Parallel Processing Letters
© World Scientific Publishing Company

THEMIS: COMPONENT DEPENDENCE METADATA IN
ADAPTIVE PARALLEL APPLICATIONS

PAUL H J KELLY, OLAV BECKMANN, TONY FIELD

Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queen’s Gate, London SW7 2BZ, United Kingdom

and

SCOTT B BADEN

Department of Computer Science and Engineering, University of California, San Diego,
La Jolla, CA 92093-011/, United States of America

ABSTRACT

This paper describes THEMIS, a programming model and run-time library
being designed to support cross-component performance optimization through
explicit manipulation of the computation’s iteration space at run-time.

Each component is augmented with “component dependence metadata”,
which characterizes the constraints on its execution order, data distribution
and memory access order. We show how this supports dynamic adaptation
of each component to exploit the available resources, the context in which its
operands are generated, and results are used, and the evolution of the problem
instance.

Using a computational fluid dynamics visualization example as motivation,
we show how component dependence metadata provides a framework in which
anumber of interesting optimizations become possible. Examples include data
placement optimization, loop fusion, tiling, memoization, checkpointing and
incrementalization.

Keywords: Interprocedural optimization, run-time optimization, libraries for
parallel programming

1 Introduction

In many scientific applications, the use of sophisticated data structures and elabo-

rate, adaptive numerical methods can be highly effective in solving computational
problems that would otherwise be difficult or impossible to solve. Examples include
adaptive multigrid and multipole methods, and coupled multiphysics simulations.
Unfortunately, the software complexity associated with these techniques means that
they are seldom exploited effectively.

The crucial issue which we propose to address is the apparent conflict between
the goals of improving the quality of scientific software and improving its perfor-
mance. The quest for more usable, higher quality scientific software is reflected in
growing interest in component-based scientific programming. Our aim is to reverse

the performance problems associated with composite programs which arise from the
use of components which are developed outside the context in which they will be
used.

Components are self-describing, separately-deployable units of software reuse.
Explicit support for component-based programming is being developed in the scien-
tific computing community [1]. In this paper we avoid the details of such techniques
and focus on the metadata needed to support cross-component optimization.

The key new idea behind this paper is to complement data placement meta-
data [2,3,4,5] with a set of metadata that define dependencies between components.
Having a powerful component dependence calculus is key to the new directions set
out above which we wish to explore.

Contributions. The main contributions of this paper are as follows:

(i) We present a design for Component Dependence Metadata, a general frame-
work for characterising the computational structure, execution order and de-
pendence of software components.

(ii) We show how Component Dependence Metadata can be used to implement a
variety of optimizations, including cross-component loop fusion, tiling, data
placement optimization and automatic derivation of one- and two-sided com-
munication plans.

(iii) We illustrate the potential for the approach with reference to a computational
fluid dynamics visualization application.

(iv) We discuss the relationship between this approach and earlier work.

2 Background

Component-based programming. Recently various research groups have ap-
plied component-based software engineering to scientific computation. Examples in-
clude [1,6,7]. Component-based programming infrastructures (eg Microsoft’s COM
and .Net, Javabeans and the Corba Component Model) rely on dynamically-linked
libraries, and indirect (virtual) method calls. Both of these techniques present
barriers for performance optimization, making run-time techniques essential. An
important research question is how to communicate the results of static analysis to
the run-time optimizer [8].

Skeletons. The starting point for the skeleton approach is to implement recurring
parallel structures of computation and communication, so that implementation and
optimization techniques can be reused for a wide range of similar computational
patterns [9]. It was quickly recognized that the key issue, after implementing one
skeleton efficiently, is to accommodate programs consisting of several skeleton in-
stantiations. Skeleton programming languages such as SCL [10] and P3L [11] are
actually skeleton composition languages. The task of the compiler is to imple-
ment composition (sequential, parallel, pipelined or other) efficiently. While much

research has been devoted to transforming skeleton programs (which are generally
functional) to improve performance, the most successful work so far [11] has concen-
trated on resource management: given a pipeline of two parallel components, how
should the available processors be divided between them to match their throughput?

The promise of the approach we propose lies in developing these ideas to deal
with irregular data. Some prototypes have been built (for example [12]), but little
progress has been made on cross-component optimization.

Compilers. From the perspective of conventional compiler techniques, cross-comp-
onent optimization concerns optimising across sequences of loop nests, which may or
may not be encapsulated in subroutines. Data access summary information, as used
for interprocedural analysis [13] forms “metadata” describing each component. Un-
fortunately, with irregular data (even irregular multiblock), the actual dependence
between two operations is data-dependent.

The data alignment problem for regular data has been extensively studied [14,15].
One natural approach is to exploit these powerful results in dealing with blocks,
while using a run-time technique to handle sets of blocks, and thereby block-
irregular applications.

Resource-, Context- and Problem-optimized Component Composition
To build adaptive, high-performance scientific applications in the form of re-usable
components, we need to optimize the execution of composite programs. The need
and opportunity for optimization arises from:

e Heterogeneous and Varying Resources: We expect future high-performance
computing resources to be heterogenous collections of SMP clusters, linked by
fast but heterogenous networks. Furthermore, the exact configuration avail-
able is likely to vary, at least from run-to-run.

e The Context in which Components are Used: This consists of the data
placement and time schedule with which a component’s operands are pro-
duced, and its results consumed. The component may also be contending for
resources with other, concurrently executing components. Optimising com-
ponents for their context is complicated on systems that support multiple
levels of parallelism simultaneously, each with its own characteristic level of
communication granularity.

e The Adaptive and Irregular Nature of Problem Domains: In irregular
and adaptive applications, computation and communication are focused on
regions of interest which may change with time.

In the next section we describe the programming model and run-time library that
support the development of resource-, context- and problem-optimized composition.

void main() {
Set<Region2> Domain;

// Build an example multiblock iteration space
Domain.add(new Region2(0,100, 0,100));
Domain.add(new Region2(100,200, 50,150));
Domain.add(new Region2(200,300, 100,200));

// Declare matching space

Grid2 W<double>(Domain);

Set<Region2> Domain_expanded = ... compute storage for U and V, see text
Grid2 U<double>(Domain_expanded) ;

Grid2 V<double>(Domain_expanded) ;

// construct Component Composition Graph
TaskGraph T;
taskgraph(T) {

parameter (Grid2<double>, U);

parameter (Grid2<double>, V);

parameter (Grid2<double>, W);

jacobi2d(U, V, Domain); // S1

jacobi2d(V, W, Domain); // S2
}
// bind Component Composition Graph to actual in/out parameters
T.setParameters("U",U, "V",V, "W",W, NULL);

T.execute();

Fig. 1: Sketch of a sample multiblock two-dimensional Jacobi application. The jacobi2d compo-
nent (see Figure 2) iterates over three non-intersecting but partially-abutting rectangular regions.
The Grid2 and Region2 types are based on KeLP’s types of the same name. The TaskGraph is
initialized (using some C++ macros for syntactic sugar) to an abstract syntax tree for the Com-
ponent Composition Graph. In this example, this simply consists of two instances of the jacobi2d
component defined in Figure 2.

3 Component Dependence Metadata in Themis

Component, dependence metadata consists of two parts — characterising the con-
stituent components, and describing how they are composed:

e Component Composition Graph. This data structure represents the large-
grain, inter-component control flow graph.

e Component Dependence Summaries. These dependence metadata provide
an abstract description of each component’s internal iteration space, as a
function of the component’s parameters, together with functions mapping
each iteration to the memory addresses it may use and define.

Figure 1 shows a simple example in which a Jacobi smoother is applied twice to a
multiblock domain (ie a set of rectangular submeshes). The Component Composi-
tion Graph specifies the intended execution order of run-time component instances

— in this case of “jacobi2d”. The actual dependence relationship between them
can be calculated in more detail by finding the intersections between data accessed
in the first component instance, and data accessed in the second. Thus we capture
data dependence, and “storage” dependences, namely anti- and output-dependences
arising from explicit re-use of memory?.

3.1 Representing Component Dependence Summaries

For our current purposes (pace the component-based programming community),
a component is a procedure which operates on aggregate data. The procedure’s
operands and results might simply be array subsections. More interestingly, it
might operate on a “multiblock” set of array subsections [16]. Furthermore, rather
than simply arrays we may have any indexed collection type [17].

To capture this variety, we generalize the notion of a multiblock array decompo-
sition. Given a procedure P, we need to discuss P’s properties and P’s parameters:

e Property: P.IterationSpace

This is the n-dimensional integer space in which iterations of P’s execution
are enumerated®.

This is an inherent property of P representing the infinite range of possible
executions which might take place.

e Parameter: P.IterationDomain

This describes which actual iterations of P should be executed. This is repre-
sented as a set of non-intersecting IterationRegions. An IterationRegion
is a polytope in P.IterationSpace, characterized as the intersection of a set
of integer plane equations each defining a half-space.

e Parameters: P.Operands and P.Results

These are the indexed data collections on which P operates.

e Property: P.Uses

For each of the parameter Operands, this maps each point in the IterationSpace
to the set of indices of the indexed collection which might be accessed (read)
by that iteration.

For simple array and multiblock computations, this can usually be represented
as an affine function. In [5] we show how this can be extended to capture
data which is accessed by many iterations (leading to a broadcast in a parallel
implementation).

2In [4] we describe a run-time renaming scheme which can remove execution order constraints
due to storage reuse — but explicit control remains important in many applications to avoid
running out of space.

bIn the case where P consists of an imperfect nest of loops, this is a simplification: a statement
at an intermediate loop nesting level is represented by a set of points in the iteration space. This
appears not to interfere with the effectiveness of the model.

e Property: P.Defines

This is just the same as P.Uses but characterizes the data items (ie the
elements of the P.Results collections) which might be written to by each
given iteration.

Motivation. It is important to understand that it is not enough simply to char-
acterize the set of data items which might be read/written by a component. This
would be enough to find out whether invocation of two components P followed by
Q are dependent. However, we need to understand the dependence relationship
between corresponding iterations.

For example, to determine whether the outermost loop of P can be fused with
the outermost (i) loop of Q, we need to determine whether every value needed by
iteration i of Q is available by iteration i of P. We return to this important issue in
Section 3.2.

class Region2 {
public int i_lower, i_upper, j_lower, j_upper;

// Constructor
Region2(int i_l,int i_u, int j_1,int j_u) {
i_lower = i_1l; i_upper = i_i;
j_lower = j_1l; j_upper = j_u;
}
}
class Grid2<T> {
Set<Region2> DataArrayShapes;
Set<Array2<T>> DataArrays;

// Constructor
Grid2(Set<Region2> RegionShapes) {
foreach (i=0; i<=RegionShapes.size; ++i) {
DataArrayShapes.add(RegionShapes[i]);
DataArrays.add(new Array2(RegionShapes[il]));
}
}
}
void jacobi2d(Grid2<double> U, Grid2<double> V, Set<Region2> Domain) {

// for each region in the set of regions
foreach(Region2 R, Domain)
{
// do the standard Jacobi loop
for (int i=R.i_lower; i < R.i_upper; ++i)
for (int j=R.j_lower; j < R.j_upper; ++i)
VEi1 03] = (ULi-11[31+Uli+1] [31+ULi]1 [j-11+U[i] [j+1])*0.25;

Fig. 2: Sketch of example multiblock two-dimensional Jacobi component. The component depen-
dence metadata for jacobi2d is given in the text. The Jacobi loop iterates over a set of regions.
The Array2, Grid2 and Region2 types are based on KeLP’s types of the same name.

3.2 Example: Multiblock Jacobi

Figure 2 shows a much-simplified example to illustrate the component dependence
metadata and its application. Each run-time instance of the jacobi2d component
can be queried for the following metadata:

e Property jacobi2d.IterationSpace is simply the two-dimensional vector
space of positive integers [0 : o] x [0 : 00].

e Parameter jacobi2d.IterationDomain is a Set of three rectangular sections
of jacobi2d.IterationSpace.

e For the first jacobi2d instance in Figure 1, parameters jacobi2d.0Operands
and jacobi2d.Results are U and V respectively.

V is a Set of rectangular arrays whose bounds match the corresponding ele-
ments of jacobi2d.IterationDomain.

This exact correspondence between the shape of the IterationDomain and the
shape of the Result data structure occurs frequently — iteration (4, j) of the
Jacobi loop assigns to location V[i] [j].

The situation for U is somewhat more complicated, since the Jacobi loop reads
a “halo” of locations (often called ghost cells) outside the range of iterations
(,7), owing to the i-1, i+1 and j-1, j+1 index expressions.

To prevent these accesses from being bounds errors (and to provide boundary
conditions), the storage for U must be somewhat larger — we need to grow
each of the constituent regions by one in each direction. Although we could
do this in an ad-hoc fashion, it can be handled systematically using the Use
mappings below.

e Property jacobi2d.Defines consists of a single mapping, being the iden-
tity function from iteration (i,j) in jacobi2d.IterationSpace to location
V[i] [j] in V. There is one mapping because the Jacobi loop has just one
assignment to V.

e Property jacobi2d.Uses consists of four mappings:

— f1(i,j) = (i — 1,j) in U, owing to the memory reference U[i-1] [j]
— f2(i,j) = (i + 1,j) in U, owing to the memory reference U[i+1] [j]
— f3(i,j) = (4,4 — 1) in U, owing to the memory reference U[i] [j-1]
— f1(i,j) = (4,5 + 1) in U, owing to the memory reference U[i] [j+1]

In our prior work [2,3,4,5,15], component metadata describes data placement con-
straints. In this framework, component dependence metadata captures the available
flexibility in execution order.

Example. As an example of using the dependence information, consider the pair
of Jacobi instances in Figure 1:

jacobi2d (U, V, Domain); // St
jacobi2d(V, W, Domain); // S2

Here, we apply the Jacobi operation in statement S1 to an initial set of Grids U,
yielding V, then a second step S2 to produce W. This execution order makes somewhat
inefficient use of cache memory; it would be beneficial to fuse the two loops. However
a simple calculation using the Uses mappings shows that the resulting single loop
nest would fail to respect the dependences required — element V[i] [j+1] is used
by iteration (i,j) of S2 but is generated in iteration (i,j + 1) of S1. We show how
the validity of loop fusion is tested in Section 4.3.

However, it turns out that these loops can be fused. The trick [18] is to renumber
S2.IterationSpace by shifting it by 1 in both ¢ and j. This aligns iteration
(1 4+ 1,7 +1) of S1 with iteration (7, j) of 82. Now no dependence violation occurs.

4 TUsing Component Dependence Metadata

This section illustrates how component dependence metadata can be used to solve
some simple cross-component optimization problems. This should explain some of
the motivation behind the approach.

4.1 Deriving Data Placement Constraints

Given a data distribution D which specifies a set of subsections of an array A which
is accessed by component P, we can calculate the required placement of P’s other
operands/results as follows:

(i) Find the iteration domain corresponding to the data decomposition D. If A
is an operand, find the set of Uses mappings which map iterations to uses of
A (if A is a result, find the corresponding Defines mappings).

(ii) Invert these mappings to find the iterations which use each of the subsections
described in D (assuming, of course, that the mappings are invertible).

(iii) Now, find all the data accessed by these iterations using the Uses and Defines
mappings forwards.

This allows us to derive Beckmann’s data placement metadata when the mappings
are invertible. With replication, the mappings are not invertible [5]. Some further
work is needed to show how to calculate placement constraints in this case.

Comment: Enumerated versus closed-form domains. To implement the
multiblock domain decomposition of Figure 2, we simply enumerate the set of sub-
domains. To represent a regular domain decomposition, such as block-wise, cyclic
or block-cyclic, this would be unwieldy. Instead we plan to use an extension of
the Set collection type which uses a closed-form generator function to produce its

elements on demand. Where appropriate, this generator function can be accessed
explicitly.

For example, consider the problem of finding the data placement constraints in
a regular array context as discussed above. If the data decomposition D above is
given as a closed form, say a blockwise decomposition, the inverse Use mappings
can be used to yield the IterationDomain also in closed form.

4.2 Composing Parallel Components — Deriving A Data Communication Plan

To execute the Jacobi example in parallel, we need to partition the IterationDomain
across the p processors. Call this p-element set of IterationDomains the Iterat-
ionDomainDecomposition. Given some arbitrary partitioning, we need an efficient
way to calculate the data communications involved in a specified computation (in
KeLP this is called the “MotionPlan”). Consider our Jacobi example again; assume
that the same partitioning is used to execute both S1 and S2:

// this loop executes once on each processor
foreach (proc, ProcessorSet)
S1: jacobi2d(U, V, IterationDomainDecomposition[procl);

// implicit data redistribution required

// this loop executes once on each processor
foreach (proc, ProcessorSet)
S2: jacobi2d(V, W, IterationDomainDecomposition[procl);

Now each processor i looks up IterationDomainDecomposition to find the itera-
tions it must execute. However, when processor i executes S2, it needs some values
from other processors (due to the ghost cell halo). We can calculate which values
are needed, and where they are stored:

(i) Use the Uses mappings of S2 to find the set uses; of memory locations accessed
by processor ¢’s iterations.

(i) Use the Defines mappings of S1 to find the set defs; of memory locations
written to by each processor j.

(iii) On each processor i, compute the intersection of its uses; with the defs; of
each of the other participating processors. This is the set of receive operations
required.

(iv) On each processor j, compute the intersection of its defs; with the uses; of
each of the other participating processors. This is the set of send operations
required.

An implicit assumption here is that data needed by S2 but not produced by S1 is
already available. This happens naturally, as it must have been generated by some
earlier component, say SO — we simply make sure this automatic data distributed
operation is applied when SO is composed with S1; S2.

Data-dependent Uses mappings. Note that we assumed that each processor
can calculate the Uses mappings of all the other processors. If it cannot, the
communications must be one-sided, initiated by the processor which needs the data.
In some interesting examples (such as locally-essential trees in implementations of
the Barnes-Hut algorithm [19]), we can conservatively approximate the set of data
needed by a processor.

4.8 Cross-Component Loop Fusion

As mentioned in Section 3.2, a key motivation is to support cross-component loop
fusion and related ideas, including tiling. To check the validity of loop fusion, we
need to know more than just the set of data items are accessed by the two loops
— we also need to know about the order in which the elements are produced and
used.

Assume that the IterationSpaces of the two components S1 and S2 are the
same. To test whether a component S1 can be fused with a component S2, we need
to construct the dependence equation for each potential dependence (we discuss
data dependences here; anti- and output-dependences are similar):

(i) Where a collection A appears in both S1.Defines and S2.Uses, we introduce
the corresponding mappings ¢(¢) to model the access patterns due to each
memory reference:

A A

Si.Defines[A]l.¢(i) and S2.Uses[A].4(i)

(where i is a d-element vector representing a point in the d-dimensional
IterationSpace).

(ii) Now, consider two distinct iteration space points, iand i, A dependence
between iteration ¢ of S1 and iteration i’ of S2 occurs when the dependence
equation is satisfied:

S1.Defines[A].¢(7) = S2.Uses[A].¢(i').

(iii) To classify the dependence, we need to characterize the solutions to this de-
pendence equation. There might be no dependence:
e There may be no integer solution at all
e The solutions may all lie outside the actual loop bounds (the IterationDomain)
e In an IterationSpace with non-unit step, the solutions may occur only

at non-executed iterations

If there is a dependence, we need to find out whether there exists a solution
for which ¢ > 4’ (under the lexicographic ordering).

As explained earlier, the presence of such a dependence reflects that when fused, S2
would attempt to read a value before it has been generated by S1.

Model
description CFD solver
file

: 3

Feaure
NEANE=R
Fluid 4 eglat 3d rendering
state variable| ?loftlijcite
4 array Y
-+ | 512x512x512
Nl 4

Display
Fig. 3: Structure of the CFD visualization application.

To solve the dependence equation, our prototype implementation uses Fourier-
Morztkin elimination, a standard technique [20]. Although this can, in principle,
be computationally hard, the equations found in practice are almost always very
simple and the time taken has been minimal.

5 Extended Example: Visualization in Computational Fluid Dynamics

To provide a testbed for these ideas, we have been developing a simple visualization
tool for a three-dimensional computational fluid dynamics application.

Figure 3 shows the overall structure of the application. The prototype is a
straightforward implementation using standard tools; the user interface is imple-
mented in Tcl/tk, the visualization uses vtk [21], and the CFD application is
NaSt3DGP [22]. The application essentially a simplified version of SCIRun [23];
the objective is to motivate and demonstrate generic mechanisms to support appli-
cations of this kind.

The challenge we focus on is to handle very large finite-difference meshes at each
timestep, while supporting interactive exploration of the flow evolution over time.
Our prototype allows the user to rotate, pan, zoom in and out to view the fluid
volume, slice/select fluid subregions of interest, add specified isosurfaces (contours)
and streamlines to show flow patterns and eddies, and use a slider to produce a
smooth animation of the scene over a range of timesteps.

To achieve interactive responsiveness, we plan to use THEMIS to explore a num-
ber of performance enhancement techniques. For example:

e Checkpointing/memoization For interesting examples, the mesh repre-
senting the flow state at each timestep may be several gigabytes in size (eg
512 x 512 x 512 8-byte doubles per state variable).

Conventionally, at each timestep the entire fluid state mesh is written to disk.
Especially in a parallel system, file access can dominate execution time both
for flow calculation and subsequent visualization.

Instead, we propose to let the THEMIS run-time system decide which results to
store, and which to recompute on-demand. Thanks to the dependence infor-
mation, THEMIS has a complete recipe for each intermediate value calculated.

This approach can be compared with periodic checkpointing of the fluid sim-
ulation. The dependence metadata gives THEMIS precise details of what data
needs to be stored.

e Scheduling and placement of malleable task graphs When the user
requests a timestep whose mesh has not been stored, we need to go back to
the most recently stored fluid state, and re-run the computation from there.

To do this quickly, we need instantaneous access to multiple processors. Unless
a large parallel computer can be dedicated to the user, we need to make use
of whatever resources are free at the time (see for example recent work at
Imperial [24]).

We propose to use THEMIS to decompose and schedule the computation using
the (possibly-heterogenous) processors and network capacity available.

A more sophisticated extension of this idea is to take into account the data
already available on the machines in question. If a processor is used for the
first time, the scheduler must account for the time to ship the code and data
it needs. Subsequent uses can skip this step and perhaps also use cached
intermediate results too.

e Incrementalization If the user is viewing only a slice of the volume, we can
propagate the demand for data back through the Component Composition
Graph, so that contouring is applied only to the visible region — indeed only
the visible region need be extracted from the fluid simulation.

When the user shifts the slice of the data to be rendered, we need to redo this
demand propagation. The interesting challenge is to make use of whatever
parts of the intermediate values we already have.

e Fusion, tiling and pipelining The straightforward implementation of Fig-
ure 3 would load a mesh, then apply a contouring algorithm, then apply a
streamlining algorithm, then render the resulting polygons. These repeated
traversals of the mesh make poor use of cache (and virtual memory). Us-
ing the loop fusion techniques described earlier, THEMIS should be able to
combine multiple passes.

This mixture of task- and data-parallelism creates a rich variety of alternative
parallel implementations, including the classical rendering pipeline. Themis
can use dependence information to implement these alternatives; we need to
develop optimization algorithms (for example, see [25] to find the best one for
the circumstances.

By operating at run-time, these techniques (some of which are, of course, conven-
tional compiler technology) can be deployed adaptively, to react to actual compo-
nent run-times, resource availability etc.

6 Related Work

We discussed the key published background work in Section 2. Here we briefly focus
on a specific point of reference — KeLLP. Component dependence metadata and the
dependence calculus have been heavily influenced by Baden’s use of metadata for
structured irregular grids [16], which is currently being extended to unstructured
meshes. KeLLP’s data placement metadata, the FloorPlan, defines the mapping of a
block-structured irregular array onto an array of processors. KeLLP further provides
a region calculus which, given two different FloorPlans for some block-irregular
array, can derive an optimized data motion plan to perform the communication for
redistributing the data from one placement to the other.

Our Component Composition Graph is analogous to KeL.P’s MotionPlan, but
rather than representing data movement, the Component Composition Graph rep-
resents a large-grain, inter-component dataflow graph.

Regarded as an extension to KeLP, Component Dependence Metadata will al-
low us to increase the scope for adaptive run-time scheduling, as well as off-line
optimization. Further, the metadata will provide the infrastructure for automatic
placement of intermediate data, currently not supported by KeLP.

Another interesting point of reference is DUDE [26]. In this C++ library, the
programmer adds an explicit description of the dependence distance vectors con-
necting each pair of dependent components. The DUDE run-time system can then
calculate what synchronization and communication is needed. Thus, in DUDE,
dependence information has to be added for each component composition. By con-
trast, in THEMIS, the dependence metadata is associated with each component. The
dependences between components is automatically calculated from this information.

In some sense, THEMIS can be regarded as an extension of Jade [27]. Jade is a
parallel object-oriented language based on C++. Each method has an associated
access descriptor which describes the objects it may read or write. Jade’s run-time
system automatically arranges the synchronization and communication required.
In Jade, an access to an object in shared memory is potentially an access to any
part of the object. In THEMIS, the dependence metadata provides more refined
information about which consituents of a chared collection type might be accessed.

7 Implementation Status

The THEMIS library has not yet been implemented, but many of the ideas have been
investigated in prototype form. Our “TaskGraph” library (implemented by Alis-
tair Houghton [28]) provides a convenient syntax for the Component Composition
Graph using templates, overloading and macros in C++. The library automati-
cally derives Component Dependence Summaries for simple loop procedures, and
summary metadata can be added manually for user-supplied functions.

Once the TaskGraph has been optimized, it is printed as a C program, compiled,
then linked back into the running application. Considerable performance advantage
is gained from run-time code generation, owing to specialization and also by avoiding
function and virtual function call overheads. The library automatically exploits
dependence information by fusing loops wherever possible.

THEMIS will extend this with a dependence calculus, for manipulating compo-
nent dependence metadata, together with a library for manipulating the iteration
domains of the components to generate optimized code. This will provide the tools
with which a programmer can implement the interactive visualization application
as we have described.

8 Conclusions

We have presented THEMIS, a software framework for cross-component performance
optimization. The key idea is for each component to carry Component Dependence
Metadata which gives an abstract and general characterization of how its itera-
tion space accesses shared data. We present a design for Component Dependence
Metadata which links the accessed data regions to the iteration space, and we
demonstrate how this makes loop fusion possible.

The main challenge for future work is to provide flexible, powerful, explicit
control of cross-component optimization as we have described, without introducing
unmanageable complexity.

Acknowledgements

This work builds on extensive discussions with Susanna Pelagatti. We gratefully
acknowledge the EPSRC’s funding for Baden and Pelagatti to visit Imperial College
(Ref GR/N/35571). Olav Beckmann’s work was also supported by EPSRC through
a PhD studentship. We are grateful to the various students who have contributed
towards prototype implementation, notably Alistair Houghton, and Kulwant Bhatia
and his team.

References

1. Steven Newhouse, Anthony Mayer, and John Darlington. A software architecture for
hpc grid applications. In Euro-Par 2000, volume 1900 of Lecture Notes in Computer
Science, 2000.

2. Olav Beckmann and Paul H. J. Kelly. Runtime interprocedural data placement
optimisation for lazy parallel libraries (extended abstract). In Proceedings of Euro-
Par ’97, number 1300 in LNCS, pages 306-309. Springer Verlag, August 1997.

3. Olav Beckmann and Paul H. J. Kelly. Data distribution at run-time: Re-using
execution plans. In Proceedings of Euro-Par’98, number 1470 in LNCS, pages 413—
421, Southampton, UK, September 1998. Springer-Verlag.

4. Olav Beckmann and Paul H. J. Kelly. Efficient interprocedural data placement
optimisation in a parallel library. In LCR98: Languages, Compilers and Run-time
Systems for Scalable Computers, number 1511 in LNCS, pages 123-138. Springer-
Verlag, May 1998.

5. Olav Beckmann and Paul H. J. Kelly. A linear algebra formulation for optimising
replication in data parallel programs. In LCPC99: Languages and Compilers for
Parallel Computing, number 1863 in LNCS, pages 100-116. Springer-Verlag, August
1999.

6. Omer Rana, Maozhen Li, Shields, David Walker, and David Golby. Implementing
problem solving environments for computational science. In Euro-Par 2000, volume

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

1900 of Lecture Notes in Computer Science, 2000.

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker,
and B. Smolinski. Toward a common component architecture for high performance
scientific computing, 1999.

Shamik Sharma, Anurag Acharya, and Joel Saltz. Deferred Data-Flow Analysis.
Technical Report TRCS98-38, University of California, Santa Barbara, December
30, 1998.

Murray I. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-
putation. Research Monographs in Parallel and Distributed Computing. Pitman /
MIT Press, 1989.

John Darlington, Yike Guo, Hing Wing To, and Jin Yang. Parallel skeletons for
structured composition. In PPoPP’95: Principles and Practice of Parallel Pro-
gramming, pages 19-28. ACM Press, August 1995. Published as ACM SIGPLAN
Notices 30(8).

Susanna Pelagatti. Structured Development of Parallel Programs. Taylor & Francis,
London, U.K., 1997.

Qian Wu, Anthony J. Field, and Paul H. J. Kelly. M-Tree: A parallel abstract
data type for block-irregular adaptive applications. In Proceedings of Euro-Par 97,
number 1300 in LNCS, pages 638-649. Springer Verlag, August 1997.

B. Creusillet and F. Irigoin. Interprocedural analyses of Fortran programs. Parallel
Computing, 24(3-4):629-648, May 1998.

Siddhartha Chatterjee, John R. Gilbert, Robert Schreiber, and Shang-Hua Teng.
Automatic array alignment in data-parallel programs. In POPL’92: ACM Sympo-
stum on Principles of Programming Languages, pages 16-28. ACM Press, 1993.

Olav Beckmann and Paul H. J. Kelly. A review of data placement optimisation for
data-parallel component composition. In Sergei Gorlatch and Christian Lengauer,
editors, CMPP 2000: 2°¢ International Workshop on Constructive Methods for Par-
allel Programming, pages 3—18, July 2000. Published as Technical Report MIP-007
of the University of Passau.

Stephen J. Fink, Scott B. Baden, and Scott R. Kohn. Efficient run-time support for
irregular block-structured applications. Journal of Parallel and Distributed Com-
puting, 50(1):61-82, April 10/May 1 1998.

S.B. Baden, P. Colella, D. Shalit, and B. Van Straalen. Abstract kelp. In 10th SIAM

Conference on Parallel Processing for Scientific Computing, Portsmouth, Virginia,
March 2001.

Alain Darte. On the complexity of loop fusion. In Proceedings of the 1999 Inter-
national Conference on Parallel Architectures and Compilation Techniques (PACT
’99), pages 149-157, Newport Beach, California, October 12-16, 1999. IEEE Com-
puter Society Press.

J. Salmon. Parallel Hierarchical N-body Methods. PhD thesis, California Institute
of Technology, 1990.

Michael Wolfe. High-Performance Compilers for Parallel Computing. Addison Wes-
ley, 1995.

William J. Schroeder, Kenneth M. Martin, and William E. Lorensen. The Visual-
ization Toolkit. Prentice-Hall, Upper Saddle River, NJ 07458, USA, second edition,
1998.

Michael Griebel, Frank Koster, Michael Meyer, and Roberto Croce.
NaSt3DGP — a parallel flow solver. http://wwwwissrech.iam.uni-

23.

24.

25.

26.

27.

28.

bonn.de/research/projects/koster/NaSt3DGP /index.htm.

Steven G. Parker and Christopher R. Johnson. SCIRun: A scientific programming
environment for computational steering. In Sidney Karin, editor, Proceedings of
the 1995 ACM/IEEE Supercomputing Conference, December 3-8, 1995, San Diego
Convention Center, San Diego, CA, USA, pages 7777, New York, NY 10036, USA
and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995. ACM Press
and IEEE Computer Society Press.

Mark Rossiter. Exploiting idle workstations to accelerate computation. MEng dis-
sertation, Department of Computing, Imperial College (supervised by Paul H J
Kelly), 2000.

David B. Skillicorn and Susanna Pelagatti. Building programs in the Network Of
Tasks model. In SAC 2000: ACM Symposium on Applied Computing, pages 248—
254. ACM Press, March 2000.

Suvas Vajracharya and Dirk Grunwald. Loop re-ordering and pre-fetching at run-
time. In Supercomputing ’97. ACM Press and IEEE Computer Society Press, 1997.

Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation
of jade. ACM Transactions on Programming Languages and Systems, 20(3), May
1998.

Alastair Houghton. Run-time specialisation using a C++ meta-language. MEng
dissertation, Department of Computing, Imperial College (supervised by Paul H J
Kelly), 2000.

