Angel: Resource Unification
ina 64-bit Micro-Kernel

Kevin Murrayt, Tom Stiemerlingt,
Tim Wilkinsontand Paul Kellyt

tSystems Architecture Research Centre,
Department of Computer Science, City University,
Northampton Square, London EC1V oHB,
ENGLAND.

1Department of Computing,
Imperial College, London,
ENGLAND.

4 June 1003

Abstract

The appearance of 64-bit processors allows a new approach to microkernel
design — a single unified address space. This paper describes this kind
of approach as adopted in Angel.

From our experience with a message passing microkernel MESHIX, we
discovered that a multi-address space, POSIX architecture is unsuitable
for general parallel applications development. Angel was therefore de-
signed to provide a more flexible environment. Central to these aims is
a simplification of resources. This is achieved through the use of a single
address space holding volatile and persistent data and all processes, and
which absorbs communication to remove the distinction between local and
remote machines. In addition, a simple user-level, first citizen, threaded
process structure with software interrupts has been developed. The re-
sulting kernel, written in C++, is compact and simple yet offers fully
protected services and 1s more flexible than many of its contemporaries.

A single address space provides some unique problems — most impor-
tantly the need to provide POSIX compatibility. We have investigated
this, and developed a modified compiler. This is capable of generat-
ing code from unmodified POSIX applications which may be forked to
a new address but still executed correctly. This avoids compromising
the single address space and only entails a small performance penalty
(approximately 5%).

A first generation microkernel is now complete and runs as an emulation
on the Sparc. A native system will soon be available.l

1. This research has been funded by a grant from the UK Science and Engineering Research Council
under grant GR/G28277.

1 Introduction

In the mid eighties, the System Architecture Research Centre at City University
developed a message-passing, UNIX compliant kernel (Meshiz [1]) for our scalable
distributed memory architecture (Topsy [2]). This kernel is a microkernel based,
message passing operating system, relatively typical in structure to many current
systems such as MACH [3], Chorus [4] and Amoeba [5]. Over the last two years
we have been examining its structure and performance in a critical manner. This
has demonstrated a number of issues that have not yet been addressed by most
current microkernel architectures. Additionally, we believe that a POSIX centred
architecture [6] does not provided the best model for exploiting the resources
available in a parallel machine.

During the design of Meshiz there have been several major advances in the field
of computer architecture. This has enabled a new approach to be taken in mi-
crokernel design. First, the advent of 64-bit address space processors (eg. DEC
Alpha [7], MIPS R4000 [8] and the custom chip in the KSR-1 [9]). Second, the
communication devices available to connect computers have dramatically increased
in speed (approaching one gigabit/sec) [10].

The goal of our research is to find the best way to overcome the limitations iden-
tified with Meshiz (and other microkernels) whilst exploiting improved computer
hardware and architecture. Resource unification provides an approach to achieving
this goal. This paper examines the reasoning behind resource unification, and why
the new generation of processors and networks make it feasible. An overview of
the approach is then given, followed by our implementation Angel [11], a Single
Address Space Architecture (SASA). The benefits this gives are outlined as well as
the problems introduced.

2 Shortcomingsof Meshix and other Microkernels

2.1 Performance of
IPC and RPC

The original goal of Meshiz and the Topsy architecture was to produce a scalable,
parallel UNIX multicomputer with a simple, modular, message passing microker-
nel. The objective of a scalable parallel message passing computer is shared with a
number of other research systems and projects [12, 13, 14]. To an extent this was
achieved, although some aspects of performance were disappointing. To discover
why Meshiz did not live up to expectations, a detailed performance evaluation was
performed. The following sections outline some of the conclusions drawn about
both Meshiz and POSIX architectures.

Monolithic UNIX implementations generally have superior IPC performance in
comparison to modular message-passing designs such as Meshiz. The classical
approach to improving RPC performance, the lightweight RPC optimisation de-
veloped for the DEC Firefly system [15], requires non-trivial modification to the
operating system’s structure. The approaches used by other groups to improve
IPC performance, notably Chorus [16], although adopting LRPC techniques, also
uses other methods. These include replacing context-dependent addresses with
unique addresses, so speeding up message delivery whilst reducing security, com-
bining mutually trusted servers into a single address space, so reducing context

2.2 Processor
Cache Utilisation

2.3 Replicated
Software Caches

2.4, Parallel
Processing Support

2.5 Dynamic Load
Balancing

2.6 Complex Data
Sharing

switches, and by placing all of the IPC management into the microkernel. It takes
all of these extensions and modifications to produce a system whose performance
is comparable with, though not equal to, monolithic systems.

As processor cache architectures become more complex, the costs in time and com-
plexity of changing the virtual-to-physical address map become more serious [17].
This causes the designer to avoid the benefits of complex hardware architectures
(with their performance advantages), and to use simpler techniques, such as copy-
ing instead of re-mapping, to dodge the associated problems (e.g. cache and TLB
flushing). This seriously impacts potential performance.

Meshiz provides several ad hoc caches, such as a TLB cache, a page cache and a
filesystem block cache. Ideally there should be a single instance of these similar
mechanisms. This would not only simplify the kernel, but should improve overall
cache utilisation and flexibility.

UNIX is not an ideal system to use when trying to exploit a parallel machine,
primarily because its process model is one of distinct heavyweight processes.
For efficient parallel programming a lightweight, flexible and extensible process
model is required. Although a heavyweight process model can be augmented with
lightweight “threads”, these threads are not real first class entities in the operating
system as certain system operations performed by one thread affect others.

In a scalable parallel system it is necessary to support a load balancing mechanism.
This is important since work must be distributed over the machine efficiently [12].
With a general purpose computer, the load on various parts of the system, typically
represented by the number of active threads, can change. To maintain the efficiency
of the application or system, it is necessary to re-allocate work between processors.
In many UNIX based systems it is either impossible to share threads between
processes, or it is a costly and complex operation involving non-trivial kernel
support [18].

When co-operating processes wish to share complex data structures in Meshiz,
they must be exchanged through message passing, files or shared memory segments.
Since it is not always possible to guarantee that these structure will reside at the
same addresses in all processes, costly packaging must take place to allow them to
be interchanged.

3 Resource Unification

3.1 Resources in an
Operating System

We believe that many of the problems above can be handled by use of resource
unification. This section examines what this involves, how it affects the design
of the operating system and how it solves the problems identified. Resource
unification can be thought of as an application of the philosophy of minimalism—
it tries to provide a minimal but complete interface.

The basic operation of an operating system can be considered to be the control,
management and allocation of resources. In a typically system these will include:

- Processor Time,

3.2 The Single
Address Space
Architecture(SASA)

- Volatile Memory (eg. DRAM),
- Persistent Storage Media (eg. disks), and
- Communication Access and Bandwidth.

Processor time is allocated by switching a processor between various processes,
with limited control provided by a set of system calls (e.g. wait, pause, alarm)
but ultimate control exercised by the kernel. Processor memory is the part of the
unique address space that each process is allocated (controlled through various
system calls such as fork, exec and sbrk). Persistent storage is seen through a
totally independent interface; the filesystem (providing system calls such as read,
write, open, close and mmap). Yet another interface is provided for access to the
communications capability of the computer (in a multi-processor machine, this is

typically via message passing or shared memory, whilst between computers it is
TCP/IP).

As demonstrated, the result is numerous different interfaces, one for each resource.
A kernel which supports these typically implements each independently, resulting
in alarger (and potentially more bug ridden) system than one with fewer interfaces.
In addition, the programmer has more interfaces to remember and handle correctly.

Conventional filesystems exist for several reasons. First, persistent data (ie. that
stored on disk) is viewed as different from transient data. Second, sharing data
between programs requires that it be provided with a “name” or “address” so that
it can be found again or two processes can ensure they are referring to the same
data. Since the names are typically used by “humans”, it is sensible to make them
mnemonic. Consequently, the filesystem has persisted since it provides a clean
handle on data and, with a conventional 32-bit processor, the 4 gigabyte address
space is too small to hold all data (simple commercial databases are large than
this).

The advent of 64-bit processors gives a truly dramatic increase in the amount
of data that can be contained within the address space of a processor. It is
now possible for it to contain all the persisted data of the filesystem as well as
the processes’ transient data and code. This forms the heart of a single address
space architecture—there is a single interface to the entire memory hierarchy from
processor cache to magnetic or optical disks. Providing all accessible data via a
single memory interface, where each data item always resides at the same address,
has various benefits:

- Improved Data Sharing: Since the data always resides at the same address,
regardless of the process that is using them, complicated data structures (such
as graphs and trees) can be easily shared without the need for “marshalling”2.

- Improved Cache Utilisation: With a conventional operating system, when a
context switch occurs, any cached process dependent data must be flushed.
In an SASA this is no longer necessary since the data is equally valid in all
processes3. Consequently, less data is flushed, the cache utilisation improves,
and performance is increased.

2. The act of encoding the data to remove pointers.

3. Virtual memory translation will prevent accesses by unpriviledged processes.

3.3 Distributed
Shared Memory

3.4 SASAs and
Parallel Computers

- Single Unified Interface: Providing a single interface simplifies the design and
maintenance of the kernel as well as applications. This single interface also aids
the programmer by reducing the number of interfaces to remember.

Parallel architectures come in two flavours, shared memory and distributed mem-
ory. Current work has lead to the conclusion that shared memory is a far simpler
paradigm to use [19]. Fortunately for distributed memory systems, there is a
technology based around distributed shared memory (DSM) which provides the
appearance of shared memory [20].

This is a very attractive mechanism to support especially with the increased
bandwidth and network support hardware available. However, initially it would
appear to be a very inefficient mechanism when compared with a message passing
system. In order to examine this, a set of detailed measurements of the Meshiz
communication system were made and the behaviour of a simple hardware assisted
distributed shared memory (DSM) scheme modelled. The communications costs
of DSM and message passing, and ways to reduce or eliminate them, were then
compared.

The results are detailed in other papers [21, 22], but concluded that many of the
costs in message passing are an inherent fact of the model, (e.g. data copying,
mapping and security). By comparison, the DSM has far fewer inherent costs.
Consequently, a DSM-based system should outperform a message-passing based
system, all other factors being equal. This leads to the belief that DSM should be
the basis of future parallel systems, in common with many other researchers and
manufacturers [9, 23, 24, 25, 26].

In a SASA, DSM techniques are used to extend the single address space from one
processor to all processors in a system. This results in IPC being incorporated into
the SASA. Extending a single address space across a parallel machine and making
it the only means of co-operation has many benefits:

- Unification and simplification of network: As the single address space is the
only means of communication between processors, the interface to the network
is hidden behind the single address space and accessed as shared memory, rather
than via an additional set of system calls.

- Data Mzigration and load balancing: As the data is shared through DSM, it
is trivial to move it between processors, even when the structures are complex.
Additionally, moving a thread between processors, is trivial: the thread’s context
need only be loaded in another processor and the thread will be running on it.
As it accesses data, it will be demand paged via the DSM. Hence introducing
load balancing into a SASA is far simpler than into a conventional architecture.

- LRPC: The optimisations of the LRPC scheme originally for single processor
RPCs can be applied to multiprocessors. In essence this mechanism relies on
agreeing and creating a region of memory that is accessible to both RPC parties
in which parameters and results are to be stored. In a SASA this is trivial. In
fact it can be taken further. If there is sufficient trust, parameters can be read
direct from the client exactly as is already done in a monolithic UNIX system.
With a flexible protection scheme it is possible to support a complete range of
RPCs, from high performance, high trust through to lower performance, low
trust.

3.5 A Protection
Scheme for a SASA

3.6 Fault Tolerance
under a SASA

3.7 Problems with
an SASA

Limited Address
Space

Conventional operating systems provide protection in two ways:

- Private address spaces: Every process is given its own private address space.
Therefore no process can access the memory of another.

- Fuilesystem name resolution: Whenever a process tries to open a file (resolve
its name into a file handle) the operating system first checks whether or not the
process is allowed to access the file.

By nature, a single address space architecture breaks both these protection mech-
anisms. The first is broken as all processes reside in the same address space. The
second is broken since persistent data (files of old) also resides in the same address
space. Another protection scheme must be provided to protect the data held in
this space which prevents both malicious and accidental access to, or damage to,
the data.

Additionally, current protection schemes are not sufficiently flexible. For example,
consider the file “/etc/passwd” in a conventional UNIX system. Typically, only
the user “root” can write to this file, though anybody can read it. In fact, a system
is required whereby only the program “passwd” can read and write to the file, and
a limited set of programs, such as “finger” and “login”, can read it. This would
allow finer control of protection and avoid “mistakes” compromising the entire
system.

The above points have prompted the development of a new scheme based around
domains which list the data that can be accessed. When a program seeks to access
new data, those items it can already access are used to determine if it can access
the new datum. Processes are not tied to domains; they may freely choose or
change domains if they hold the relevant permissions. This results in a scheme in
which address translation and protection are disassociated, which is as it should
be since one is concerned with memory management, which is of no concern to the
application, whilst the other is concerned with security, which is of concern to the
application.

The use of a single address space enables a low cost fault tolerance scheme to be
provided transparently. In essence it relies on two facts; first that all interactions
are visible to the DSM system so allowing it to identify co-operating groups of
processes that will be affected in the event of failure. Second, in a SASA all data
is visible to the system—there is no hidden state in the kernel.

To protect against failures, periodic checkpoints of dependent process groups,
determined by analysis of DSM traffic, are made to remote memory. When a
failure occurs, the processes affected are rolled back to the last checkpoint and
the data held on the failed node is restored from the copies made during the last
checkpoint. By sensible use of intelligent checkpoint, this system can be extremely
efficient [27].

Although the adoption of a SASA has many benefits, it also produces a number of
characteristic problems. These are described below.

The most commonly cited problem with a SASA in that the address space could be
completely consumed. This problem does not arise with conventional filesystems
since the files are accessed through an unlimited address space, the hierarchical
name of the file. However, even if addresses are allocated and never released (i.e.
the data they contain persisted forever) it would take over one hundred processors

Fixed Sized Objects

Persisting Objects

POSIX Support

3.8 Related
Research

working in parallel, consuming addresses at the rate of four gigabytes a second,
more than a year to use a full 64-bit address spacet. This could be considered
to represent a pathological case, such as a program which deliberately fills up
disk space in a conventional system, since in normal operation many addresses are
recycled — e.g. process data objects when the process dies.

When entities that contain data (objects) are created in a SASA they must be
given a fixed length. It is not possible to allow an object to grow since it might
collide with another. Thus when an object must be extended, a new larger object
must be created and the old object copied into it5.

The single address space encompasses both temporary and persistent objects. This
results in problems when allocating objects and associating them with backing
store. In order to guarantee that data cannot be lost due to lack of disk space, it
would be necessary to preallocate disk space to all created objects. This needs to
be done even if the objects are temporary otherwise paging is impossible. However,
if is quite common to allocate very large objects but only make sparse use of them.
This would result in the preallocation of disk space which is never used.

Alternatively, backing store can be associated with an object page when the page
is first modified. This means disk space is only allocated to objects pages which
are actually used. Unfortunately, this makes it possible for a write to memory to
“fail” due to lack of disk space (rather like a file write to a full disk).

Needless to say, neither of these options is attractive. Currently, the latter scheme
is being used whilst a better scheme is sought.

Perhaps the most important obstacle in the adoption of a SASA is its inability to
support a conventional POSIX-style operating system. On closer examination of
the problem, it should be possible to support most POSIX programs through the
use of compiler technology [28] and an associated set of libraries and servers.

There are several research groups that have done work related to our goal of
resource unification, either tackling it in a different manner or developing a similar
scheme for different reasons. One area involves unifying the interface to system
resources by developing a single name space in which all system entities reside.
The best known example of this is Plan 9 [29, 30] which provides access to all data
through a configurable filesystem and the single filesystem interface. This allows
distributed data to be handled transparently but provides no coherency (making
fine grain data sharing impossible) and still requires complex data structures to be
marshalled before they can be exchanged.

Single address spaces have been developed by other researchers, although their
major motivation is not that of unification but rather providing a simple model
for data sharing — Angel does achieve the same goals. These systems include
Psyche [31, 32], Opal [33, 34] and work at the University of New South Wales [35],
all of which attempt to provide a true single address space shared by all processes.
Unlike Angel, they all base their protection scheme around the possession of capa-
bilities (in the work at New South Wales they are “password protected” in a manner
similar to capabilities in Amoeba) rather than around the permissions which have
already been acquired. Only the work at New South Wales provides a process (or

4. Alternatively, it would take well over one million full length feature films to fill this address space.

5. To speed this procedure, a copy-on-write mechanism should be provided to perform the operation.

Virtual Processorin Angelterminology) the ability to change protection domains
with ease, or for them to be shared between processes.

4 Angel—A SASA Implementation

4.1 The Process
Model

Upcalls

In order to demonstrate the benefits of the single address space architecture we
have implemented an operating system using the principles described. Currently
the system exists as a emulator running as a group of processes under SunOS. The
code for the emulator is in the process of being moved to a native system.

Virtual Processor Object

(User state Y Kerne state)
Upcall ignore State
Upcall pending Priority
Upcall lost Current domain
Upcall block Alarm call
Upcall blocked
Default upcall list
Entry point
Data segment

kDefault user stack L Kernel stack

Figure 1: The VP control structure.

The process model adopted is derived from a number of systems, but has been
simplified as far as possible. The distinction between single, multi-threaded and
multiple co-operating processes have been eliminated; the operating system pro-
vides the same services to all.

The kernel does not support threading internally. Instead, it supports virtual
processors (VPs) which are handled in a similar way to UNIX processes. However
whenever a VP performs an action which would block (eg. a page fault) the VP is
“upcalled”. This activation allows the VP to decide whether it can continue with
another thread rather than give up the processor to another VP. Hence, whilst
threads are implemented in applications, they are still first citizens. The kernel
sees the VP as an object in which it can store information about the VP and which
is used by the VP to convey information to the kernel—figure 1 gives an overview
of the information it contains.

Naturally many programs are not interested in such events; those which are singly
threaded are not interested in page faults. The VP object allows fine control of
what events are of interest it and which ones are not.

The upcall mechanism is used to augment the single address space provided to
VPs and is the primary component of the VP object. Pure shared memory is
insufficient since it provides no way to cause an action on another VP unless it is

4.2 The Protection
Scheme

actively waiting for it. Upcalls provide a means of one VP sending an “interrupt”
to another, so long as it holds sufficient permissions.

Upcalls convey limited information: the sending VP, the upcall type, and an
associated address. This address refers to any additional information required by
the receiver. When an upcall is delivered the VP has the options of ignoring it,
queueing it, or queueing it and taking an interrupt. It also has the option to block
further upcalls. The delivery is made into an advertised upcall list. Although a
default list is provided in the VP object, a larger one can be installed if required
(as it often is in servers). In the event that an upcall cannot be delivered because
the list 1s full, an “overflow” is indicated. This allows a recovery procedure to be
invoked (so regenerating any lost page faults, lock request, etc.) and so prevent
deadlock.

The upcall scheme may be considered as a limited message passing mechanism but
with a more flexible delivery system—the VP can specify whether or not it wishes
to be interrupted on a given upcall. Additionally, the fact that two VPs are on
different processors, or the same processor, is irrelevant to the microkernel; the
DSM mechanism handling the difference.

A domain lists a set of objects and the access and administration attributes held
on these objects. Thus a domain specifies which parts of the single address space
may be utilised, and in what ways. The domain is described in an ordinary object
(which is only writable by the Object Manager) and VP is free to specify which
domain it wishes to execute in, and may change domains at any time, provided
that it has permissions to do so.

The attributes that may be associated with an object in a domain include:
- Readable, the object may be read,
- Writable, the object may be modified,

- Ezecuting, this is the code object that a VP started executing from (this may
not be requested),

- Change Permissions, the permissions associated with the “biscuit” (see below)
may be changed,

- Inspect Permaissions, the permissions associated with the biscuit may be seen,

- Delete Biscuit, the biscuit may be deleted (revoking all other access to the
object using this biscuit),

- Create Biscuit, a new biscuit with a new set of permissions may be created for
the object,

- Runnable, this object may be converted to an executing object,
- Upcallable, an upcall may be performed to this object.

The scheme differs from conventional protection schemes when one considers how
it allows a new object to be placed into the domain. The biscuit, a bit-string, is
presented to the object manager, together with a list of permissions requested on
that object. The object manager inspects the structure associated with the biscuit
which lists the objects the domain must already contain, and the permissions
thereon, before any given permission for this object can be granted. If the domain
meets all the requirements, then the new object is added to the domain with the

4.3 The SASA
Implementation

permissions requested. Thus the scheme is based around the abilities that the
domain already has rather than around user or process identifiers. It is worth
noting, however, that it is trivial to implement a user identifier based scheme in
this system simply by creating an object to represent a user. A biscuit is initially
returned when an object is created; thereafter they may be made on request by
the object manager if the permission create biscuitis held. Biscuits may be freely
exchanged between processes, or stored in other objects.

In this scheme, all the protection mechanisms are “unified” at a single point.
This one place could easily be subject to checks or formal verifications as deemed
necessary to ensure security. Also, as there is only one point, there is no chance
of unexpected interactions between protection points which might breach security.
The result is a highly flexible system with increased security.

The SASA implementation operates as an aliasing cache hierarchy. Figure 2 depicts
a simple four module system; at the top of the hierarchy is the single address space
as seen by VPs, at the root are the disks. In order to explain its operation, consider
the following example. A VP makes an access in the single address space. This
corresponds to a virtual address on a specific processor. This address is translated
to a physical memory address (if possible), and the access if fulfilled.

C Single Address Space)

C Virtual Mem I Virtual Mem I Virtua Mem I Virtual Mem)

(physica Mem) (Physica Mem) (Physical Mem) (Physical Mem)

(osvm) (psv) (osv) (bsw)

Figure 2: The virtual memory hierarchy.

If translation is not possible, the microkernel is invoked to establish one. Unfortu-
nately this is not trivial since the copy-on-write (COW) mechanism Angel needs
results in the mapping between a virtual address and a datum being many-to-one
rather than one-to-one. This is because the COW mechanism can causes a datum
to appear in two or more places. Therefore, first the virtual address is unaliased
into a pagelID, which does have a one-to-one mapping with data. Next, the pagelD
is used to search for the associated data. This is done first in local memory (since
the pagelD may already exist), then on local disk, and finally on the DSM network
(causing each remote node to be searched in a similar manner). If found, the data

10

4.4, The Code

is transferred to local memory. If not found, the pagelD is a new one, and a zero
filled page is allocated. Finally, a translation is established and the faulting VP
restarted. Note that if data is not initially found in local memory, a VP has the
option to receive two upcalls. The first is to allow the scheduling of another thread
whilst the mapping is established, the second to inform the VP that the mapping
has been established.

By treating the entire memory as a disk cache hierarchy, the virtual memory and
DSM system is kept small and simple. The only complication is the introduction
of pagelDs for handling copy-on-write aliasing. It is intended that the use of copy-
on-write in Angel will analysed and, if found to be of little worth, the pagelDs will
be removed and a copy-on-reference scheme implemented instead, which provides
a one-to-one mapping between addresses and data.

The current microkernel handles virtual memory, distributed shared memory,
networking, disk management, virtual processor management and upcalls. In total
it consists of only 3,500 lines of C++ code (2,500 lines of source and 1,000 lines
of headers)6. This has taken approximately nine man-months of work and is
well structured to allow easy porting to other systems (88K and Alpha systems
are already under consideration). The SASA nature of the system has greatly
simplified the internal structure of the kernel since address are no longer process
dependent and caching schemes are simplified.

However, the microkernel is of limited use without services. Work is therefore
underway to produce a set of libraries, including POSIX.1 and POSIX.4a threads,
for use in developing services. Initial services will include an Object Manager and
a Namespace manager?.

5 Conclusions

Angel, as outlined in this paper, is the basis of SARC’s next generation operating
system research, building on the lessons of Meshiz. Since it is a “research vehicle”
rather than a commercial product we had far more flexibility in the design. This
allowed us to drop fundamental POSIX compliance. The result is an operating
system architecture which is microkernel based, parallel, replicated, decentralised,
and based around the concept of resource unification which we believe will improve
efficiency and simplify the kernel design and implementation.

A Unix-hosted implementation is now complete, and work is underway for a native
implementation. The speed of development bares out the belief that the single ad-
dress space architecture results in a simpler kernel. The reduction of the number of
complex areas in the kernel should also improve its reliability and maintainability.

The ease with which numerous systems can be built above the single address space,
and the efficiency available in these schemes, shows the performance benefits of
this operating system architecture. Examples are the ease with which LRPC can
be implemented, that load balancing of threads is completely transparent, and the
simple efficient fault tolerance scheme designed for this architecture. In addition,

6. This can be expected to increase when the simulated devices are replaced in a native implementation.

7. Probably in the form of a POSIX filesystem in order ease the development of a standalone system.

11

is should still be possible to support a POSIX compliant interface above Angel
without compromising its design.

We are now looking at novel approaches to provide the service layers above the

Angel kernel. The scheme currently being worked on is based around a question
space implemented using the Linda tuplespace [36].

Bibliography

[12]

[13]
[14]

[15]

[16]

P. Winterbottom and P. Osmon, “Topsy: An Extensible Unix Multicomputer,” in
UK IT90 Conference, Southampton University, 1990.

P. Osmon, T. Stiemerling, A. Valsamidis, A. Whitcroft, Wilkinson.T., and
N. Williams, “The Topsy project: a position paper,” in Parle ‘92, June 1992.

N. Accetta, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young, “MACH:
A new kernel foundation for UNIX development,” in USENIX Summer Conference,
July 1986.

M. Rozier, “Overview of the CHORUS Distributed Operating Systems,” Tech. Rep.
CS-TR-90-25, Chorus Systemes, 1990.

S. Mullender, G. van Rossum, A. Tanenbaum, R. van Renesse, and H. van Staveren,
“Amoeba: A distributed operating system for the 1990’s,” IEEE Computer, pp. 44—
53, June 1990.

D. Kuhn, “IEEE’s Posix: making progress,” IEEE Spectrum. (USA), vol. 28, pp. 36—
39, December 1991.

Dobberpuhl and others, “A 200Mhz 64-bit Dual Issue CMOS Microprocessor,” in
International Solid-State Circuits Conference, February 1992.

MIPS Computer Systems Ltd., RISC Muicroprocessors, V,.4000 - User’s Manual.
NEC, 1991.

U. Ramachandran, G. Shah, S. Ravikumar, and J. Muthukumarasamy, “Scalability
study of the KSR-1,” Tech. Rep. GIT-CC93/03, College of Computing, Georgia
Institute of Computing, Atlanta, Georgia, 1993.

“Fibre Channel Rev 0.93.” Working Draft ANSI, December 1991.

T. Wilkinson, T. Stiemerling, P. Osmon, A. Saulsbury, and P. Kelly, “Angel: A Pro-
posed Multiprocessor Operating System Kernel (Extended Abstract),” in European
Workshop on Parallel Computing, March 1992.

K. Murray, Wisdom: The Foundation of a Scalable Parallel Operating System.
PhD thesis, University of York, Department of Computer Science, 1990.

Perihelion Software Ltd., The Helios Operating System. Prentice Hall, 1989.

A. Barak and R. Wheeler, “MOSIX: An integrated Multiprocessor UNIX,” in Proc.
of the Wainter 1989 USENIX Conference, pp. 101-112, February 1989.

B. Bershad, T. Anderson, E. Lazowska, and H. Levy, “Lightweight remote procedure
call,” ACM Operating Systems Review, vol. 23, pp. 102-113, December 1989.

A. Bricker, “A new look at micro-kernel-based UNIX operating systems: Lessons
in performance and compatability,” in EurOpen Spring’91 Conference, Tromsoe,
Norway, May 1991.

J. C. Mogul and A. Borg, “The Effect of Context Switches on Cache Performance,”
in ASPLOS, International Conf. on Architectural Support for Programmang Lan-
guages and Operating Systems, (Santa Clara, CA (USA)), pp. 75-85, April 1991.

12

[18] S. Zatti, “A Multivariable Information Scheme to Balance The Load in a Distributed
System,” Tech. Rep. UCB/CSD 85/234, Computer Science Division, EECS Ulniver-
sity of California, Berkeley, 1985.

[19] G. Bell, “Ultracomputers: A Teraflop Before Its Time,” Communications of the
ACM, vol. 35, pp. 27-47, August 1992.

[20] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,
Yale University, Department of Computer Science, 1986.

[21] P. Osmon, T. Stiemerling, A. Whitcroft, Wilkinson.T., and N. Williams, “Evaluating
Meshix — a Unix compatible micro-kernel Operating System,” in OpenForum’92,
November 1992.

[22] A. Whitcroft and P. Osmon, “The CBIC: Architectural Support for Message Passing
or Shared Memory?,” in U.K. Performance Engineering Workshop, September
1992.

[23] E. Hagersten, A. Landin, and S. Haridi, “DDM - A Cache-only Memory Architecture,”
Tech. Rep. Research Report R91:19, SICS, Sweden, November 1991.

[24] M. Hill, J. Larus, S. Reinhardt, and D. Wood, “Cooperative shared memory: software
and hardware for scalable multiprocessors,” in ASPLOS V, pp. 262-273, September
1992.

[25] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. Lam, “The Stanford DASH multiprocessor,” IEEFE Computer,
vol. 25, March 1992.

[26] “SCI: Scalable Coherent Interface.” IEEE Standards document P1596/D1.7, August
1991.

[27] T. Wilkinson, “Implementing Fault Tolerance in a 64-bit Distributed Operating
System,” Tech. Rep., City University, 1993.

[28] T. Wilkinson et al., “Compiling for a 64-Bit Single Address Space Architecture,” Tech.
Rep. TCU/SARC/1993/1, SARC, City University Computer Science Department,
March 1993.

[29] R. Pike, D. Presotto, K. Thompson, and H. Trickey, “Plan 9 from Bell Labs,” in
Summer UKUUG Conference, London, pp. 1-9, July 1989.

[30] R. Pike, D. Presotto, K. Thompson, and H. Trickey, “Plan 9, A Distributed System,”
in Spring EurOpen Conference, Troms., pp. 43-40, May 1991.

[31] M. Scott, T. LeBlanc, B. Marsh, T. Becker, C. Dubnicki, E. Markatos, and N. Smith-
line, “Implementation Issues for the Psyche Operating System,” Tech. Rep., Univer-
sity or Rochester, Department of Computer Science, 1988.

[32] M. Scott, T. LeBlanc, and B. Marsh, “A Multi-User, Multi-Language, Open Operating
System,” Tech. Rep., University or Rochester, Department of Computer Science, April
1989.

[33] J. Chase, H. Levy, M. Baker-Harvey, and E. Lazowska, “How to Use a 64-Bit Vir-
tual Address Space,” Tech. Rep. 92-03-02, Department of Computer Science and
Engineering, University of Washington, March 1992.

[34] J. Chase, H. Levy, M. Baker-Harvey, and E. Lazowska, “Lightweight Shared Objects
in a 64-Bit Operating System,” Tech. Rep. 92-03-09, Department of Computer Science
and Engineering, University of Washington, March 1992.

[35] G. Heiser, K. Elphinstone, S. Russell, and G. Hellestrand, “A Distributed Single
Address-Space Operating System Supporting Persistence,” Tech. Rep. 9302, School
of Computer Science and Engineering, The University of New South Wales, March
1993.

[36] N. Williams, “Linda Tuplespaces in Angel: A marriage made in Heaven?,” Tech.
Rep. TCU/SARC/1993/2, Systems Architecture Research Centre, City University,
February 1993.

13

