
DYNAMIC INSTRUMENTATION FOR JAVAUSING A VIRTUAL JVMKwok Yeung, Paul H J Kelly and Sarah BennettDepartment of ComputingImperial College180 Queen's GateLondon SW7 2BZ, UKky�do.imperial.a.ukp.kelly�imperial.a.uks.bennett�imperial.a.ukAbstrat Dynami instrumentation, meaning modi�ation of an appliation's in-strutions at run-time in order to monitor its behaviour, is a very pow-erful foundation for a wide range of program manipulation tools. Thispaper onerns the problem of implementing dynami instrumentationfor a managed run-time environment suh as a Java Virtual Mahine(JVM). We present a exible new approah based on a \virtual" JVM,whih runs above a standard JVM but interepts appliation ontrolow in order to allow it to be modi�ed at run-time. Our Veneer Vir-tual JVM works by fragmenting eah method's byteode at spei�edpoints (suh as basi bloks). The fragmentation proess an inludestati analysis passes whih assoiate dependene and liveness metadatawith eah blok in order to failitate run-time optimisation. We on-lude with some preliminary performane results, and disuss furtherappliations of the tool.Keywords: Java, dynami instrumentation, virtual mahine, reetion, dynamiintrospetion, performane analysis.

21. IntrodutionSetting the Sene: optimizing Java RMI appliations. Thework we desribe in this paper is part of a wider researh programme atImperial College, aimed at extending the tehnology of optimizing om-pilers to ross the boundary between systems on a network. Our maingoal is to avoid unneessary ommuniations, and we have developeda prototype optimiser for Java appliations that use Remote MethodInvoation (RMI).In looking for appliations whih might bene�t from RMI optimiza-tion, we disovered the need for performane analysis tools. We alsorealised that the run-time optimisation framework whih we had devel-oped ould also be used for performane instrumentation.This paper presents the fruits of this insight.The Veneer Virtual JVM. Stati optimisation of Java is diÆultdue to dynami binding, polymorphism, ubiquitous pointers, and dy-nami lass loading. Sine ommuniations (at least over a wide-areanetwork) are expensive relative to omputation, we an a�ord to investin some run-time e�ort if it o�ers a reasonable prospet of reduing thenumber and/or size of messages required.Although suh optimisation ould be done by extending a sophis-tiated Java Virtual Mahine (JVM) suh as the Jikes RVM [1℄, thiswould prevent users from using their hosen JVM, and would involve usin traking JVM releases. Instead, we built Veneer, whih operates ontop of a standard JVM, running as a Java appliation. In e�et, theframework is, itself, a JVM - whih runs appliation lass �les in a on-trolled environment. Veneer is a \virtual" JVM, arefully designed torun reasonably fast by exeuting most of the appliation ode diretly| it jumps to the orresponding byteode. It maintains ontrol overexeution by interepting ontrol ow; optional interept points inludemethod entry, basi bloks, and bak edges.This paper. The main ontributions of this paper inlude:We give an overview of our Veneer Virtual JVM, an exeutionenvironment for Java byteode appliations whih allows dynamiinstrumentation, run-time optimization, and makes the results ofstati analyses available to inform run-time optimization.We briey present JUDI, our Java Utility for Dynami Instrumen-tation, a omponent-based environment whih exploits Veneer'sapability to modify an appliation on the y.

Dynami instrumentation for Java 3We briey introdue the RMI optimisation tool whih motivatedthis work.We onlude with a disussion of diretions for further work building onthese ideas.2. Related workDynami instrumentation. The term \dynami instrumentation"was oined by Hollingsworth and Miller to desribe run-time pathingof an appliation's binary ode in order to monitor and measure theprogram's behaviour. Hollingsworth has published a portable library,DynInst [8℄, whih supports this on a variety of proessor types andoperating systems.The Paradyn Parallel Performane Tools [12℄ build on DynInst, toprovide a tool for measuring and analyzing the performane of sequen-tial, parallel, and distributed programs.Dynami instrumentation for Java. DynInst works by pathingthe appliation's instrutions. Dynami instrumentation for Java annotbe implemented this way, without exposing low-level implementationdetails of the JVM. There are a number of alternative approahes:Re-de�ne the lass using the Java Debug Interfae (JDI) all Vir-tualMahine.redefineClasses(), introdued in Sun's JDK 1.4 [6℄.This approah is used in ProbeMeister [13℄. The overhead to dothis is reported to be around 20 milliseonds for a small example,but inreases with large lasses sine methods annot be rede�nedindividually, and JIT optimisation must be re-done. To redue theoverheads, Dmitriev [7℄ advoates re�ning the JDI with a all torede�ne methods individually.Run the JVM in debugging mode, and set breakpoints to insertinstrumentation. This is the approah taken by Popovii et al [14℄.Run the Java appliation in a virtual JVM. This is the approahused in our JUDI tool, and is presented in more detail in Se-tion 1.4.1. We use the native JVM to exeute appliation byteodeas muh as possible, but have to interept exeution in order toretain ontrol. The sheme su�ers some overhead (see Setion 1.5)on exeution of all the appliation's ode (apart from system li-braries), but runs with JIT optimisation. Insertion and removal ofinstruments is very fast.Our vJVM was developed to provide a general framework for run-time optimisation, and is muh more powerful than is needed for

4
p<N

p += x.g(p);

return p;

int f() {

while (p<N)

p += x.g(p);

return p;

}Figure 1. Fragmentation. When eah lass is loaded, eah method may be frag-mented aording to a spei�ed poliy. For some purposes it is suÆient to intereptontrol ow only at method entry and exit. For our dynami instrumentation toolwe fragment at basi blok boundaries - forks and joins in the method's ontrol owgraph. Figure 4 shows the fragment graph for a real example.dynami instrumentation. In Setion 1.5 we explore some of thepotential advantages of the using Veneer ompared to the alterna-tives above.Runtime Introspetion and Optimization. The idea of inter-posing a software layer to monitor, interept or optimise an appliationis interestingly explored by the Dynamo/Rio projets [2, 4℄. Our vir-tual JVM provides essentially the same apability, and we enounter asimilar problem of interepting ontrol ow eÆiently.Performane analysis for Distributed Java appliations. Var-ious tools already exist for analysing Java performane; for distributedappliations, for example, the JaViz tool o�ers a useful solution [10℄.Our goal for JUDI is to build an infrastruture for more ambitious in-strumentation. We review some of the possibilities in Setion 1.7.3. The Veneer Virtual Java Virtual MahineOur instrumentation and optimisation tools are built on a virtual JavaVirtual Mahine (vJVM), whih is a JVM written in Java, running ona Java JVM. It runs most of the appliation ode diretly, by jumpingto the orresponding byteode, but seletively maintains ontrol overexeution by interepting ontrol ow. We an hoose the level at whihontrol ow is interepted, e.g. at method entry, basi bloks, bak edges.The ontrol ow is interepted by \fragmenting" eah method at lass-load time. There are several di�erent fragmentation poliies: at basiblok boundaries, at method entry/exit, at method alls, and at poten-tial RMI all sites (used for our work on RMI optimisation, desribed inSetion 1.6). Figure 1 shows a simple example of basi blok fragmenta-

Dynami instrumentation for Java 5
Custom

class-loader

Original
class

Modified
class

VJVM
policy

Planset

Planset
cache

Modified
method Plan

Executor

Fragmentation
policy

Fragmenter

Figure 2. Arhiteture of the vJVM. We interept the JVM's lass loader, andreplae eah method of eah lass with a all to a plan exeutor. For eah newly-enountered lass we generate a planset, the fragmented ode variants, whih aretraversed by the exeutor. Plansets are ahed to avoid redundant work.tion. The method body is split into bloks, an exeution \plan", and themethod entry is replaed by an \exeutor loop" that walks the ontrolow graph, invoking eah blok in turn. A method's ontrol ow graphan be updated without synhronisation, as the appliation is running,allowing us to use this as a framework for dynami instrumentation.An arhitetural overview of the vJVM is given in Figure 2.3.1 How it worksThe Virtual Java Virtual Mahine (vJVM) uses a ustom lass-loaderto interept lasses as they are loaded. If the lass belongs to the Javaore library or to the vJVM, then its loading is delegated to the parentlass-loader.If modi�ation is neessary, the methods of the lass are proessed one-by-one. The ative poliy is invited to generate variants for the method| the exeution plans that an be exeuted in plae of the originalmethod body. Eah method an have multiple variants, fragmentedaording to di�ering poliies, although only one an be ative at atime. The ative variant may be hanged at runtime, whih e�etivelyswithes method implementations on-the-y.

6

Figure 3. Java Utility for Dynami Instrumentation. This prototype user interfaeonnets to a spei�ed, possibly remote, JVM. The user an then browse the lassesand methods, and inspet their ontrol-ow graphs. Instrumentation experiments areonstruted, then deployed for a spei�ed period, or until an instrument exeutionount is reahed. Eah instrument is pakaged as an Instrument Strategy Component;an example is shown in Figure 4.Finally, the modi�ed lass is loaded into the underlying JVM.3.2 The fragmentation frameworkThe fragmentation framework breaks the body of a method up intobloks. Bloks represent setions of ode from the original method, plussome additional meta-data. The struture of the original method isretained by building up a ontrol-ow graph known as a plan, with thebloks forming the nodes of the plan. All the plans for a lass aregathered up into a onstrut known as a planset.The method is exeuted by invoking a method in an exeutor lass,whih takes the plan as a parameter. The exeutor traverses the plan,exeuting the bloks as it visits them. The exeutor therefore takes onthe role of an interpreter, and has full ontrol over the way in whih thebloks are exeuted.

Dynami instrumentation for Java 7Fragmentation poliy. The way in whih a method is fragmentedand the exeutor that is used is determined by a user-de�ned poliy. Ingeneral, we attempt to pak as muh as possible within fragments, sinethese an be exeuted diretly by the JVM and are therefore fast. Breaksbetween bloks are introdued where we need to regain ontrol over thesystem, sine at these points ontrol is passed bak to the exeutor.Parameterised bloks are used to identify ertain types of instrutionthat may need to be treated speially by the exeutor.Method entry. If a method is fragmented, its body is replaed bya sequene of instrutions that initialises the loals array, retrieves theplan and exeutor for the urrent method, and then exeutes the planusing the exeutor.Planset ahing. The fragmentation proess, whih is implementedusing the SOOT framework from Hendren's group at MGill Univer-sity [18℄) is rather involved, as data ow analysis is used to minimisefragmentation overheads (the metadata resulting from this analysis isused more aggressively in our RMI optimisation work). Plansets areahed in the loal �lesystem and reused if lassname and SHA-1 signa-ture math.4. JUDI: Java Utility for DynamiInstrumentationJUDI is a prototype dynami instrumentation tool for Java. It man-ages the deployment, removal, data olletion and data visualisation forperformane instrumentation experiments.4.1 InstrumentationInstrumentation is done by inserting instruments as additional bloksin the method plan. These instruments are then exeuted by the exeu-tor.The instrument an aess the method's parameters and loals, andall other lasses, for example to trigger further instrumentation. Forhigh-resolution timing, we used JNI to aess a C/assembler routinewhih reads the Intel timestamp ounter.As illustrated in Figure 3, JUDI's lient graphial user interfae (GUI)onnets to a set of remote vJVM's running fragmented ode. The GUIallows the user to browse the remote systems' methods, and to uploadinstruments to the remote systems. The methods an be viewed by avisualiser (see Figure 4) whih shows the plan as a graph (using Open-

8JGraph [9℄). JUDI's reord of aessible lasses grows as lasses aredynamially loaded, but persists from run-to-run to allow instrumenta-tion of methods in advane of their exeution.4.2 Instrumentation Strategy ComponentsThe unit of instrumentation deployment is an \Instrumentation Strat-egy Component" (ISC). This onsists of:A set of Instruments - sublasses of a generi Instrument planblok. Instruments typially start, stop and log timers, or gener-ate a log entry reording ontrol ow, or data values (in aspet-oriented programming terms, this is the \advie").An instrumentation strategy. This is usually just whether theinstrument is to be exeuted before, after, or before-and-after thespei�ed method, and whether it applies to the whole method, orevery basi blok in the method.Instrumentation targets: the set of program objets (methods,lasses) to whih the instrumentation strategy should be applied.If not the entire program, this is seleted expliitly through theGUI.Instrumentation data lass: instruments generate data, usuallyeither a log or some kind of histogram.Instrumentation analyser: this is a GUI omponent for viewingthe results from the experiment.Figure 4 shows the results from an example ISC whih traes ontrol owthrough seleted methods. This ISC operates on methods fragmentedat the basi-blok level. The instrument is applied before eah blok,and simply logs the method and blok id. The GUI allows us to seletthe partiular method of interest, and view the results. The instrumentanalyser displays its ontrol ow graph, the three distint ontrol owpaths whih were taken through this method, the number of times eahwas exeuted, and the average exeution time for eah path.5. Experimental resultsWe have evaluated JUDI using two substantial appliations:1 SpeJVM98 209 db (Data Management) Benhmark [16℄. 1028lines of ode, 3 lasses, 24 publi methods.

Dynami instrumentation for Java 9

Figure 4. Fragmented exeution plan for the example method isMe. In this examplefragmentation has been applied at basi blok boundaries, so that ontrol ow withinthe method an be studied. The light-oloured blok is the root of the plan whihis always exeuted �rst. The small bloks are terminating bloks, where the methodexits. The text in the boxes (unfortunately illegible here) shows disassembled ode.This display was generated by an Instrumentation Strategy Component (see Se-tion 1.4.2) designed for ontrol ow analysis. This ISC logs whih ontrol ow pathwas taken through the spei�ed method, produing a histogram of path frequeniestogether with eah path's mean, minimum and maximum exeution time.
Benhmark Exen time(JDK1.4) Exen time(vJVM overJDK1.4) Slowdown fatorSpeJVM98 209 db 22.02s 24.30 1.10xRouteFinder 3.73s 28.13 7.54xTable 1. Slowdown due to running benhmark appliations under the Virtual JVM(without any instrumentation). The performane impat varies enormously. Notethat system and standard library methods are not fragmented and run at full speed.Times are average of �ve runs.

10 2 RouteFinder, a railway route �nder appliation written by a groupof MS students at Imperial College in spring 2002. 3192 lines ofode, 17 lasses, 145 publi methods.The experiments were run on a 1400MHz AMD Athlon proessor with512MB RAM, running Linux (Suse 7.2) using Sun JDK1.4.Virtual JVM performane. Running an appliation under thevirtual JVM leads to an inevitable inrease in exeution time due tothe need to interept ontrol ow. The performane impat is given inTable 1. Our performane ompares well with the reported slowdown ofmore than 700 for Sun's fully-interpretive JavaInJava virtual JVM [17℄,but is some way from mathing the approahes disussed earlier basedon the JDI VirtualMahine.redefineClasses() feature [13℄ and usingbreakpoints [14℄.Veneer is at an early stage of its development, and we expet to im-prove its performane substantially. The implementation whose perfor-mane is reported here su�ers a substantial overhead at eah fragmentboundary. The design allows for eah method to have several di�er-ent implementations, fragmented to di�erent degrees. Thus, the over-head ould be redued to just a test or indiretion on method entry(even this ould be avoided in an implementation that an appropriatethe method table). However, to ensure instrumented threads exeutednewly-inserted instruments promptly, the bak-edges of loops generallyalso need to be interepted.We ould also improve performane by inlining instrumentation odeinto the modi�ed method (or method variant) as it is loaded. This islikely to be partiularly useful when large amounts of an appliation'sode is to be instrumented.6. Optimising RMI appliationsFigures 5 and 6 illustrate the two main optimisations we have imple-mented to redue ommuniations in Java RMI appliations.To optimise RMI, we on�gure Veneer to fragment only methodswhih ontain potential RMI all sites (interfae invoations with java-.rmi.RemoteExeption on the throw list). The fragmentation is usedso that the run-time system is invoked before eah potential RMI all.If the target objet is in fat remote, and the following fragment hasno dependene on it, the RMI all is delayed. This way, RMI allsand loal ode are dynamially re-ordered. Eventually, when a depen-dene or externally-visible e�et fores exeution of the delayed RMIalls, the run-time system onstruts an optimised exeution plan whih

Dynami instrumentation for Java 11
void m(RemoteObject r, int a)

{

int x = r.f(a);

int y = r.g(a,x);

int z = r.h(a,y);

System.out.Println(z);

}

Client Server

f

g

h

Network

Client Server

f

g

h

Network

Six messages Two messages, no
need to copy x and yFigure 5. Aggregating adjaent, or near-adjaent RMI alls to the same server.Aggregation always redues the number of messages. It may also redue the amountof data transferred, sine parameters used in multiple alls (suh as a above) need besent only one, and a result from one all passed as a parameter to another need notbe routed via the lient. Results whih are not used by the lient, suh as x and y,need not be returned.

void m(RemoteObject r1,

RemoteObject r2)

{

Object a = r1.f(b);

r2.g(a,b);

}

Client Server 1

f

Network

Server 2

g

Client Server 2

g Server 1

f

Figure 6. Aggregating adjaent, or near-adjaent RMI alls to di�erent servers. Ifa result from one all (suh as a above) is passed as a parameter to another, we anroute the data server-to-server instead of server-to-lient then lient-to-server. Thisredues marshalling osts and allows seletion of a better server-to-server networkpath, if available. With a slow lient-server onnetion, it may even be worthwhilepurely to exploit ommon parameters suh as b.

12implements the aggregation and forwarding optimisations illustrated inFigures 5 and 6.Performane results for RMI optimisation are urrently being evalu-ated [19℄.7. Conlusions and diretions for further workWe have presented the Veneer virtual JVM. Veneer allows a Javaappliation's behaviour to be seletively monitored and modi�ed at run-time. Its design was motivated by our work on optimisation of RMI,where we ombine stati analysis with dynami ontrol ow. Veneer analso be used for performane instrumentation, and we presented JUDI,a prototype performane analysis tool. The tool is based on Instrumen-tation Strategy Components (ISCs), whih ombine instrumentation, aninstrument deployment strategy, and instrument data analysis.Given that muh of this work is at an early stage, most of the interestlies in the diretions for developing and applying it:Veneer. Veneer is at an early stage of development and we planto improve its performane, and evaluate it more thoroughly. Thetool has a number of interesting potential appliations, partiularlyin seurity, whih we are urrently exploring.JUDI. The power of dynami instrumentation lies in the ability todeploy instrumentation algorithmially. The idea is to formulate ahypothesis about a performane bottlenek, deploy an experimentto test it, then re�ne the hypothesis on the basis of the results. Theapproah has been explored in the Paradyn Performane Consul-tant [5, 15℄. We have a preliminary implementation (as a JUDIISC) whih we are urrently developing [3℄.Aspets. How should a JUDI user speify whih program pointsa given instrument should be attahed to? Aspet-oriented pro-gramming (AOP) languages suh as AspetJ o�er an answer tothis [11℄. AspetJ is based on a reetive model of a Java pro-gram, and uses this to de�ne a language for speifying \joinpoints"(i.e. points at whih ode should be added or interposed). AspetJsupports wildards on method type signatures, names and pakagepathnames. Wildards on methods an be ombined with some dy-nami properties, suh whether an objet's run-time type mathesa given pattern, or whether one method is alled via another.The PROSE tool of Popovii at al [14℄, whih, as was mentionedearlier, implements dynami instrumentation for Java by settingbreakpoints via the debugging interfae, is designed to support

Dynami instrumentation for Java 13run-time deployment of aspets. They dynamially onstrut \ross-ut" objets to represent how a spei�ed ode fragment is insertedinto a running appliation.We plan to redesign JUDI using an AOP-style language for har-aterising program points, and for lassifying the measurementsprodued from instrumentation.AknowledgmentsThis work was supported by the EPSRC, through grant no. GR/R15566(DESORMI). We would also like to thank Doug Brear, Thomas Petrou,Thibaut Weise and Tim Wi�en, who all ontributed to the softwaredevelopment.

Referenes

[1℄ B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi,A. Cohi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalape~no virtualmahine. IBM System Journal, 39(1), February 2000.[2℄ Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transpar-ent dynami optimization system. ACM SIGPLAN Noties, 35(5):1{12, 2000.[3℄ Douglas J. Brear. JBolt: The Java bottlenek loator toolkit. Master's thesis,Department of Computing, Imperial College, London, UK, 2002.[4℄ Derek Bruening, Evelyn Duesterwald, , and Saman Amarasinghe. Design andimplementation of a dynami optimization framework for windows. In 4th ACMWorkshop on Feedbak-Direted and Dynami Optimization (FDDO-4), Deem-ber 2001.[5℄ H. Cain, B. Wylie, and B. P. Miller. A allgraph based searh strategy forautomated performane diagnosis. In Arndt Bode, Thomas Ludwig II, WolfgangKarl, and Roland Wism�uller, editors, Euro-Par. Springer Verlag, LNCS 1900,2000.[6℄ M. Dmitriev. Towards exible and safe tehnology for runtime evolution ofjava language appliations. In Proeedings of the Workshop on EngineeringComplex Objet-Oriented Systems for Evolution, in assoiation with OOPSLA2001 International Conferene, Tampa Bay, Florida, USA, Otober 2001.[7℄ M. Dmitriev. Appliation of the HotSwap tehnology to advaned pro�ling. InFirst International Workshop on Unantiipated Software Evolution (USE2002),Malaga, Spain, June 2002. http://www.joint.org/use2002/sub/dmitriev-hotswapprof.pdf.[8℄ Je�rey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dynami programinstrumentation for salable performane tools. In Proeedings of SHPCC'94,May 1994.[9℄ Jesus M. Salvo Jr. Openjgraph - Java graph and graph drawing projet, Otober2002. http://openjgraph.soureforge.net/.

16[10℄ I�at H. Kazi, Davis P. Jose, Badis Ben-Hamida, Christian J. Hesott, ChrisKwok, Joseph A. Konstan, David J. Lilja, and Pen-Chung Yew. JaViz: Alient/server java pro�ling tool. IBM Systems Journal, 39(1):96{, 2000.[11℄ Gregor Kizales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Je�rey Palm, andWilliam G. Griswold. An overview of AspetJ. In ECOOP, volume 2072, pages327{355. Springer Verlag, LNCS 2072, 2001.[12℄ Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Je�rey K.Hollingsworth, R. Brue Irvin, Karen L. Karavani, Krishna Kunhithapadam,and Tia Newhall. The Paradyn parallel performane measurement tool. IEEEComputer, 28(11):37{46, 1995.[13℄ Paul Pazandak and David Wells. ProbeMeister: Distributed run-time software instrumentation. In First International Workshop onUnantiipated Software Evolution (USE2002), Malaga, Spain, June 2002.http://www.joint.org/use2002/sub/pazandak-ProbeMeister.pdf.[14℄ A. Popovii, T. Gross, and G. Alonso. Dynami weaving for aspet orientedprogramming. In 1st International Conferene on Aspet-Oriented SoftwareDevelopment (AOSD 2002), April 22-26, Enshede, The Netherlands, 2002.http://ikplab11.inf.ethz.h:9000/prose/webthings/aosd02.ps.[15℄ P..C. Roth and B. P. Miller. DeepStart: A hybrid strategy for automated per-formane problem searhes. In EuroPar 2002. Springer Verlag, 2002.[16℄ Standard performane evaluation orporation (spe) jvm98 Suite, 1998. Avail-able from http://www.spe.org.[17℄ Antero Taivalsaari. Implementing a Java Virtual Mahine in the Javaprogramming language. Tehnial Report TR-98-64, Sun Labs, 1998.http://researh.sun.om/kanban/JavaInJava.html.[18℄ Raja Vall�ee-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrik Lam,and Vijay Sundaresan. Soot - a java byteode optimization framework. InProeedings of CASCON '99, 1999.[19℄ Kwok Cheung Yeung. Automated Optimisation of Distributed Java Programsaross Network Boundaries. PhD thesis, Department of Computing, ImperialCollege, London, UK, 2002. In preparation.

