying Resoures: We expet future high-performaneomputing resoures to be heterogenous olletions of SMP lusters, linked byfast but heterogenous networks. Furthermore, the exat on�guration avail-able is likely to vary, at least from run-to-run.� The Context in whih Components are Used: This onsists of the dataplaement and time shedule with whih a omponent's operands are pro-dued, and its results onsumed. The omponent may also be ontending forresoures with other, onurrently exeuting omponents. Optimising om-ponents for their ontext is ompliated on systems that support multiplelevels of parallelism simultaneously, eah with its own harateristi level ofommuniation granularity.� The Adaptive and Irregular Nature of Problem Domains: In irregularand adaptive appliations, omputation and ommuniation are foused onregions of interest whih may hange with time.In the next setion we desribe the programming model and run-time library thatsupport the development of resoure-, ontext- and problem-optimized omposition.



void main() {Set<Region2> Domain;// Build an example multiblok iteration spaeDomain.add(new Region2(0,100, 0,100));Domain.add(new Region2(100,200, 50,150));Domain.add(new Region2(200,300, 100,200));// Delare mathing spaeGrid2 W<double>(Domain);Set<Region2> Domain_expanded = ... ompute storage for U and V, see textGrid2 U<double>(Domain_expanded);Grid2 V<double>(Domain_expanded);// onstrut Component Composition GraphTaskGraph T;taskgraph(T) {parameter(Grid2<double>, U);parameter(Grid2<double>, V);parameter(Grid2<double>, W);jaobi2d(U, V, Domain); // S1jaobi2d(V, W, Domain); // S2}// bind Component Composition Graph to atual in/out parametersT.setParameters("U",U, "V",V, "W",W, NULL);T.exeute();}Fig. 1: Sketh of a sample multiblok two-dimensional Jaobi appliation. The jaobi2d ompo-nent (see Figure 2) iterates over three non-interseting but partially-abutting retangular regions.The Grid2 and Region2 types are based on KeLP's types of the same name. The TaskGraph isinitialized (using some C++ maros for syntati sugar) to an abstrat syntax tree for the Com-ponent Composition Graph. In this example, this simply onsists of two instanes of the jaobi2domponent de�ned in Figure 2.3 Component Dependene Metadata in ThemisComponent dependene metadata onsists of two parts | haraterising the on-stituent omponents, and desribing how they are omposed:� Component Composition Graph. This data struture represents the large-grain, inter-omponent ontrol ow graph.� Component Dependene Summaries. These dependene metadata providean abstrat desription of eah omponent's internal iteration spae, as afuntion of the omponent's parameters, together with funtions mappingeah iteration to the memory addresses it may use and de�ne.Figure 1 shows a simple example in whih a Jaobi smoother is applied twie to amultiblok domain (ie a set of retangular submeshes). The Component Composi-tion Graph spei�es the intended exeution order of run-time omponent instanes



| in this ase of \jaobi2d". The atual dependene relationship between theman be alulated in more detail by �nding the intersetions between data aessedin the �rst omponent instane, and data aessed in the seond. Thus we apturedata dependene, and \storage" dependenes, namely anti- and output-dependenesarising from expliit re-use of memorya.3.1 Representing Component Dependene SummariesFor our urrent purposes (pae the omponent-based programming ommunity),a omponent is a proedure whih operates on aggregate data. The proedure'soperands and results might simply be array subsetions. More interestingly, itmight operate on a \multiblok" set of array subsetions [16℄. Furthermore, ratherthan simply arrays we may have any indexed olletion type [17℄.To apture this variety, we generalize the notion of a multiblok array deompo-sition. Given a proedure P, we need to disuss P's properties and P's parameters :� Property: P.IterationSpaeThis is the n-dimensional integer spae in whih iterations of P's exeutionare enumeratedb.This is an inherent property of P representing the in�nite range of possibleexeutions whih might take plae.� Parameter: P.IterationDomainThis desribes whih atual iterations of P should be exeuted. This is repre-sented as a set of non-interseting IterationRegions. An IterationRegionis a polytope in P.IterationSpae, haraterized as the intersetion of a setof integer plane equations eah de�ning a half-spae.� Parameters: P.Operands and P.ResultsThese are the indexed data olletions on whih P operates.� Property: P.UsesFor eah of the parameter Operands, this maps eah point in the IterationSpaeto the set of indies of the indexed olletion whih might be aessed (read)by that iteration.For simple array and multiblok omputations, this an usually be representedas an aÆne funtion. In [5℄ we show how this an be extended to apturedata whih is aessed by many iterations (leading to a broadast in a parallelimplementation).aIn [4℄ we desribe a run-time renaming sheme whih an remove exeution order onstraintsdue to storage reuse | but expliit ontrol remains important in many appliations to avoidrunning out of spae.bIn the ase where P onsists of an imperfet nest of loops, this is a simpli�ation: a statementat an intermediate loop nesting level is represented by a set of points in the iteration spae. Thisappears not to interfere with the e�etiveness of the model.



� Property: P.DefinesThis is just the same as P.Uses but haraterizes the data items (ie theelements of the P.Results olletions) whih might be written to by eahgiven iteration.Motivation. It is important to understand that it is not enough simply to har-aterize the set of data items whih might be read/written by a omponent. Thiswould be enough to �nd out whether invoation of two omponents P followed byQ are dependent. However, we need to understand the dependene relationshipbetween orresponding iterations.For example, to determine whether the outermost loop of P an be fused withthe outermost (i) loop of Q, we need to determine whether every value needed byiteration i of Q is available by iteration i of P. We return to this important issue inSetion 3.2.lass Region2 {publi int i_lower, i_upper, j_lower, j_upper;// ConstrutorRegion2(int i_l,int i_u, int j_l,int j_u) {i_lower = i_l; i_upper = i_i;j_lower = j_l; j_upper = j_u;}}lass Grid2<T> {Set<Region2> DataArrayShapes;Set<Array2<T>> DataArrays;// ConstrutorGrid2(Set<Region2> RegionShapes) {foreah (i=0; i<=RegionShapes.size; ++i) {DataArrayShapes.add(RegionShapes[i℄);DataArrays.add(new Array2(RegionShapes[i℄));}}}void jaobi2d(Grid2<double> U, Grid2<double> V, Set<Region2> Domain) {// for eah region in the set of regionsforeah(Region2 R, Domain){ // do the standard Jaobi loopfor (int i=R.i_lower; i < R.i_upper; ++i)for (int j=R.j_lower; j < R.j_upper; ++i)V[i℄[j℄ = (U[i-1℄[j℄+U[i+1℄[j℄+U[i℄[j-1℄+U[i℄[j+1℄)*0.25;}}Fig. 2: Sketh of example multiblok two-dimensional Jaobi omponent. The omponent depen-dene metadata for jaobi2d is given in the text. The Jaobi loop iterates over a set of regions.The Array2, Grid2 and Region2 types are based on KeLP's types of the same name.



3.2 Example: Multiblok JaobiFigure 2 shows a muh-simpli�ed example to illustrate the omponent dependenemetadata and its appliation. Eah run-time instane of the jaobi2d omponentan be queried for the following metadata:� Property jaobi2d.IterationSpae is simply the two-dimensional vetorspae of positive integers [0 :1℄� [0 :1℄.� Parameter jaobi2d.IterationDomain is a Set of three retangular setionsof jaobi2d.IterationSpae.� For the �rst jaobi2d instane in Figure 1, parameters jaobi2d.Operandsand jaobi2d.Results are U and V respetively.V is a Set of retangular arrays whose bounds math the orresponding ele-ments of jaobi2d.IterationDomain.This exat orrespondene between the shape of the IterationDomain and theshape of the Result data struture ours frequently | iteration (i; j) of theJaobi loop assigns to loation V[i℄[j℄.The situation for U is somewhat more ompliated, sine the Jaobi loop readsa \halo" of loations (often alled ghost ells) outside the range of iterations(i; j), owing to the i-1, i+1 and j-1, j+1 index expressions.To prevent these aesses from being bounds errors (and to provide boundaryonditions), the storage for U must be somewhat larger | we need to groweah of the onstituent regions by one in eah diretion. Although we oulddo this in an ad-ho fashion, it an be handled systematially using the Usemappings below.� Property jaobi2d.Defines onsists of a single mapping, being the iden-tity funtion from iteration (i; j) in jaobi2d.IterationSpae to loationV[i℄[j℄ in V. There is one mapping beause the Jaobi loop has just oneassignment to V.� Property jaobi2d.Uses onsists of four mappings:{ f1(i; j) = (i� 1; j) in U, owing to the memory referene U[i-1℄[j℄{ f2(i; j) = (i+ 1; j) in U, owing to the memory referene U[i+1℄[j℄{ f3(i; j) = (i; j � 1) in U, owing to the memory referene U[i℄[j-1℄{ f4(i; j) = (i; j + 1) in U, owing to the memory referene U[i℄[j+1℄In our prior work [2,3,4,5,15℄, omponent metadata desribes data plaement on-straints. In this framework, omponent dependene metadata aptures the availableexibility in exeution order.



Example. As an example of using the dependene information, onsider the pairof Jaobi instanes in Figure 1:jaobi2d(U, V, Domain); // S1jaobi2d(V, W, Domain); // S2Here, we apply the Jaobi operation in statement S1 to an initial set of Grids U,yielding V, then a seond step S2 to produe W. This exeution order makes somewhatineÆient use of ahe memory; it would be bene�ial to fuse the two loops. Howevera simple alulation using the Uses mappings shows that the resulting single loopnest would fail to respet the dependenes required | element V[i℄[j+1℄ is usedby iteration (i; j) of S2 but is generated in iteration (i; j + 1) of S1. We show howthe validity of loop fusion is tested in Setion 4.3.However, it turns out that these loops an be fused. The trik [18℄ is to renumberS2.IterationSpae by shifting it by 1 in both i and j. This aligns iteration(i+ 1; j + 1) of S1 with iteration (i; j) of S2. Now no dependene violation ours.4 Using Component Dependene MetadataThis setion illustrates how omponent dependene metadata an be used to solvesome simple ross-omponent optimization problems. This should explain some ofthe motivation behind the approah.4.1 Deriving Data Plaement ConstraintsGiven a data distribution D whih spei�es a set of subsetions of an array A whihis aessed by omponent P, we an alulate the required plaement of P's otheroperands/results as follows:(i) Find the iteration domain orresponding to the data deomposition D. If Ais an operand, �nd the set of Uses mappings whih map iterations to uses ofA (if A is a result, �nd the orresponding Defines mappings).(ii) Invert these mappings to �nd the iterations whih use eah of the subsetionsdesribed in D (assuming, of ourse, that the mappings are invertible).(iii) Now, �nd all the data aessed by these iterations using the Uses and Definesmappings forwards.This allows us to derive Bekmann's data plaement metadata when the mappingsare invertible. With repliation, the mappings are not invertible [5℄. Some furtherwork is needed to show how to alulate plaement onstraints in this ase.Comment: Enumerated versus losed-form domains. To implement themultiblok domain deomposition of Figure 2, we simply enumerate the set of sub-domains. To represent a regular domain deomposition, suh as blok-wise, ylior blok-yli, this would be unwieldy. Instead we plan to use an extension ofthe Set olletion type whih uses a losed-form generator funtion to produe its



elements on demand. Where appropriate, this generator funtion an be aessedexpliitly.For example, onsider the problem of �nding the data plaement onstraints ina regular array ontext as disussed above. If the data deomposition D above isgiven as a losed form, say a blokwise deomposition, the inverse Use mappingsan be used to yield the IterationDomain also in losed form.4.2 Composing Parallel Components | Deriving A Data Communiation PlanTo exeute the Jaobi example in parallel, we need to partition the IterationDomainaross the p proessors. Call this p-element set of IterationDomains the Iterat-ionDomainDeomposition. Given some arbitrary partitioning, we need an eÆientway to alulate the data ommuniations involved in a spei�ed omputation (inKeLP this is alled the \MotionPlan"). Consider our Jaobi example again; assumethat the same partitioning is used to exeute both S1 and S2:// this loop exeutes one on eah proessorforeah (pro, ProessorSet)S1: jaobi2d(U, V, IterationDomainDeomposition[pro℄);// impliit data redistribution required// this loop exeutes one on eah proessorforeah (pro, ProessorSet)S2: jaobi2d(V, W, IterationDomainDeomposition[pro℄);Now eah proessor i looks up IterationDomainDeomposition to �nd the itera-tions it must exeute. However, when proessor i exeutes S2, it needs some valuesfrom other proessors (due to the ghost ell halo). We an alulate whih valuesare needed, and where they are stored:(i) Use the Usesmappings of S2 to �nd the set usesi of memory loations aessedby proessor i's iterations.(ii) Use the Defines mappings of S1 to �nd the set defsj of memory loationswritten to by eah proessor j.(iii) On eah proessor i, ompute the intersetion of its usesi with the defsj ofeah of the other partiipating proessors. This is the set of reeive operationsrequired.(iv) On eah proessor j, ompute the intersetion of its defsj with the usesi ofeah of the other partiipating proessors. This is the set of send operationsrequired.An impliit assumption here is that data needed by S2 but not produed by S1 isalready available. This happens naturally, as it must have been generated by someearlier omponent, say S0 | we simply make sure this automati data distributedoperation is applied when S0 is omposed with S1; S2.



Data-dependent Uses mappings. Note that we assumed that eah proessoran alulate the Uses mappings of all the other proessors. If it annot, theommuniations must be one-sided, initiated by the proessor whih needs the data.In some interesting examples (suh as loally-essential trees in implementations ofthe Barnes-Hut algorithm [19℄), we an onservatively approximate the set of dataneeded by a proessor.4.3 Cross-Component Loop FusionAs mentioned in Setion 3.2, a key motivation is to support ross-omponent loopfusion and related ideas, inluding tiling. To hek the validity of loop fusion, weneed to know more than just the set of data items are aessed by the two loops| we also need to know about the order in whih the elements are produed andused.Assume that the IterationSpaes of the two omponents S1 and S2 are thesame. To test whether a omponent S1 an be fused with a omponent S2, we needto onstrut the dependene equation for eah potential dependene (we disussdata dependenes here; anti- and output-dependenes are similar):(i) Where a olletion A appears in both S1.Defines and S2.Uses, we introduethe orresponding mappings �(~i) to model the aess patterns due to eahmemory referene:S1:Defines[A℄:�(~i) and S2:Uses[A℄:�(~i)(where ~i is a d-element vetor representing a point in the d-dimensionalIterationSpae).(ii) Now, onsider two distint iteration spae points, ~i and ~i0. A dependenebetween iteration ~i of S1 and iteration ~i0 of S2 ours when the dependeneequation is satis�ed:S1:Defines[A℄:�(~i) = S2:Uses[A℄:�(~i0):(iii) To lassify the dependene, we need to haraterize the solutions to this de-pendene equation. There might be no dependene:� There may be no integer solution at all� The solutions may all lie outside the atual loop bounds (the IterationDomain)� In an IterationSpae with non-unit step, the solutions may our onlyat non-exeuted iterationsIf there is a dependene, we need to �nd out whether there exists a solutionfor whih ~i > ~i0 (under the lexiographi ordering).As explained earlier, the presene of suh a dependene reets that when fused, S2would attempt to read a value before it has been generated by S1.
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Fig. 3: Struture of the CFD visualization appliation.To solve the dependene equation, our prototype implementation uses Fourier-Moztkin elimination, a standard tehnique [20℄. Although this an, in priniple,be omputationally hard, the equations found in pratie are almost always verysimple and the time taken has been minimal.5 Extended Example: Visualization in Computational Fluid DynamisTo provide a testbed for these ideas, we have been developing a simple visualizationtool for a three-dimensional omputational uid dynamis appliation.Figure 3 shows the overall struture of the appliation. The prototype is astraightforward implementation using standard tools; the user interfae is imple-mented in Tl/tk, the visualization uses vtk [21℄, and the CFD appliation isNaSt3DGP [22℄. The appliation essentially a simpli�ed version of SCIRun [23℄;the objetive is to motivate and demonstrate generi mehanisms to support appli-ations of this kind.The hallenge we fous on is to handle very large �nite-di�erene meshes at eahtimestep, while supporting interative exploration of the ow evolution over time.Our prototype allows the user to rotate, pan, zoom in and out to view the uidvolume, slie/selet uid subregions of interest, add spei�ed isosurfaes (ontours)and streamlines to show ow patterns and eddies, and use a slider to produe asmooth animation of the sene over a range of timesteps.To ahieve interative responsiveness, we plan to use Themis to explore a num-ber of performane enhanement tehniques. For example:� Chekpointing/memoization For interesting examples, the mesh repre-senting the ow state at eah timestep may be several gigabytes in size (eg512� 512� 512 8-byte doubles per state variable).Conventionally, at eah timestep the entire uid state mesh is written to disk.Espeially in a parallel system, �le aess an dominate exeution time bothfor ow alulation and subsequent visualization.



Instead, we propose to let the Themis run-time system deide whih results tostore, and whih to reompute on-demand. Thanks to the dependene infor-mation, Themis has a omplete reipe for eah intermediate value alulated.This approah an be ompared with periodi hekpointing of the uid sim-ulation. The dependene metadata gives Themis preise details of what dataneeds to be stored.� Sheduling and plaement of malleable task graphs When the userrequests a timestep whose mesh has not been stored, we need to go bak tothe most reently stored uid state, and re-run the omputation from there.To do this quikly, we need instantaneous aess to multiple proessors. Unlessa large parallel omputer an be dediated to the user, we need to make useof whatever resoures are free at the time (see for example reent work atImperial [24℄).We propose to use Themis to deompose and shedule the omputation usingthe (possibly-heterogenous) proessors and network apaity available.A more sophistiated extension of this idea is to take into aount the dataalready available on the mahines in question. If a proessor is used for the�rst time, the sheduler must aount for the time to ship the ode and datait needs. Subsequent uses an skip this step and perhaps also use ahedintermediate results too.� Inrementalization If the user is viewing only a slie of the volume, we anpropagate the demand for data bak through the Component CompositionGraph, so that ontouring is applied only to the visible region | indeed onlythe visible region need be extrated from the uid simulation.When the user shifts the slie of the data to be rendered, we need to redo thisdemand propagation. The interesting hallenge is to make use of whateverparts of the intermediate values we already have.� Fusion, tiling and pipelining The straightforward implementation of Fig-ure 3 would load a mesh, then apply a ontouring algorithm, then apply astreamlining algorithm, then render the resulting polygons. These repeatedtraversals of the mesh make poor use of ahe (and virtual memory). Us-ing the loop fusion tehniques desribed earlier, Themis should be able toombine multiple passes.This mixture of task- and data-parallelism reates a rih variety of alternativeparallel implementations, inluding the lassial rendering pipeline. Themisan use dependene information to implement these alternatives; we need todevelop optimization algorithms (for example, see [25℄ to �nd the best one forthe irumstanes.By operating at run-time, these tehniques (some of whih are, of ourse, onven-tional ompiler tehnology) an be deployed adaptively, to reat to atual ompo-nent run-times, resoure availability et.



6 Related WorkWe disussed the key published bakground work in Setion 2. Here we briey fouson a spei� point of referene | KeLP. Component dependene metadata and thedependene alulus have been heavily inuened by Baden's use of metadata forstrutured irregular grids [16℄, whih is urrently being extended to unstruturedmeshes. KeLP's data plaement metadata, the FloorPlan, de�nes the mapping of ablok-strutured irregular array onto an array of proessors. KeLP further providesa region alulus whih, given two di�erent FloorPlans for some blok-irregulararray, an derive an optimized data motion plan to perform the ommuniation forredistributing the data from one plaement to the other.Our Component Composition Graph is analogous to KeLP's MotionPlan, butrather than representing data movement, the Component Composition Graph rep-resents a large-grain, inter-omponent dataow graph.Regarded as an extension to KeLP, Component Dependene Metadata will al-low us to inrease the sope for adaptive run-time sheduling, as well as o�-lineoptimization. Further, the metadata will provide the infrastruture for automatiplaement of intermediate data, urrently not supported by KeLP.Another interesting point of referene is DUDE [26℄. In this C++ library, theprogrammer adds an expliit desription of the dependene distane vetors on-neting eah pair of dependent omponents. The DUDE run-time system an thenalulate what synhronization and ommuniation is needed. Thus, in DUDE,dependene information has to be added for eah omponent omposition. By on-trast, in Themis, the dependene metadata is assoiated with eah omponent. Thedependenes between omponents is automatially alulated from this information.In some sense, Themis an be regarded as an extension of Jade [27℄. Jade is aparallel objet-oriented language based on C++. Eah method has an assoiatedaess desriptor whih desribes the objets it may read or write. Jade's run-timesystem automatially arranges the synhronization and ommuniation required.In Jade, an aess to an objet in shared memory is potentially an aess to anypart of the objet. In Themis, the dependene metadata provides more re�nedinformation about whih onsituents of a hared olletion type might be aessed.7 Implementation StatusThe Themis library has not yet been implemented, but many of the ideas have beeninvestigated in prototype form. Our \TaskGraph" library (implemented by Alis-tair Houghton [28℄) provides a onvenient syntax for the Component CompositionGraph using templates, overloading and maros in C++. The library automati-ally derives Component Dependene Summaries for simple loop proedures, andsummary metadata an be added manually for user-supplied funtions.One the TaskGraph has been optimized, it is printed as a C program, ompiled,then linked bak into the running appliation. Considerable performane advantageis gained from run-time ode generation, owing to speialization and also by avoidingfuntion and virtual funtion all overheads. The library automatially exploitsdependene information by fusing loops wherever possible.
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