
DYNAMIC INSTRUMENTATION FOR JAVAUSING A VIRTUAL JVMKwok Yeung, Paul H J Kelly and Sarah BennettDepartment of ComputingImperial College180 Queen's GateLondon SW7 2BZ, UKk
y�do
.imperial.a
.ukp.kelly�imperial.a
.uks.bennett�imperial.a
.ukAbstra
t Dynami
 instrumentation, meaning modi�
ation of an appli
ation's in-stru
tions at run-time in order to monitor its behaviour, is a very pow-erful foundation for a wide range of program manipulation tools. Thispaper
on
erns the problem of implementing dynami
 instrumentationfor a managed run-time environment su
h as a Java Virtual Ma
hine(JVM). We present a
exible new approa
h based on a \virtual" JVM,whi
h runs above a standard JVM but inter
epts appli
ation
ontrol
ow in order to allow it to be modi�ed at run-time. Our Veneer Vir-tual JVM works by fragmenting ea
h method's byte
ode at spe
i�edpoints (su
h as basi
 blo
ks). The fragmentation pro
ess
an in
ludestati
 analysis passes whi
h asso
iate dependen
e and liveness metadatawith ea
h blo
k in order to fa
ilitate run-time optimisation. We
on-
lude with some preliminary performan
e results, and dis
uss furtherappli
ations of the tool.Keywords: Java, dynami
 instrumentation, virtual ma
hine, re
e
tion, dynami
introspe
tion, performan
e analysis.

21. Introdu
tionSetting the S
ene: optimizing Java RMI appli
ations. Thework we des
ribe in this paper is part of a wider resear
h programme atImperial College, aimed at extending the te
hnology of optimizing
om-pilers to
ross the boundary between systems on a network. Our maingoal is to avoid unne
essary
ommuni
ations, and we have developeda prototype optimiser for Java appli
ations that use Remote MethodInvo
ation (RMI).In looking for appli
ations whi
h might bene�t from RMI optimiza-tion, we dis
overed the need for performan
e analysis tools. We alsorealised that the run-time optimisation framework whi
h we had devel-oped
ould also be used for performan
e instrumentation.This paper presents the fruits of this insight.The Veneer Virtual JVM. Stati
 optimisation of Java is diÆ
ultdue to dynami
 binding, polymorphism, ubiquitous pointers, and dy-nami

lass loading. Sin
e
ommuni
ations (at least over a wide-areanetwork) are expensive relative to
omputation, we
an a�ord to investin some run-time e�ort if it o�ers a reasonable prospe
t of redu
ing thenumber and/or size of messages required.Although su
h optimisation
ould be done by extending a sophis-ti
ated Java Virtual Ma
hine (JVM) su
h as the Jikes RVM [1℄, thiswould prevent users from using their
hosen JVM, and would involve usin tra
king JVM releases. Instead, we built Veneer, whi
h operates ontop of a standard JVM, running as a Java appli
ation. In e�e
t, theframework is, itself, a JVM - whi
h runs appli
ation
lass �les in a
on-trolled environment. Veneer is a \virtual" JVM,
arefully designed torun reasonably fast by exe
uting most of the appli
ation
ode dire
tly| it jumps to the
orresponding byte
ode. It maintains
ontrol overexe
ution by inter
epting
ontrol
ow; optional inter
ept points in
ludemethod entry, basi
 blo
ks, and ba
k edges.This paper. The main
ontributions of this paper in
lude:We give an overview of our Veneer Virtual JVM, an exe
utionenvironment for Java byte
ode appli
ations whi
h allows dynami
instrumentation, run-time optimization, and makes the results ofstati
 analyses available to inform run-time optimization.We brie
y present JUDI, our Java Utility for Dynami
 Instrumen-tation, a
omponent-based environment whi
h exploits Veneer's
apability to modify an appli
ation on the
y.

Dynami
 instrumentation for Java 3We brie
y introdu
e the RMI optimisation tool whi
h motivatedthis work.We
on
lude with a dis
ussion of dire
tions for further work building onthese ideas.2. Related workDynami
 instrumentation. The term \dynami
 instrumentation"was
oined by Hollingsworth and Miller to des
ribe run-time pat
hingof an appli
ation's binary
ode in order to monitor and measure theprogram's behaviour. Hollingsworth has published a portable library,DynInst [8℄, whi
h supports this on a variety of pro
essor types andoperating systems.The Paradyn Parallel Performan
e Tools [12℄ build on DynInst, toprovide a tool for measuring and analyzing the performan
e of sequen-tial, parallel, and distributed programs.Dynami
 instrumentation for Java. DynInst works by pat
hingthe appli
ation's instru
tions. Dynami
 instrumentation for Java
annotbe implemented this way, without exposing low-level implementationdetails of the JVM. There are a number of alternative approa
hes:Re-de�ne the
lass using the Java Debug Interfa
e (JDI)
all Vir-tualMa
hine.redefineClasses(), introdu
ed in Sun's JDK 1.4 [6℄.This approa
h is used in ProbeMeister [13℄. The overhead to dothis is reported to be around 20 millise
onds for a small example,but in
reases with large
lasses sin
e methods
annot be rede�nedindividually, and JIT optimisation must be re-done. To redu
e theoverheads, Dmitriev [7℄ advo
ates re�ning the JDI with a
all torede�ne methods individually.Run the JVM in debugging mode, and set breakpoints to insertinstrumentation. This is the approa
h taken by Popovi
i et al [14℄.Run the Java appli
ation in a virtual JVM. This is the approa
hused in our JUDI tool, and is presented in more detail in Se
-tion 1.4.1. We use the native JVM to exe
ute appli
ation byte
odeas mu
h as possible, but have to inter
ept exe
ution in order toretain
ontrol. The s
heme su�ers some overhead (see Se
tion 1.5)on exe
ution of all the appli
ation's
ode (apart from system li-braries), but runs with JIT optimisation. Insertion and removal ofinstruments is very fast.Our vJVM was developed to provide a general framework for run-time optimisation, and is mu
h more powerful than is needed for

4
p<N

p += x.g(p);

return p;

int f() {

while (p<N)

p += x.g(p);

return p;

}Figure 1. Fragmentation. When ea
h
lass is loaded, ea
h method may be frag-mented a

ording to a spe
i�ed poli
y. For some purposes it is suÆ
ient to inter
ept
ontrol
ow only at method entry and exit. For our dynami
 instrumentation toolwe fragment at basi
 blo
k boundaries - forks and joins in the method's
ontrol
owgraph. Figure 4 shows the fragment graph for a real example.dynami
 instrumentation. In Se
tion 1.5 we explore some of thepotential advantages of the using Veneer
ompared to the alterna-tives above.Runtime Introspe
tion and Optimization. The idea of inter-posing a software layer to monitor, inter
ept or optimise an appli
ationis interestingly explored by the Dynamo/Rio proje
ts [2, 4℄. Our vir-tual JVM provides essentially the same
apability, and we en
ounter asimilar problem of inter
epting
ontrol
ow eÆ
iently.Performan
e analysis for Distributed Java appli
ations. Var-ious tools already exist for analysing Java performan
e; for distributedappli
ations, for example, the JaViz tool o�ers a useful solution [10℄.Our goal for JUDI is to build an infrastru
ture for more ambitious in-strumentation. We review some of the possibilities in Se
tion 1.7.3. The Veneer Virtual Java Virtual Ma
hineOur instrumentation and optimisation tools are built on a virtual JavaVirtual Ma
hine (vJVM), whi
h is a JVM written in Java, running ona Java JVM. It runs most of the appli
ation
ode dire
tly, by jumpingto the
orresponding byte
ode, but sele
tively maintains
ontrol overexe
ution by inter
epting
ontrol
ow. We
an
hoose the level at whi
h
ontrol
ow is inter
epted, e.g. at method entry, basi
 blo
ks, ba
k edges.The
ontrol
ow is inter
epted by \fragmenting" ea
h method at
lass-load time. There are several di�erent fragmentation poli
ies: at basi
blo
k boundaries, at method entry/exit, at method
alls, and at poten-tial RMI
all sites (used for our work on RMI optimisation, des
ribed inSe
tion 1.6). Figure 1 shows a simple example of basi
 blo
k fragmenta-

Dynami
 instrumentation for Java 5
Custom

class-loader

Original
class

Modified
class

VJVM
policy

Planset

Planset
cache

Modified
method Plan

Executor

Fragmentation
policy

Fragmenter

Figure 2. Ar
hite
ture of the vJVM. We inter
ept the JVM's
lass loader, andrepla
e ea
h method of ea
h
lass with a
all to a plan exe
utor. For ea
h newly-en
ountered
lass we generate a planset, the fragmented
ode variants, whi
h aretraversed by the exe
utor. Plansets are
a
hed to avoid redundant work.tion. The method body is split into blo
ks, an exe
ution \plan", and themethod entry is repla
ed by an \exe
utor loop" that walks the
ontrol
ow graph, invoking ea
h blo
k in turn. A method's
ontrol
ow graph
an be updated without syn
hronisation, as the appli
ation is running,allowing us to use this as a framework for dynami
 instrumentation.An ar
hite
tural overview of the vJVM is given in Figure 2.3.1 How it worksThe Virtual Java Virtual Ma
hine (vJVM) uses a
ustom
lass-loaderto inter
ept
lasses as they are loaded. If the
lass belongs to the Java
ore library or to the vJVM, then its loading is delegated to the parent
lass-loader.If modi�
ation is ne
essary, the methods of the
lass are pro
essed one-by-one. The a
tive poli
y is invited to generate variants for the method| the exe
ution plans that
an be exe
uted in pla
e of the originalmethod body. Ea
h method
an have multiple variants, fragmenteda

ording to di�ering poli
ies, although only one
an be a
tive at atime. The a
tive variant may be
hanged at runtime, whi
h e�e
tivelyswit
hes method implementations on-the-
y.

6

Figure 3. Java Utility for Dynami
 Instrumentation. This prototype user interfa
e
onne
ts to a spe
i�ed, possibly remote, JVM. The user
an then browse the
lassesand methods, and inspe
t their
ontrol-
ow graphs. Instrumentation experiments are
onstru
ted, then deployed for a spe
i�ed period, or until an instrument exe
ution
ount is rea
hed. Ea
h instrument is pa
kaged as an Instrument Strategy Component;an example is shown in Figure 4.Finally, the modi�ed
lass is loaded into the underlying JVM.3.2 The fragmentation frameworkThe fragmentation framework breaks the body of a method up intoblo
ks. Blo
ks represent se
tions of
ode from the original method, plussome additional meta-data. The stru
ture of the original method isretained by building up a
ontrol-
ow graph known as a plan, with theblo
ks forming the nodes of the plan. All the plans for a
lass aregathered up into a
onstru
t known as a planset.The method is exe
uted by invoking a method in an exe
utor
lass,whi
h takes the plan as a parameter. The exe
utor traverses the plan,exe
uting the blo
ks as it visits them. The exe
utor therefore takes onthe role of an interpreter, and has full
ontrol over the way in whi
h theblo
ks are exe
uted.

Dynami
 instrumentation for Java 7Fragmentation poli
y. The way in whi
h a method is fragmentedand the exe
utor that is used is determined by a user-de�ned poli
y. Ingeneral, we attempt to pa
k as mu
h as possible within fragments, sin
ethese
an be exe
uted dire
tly by the JVM and are therefore fast. Breaksbetween blo
ks are introdu
ed where we need to regain
ontrol over thesystem, sin
e at these points
ontrol is passed ba
k to the exe
utor.Parameterised blo
ks are used to identify
ertain types of instru
tionthat may need to be treated spe
ially by the exe
utor.Method entry. If a method is fragmented, its body is repla
ed bya sequen
e of instru
tions that initialises the lo
als array, retrieves theplan and exe
utor for the
urrent method, and then exe
utes the planusing the exe
utor.Planset
a
hing. The fragmentation pro
ess, whi
h is implementedusing the SOOT framework from Hendren's group at M
Gill Univer-sity [18℄) is rather involved, as data
ow analysis is used to minimisefragmentation overheads (the metadata resulting from this analysis isused more aggressively in our RMI optimisation work). Plansets are
a
hed in the lo
al �lesystem and reused if
lassname and SHA-1 signa-ture mat
h.4. JUDI: Java Utility for Dynami
InstrumentationJUDI is a prototype dynami
 instrumentation tool for Java. It man-ages the deployment, removal, data
olle
tion and data visualisation forperforman
e instrumentation experiments.4.1 InstrumentationInstrumentation is done by inserting instruments as additional blo
ksin the method plan. These instruments are then exe
uted by the exe
u-tor.The instrument
an a

ess the method's parameters and lo
als, and
all other
lasses, for example to trigger further instrumentation. Forhigh-resolution timing, we used JNI to a

ess a C/assembler routinewhi
h reads the Intel timestamp
ounter.As illustrated in Figure 3, JUDI's
lient graphi
al user interfa
e (GUI)
onne
ts to a set of remote vJVM's running fragmented
ode. The GUIallows the user to browse the remote systems' methods, and to uploadinstruments to the remote systems. The methods
an be viewed by avisualiser (see Figure 4) whi
h shows the plan as a graph (using Open-

8JGraph [9℄). JUDI's re
ord of a

essible
lasses grows as
lasses aredynami
ally loaded, but persists from run-to-run to allow instrumenta-tion of methods in advan
e of their exe
ution.4.2 Instrumentation Strategy ComponentsThe unit of instrumentation deployment is an \Instrumentation Strat-egy Component" (ISC). This
onsists of:A set of Instruments - sub
lasses of a generi
 Instrument planblo
k. Instruments typi
ally start, stop and log timers, or gener-ate a log entry re
ording
ontrol
ow, or data values (in aspe
t-oriented programming terms, this is the \advi
e").An instrumentation strategy. This is usually just whether theinstrument is to be exe
uted before, after, or before-and-after thespe
i�ed method, and whether it applies to the whole method, orevery basi
 blo
k in the method.Instrumentation targets: the set of program obje
ts (methods,
lasses) to whi
h the instrumentation strategy should be applied.If not the entire program, this is sele
ted expli
itly through theGUI.Instrumentation data
lass: instruments generate data, usuallyeither a log or some kind of histogram.Instrumentation analyser: this is a GUI
omponent for viewingthe results from the experiment.Figure 4 shows the results from an example ISC whi
h tra
es
ontrol
owthrough sele
ted methods. This ISC operates on methods fragmentedat the basi
-blo
k level. The instrument is applied before ea
h blo
k,and simply logs the method and blo
k id. The GUI allows us to sele
tthe parti
ular method of interest, and view the results. The instrumentanalyser displays its
ontrol
ow graph, the three distin
t
ontrol
owpaths whi
h were taken through this method, the number of times ea
hwas exe
uted, and the average exe
ution time for ea
h path.5. Experimental resultsWe have evaluated JUDI using two substantial appli
ations:1 Spe
JVM98 209 db (Data Management) Ben
hmark [16℄. 1028lines of
ode, 3
lasses, 24 publi
 methods.

Dynami
 instrumentation for Java 9

Figure 4. Fragmented exe
ution plan for the example method isMe. In this examplefragmentation has been applied at basi
 blo
k boundaries, so that
ontrol
ow withinthe method
an be studied. The light-
oloured blo
k is the root of the plan whi
his always exe
uted �rst. The small blo
ks are terminating blo
ks, where the methodexits. The text in the boxes (unfortunately illegible here) shows disassembled
ode.This display was generated by an Instrumentation Strategy Component (see Se
-tion 1.4.2) designed for
ontrol
ow analysis. This ISC logs whi
h
ontrol
ow pathwas taken through the spe
i�ed method, produ
ing a histogram of path frequen
iestogether with ea
h path's mean, minimum and maximum exe
ution time.
Ben
hmark Exe
n time(JDK1.4) Exe
n time(vJVM overJDK1.4) Slowdown fa
torSpe
JVM98 209 db 22.02s 24.30 1.10xRouteFinder 3.73s 28.13 7.54xTable 1. Slowdown due to running ben
hmark appli
ations under the Virtual JVM(without any instrumentation). The performan
e impa
t varies enormously. Notethat system and standard library methods are not fragmented and run at full speed.Times are average of �ve runs.

10 2 RouteFinder, a railway route �nder appli
ation written by a groupof MS
 students at Imperial College in spring 2002. 3192 lines of
ode, 17
lasses, 145 publi
 methods.The experiments were run on a 1400MHz AMD Athlon pro
essor with512MB RAM, running Linux (Suse 7.2) using Sun JDK1.4.Virtual JVM performan
e. Running an appli
ation under thevirtual JVM leads to an inevitable in
rease in exe
ution time due tothe need to inter
ept
ontrol
ow. The performan
e impa
t is given inTable 1. Our performan
e
ompares well with the reported slowdown ofmore than 700 for Sun's fully-interpretive JavaInJava virtual JVM [17℄,but is some way from mat
hing the approa
hes dis
ussed earlier basedon the JDI VirtualMa
hine.redefineClasses() feature [13℄ and usingbreakpoints [14℄.Veneer is at an early stage of its development, and we expe
t to im-prove its performan
e substantially. The implementation whose perfor-man
e is reported here su�ers a substantial overhead at ea
h fragmentboundary. The design allows for ea
h method to have several di�er-ent implementations, fragmented to di�erent degrees. Thus, the over-head
ould be redu
ed to just a test or indire
tion on method entry(even this
ould be avoided in an implementation that
an appropriatethe method table). However, to ensure instrumented threads exe
utednewly-inserted instruments promptly, the ba
k-edges of loops generallyalso need to be inter
epted.We
ould also improve performan
e by inlining instrumentation
odeinto the modi�ed method (or method variant) as it is loaded. This islikely to be parti
ularly useful when large amounts of an appli
ation's
ode is to be instrumented.6. Optimising RMI appli
ationsFigures 5 and 6 illustrate the two main optimisations we have imple-mented to redu
e
ommuni
ations in Java RMI appli
ations.To optimise RMI, we
on�gure Veneer to fragment only methodswhi
h
ontain potential RMI
all sites (interfa
e invo
ations with java-.rmi.RemoteEx
eption on the throw list). The fragmentation is usedso that the run-time system is invoked before ea
h potential RMI
all.If the target obje
t is in fa
t remote, and the following fragment hasno dependen
e on it, the RMI
all is delayed. This way, RMI
allsand lo
al
ode are dynami
ally re-ordered. Eventually, when a depen-den
e or externally-visible e�e
t for
es exe
ution of the delayed RMI
alls, the run-time system
onstru
ts an optimised exe
ution plan whi
h

Dynami
 instrumentation for Java 11
void m(RemoteObject r, int a)

{

int x = r.f(a);

int y = r.g(a,x);

int z = r.h(a,y);

System.out.Println(z);

}

Client Server

f

g

h

Network

Client Server

f

g

h

Network

Six messages Two messages, no
need to copy x and yFigure 5. Aggregating adja
ent, or near-adja
ent RMI
alls to the same server.Aggregation always redu
es the number of messages. It may also redu
e the amountof data transferred, sin
e parameters used in multiple
alls (su
h as a above) need besent only on
e, and a result from one
all passed as a parameter to another need notbe routed via the
lient. Results whi
h are not used by the
lient, su
h as x and y,need not be returned.

void m(RemoteObject r1,

RemoteObject r2)

{

Object a = r1.f(b);

r2.g(a,b);

}

Client Server 1

f

Network

Server 2

g

Client Server 2

g Server 1

f

Figure 6. Aggregating adja
ent, or near-adja
ent RMI
alls to di�erent servers. Ifa result from one
all (su
h as a above) is passed as a parameter to another, we
anroute the data server-to-server instead of server-to-
lient then
lient-to-server. Thisredu
es marshalling
osts and allows sele
tion of a better server-to-server networkpath, if available. With a slow
lient-server
onne
tion, it may even be worthwhilepurely to exploit
ommon parameters su
h as b.

12implements the aggregation and forwarding optimisations illustrated inFigures 5 and 6.Performan
e results for RMI optimisation are
urrently being evalu-ated [19℄.7. Con
lusions and dire
tions for further workWe have presented the Veneer virtual JVM. Veneer allows a Javaappli
ation's behaviour to be sele
tively monitored and modi�ed at run-time. Its design was motivated by our work on optimisation of RMI,where we
ombine stati
 analysis with dynami

ontrol
ow. Veneer
analso be used for performan
e instrumentation, and we presented JUDI,a prototype performan
e analysis tool. The tool is based on Instrumen-tation Strategy Components (ISCs), whi
h
ombine instrumentation, aninstrument deployment strategy, and instrument data analysis.Given that mu
h of this work is at an early stage, most of the interestlies in the dire
tions for developing and applying it:Veneer. Veneer is at an early stage of development and we planto improve its performan
e, and evaluate it more thoroughly. Thetool has a number of interesting potential appli
ations, parti
ularlyin se
urity, whi
h we are
urrently exploring.JUDI. The power of dynami
 instrumentation lies in the ability todeploy instrumentation algorithmi
ally. The idea is to formulate ahypothesis about a performan
e bottlene
k, deploy an experimentto test it, then re�ne the hypothesis on the basis of the results. Theapproa
h has been explored in the Paradyn Performan
e Consul-tant [5, 15℄. We have a preliminary implementation (as a JUDIISC) whi
h we are
urrently developing [3℄.Aspe
ts. How should a JUDI user spe
ify whi
h program pointsa given instrument should be atta
hed to? Aspe
t-oriented pro-gramming (AOP) languages su
h as Aspe
tJ o�er an answer tothis [11℄. Aspe
tJ is based on a re
e
tive model of a Java pro-gram, and uses this to de�ne a language for spe
ifying \joinpoints"(i.e. points at whi
h
ode should be added or interposed). Aspe
tJsupports wild
ards on method type signatures, names and pa
kagepathnames. Wild
ards on methods
an be
ombined with some dy-nami
 properties, su
h whether an obje
t's run-time type mat
hesa given pattern, or whether one method is
alled via another.The PROSE tool of Popovi
i at al [14℄, whi
h, as was mentionedearlier, implements dynami
 instrumentation for Java by settingbreakpoints via the debugging interfa
e, is designed to support

Dynami
 instrumentation for Java 13run-time deployment of aspe
ts. They dynami
ally
onstru
t \
ross-
ut" obje
ts to represent how a spe
i�ed
ode fragment is insertedinto a running appli
ation.We plan to redesign JUDI using an AOP-style language for
har-a
terising program points, and for
lassifying the measurementsprodu
ed from instrumentation.A
knowledgmentsThis work was supported by the EPSRC, through grant no. GR/R15566(DESORMI). We would also like to thank Doug Brear, Thomas Petrou,Thibaut Weise and Tim Wi�en, who all
ontributed to the softwaredevelopment.

Referen
es

[1℄ B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi,A. Co

hi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalape~no virtualma
hine. IBM System Journal, 39(1), February 2000.[2℄ Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transpar-ent dynami
 optimization system. ACM SIGPLAN Noti
es, 35(5):1{12, 2000.[3℄ Douglas J. Brear. JBolt: The Java bottlene
k lo
ator toolkit. Master's thesis,Department of Computing, Imperial College, London, UK, 2002.[4℄ Derek Bruening, Evelyn Duesterwald, , and Saman Amarasinghe. Design andimplementation of a dynami
 optimization framework for windows. In 4th ACMWorkshop on Feedba
k-Dire
ted and Dynami
 Optimization (FDDO-4), De
em-ber 2001.[5℄ H. Cain, B. Wylie, and B. P. Miller. A
allgraph based sear
h strategy forautomated performan
e diagnosis. In Arndt Bode, Thomas Ludwig II, WolfgangKarl, and Roland Wism�uller, editors, Euro-Par. Springer Verlag, LNCS 1900,2000.[6℄ M. Dmitriev. Towards
exible and safe te
hnology for runtime evolution ofjava language appli
ations. In Pro
eedings of the Workshop on EngineeringComplex Obje
t-Oriented Systems for Evolution, in asso
iation with OOPSLA2001 International Conferen
e, Tampa Bay, Florida, USA, O
tober 2001.[7℄ M. Dmitriev. Appli
ation of the HotSwap te
hnology to advan
ed pro�ling. InFirst International Workshop on Unanti
ipated Software Evolution (USE2002),Malaga, Spain, June 2002. http://www.joint.org/use2002/sub/dmitriev-hotswapprof.pdf.[8℄ Je�rey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dynami
 programinstrumentation for s
alable performan
e tools. In Pro
eedings of SHPCC'94,May 1994.[9℄ Jesus M. Salvo Jr. Openjgraph - Java graph and graph drawing proje
t, O
tober2002. http://openjgraph.sour
eforge.net/.

16[10℄ I�at H. Kazi, Davis P. Jose, Badis Ben-Hamida, Christian J. Hes
ott, ChrisKwok, Joseph A. Konstan, David J. Lilja, and Pen-Chung Yew. JaViz: A
lient/server java pro�ling tool. IBM Systems Journal, 39(1):96{, 2000.[11℄ Gregor Ki
zales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Je�rey Palm, andWilliam G. Griswold. An overview of Aspe
tJ. In ECOOP, volume 2072, pages327{355. Springer Verlag, LNCS 2072, 2001.[12℄ Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Je�rey K.Hollingsworth, R. Bru
e Irvin, Karen L. Karavani
, Krishna Kun
hithapadam,and Tia Newhall. The Paradyn parallel performan
e measurement tool. IEEEComputer, 28(11):37{46, 1995.[13℄ Paul Pazandak and David Wells. ProbeMeister: Distributed run-time software instrumentation. In First International Workshop onUnanti
ipated Software Evolution (USE2002), Malaga, Spain, June 2002.http://www.joint.org/use2002/sub/pazandak-ProbeMeister.pdf.[14℄ A. Popovi
i, T. Gross, and G. Alonso. Dynami
 weaving for aspe
t orientedprogramming. In 1st International Conferen
e on Aspe
t-Oriented SoftwareDevelopment (AOSD 2002), April 22-26, Ens
hede, The Netherlands, 2002.http://ikplab11.inf.ethz.
h:9000/prose/webthings/aosd02.ps.[15℄ P..C. Roth and B. P. Miller. DeepStart: A hybrid strategy for automated per-forman
e problem sear
hes. In EuroPar 2002. Springer Verlag, 2002.[16℄ Standard performan
e evaluation
orporation (spe
) jvm98 Suite, 1998. Avail-able from http://www.spe
.org.[17℄ Antero Taivalsaari. Implementing a Java Virtual Ma
hine in the Javaprogramming language. Te
hni
al Report TR-98-64, Sun Labs, 1998.http://resear
h.sun.
om/kanban/JavaInJava.html.[18℄ Raja Vall�ee-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patri
k Lam,and Vijay Sundaresan. Soot - a java byte
ode optimization framework. InPro
eedings of CASCON '99, 1999.[19℄ Kwok Cheung Yeung. Automated Optimisation of Distributed Java Programsa
ross Network Boundaries. PhD thesis, Department of Computing, ImperialCollege, London, UK, 2002. In preparation.

