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Abstract Dynamic instrumentation, meaning modification of an application’s in-
structions at run-time in order to monitor its behaviour, is a very pow-
erful foundation for a wide range of program manipulation tools. This
paper concerns the problem of implementing dynamic instrumentation
for a managed run-time environment such as a Java Virtual Machine
(JVM). We present a flexible new approach based on a “virtual” JVM,
which runs above a standard JVM but intercepts application control
flow in order to allow it to be modified at run-time. Our Veneer Vir-
tual JVM works by fragmenting each method’s bytecode at specified
points (such as basic blocks). The fragmentation process can include
static analysis passes which associate dependence and liveness metadata
with each block in order to facilitate run-time optimisation. We con-
clude with some preliminary performance results, and discuss further
applications of the tool.
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1. Introduction

Setting the Scene: optimizing Java RMI applications. The
work we describe in this paper is part of a wider research programme at
Imperial College, aimed at extending the technology of optimizing com-
pilers to cross the boundary between systems on a network. Our main
goal is to avoid unnecessary communications, and we have developed
a prototype optimiser for Java applications that use Remote Method
Invocation (RMI).

In looking for applications which might benefit from RMI optimiza-
tion, we discovered the need for performance analysis tools. We also
realised that the run-time optimisation framework which we had devel-
oped could also be used for performance instrumentation.

This paper presents the fruits of this insight.

The Veneer Virtual JVM. Static optimisation of Java is difficult
due to dynamic binding, polymorphism, ubiquitous pointers, and dy-
namic class loading. Since communications (at least over a wide-area
network) are expensive relative to computation, we can afford to invest
in some run-time effort if it offers a reasonable prospect of reducing the
number and/or size of messages required.

Although such optimisation could be done by extending a sophis-
ticated Java Virtual Machine (JVM) such as the Jikes RVM [1], this
would prevent users from using their chosen JVM, and would involve us
in tracking JVM releases. Instead, we built Veneer, which operates on
top of a standard JVM, running as a Java application. In effect, the
framework is, itself, a JVM - which runs application class files in a con-
trolled environment. Veneer is a “virtual” JVM, carefully designed to
run reasonably fast by executing most of the application code directly
— it jumps to the corresponding bytecode. It maintains control over
execution by intercepting control flow; optional intercept points include
method entry, basic blocks, and back edges.

This paper. The main contributions of this paper include:

s We give an overview of our Veneer Virtual JVM, an execution
environment for Java bytecode applications which allows dynamic
instrumentation, run-time optimization, and makes the results of
static analyses available to inform run-time optimization.

m We briefly present JUDI, our Java Utility for Dynamic Instrumen-
tation, a component-based environment which exploits Veneer’s
capability to modify an application on the fly.
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s We briefly introduce the RMI optimisation tool which motivated
this work.

We conclude with a discussion of directions for further work building on
these ideas.

2. Related work

Dynamic instrumentation. The term “dynamic instrumentation”
was coined by Hollingsworth and Miller to describe run-time patching
of an application’s binary code in order to monitor and measure the
program’s behaviour. Hollingsworth has published a portable library,
Dynlnst [8], which supports this on a variety of processor types and
operating systems.

The Paradyn Parallel Performance Tools [12] build on Dynlnst, to
provide a tool for measuring and analyzing the performance of sequen-
tial, parallel, and distributed programs.

Dynamic instrumentation for Java.  DynlInst works by patching
the application’s instructions. Dynamic instrumentation for Java cannot
be implemented this way, without exposing low-level implementation
details of the JVM. There are a number of alternative approaches:

»  Re-define the class using the Java Debug Interface (JDI) call Vir-
tualMachine.redefineClasses (), introduced in Sun’s JDK 1.4 [6].
This approach is used in ProbeMeister [13]. The overhead to do
this is reported to be around 20 milliseconds for a small example,
but increases with large classes since methods cannot be redefined
individually, and JIT optimisation must be re-done. To reduce the
overheads, Dmitriev [7] advocates refining the JDI with a call to
redefine methods individually.

s Run the JVM in debugging mode, and set breakpoints to insert
instrumentation. This is the approach taken by Popovici et al [14].

m Run the Java application in a virtual JVM. This is the approach
used in our JUDI tool, and is presented in more detail in Sec-
tion 1.4.1. We use the native JVM to execute application bytecode
as much as possible, but have to intercept execution in order to
retain control. The scheme suffers some overhead (see Section 1.5)
on execution of all the application’s code (apart from system li-
braries), but runs with JIT optimisation. Insertion and removal of
instruments is very fast.

Our vJVM was developed to provide a general framework for run-
time optimisation, and is much more powerful than is needed for
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Figure 1.  Fragmentation. When each class is loaded, each method may be frag-
mented according to a specified policy. For some purposes it is sufficient to intercept
control flow only at method entry and exit. For our dynamic instrumentation tool
we fragment at basic block boundaries - forks and joins in the method’s control flow
graph. Figure 4 shows the fragment graph for a real example.

dynamic instrumentation. In Section 1.5 we explore some of the
potential advantages of the using Veneer compared to the alterna-
tives above.

Runtime Introspection and Optimization. The idea of inter-
posing a software layer to monitor, intercept or optimise an application
is interestingly explored by the Dynamo/Rio projects [2, 4]. Our vir-
tual JVM provides essentially the same capability, and we encounter a
similar problem of intercepting control flow efficiently.

Performance analysis for Distributed Java applications. Var-
ious tools already exist for analysing Java performance; for distributed
applications, for example, the JaViz tool offers a useful solution [10].
Our goal for JUDI is to build an infrastructure for more ambitious in-
strumentation. We review some of the possibilities in Section 1.7.

3. The Veneer Virtual Java Virtual Machine

Our instrumentation and optimisation tools are built on a virtual Java
Virtual Machine (vJVM), which is a JVM written in Java, running on
a Java JVM. It runs most of the application code directly, by jumping
to the corresponding bytecode, but selectively maintains control over
execution by intercepting control flow. We can choose the level at which
control flow is intercepted, e.g. at method entry, basic blocks, back edges.

The control flow is intercepted by “fragmenting” each method at class-
load time. There are several different fragmentation policies: at basic
block boundaries, at method entry/exit, at method calls, and at poten-
tial RMI call sites (used for our work on RMI optimisation, described in
Section 1.6). Figure 1 shows a simple example of basic block fragmenta-
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Figure 2. Architecture of the vJVM. We intercept the JVM’s class loader, and
replace each method of each class with a call to a plan executor. For each newly-
encountered class we generate a planset, the fragmented code variants, which are
traversed by the executor. Plansets are cached to avoid redundant work.

tion. The method body is split into blocks, an execution “plan”, and the

method entry is replaced by an “executor loop” that walks the control

flow graph, invoking each block in turn. A method’s control flow graph

can be updated without synchronisation, as the application is running,

allowing us to use this as a framework for dynamic instrumentation.
An architectural overview of the vJVM is given in Figure 2.

3.1 How it works

The Virtual Java Virtual Machine (vJVM) uses a custom class-loader
to intercept classes as they are loaded. If the class belongs to the Java
core library or to the vJVM, then its loading is delegated to the parent
class-loader.

If modification is necessary, the methods of the class are processed one-
by-one. The active policy is invited to generate variants for the method
— the execution plans that can be executed in place of the original
method body. Each method can have multiple variants, fragmented
according to differing policies, although only one can be active at a
time. The active variant may be changed at runtime, which effectively
switches method implementations on-the-fly.
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Figure 3. Java Utility for Dynamic Instrumentation. This prototype user interface
connects to a specified, possibly remote, JVM. The user can then browse the classes
and methods, and inspect their control-flow graphs. Instrumentation experiments are
constructed, then deployed for a specified period, or until an instrument execution
count is reached. Each instrument is packaged as an Instrument Strategy Component;
an example is shown in Figure 4.

Finally, the modified class is loaded into the underlying JVM.

3.2 The fragmentation framework

The fragmentation framework breaks the body of a method up into
blocks. Blocks represent sections of code from the original method, plus
some additional meta-data. The structure of the original method is
retained by building up a control-flow graph known as a plan, with the
blocks forming the nodes of the plan. All the plans for a class are
gathered up into a construct known as a planset.

The method is executed by invoking a method in an ezecutor class,
which takes the plan as a parameter. The executor traverses the plan,
executing the blocks as it visits them. The executor therefore takes on
the role of an interpreter, and has full control over the way in which the
blocks are executed.
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Fragmentation policy. @ The way in which a method is fragmented
and the executor that is used is determined by a user-defined policy. In
general, we attempt to pack as much as possible within fragments, since
these can be executed directly by the JVM and are therefore fast. Breaks
between blocks are introduced where we need to regain control over the
system, since at these points control is passed back to the executor.
Parameterised blocks are used to identify certain types of instruction
that may need to be treated specially by the executor.

Method entry. If a method is fragmented, its body is replaced by
a sequence of instructions that initialises the locals array, retrieves the
plan and executor for the current method, and then executes the plan
using the executor.

Planset caching. The fragmentation process, which is implemented
using the SOOT framework from Hendren’s group at McGill Univer-
sity [18]) is rather involved, as data flow analysis is used to minimise
fragmentation overheads (the metadata resulting from this analysis is
used more aggressively in our RMI optimisation work). Plansets are
cached in the local filesystem and reused if classname and SHA-1 signa-
ture match.

4. JUDI: Java Utility for Dynamic
Instrumentation

JUDI is a prototype dynamic instrumentation tool for Java. It man-
ages the deployment, removal, data collection and data visualisation for
performance instrumentation experiments.

4.1 Instrumentation

Instrumentation is done by inserting instruments as additional blocks
in the method plan. These instruments are then executed by the execu-
tor.

The instrument can access the method’s parameters and locals, and
call other classes, for example to trigger further instrumentation. For
high-resolution timing, we used JNI to access a C/assembler routine
which reads the Intel timestamp counter.

As illustrated in Figure 3, JUDI’s client graphical user interface (GUI)
connects to a set of remote vJVM’s running fragmented code. The GUI
allows the user to browse the remote systems’ methods, and to upload
instruments to the remote systems. The methods can be viewed by a
visualiser (see Figure 4) which shows the plan as a graph (using Open-
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JGraph [9]). JUDI’s record of accessible classes grows as classes are
dynamically loaded, but persists from run-to-run to allow instrumenta-
tion of methods in advance of their execution.

4.2 Instrumentation Strategy Components

The unit of instrumentation deployment is an “Instrumentation Strat-
egy Component” (ISC). This consists of:

m A set of Instruments - subclasses of a generic Instrument plan
block. Instruments typically start, stop and log timers, or gener-
ate a log entry recording control flow, or data values (in aspect-
oriented programming terms, this is the “advice”).

= An instrumentation strategy. This is usually just whether the
instrument is to be executed before, after, or before-and-after the
specified method, and whether it applies to the whole method, or
every basic block in the method.

= Instrumentation targets: the set of program objects (methods,
classes) to which the instrumentation strategy should be applied.
If not the entire program, this is selected explicitly through the
GUL

s Instrumentation data class: instruments generate data, usually
either a log or some kind of histogram.

» Instrumentation analyser: thisis a GUI component for viewing
the results from the experiment.

Figure 4 shows the results from an example ISC which traces control low
through selected methods. This ISC operates on methods fragmented
at the basic-block level. The instrument is applied before each block,
and simply logs the method and block id. The GUI allows us to select
the particular method of interest, and view the results. The instrument
analyser displays its control flow graph, the three distinct control flow
paths which were taken through this method, the number of times each
was executed, and the average execution time for each path.

5. Experimental results

We have evaluated JUDI using two substantial applications:

1 SpecJVM98.209_db (Data Management) Benchmark [16]. 1028
lines of code, 3 classes, 24 public methods.
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Figure 4. Fragmented execution plan for the example method isMe. In this example
fragmentation has been applied at basic block boundaries, so that control flow within
the method can be studied. The light-coloured block is the root of the plan which
is always executed first. The small blocks are terminating blocks, where the method
exits. The text in the boxes (unfortunately illegible here) shows disassembled code.

This display was generated by an Instrumentation Strategy Component (see Sec-
tion 1.4.2) designed for control flow analysis. This ISC logs which control flow path
was taken through the specified method, producing a histogram of path frequencies
together with each path’s mean, minimum and maximum execution time.

Benchmark Ezec™ time Ezec™ time Slowdown factor
(JDK1.4) (vJVM over
JDK1.})
SpecJVM98_209_db  22.02s 24.30 1.10x
RouteFinder 3.73s 28.13 7.54x

Table 1. Slowdown due to running benchmark applications under the Virtual JVM
(without any instrumentation). The performance impact varies enormously. Note
that system and standard library methods are not fragmented and run at full speed.
Times are average of five runs.
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2 RouteFinder, a railway route finder application written by a group
of MSc students at Imperial College in spring 2002. 3192 lines of
code, 17 classes, 145 public methods.

The experiments were run on a 1400MHz AMD Athlon processor with
512MB RAM, running Linux (Suse 7.2) using Sun JDK1.4.

Virtual JVM performance. Running an application under the
virtual JVM leads to an inevitable increase in execution time due to
the need to intercept control flow. The performance impact is given in
Table 1. Our performance compares well with the reported slowdown of
more than 700 for Sun’s fully-interpretive JavalnJava virtual JVM [17],
but is some way from matching the approaches discussed earlier based
on the JDI VirtualMachine.redefineClasses() feature [13] and using
breakpoints [14].

Veneer is at an early stage of its development, and we expect to im-
prove its performance substantially. The implementation whose perfor-
mance is reported here suffers a substantial overhead at each fragment
boundary. The design allows for each method to have several differ-
ent implementations, fragmented to different degrees. Thus, the over-
head could be reduced to just a test or indirection on method entry
(even this could be avoided in an implementation that can appropriate
the method table). However, to ensure instrumented threads executed
newly-inserted instruments promptly, the back-edges of loops generally
also need to be intercepted.

We could also improve performance by inlining instrumentation code
into the modified method (or method variant) as it is loaded. This is
likely to be particularly useful when large amounts of an application’s
code is to be instrumented.

6. Optimising RMI applications

Figures 5 and 6 illustrate the two main optimisations we have imple-
mented to reduce communications in Java RMI applications.

To optimise RMI, we configure Veneer to fragment only methods
which contain potential RMI call sites (interface invocations with java-
.rmi.RemoteException on the throw list). The fragmentation is used
so that the run-time system is invoked before each potential RMI call.
If the target object is in fact remote, and the following fragment has
no dependence on it, the RMI call is delayed. This way, RMI calls
and local code are dynamically re-ordered. Eventually, when a depen-
dence or externally-visible effect forces execution of the delayed RMI
calls, the run-time system constructs an optimised execution plan which



Dynamic instrumentation for Java 11

void m(Remoteobject r, int a) Client Server| Client Server|
{ — (7]
int x = r.f(a); %
int y = r.g(a,x); <«t+—19 n
int z = r.h(a,y); — Ny,
- Pl -
System.out.Println(z); < <
3 Network NetworK
Sixmessages Twomessages,no
needtocopyxandy
Figure 5. Aggregating adjacent, or near-adjacent RMI calls to the same server.

Aggregation always reduces the number of messages. It may also reduce the amount
of data transferred, since parameters used in multiple calls (such as a above) need be
sent only once, and a result from one call passed as a parameter to another need not
be routed via the client. Results which are not used by the client, such as x and y,
need not be returned.

Network
void m(RemoteObject ril, Client Serverl Client | : | Server2
RemoteObject r2) —> T —I>
{ <L pan=Ka
Serverl

object a = r1.f(b); N <72
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Figure 6.  Aggregating adjacent, or near-adjacent RMI calls to different servers. If
a result from one call (such as a above) is passed as a parameter to another, we can
route the data server-to-server instead of server-to-client then client-to-server. This
reduces marshalling costs and allows selection of a better server-to-server network
path, if available. With a slow client-server connection, it may even be worthwhile
purely to exploit common parameters such as b.
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implements the aggregation and forwarding optimisations illustrated in
Figures 5 and 6.

Performance results for RMI optimisation are currently being evalu-
ated [19].

7. Conclusions and directions for further work

We have presented the Veneer virtual JVM. Veneer allows a Java
application’s behaviour to be selectively monitored and modified at run-
time. Its design was motivated by our work on optimisation of RMI,
where we combine static analysis with dynamic control flow. Veneer can
also be used for performance instrumentation, and we presented JUDI,
a prototype performance analysis tool. The tool is based on Instrumen-
tation Strategy Components (ISCs), which combine instrumentation, an
instrument deployment strategy, and instrument data analysis.

Given that much of this work is at an early stage, most of the interest
lies in the directions for developing and applying it:

m Veneer. Veneer is at an early stage of development and we plan
to improve its performance, and evaluate it more thoroughly. The
tool has a number of interesting potential applications, particularly
in security, which we are currently exploring.

m JUDI. The power of dynamic instrumentation lies in the ability to
deploy instrumentation algorithmically. The idea is to formulate a
hypothesis about a performance bottleneck, deploy an experiment
to test it, then refine the hypothesis on the basis of the results. The
approach has been explored in the Paradyn Performance Consul-
tant [5, 15]. We have a preliminary implementation (as a JUDI
ISC) which we are currently developing [3].

m  Aspects. How should a JUDI user specify which program points
a given instrument should be attached to? Aspect-oriented pro-
gramming (AOP) languages such as Aspect] offer an answer to
this [11]. AspectJ is based on a reflective model of a Java pro-
gram, and uses this to define a language for specifying “joinpoints”
(i.e. points at which code should be added or interposed). AspectJ
supports wildcards on method type signatures, names and package
pathnames. Wildcards on methods can be combined with some dy-
namic properties, such whether an object’s run-time type matches
a given pattern, or whether one method is called via another.

The PROSE tool of Popovici at al [14], which, as was mentioned
earlier, implements dynamic instrumentation for Java by setting
breakpoints via the debugging interface, is designed to support
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run-time deployment of aspects. They dynamically construct “cross-
cut” objects to represent how a specified code fragment is inserted
into a running application.

We plan to redesign JUDI using an AOP-style language for char-
acterising program points, and for classifying the measurements
produced from instrumentation.
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