
Tracing and Reexecuting Operating System Calls forReproducible Performance ExperimentsAriel N. Burton and Paul H. J. KellyDepartment of Computing, Imperial College of Science, Technology and Medicine180 Queen's Gate, London SW7 2BZ, United Kingdomfanb,phjkg@doc.ic.ac.ukNovember 16, 1998AbstractThis paper shows how system call traces can be obtained with minimal interference to thesystem being characterised, and used as realistic, repeatable workloads for experiments toevaluate operating system and �le system designs and con�guration alternatives.Our system call trace mechanism, called Ultra, captures a complete trace of each Unixprocess's calls to the operating system. The performance impact is normally small, and itruns in user mode without special privileges.Traces can be rerun in two ways: the operating system activity can be reproduced bysimply replaying the system calls interspersed with appropriate delays. More interestingly,we also show how the resulting traces can be used to drive full, repeatable reexecution of thecaptured behaviour.The paper concludes with an evaluation and comparison of the usefulness and accuracy ofthese techniques for predicting the performance impact of system con�guration altenatives.We present two case studies, examining the e�ect of �le system caching on a Www server'sperformance, and the performance bene�t of using a local disk instead of an NFS �leserver.1 IntroductionOur aim in this work is to develop a tool for a system performance consultant to use to characterizea customer's workload. The consultant would install the trace capture tool on the customer'sUnix1



server, enable tracing, and would monitor the customer's system as it performs its normal duties.The consultant would then use the resulting trace to experiment with system tuning parameters,hardware upgrades, workload redistribution, etc., o�-line using analytical models, simulation, andperhaps also test hardware. Such traces could also be used for benchmarking and also in the OSand �le system research community.In order for this scenario to be realistic, trace capture must:� incur minimum risk and interference to the target system� provide enough information for the performance tuning mechanisms to be exercised properly� lead to results having adequate predictive accuracyThis paper, which is an extended version of [8], presents a methodology which characterizes aworkload by the trace of its system calls 1. By rerunning the sequence of system calls in a traceunder di�erent conditions, it becomes possible to compare, evaluate or predict the performanceof the workload under di�erent system con�gurations. The term rerun is used to describe thisprocess. We distinguish two modes of rerunning traces: trace replay and trace reexecution. Theseare described below.1.1 Trace ReplayHere, we use a trace of system calls, their parameters, and �ne-grain timing of the user-mode Cputimes between returning from a call and issuing the next.The trace is used to exercise a system under test using a \spinner" program. The spinnerissues each call in the trace in turn, and simulates Cpu time used by the application betweensystem calls by looping for the appropriate period as recorded in the trace. The actual time takento complete trace replay depends on the system call service times achieved by the system undertest.1.2 Trace ReexecutionIn some applications, the spinner leads to inaccurate results because the application can interactwith the operating system in ways other than through explicit system calls, for example, by causing1This paper extends the conference version in giving results for additional benchmarks, adds an additionalexperiment addressing the tool's predictive power (NFS), and expands on many details and directions for furtherwork. 2



TLB misses or page faults, or by ushing OS data from hardware caches. We can reproduce thisbehaviour by rerunning the application code.In order to get reproducible results, we make sure all the results returned from system callsare recorded in the trace. The application should behave in a precisely reproducible way since itis fed precisely the same inputs.The trace needed here is simpler; no timestamps are needed. System call results must berecorded, but the parameters need not.Unfortunately, certain behaviours cannot be reproduced at reasonable cost. There are problemswith asynchronous signals, and pre-emptively{scheduled threads, which can be solved in principleby modifying the application's code (see Section 8.1). Parallel threads, and processes whichinteract via shared memory, are probably not reexecutable.1.3 Time MeasurementsIn the description above, timestamps are used to account for Cpu time used by the application.There is another role for timestamps, namely, to account for external stimuli which occur atspeci�c wall-clock times or intervals.To reproduce real workloads properly, it is vital to distinguish such workload-determined timingfrom the implementation-determined timing which is expected to vary when the con�guration ofthe system under test is modi�ed.In our experiments, we assume no external stimuli with workload-determined timing. For anetwork server, for example, the e�ect of this is that the number of transactions per second isincreased in proportion to the system's performance. It is reasonable, but more di�cult, to keepthe transaction processing rate constant and to optimise the response time.1.4 Overview of the PaperThe next section reviews some earlier contributions in the area. Section 3 describes the design ofUltra, our trace capture tool, showing how e�ciency is achieved and how replay and reexecutionare organized. Section 4 describes various subtleties of our implementation. The overheads oftrace capture are evaluated in Section 5. Section 6 shows how accurately replay and reexecutiontrack the application's original execution time. Section 7 presents two case studies demonstratingthe accuracy of the tool in predicting the performance impact of con�guration changes.3



2 Related WorkTrace capture has been used for many years for performance evaluation. The critical aspect of ourwork lies in capturing just enough information|in this case, system calls|to be able to reconstructthe complete computation by reexecution. Rather than supplanting lower-level trace capture andanalysis, for example, by hardware monitoring or modifyingmicrocode, this facilitates it by makinga reproducible record of the original workload. We therefore focus our literature review on tracecapture and reexecution.Intercepting system calls. The ptrace() system call and /proc �le system are examplesof mechanisms provided to allow one process to monitor the system call activity of another. Thetracing process is able to examine or modify the arguments to, and the results from, each systemcall issued by the traced process. However, as is noted later in Section 5.2, this approach incurslarge overheads.Jones [11, 12] describes a general technique for interposing agents between an application andthe OS. One example considered is tracing system calls. Jones' reported work relied on an OSfacility to redirect system calls to a speci�ed handler. Jones does not report any work on usingbu�ering to reduce the overheads incurred by writing the trace �le at each call.Ashton and Penny [1] developed INMON, an \interaction network monitor". INMON is de-signed to trace the activity in the kernel caused by individual user actions. Tools of this naturecomplement our work in that they provide an insight to activity within the kernel caused by aworkload, whereas we report trace capture in order to characterize the workload.File access trace studies. Traces have been used extensively to study �le system activity byOusterhout et. al [14] and Baker et. al [3] in the analysis of the 4.2BSD, and Sprite distributed�le systems, respectively. Bozman et. al [6] modi�ed a CMS monitor, CMON, to gather traces of�le reference patterns. Of more interest is DFSTrace, used by Mummert and Satyanarayanan [17]in the evaluation of the Coda �le system, since they also replayed the traces using the timinginformation given by the trace. Instead of modifying the OS kernel, Tourigny [20] and Blaze [5]exploited a remote �le system architecture to obtain traces of �le system activity by monitoringthe interactions between clients and server. This has the virtue of being entirely non-intrusive,though includes only remote �le accesses, and also requires privileged access to the network.By contrast, we aim in this paper to capture the entire system call trace, and to use it to studythe overall system performance by using it to reexecute the application.4



Logging reexecution for fault-tolerance. Logging for reexecution or rollback has longbeen used for recovery from faults, and is common in transaction processing systems. Closer toour work are attempts to do this via a standard Unix-like API; an interesting example is theQuickSilver system [19]. When concurrent processes are involved, techniques from checkpointingin distributed systems (e.g., see Johnson and Zwaenepoel [10]) will also be relevant.Replay for debugging. The problem of reexecution of parallel Unix processes is similar tothat of replaying parallel programs (e.g., see LeBlanc and Mellor-Crummey [15]) for debuggingpurposes. Note, though, that we need to be able to reproduce the original execution time asaccurately as possible.Finally, Bitar [4] gives a useful review of the validity issues in trace-driven simulation of con-current systems.3 Design of UltraUltra intercepts system calls, and writes trace information to a trace �le. Its performance dependsupon two key factors:1. an e�cient mechanism for intercepting system calls2. bu�ering of trace output to reduce the number of additional write operations incurredTo be easy to use, we need a simple mechanism for controlling tracing. Having considered var-ious alternatives, we chose to substitute the dynamically-linked standard shared library providingUnix system calls. In the Ultra version, the system call stubs are extended with modi�cationsfor trace capture and reexecution. The advantage of this is that trace capture is con�ned to thelibrary, and is therefore transparent to applications. It should be noted that although applicationsdo not need to be recompiled, they must be relinked; however, as in modern systems the �nalbinding between an application and a library does not occur until runtime, most applications canbe traced as they are. Exceptions include rare, statically-linked applications.For trace reexecution, we can choose how much information is included in the trace itself, andhow much is accessed via the �lesystem during reexecution. It is unattractive to have to includeall the data the process reads, although sometimes this is unavoidable. For example, data fromterminals or sockets are not available at reexecution time. Similarly, data which are overwrittenlater must be saved. At present, we do not log socket contents, relying instead on reexecution of5



the correspondent process. Nor are copies of �le data included in the traces. This is adequate forour purposes.3.1 Rerunning System CallsOn rerun the actions taken in response to a system call are determined by the captured trace, andalso by the type of the system call. These fall into the following categories:� Simple calls. In this case the responses are completely determined from the trace. Althoughthe call need not be reexecuted to ensure the application's original behaviour is preserved,sometimes this may be necessary so as to account for the time spent servicing the call.Examples of this type of call include getpid() and gettimeofday().� Calls that may be rerun as before. An example of this type of call is dup(), which modi�esthe process's �le descriptor table. Clearly, as this e�ect must be reproduced, the call mustbe repeated. The new return value should be identical to that in the trace. In general, thecalls that fall into this category are those that modify the process's kernel state.� Calls that must be reexecuted for their e�ects, but where the returned value from a replayedcall may di�er from that in the trace. This can occur where a system call returns a kernel-created identi�er or handle for some resource that is used in later calls to identify thatresource. Both trace replay and reexecution are a�ected, since there is no way of ensuringthat the repeated call returns the same value. This problem is solved with the use of a tablemapping capture-time identi�ers to those of trace rerun. An example of a call of this typeis wait().3.2 Measuring TimeIt is important when a trace is rerun that the system calls are reissued at the correct rate. Thishappens naturally in the case of trace reexecution. However, in the case of trace replay the timespent by the application executing between system calls must be simulated by the \spinner".Consequently, the trace must include the time spent executing at user level between system calls.In selecting or designing a mechanism for capturing these times the following issues must beconsidered: 6



1. the time taken to read the clock. This should be small in order to reduce the overhead oftrace capture.2. the resolution of the times reported. These should be su�ciently high to reect the appli-cation's behaviour accurately.3. the means by which user level execution time is identi�ed.4. the e�ciency of the method used to communicate the times from the kernel to Ultra.An obvious candidate for collecting these times is the resource utilization information main-tained by the kernel for purposes of management or accounting (e.g., as reported by the getrusage()or times() system calls). However, on Linux and many other operating systems, the resolutionof these times is that of the clock interrupt interval, typically 10{20ms, which is too coarse for ourpurposes.Another alternative is to approximate the user level execution time between system calls byelapsed, `wall-clock', time, for example, as reported by the gettimeofday() system call. Theresolution of this time is hardware dependent, though it is often genuinely of microsecond gran-ularity. This, like getrusage() above, requires two additional system calls for each call madeby the application. This represents a considerable overhead. A more important weakness is thatthe measured time will include time spent on other activities, for example, system activity onbehalf of the process, or executing other processes. Thus, this approach can be used only wherethe principal activity in the system is the application being traced. Nonetheless, where this isthe case, and where pre-emption is not a concern, this method can provide useful results (see, forexample, [8] for results based on gettimeofday()).3.3 Accounting for Pre-emptionWe account for user-level execution time of a process in the presence of other processes by modi-fying the kernel to update a timer in the process's process table entry on each context switch to,or from, user mode. To keep this overhead to a minimum, the cost of reading the clock shouldbe low. We describe how this is achieved in our implementation in Section 4. This providesaccounting for user-mode execution time at clock-cycle resolution. The clock-cycle counter couldbe accessed via a system call, but we improve performance by avoiding this. Instead, immediatelyprior to returning from a system call the kernel writes the times to an area of the process's user7



level address space reserved for this purpose. When the system call returns, these times can beread from the region by Ultra, and recorded in the trace. The location of this region is carefullychosen (for example, at the base of the stack) so that its presence is transparent to both tracedand untraced applications.4 Implementing UltraUltra is currently implemented as a substitute for the libc (version 5.3.12) shared library underLinux 2.0.25. We have also developed a statically-linked implementation for SunOS 4.3.1.4.1 Measuring TimeThe Linux system call mechanism was modi�ed to include the extensions described in Section 3.3.To measure time with high resolution and low overheads, we exploit the Pentium processor's64 bit Time Stamp Counter. This is incremented on every clock cycle, and can be read in asingle instruction (rdtsc). This allows us to obtain �ne-grained times very e�ciently. We use thisfeature to determine the number of clock cycles a process spends executing at user level.4.2 Bu�eringIn a na��ve implementation, trace records would be written out immediately. Doing so woulddouble the number of real system calls made by an application, leading to poor performance, andconsequently bu�ering is used to reduce the overhead. Surprisingly, bu�ering is Ultra's mainsource of complexity.The problems a�ect process creation, where the actions of the new process and its parentmust be coordinated to prevent corruption of the bu�er or loss of trace information. Programinvocation, in which the process's user-level context is completely repalced, is also a�ected, sincethe contents of the bu�er are overwritten and lost. Trace capture, reexecution, and replay are alla�ected, but there is insu�cient space to explain the details here.5 Performance of UltraThe overheads incurred by trace capture must be minimal if Ultra is to be used as we intend. Inthis section we present an estimate of the maximum overhead likely to be experienced (a program8



loops calling a lightweight system call which itself takes very little time), and also the overheadlikely to be seen in more realistic applications.All times reported in this section were obtained using a statically linked instance of version 1.7of the Gnu standard Unix timing utility, /usr/bin/time. The tests were run on an unloadedIBM-compatible PC with a 166MHz Intel Pentium Cpu, 32MB EDO Ram and 512KB pipelineburst-mod secondary cache, running Linux 2.0.25. All application �le input and output was to alocal disk, with Ultra tra�c directed to a second, local disk.The experiments described in this section used the following applications:� getpid. This is a simple program that loops calling the getpid() system call 1,000,000times.� LaTEX. LaTEX(version 2") is used to format a 168 page thesis.� apache. The apache Http server (version 1.2b6) was con�gured to manage a copy ofthe 11,110 �les (approximately 175MB) managed by our Www server. In each run theserver processed 25,000Http requests, delivering approximately 238MB of data. The Httprequests were derived from the access logs of our Www server. In order to make theexperiment repeatable for the purposes of this paper, the Get requests were issued by asimple process running on the same Cpu. (We return to this example in Section 7.)� make. In this experiment make was used to recompile one version of the Ultra library. Thisconsists of approximately 100 small �les, and about 400 separate processes were involved.� mSql. This experiment involved running part of the AS3AP[21] Sql benchmark on mSql[9],a lightweight database engine. As mSql implements only a subset of Sql, the AS3APbenchmark suite was modi�ed accordingly. Version 2.0.3 of mSql was used.For the experiments involving this benchmark, each of the four major relations speci�ed byAS3AP included 10,000 tuples, averaging approximately 100 bytes each. Including manage-ment overheads, this amounted to approximately 8MB. In addition, during the course of theexperiment, mSql manipulated at least 15 index �les, each averaging at least 0.5MB.In the experiments, the Sql requests were issued to the server over aUnix domain connectionby the interactive monitor distributed with mSql. The replay and reexecution cases werehandled slightly di�erently: 9



reexecution: in this case, only the server was traced. On reexecution, the monitor wasreexecuted to reproduce the requests for the server.replay: it was quickly noticed that the behaviour of the monitor depended on the responsesit received from the server. On replay, although the communication link and sequence ofmessages could be reproduced easily, the contents of the messages could not. As a result,the monitor interpreted the replies it received from the replaying server as invalid, andattempted to recover from the `error' condition by, e.g., resending the request. Thishad the e�ect of changing the pattern of communication between the monitor and theserver, and as a consequence, the new interactions did not match those in the server'strace.This problem was solved by tracing both the server and the monitor, and driving bothsides of the communication from the traces.It should be noted that in a more comprehensive implementation this problem wouldnot arise, as the network input to the server would have been recorded by a networksnooper, and replayed from an external source. The problem described above is simplya consequence of using the monitor to replay the network inputs to the server.The application binaries were either those distributed with Linux, or were built from sourceusing the default con�guration and make options. Where necessary, the applications were compiledusing version 2.7.2 of the Gnu C compiler, gcc and linked to version 5.3.12 of the Gnu standardlibrary, glibc.In this section we consider two variants of Ultra:1. Ultra (for reexecution): the traces captured include system call results only. This is su�-cient for reexecution.2. Ultra (for replay): the traces captured include system call parameters and the user levelinter-system call execution times needed by the \spinner". User level inter-system call exe-cution time was measured using the modi�ed kernel and rdtsc.5.1 Overheads of the Kernel Modi�cationsSection 4 described the modi�cations to the kernel that are needed to support Ultra. Some ofthese modi�cations a�ect all processes in the system, whether or not they are being traced. These10



Application Method Elapsed time % of untraced(secs) timegetpid untraced 1.4Ultra|reexecution 4.4 314%Ultra|replay 7.5 536%strace 198.5 14179%LaTEX untraced 7.7Ultra|reexecution 8.0 104%Ultra|replay 7.8 101%strace 9.2 119%make untraced 92.7Ultra|reexecution 100.6 109%Ultra|replay 101.6 110%strace 169.4 183%mSql untraced 92.4Ultra|reexecution 112.2 121%Ultra|replay 125.0 135%strace 220.0 238%apache untraced 416.2Ultra|reexecution 446.8 107%Ultra|replay 490.4 118%strace 898.1 216%Table 1: Trace Capture Overheadsmodi�cations include those to the kernel entry and exit points needed to measure user-level inter-system call execution time accurately. Although this information is written to the user process'saddress space for only those processes that are being traced, internally this instrumentation isalways active, and therefore all processes, traced or untraced, experience the overhead introducedby these modi�cations.The performance overhead the kernel modi�cations for untraced processes has been measuredfor all the benchmarks presented here. For the worst case, getpid, execution times are increasedby 7% with the kernel needed for reexecution, and 50% for the kernel needed for replay. Theoverheads on the realistic benchmarks are small, all under 3% [7].5.2 Trace Capture OverheadsTable 1 shows the execution times without tracing, and with tracing for replay and for reexecution.It is unlikely that any useful application would su�er the overheads seen with the getpid program.The additional time is much larger for replay because of the need to gather and record timinginformation.The increase in execution times reect, �rstly, the time taken by the kernel to copy anyinformation to the user process's address space, and secondly, the time taken by the Ultra runtime11



to copy the trace information to the trace bu�er, and periodically, when the bu�er �lls, call write()to dump the bu�er contents to the trace �le. It can be seen that in general the overheads for tracecapture for trace replay are larger than those for trace reexecution. This is for two related reasons:�rstly, the trace records are larger because they must include the inter-system call execution timesnecessary for replay. Thus more I/O is required. Secondly, as the trace records must includeuser-level execution times, information must be copied to user space after each system call. Thiscomponent of the overhead is dominated by the need to check the validity of the destinationbefore the data may be copied. Copying the data, on the other hand, is relatively lightweight. Incontrast, the overheads for reexecution are much smaller, reecting only the cost of managing thetrace bu�er and the associated I/O. This e�ect is most obviously seen in the getpid case, in whichthe application simply loops issuing system calls, and in which Ultra accounts for a signi�cantproportion of the application's overall execution time.For comparison, the strace utility, which uses Unix's ptrace() mechanism, took just un-der 200 seconds for getpid (an over 140-fold slowdown), and 9.2 seconds for the LaTEX benchmark(119% of the untraced execution time). On the make, mSql, and apache benchmarks, the straceoverheads are larger, at 183%, 238%, and 216% of the untraced time, respectively.mSql shows very di�erent trace capture times for reexecution and replay. The reason for thisis that, as noted above, for replay it was necessary to trace both the server and the client, whereasfor reexecution only the server was traced.5.3 Bu�eringWe measured the e�ect of bu�ering on Ultra's performance using the getpid application. Theunbu�ered versions executed in 13.9 seconds (reexecution) and 21.7 seconds (replay), whilst withbu�ering this improved to 4.2 seconds, and 11.4 seconds. Much of Ultra's complexity is due tobu�ering, and this is clearly worthwhile.6 Replay and ReexecutionTable 2 shows how replay and reexecution times compare with the original execution time foreach benchmark. The replay time for the LaTEX experiment is extremely similar, indicating thatpaging and cache e�ects were negligible in the experiments, that our timing measurements aresu�ciently accurate, and that our timing loops are well-calibrated. The time to replay the getpid12



Application Method Elapsed time % of untraced(secs) timegetpid untraced 1.4Ultra|reexecution 4.2 300%Ultra|replay 9.2 657%LaTEX untraced 7.7Ultra|reexecution 7.7 100%Ultra|replay 7.8 101%make untraced 92.7Ultra|reexecution 103.7 112%Ultra|replay 104.7 113%mSql untraced 92.4Ultra|reexecution 116.6 126%Ultra|replay 103.9 112%apache untraced 416.2Ultra|reexecution 454.8 109%Ultra|replay 477.2 115%Table 2: Trace replay and re-execution with unchanged con�gurationexperiment is disappointingly high, probably because of the overheads of reading, accessing andchecking the trace. The replay times for the apache and make experiments are reasonably close,but there is room for improvement. The replay time for mSql, in which there is considerably moreUltra activity since both the client and the server are rerun from the traces, is very much lowerthan the time for reexecution, where only the server is traced. This is a little unexpected. Thereason for this discrepancy is that as well as making system calls, mSql causes system activityas a result of its memory accesses. This is because mSql uses mmap() to map some of the �lesit uses into its address space. Once mapped, the �les can be accessed as ordinary memory, andconsequently, reads from, or writes to, this memory can cause real I/O, and therefore systemactivity. This activity is hidden from Ultra replay, and therefore when the the trace is replayed,this component of the workload is omitted.As expected, overall, reexecution gives better results.7 Using Ultra Traces to Predict PerformanceMore interesting is to see how well performance on a di�erent con�guration can be predicted. Theexperiments described in this section are designed to determine Ultra's e�ectiveness in this role.We evaluated Ultra for predicting the performance of two example scenarios:1. Using an NFS-mounted �le system instead of local disks.2. Changing the amount of Ram available for caching �le accesses.13



These experiments are described in the following sections.7.1 Benchmarks for Performance Prediction ExperimentsUltra is designed for workload characterization in situations where an application is interactingwith its environment in complicated ways which make it di�cult to redo experiments with preciselyreproducible results. However, for the purposes of these experiments, in order to be able todetermine the accuracy of the predictions made by Ultra, the trace rerun execution time mustbe compared with the actual time taken to execute the workload on the alternative con�guration.We chose the benchmarks in order to overcome this problem. For example, the apache Webserver has the advantage that we can rerun it with a repeated sequence of Http \Get" requests,and get exactly the same behaviour. (A simple illustrative example of a situation where this wouldnot work would be where apache is con�gured to operate as a Www proxy cache; it is di�cultto get precisely reproducible results because cached data expires as time elapses.)7.2 Performance Prediction: Using an NFS-mounted File SystemThe performance of an application can depend very heavily on the type of �le system on whichits �les reside. In these experiments, Ultra was used to predict the e�ect storing an application's�les on a remote machine has on its performance. The aim of these experiments was to determinehow well Ultra is able to predict this e�ect.7.2.1 Experimental DesignThe traces used in the experiments were those captured whilst the system was con�gured sothat the applications' �le were stored locally. The system was then recon�gured so that the �lesrequired by the applications resided on a remote machine, and were accessed over a local areanetwork using NFS. The server used for this purpose was another PC (233MHz Intel Pentium IIwith 128MB on a 10Mb/s Ethernet, running Linux 2.0.30). For the purposes of the experiments,the server was unloaded, and other network tra�c was eliminated by ensuring that only the clientand server were connected to the network. In this experiment, the following applications wereconsidered, and con�gured as described:make in this experiment, the machine was con�gured so that the source and temporary �les neededfor this workload resided on the server. Other �les, such as the standard headers included14



Application Method Elapsed time % of actual(secs) timemake actual 137.7predicted|reexecution 144.4 105%predicted|replay 148.1 108%mSQL actual 184.7predicted|reexecution 196.8 107%predicted|replay 120.6 65%Table 3: Predicted execution times when the benchmarks' �les are located on a remote volume,and must be accessed over a networkby many program source �les were held and accessed locally.mSql in this case, the database and index �les manipulated by this application were stored onthe server.In all cases, the traces used for the prediction phase of the experiment were those captured forthe experiments to determine the overhead of trace capture (see Section 5.2), and in which all�les were stored locally. In addition, in order to determine the accuracy of the prediction madeby Ultra, the application was also executed on the alternative con�guration.7.2.2 ResultsTable 3 shows the actual execution times for these applications on this con�guration, as wellas those predicted by trace replay and trace reexecution. In general, the Ultra predictions areacceptable. However, of note is the replay prediction for mSql. Here, Ultra has signi�cantlyunderestimated the execution time achieved by this application. The reason for this discrepancyis that, as noted earlier, mSql uses mmap() to map some of its �les into its address space. Oncemapped, it accesses the �les as ordinary memory, although in doing so it will cause network I/Oand system activity. However, trace replay is unable to reproduce mSql's memory accesses, andtherefore the network I/O that would ensue. We return to this issue in Section 8.1.7.3 Performance Prediction: Changing the Amount of Ram AvailableIn this experiment we focus on the apache benchmark program. This is highly �le intensive, andthere is potential for caching since certain URLs are requested repeatedly during the experiment.apache relies on the underlying �le system to cache repeatedly-used �les, and this depends onhaving enough memory. As an illustration of the potential value of our approach, we show here15



that the Ultra trace can be used to predict the performance of the workload on con�gurationswith a range of Ram sizes.7.3.1 An Additional apache BenchmarkTo illustrate a richer range of behaviours, we include an additional workload for apache withhigher Ram demand. In this variant, the server was con�gured to manage about 4,900 documents,amounting to approximately 32MB. A list of queries was constructed such that each document wasaccessed twice. This was then randomly permuted and used as the workload for the experiment.7.3.2 Experimental DesignOnce a rerunable Ultra trace has been captured, there are many performance analysis and tuningopportunities. As a very simple example to demonstrate the principle, we have looked at thee�ect of di�ering amounts of Ram on the e�ectiveness of �le system caching. We booted Linuxwith various amounts of Ram and compared the execution time of the actual workload with thetime taken both to replay an Ultra trace, and also to reexecute a trace. The same traces wereused for each alternative memory size; these were captured from runs with the minimum 8MBcon�guration.7.3.3 ResultsFigure 1 shows the actual execution time of the original apache experiment for various amountsof Ram, compared with the execution time predicted by replay and reexecution of an Ultra tracecaptured from an original execution with 8MB Ram. In Figure 2 we show the actual and predictedexecution times for the arti�cial workload example.The execution time predicted by replaying the trace (using measured time for user-mode exe-cution, rather than reexecution) is within 14% for large Ram con�gurations, but is less accuratewith small amounts of Ram where paging of apache's code and/or data occurs.The execution time predicted by reexecuting the trace is more accurate in all cases, and iswithin 10% for larger Ram con�gurations. This higher accuracy is because the same memoryaccess pattern occurs during reexecution, leading to similar paging and hardware cache e�ects.16
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Figure 1: apache performance with varying Ram|predicted and actual
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Figure 2: apache performance with an arti�cial workload and varying Ram|predicted and actual8 Conclusions and DiscussionWe have presented the design of Ultra, an e�cient, portable technique for capturing traces ofsystem call activity of a Unix process and the processes it forks. Ultra's e�ciency is achieved by17



running at user level as part of the standard libraries linked to applications, and also by bu�eringthe output of trace information. We describe some implementation issues, which in certain casesturn out to be surprisingly tricky.An important area where Ultra may be applied usefully is in the performance evaluation,tuning and comparison of operating systems and �le systems. We present two case in which thisis illustrated. We demonstrate that Ultra can be used to capture a trace of the workload withoutsubstantial interference, which can then be used to give fairly accurate predictions of the e�ect ofcon�guration changes on application throughput.We evaluate two ways of rerunning a workload: replay, and reexecution. For applicationswhere paging is insigni�cant, both predict performance well. Reexecution has lower trace captureoverheads, and can be used to study paging, cache e�ects and other lower-level issues.In the performance prediction experiments presented here, we were able to compare the be-haviour with reproducing the workload by other, more straightforward, means. The results inthis paper provide evidence to support the use of Ultra in situations where such validation is notpossible, for example, where the alternative con�guration is being simulated, but the simulationslowdown could lead to a change in user behaviour.8.1 Further workCapture paging activity. Trace replay is potentially inaccurate compared with reexecutionbecause it does not capture paging behaviour (resulting, for example, from mSql's use of mmapas seen in Section 7.2.2). Although it may be possible to intercept and trace paging events, thebehaviour on a di�erent con�guration may be very di�erent. We are working on introducingadditional instrumentation to use page protection to track the process's memory access behaviourso that we will be able to predict the paging behaviour with various amounts of Ram and withdi�erent virtual memory management policies. Preliminary results are very promising.Asynchronous signals. Asynchronous signals can be workload-determined or implementation-determined (see Section 1.3). Workload-determined signals, such as timer interrupts, are prob-lematic since there is potential for inconsistent results when the trace is replayed on a faster orslower system.Implementation-determined signals, such as synchronisation between processes, could easily betraced. Care is needed during trace replay to ensure that the signalled process blocks until theevent for which it's waiting occurs. This is necessary to ensure the replayed behaviour is consistent18



with the trace, but is inaccurate since the blocking is an artifact of the replay mechanism. However,in many applications the process will be sleeping anyway (e.g., when waiting for a timeout).For reexecution, it is vital for the signal to be delivered at precisely the same instructionexecution point as during trace capture. The only way we know to do this (see [16]) is to modifythe application's code (by recompiling or post-processing the executable). Code is added to countbackward branches and trap on overow. The counter is preloaded on reexecution so that the trapoccurs in the basic block where the process was interrupted at trace capture time.Pre-emptive threads. Pre-emptively scheduled threads can be handled by a similar mecha-nism as asynchronous signals. Details can be found in [18], where the performance overheads arereported to be around 10%.Interaction via shared-memory regions. Perhaps the most intractable problem is to traceprocesses which interact via a shared memory region. In principle, Unix processes on a singleCpu could be dealt with as indicated above for pre-emptive threads, but with a shared-memorymultiprocessor there appears to be no solution with reasonable overheads (though see, for example,[13, 2]).Tracing dynamic linking itself. Since we intercept system calls via a substitute dynamically-linked library, we cannot trace the dynamic linkingmechanism itself (nor statically-linked programsor programs which bypass the library and trap to the OS directly). OS-level tracing (e.g., usingtrace) does manage this, and one option is to use trace during reexecution of the Ultra trace.Given that it is di�cult or impossible to create a reexecutable trace for absolutely any appli-cation, our aim is to be able to detect whether an application behaves in a way which invalidatesthe trace.Acknowledgements This work was funded by the U.K. Engineering and Physical Sciences ResearchCouncil through a Research Studentship, and the Cramp project (ref. GR/J 99117).References[1] P. Ashton. The Amoeba interaction network monitor|initial results. Technical Report TR-COSC09/95, Deptartment of Computer Science, Univ. of Canterbury, New Zealand, Oct 1995.[2] D. F. Bacon and S. C. Goldstein. Hardware-assisted replay of multiprocessor programs. In ACM/ONRWorkshop Parallel and Distributed Debugging, Santa Cruz, CA (USA), May 1991.19
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