
Angel: Resource Uni�cationin a 64-bitMicro-KernelKevin Murrayª, Tom Stiemerling«,Tim Wilkinsonªand Paul Kelly«ªSystems Architecture Research Centre,Department of Computer Science, City University,Northampton Square, London EC1V 0HB,ENGLAND.«Department of Computing,Imperial College, London,ENGLAND.4 June 1993AbstractThe appearance of 64-bit processors allows a new approach to microkerneldesign | a single uni�ed address space. This paper describes this kindof approach as adopted in Angel.From our experience with a message passing microkernel MESHIX, wediscovered that a multi-address space, POSIX architecture is unsuitablefor general parallel applications development. Angel was therefore de-signed to provide a more exible environment. Central to these aims isa simpli�cation of resources. This is achieved through the use of a singleaddress space holding volatile and persistent data and all processes, andwhich absorbs communication to remove the distinction between local andremote machines. In addition, a simple user-level, �rst citizen, threadedprocess structure with software interrupts has been developed. The re-sulting kernel, written in C++, is compact and simple yet o�ers fullyprotected services and is more exible than many of its contemporaries.A single address space provides some unique problems | most impor-tantly the need to provide POSIX compatibility. We have investigatedthis, and developed a modi�ed compiler. This is capable of generat-ing code from unmodi�ed POSIX applications which may be forked toa new address but still executed correctly. This avoids compromisingthe single address space and only entails a small performance penalty(approximately 5%).A �rst generation microkernel is now complete and runs as an emulationon the Sparc. A native system will soon be available.11. This research has been funded by a grant from the UK Science and Engineering Research Councilunder grant GR/G28277. 1

1 Introduction In the mid eighties, the System Architecture Research Centre at City Universitydeveloped a message-passing, UNIX compliant kernel (Meshix [1]) for our scalabledistributed memory architecture (Topsy [2]). This kernel is a microkernel based,message passing operating system, relatively typical in structure to many currentsystems such as MACH [3], Chorus [4] and Amoeba [5]. Over the last two yearswe have been examining its structure and performance in a critical manner. Thishas demonstrated a number of issues that have not yet been addressed by mostcurrent microkernel architectures. Additionally, we believe that a POSIX centredarchitecture [6] does not provided the best model for exploiting the resourcesavailable in a parallel machine.During the design of Meshix there have been several major advances in the �eldof computer architecture. This has enabled a new approach to be taken in mi-crokernel design. First, the advent of 64-bit address space processors (eg. DECAlpha [7], MIPS R4000 [8] and the custom chip in the KSR-1 [9]). Second, thecommunication devices available to connect computers have dramatically increasedin speed (approaching one gigabit/sec) [10].The goal of our research is to �nd the best way to overcome the limitations iden-ti�ed with Meshix (and other microkernels) whilst exploiting improved computerhardware and architecture. Resource uni�cation provides an approach to achievingthis goal. This paper examines the reasoning behind resource uni�cation, and whythe new generation of processors and networks make it feasible. An overview ofthe approach is then given, followed by our implementation Angel [11], a SingleAddress Space Architecture (SASA). The bene�ts this gives are outlined as well asthe problems introduced.2 Shortcomingsof Meshix and otherMicrokernelsThe original goal of Meshix and the Topsy architecture was to produce a scalable,parallel UNIX multicomputer with a simple, modular, message passing microker-nel. The objective of a scalable parallel message passing computer is shared with anumber of other research systems and projects [12, 13, 14]. To an extent this wasachieved, although some aspects of performance were disappointing. To discoverwhy Meshix did not live up to expectations, a detailed performance evaluation wasperformed. The following sections outline some of the conclusions drawn aboutboth Meshix and POSIX architectures.2.1 Performance ofIPC and RPC Monolithic UNIX implementations generally have superior IPC performance incomparison to modular message-passing designs such as Meshix. The classicalapproach to improving RPC performance, the lightweight RPC optimisation de-veloped for the DEC Firey system [15], requires non-trivial modi�cation to theoperating system's structure. The approaches used by other groups to improveIPC performance, notably Chorus [16], although adopting LRPC techniques, alsouses other methods. These include replacing context-dependent addresses withunique addresses, so speeding up message delivery whilst reducing security, com-bining mutually trusted servers into a single address space, so reducing context2

switches, and by placing all of the IPC management into the microkernel. It takesall of these extensions and modi�cations to produce a system whose performanceis comparable with, though not equal to, monolithic systems.2.2 ProcessorCache Utilisation As processor cache architectures become more complex, the costs in time and com-plexity of changing the virtual-to-physical address map become more serious [17].This causes the designer to avoid the bene�ts of complex hardware architectures(with their performance advantages), and to use simpler techniques, such as copy-ing instead of re-mapping, to dodge the associated problems (e.g. cache and TLBushing). This seriously impacts potential performance.2.3 ReplicatedSoftware Caches Meshix provides several ad hoc caches, such as a TLB cache, a page cache and a�lesystem block cache. Ideally there should be a single instance of these similarmechanisms. This would not only simplify the kernel, but should improve overallcache utilisation and exibility.2.4 ParallelProcessing Support UNIX is not an ideal system to use when trying to exploit a parallel machine,primarily because its process model is one of distinct heavyweight processes.For e�cient parallel programming a lightweight, exible and extensible processmodel is required. Although a heavyweight process model can be augmented withlightweight \threads", these threads are not real �rst class entities in the operatingsystem as certain system operations performed by one thread a�ect others.2.5 Dynamic LoadBalancing In a scalable parallel system it is necessary to support a load balancing mechanism.This is important since work must be distributed over the machine e�ciently [12].With a general purpose computer, the load on various parts of the system, typicallyrepresented by the number of active threads, can change. To maintain the e�ciencyof the application or system, it is necessary to re-allocate work between processors.In many UNIX based systems it is either impossible to share threads betweenprocesses, or it is a costly and complex operation involving non-trivial kernelsupport [18].2.6 Complex DataSharing When co-operating processes wish to share complex data structures in Meshix,they must be exchanged through message passing, �les or shared memory segments.Since it is not always possible to guarantee that these structure will reside at thesame addresses in all processes, costly packaging must take place to allow them tobe interchanged.3 Resource Uni�cationWe believe that many of the problems above can be handled by use of resourceuni�cation. This section examines what this involves, how it a�ects the designof the operating system and how it solves the problems identi�ed. Resourceuni�cation can be thought of as an application of the philosophy of minimalism|it tries to provide a minimal but complete interface.3.1 Resources in anOperating System The basic operation of an operating system can be considered to be the control,management and allocation of resources. In a typically system these will include: Processor Time, 3

 Volatile Memory (eg. DRAM), Persistent Storage Media (eg. disks), and Communication Access and Bandwidth.Processor time is allocated by switching a processor between various processes,with limited control provided by a set of system calls (e.g. wait, pause, alarm)but ultimate control exercised by the kernel. Processor memory is the part of theunique address space that each process is allocated (controlled through varioussystem calls such as fork, exec and sbrk). Persistent storage is seen through atotally independent interface; the �lesystem (providing system calls such as read,write, open, close and mmap). Yet another interface is provided for access to thecommunications capability of the computer (in a multi-processor machine, this istypically via message passing or shared memory, whilst between computers it isTCP/IP).As demonstrated, the result is numerous di�erent interfaces, one for each resource.A kernel which supports these typically implements each independently, resultingin a larger (and potentially more bug ridden) system than one with fewer interfaces.In addition, the programmer has more interfaces to remember and handle correctly.3.2 The SingleAddress SpaceArchitecture(SASA) Conventional �lesystems exist for several reasons. First, persistent data (ie. thatstored on disk) is viewed as di�erent from transient data. Second, sharing databetween programs requires that it be provided with a \name" or \address" so thatit can be found again or two processes can ensure they are referring to the samedata. Since the names are typically used by \humans", it is sensible to make themmnemonic. Consequently, the �lesystem has persisted since it provides a cleanhandle on data and, with a conventional 32-bit processor, the 4 gigabyte addressspace is too small to hold all data (simple commercial databases are large thanthis).The advent of 64-bit processors gives a truly dramatic increase in the amountof data that can be contained within the address space of a processor. It isnow possible for it to contain all the persisted data of the �lesystem as well asthe processes' transient data and code. This forms the heart of a single addressspace architecture|there is a single interface to the entire memory hierarchy fromprocessor cache to magnetic or optical disks. Providing all accessible data via asingle memory interface, where each data item always resides at the same address,has various bene�ts: Improved Data Sharing: Since the data always resides at the same address,regardless of the process that is using them, complicated data structures (suchas graphs and trees) can be easily shared without the need for \marshalling"2 . Improved Cache Utilisation: With a conventional operating system, when acontext switch occurs, any cached process dependent data must be ushed.In an SASA this is no longer necessary since the data is equally valid in allprocesses3. Consequently, less data is ushed, the cache utilisation improves,and performance is increased.2. The act of encoding the data to remove pointers.3. Virtual memory translation will prevent accesses by unpriviledged processes.4

 Single Uni�ed Interface: Providing a single interface simpli�es the design andmaintenance of the kernel as well as applications. This single interface also aidsthe programmer by reducing the number of interfaces to remember.3.3 DistributedShared Memory Parallel architectures come in two avours, shared memory and distributed mem-ory. Current work has lead to the conclusion that shared memory is a far simplerparadigm to use [19]. Fortunately for distributed memory systems, there is atechnology based around distributed shared memory (DSM) which provides theappearance of shared memory [20].This is a very attractive mechanism to support especially with the increasedbandwidth and network support hardware available. However, initially it wouldappear to be a very ine�cient mechanism when compared with a message passingsystem. In order to examine this, a set of detailed measurements of the Meshixcommunication system were made and the behaviour of a simple hardware assisteddistributed shared memory (DSM) scheme modelled. The communications costsof DSM and message passing, and ways to reduce or eliminate them, were thencompared.The results are detailed in other papers [21, 22], but concluded that many of thecosts in message passing are an inherent fact of the model, (e.g. data copying,mapping and security). By comparison, the DSM has far fewer inherent costs.Consequently, a DSM-based system should outperform a message-passing basedsystem, all other factors being equal. This leads to the belief that DSM should bethe basis of future parallel systems, in common with many other researchers andmanufacturers [9, 23, 24, 25, 26].3.4 SASAs andParallel Computers In a SASA, DSM techniques are used to extend the single address space from oneprocessor to all processors in a system. This results in IPC being incorporated intothe SASA. Extending a single address space across a parallel machine and makingit the only means of co-operation has many bene�ts: Uni�cation and simpli�cation of network: As the single address space is theonly means of communication between processors, the interface to the networkis hidden behind the single address space and accessed as shared memory, ratherthan via an additional set of system calls. Data Migration and load balancing: As the data is shared through DSM, itis trivial to move it between processors, even when the structures are complex.Additionally, moving a thread between processors, is trivial: the thread's contextneed only be loaded in another processor and the thread will be running on it.As it accesses data, it will be demand paged via the DSM. Hence introducingload balancing into a SASA is far simpler than into a conventional architecture. LRPC: The optimisations of the LRPC scheme originally for single processorRPCs can be applied to multiprocessors. In essence this mechanism relies onagreeing and creating a region of memory that is accessible to both RPC partiesin which parameters and results are to be stored. In a SASA this is trivial. Infact it can be taken further. If there is su�cient trust, parameters can be readdirect from the client exactly as is already done in a monolithic UNIX system.With a exible protection scheme it is possible to support a complete range ofRPCs, from high performance, high trust through to lower performance, lowtrust. 5

3.5 A ProtectionScheme for a SASA Conventional operating systems provide protection in two ways: Private address spaces: Every process is given its own private address space.Therefore no process can access the memory of another. Filesystem name resolution: Whenever a process tries to open a �le (resolveits name into a �le handle) the operating system �rst checks whether or not theprocess is allowed to access the �le.By nature, a single address space architecture breaks both these protection mech-anisms. The �rst is broken as all processes reside in the same address space. Thesecond is broken since persistent data (�les of old) also resides in the same addressspace. Another protection scheme must be provided to protect the data held inthis space which prevents both malicious and accidental access to, or damage to,the data.Additionally, current protection schemes are not su�ciently exible. For example,consider the �le \/etc/passwd" in a conventional UNIX system. Typically, onlythe user \root" can write to this �le, though anybody can read it. In fact, a systemis required whereby only the program \passwd" can read and write to the �le, anda limited set of programs, such as \�nger" and \login", can read it. This wouldallow �ner control of protection and avoid \mistakes" compromising the entiresystem.The above points have prompted the development of a new scheme based arounddomains which list the data that can be accessed. When a program seeks to accessnew data, those items it can already access are used to determine if it can accessthe new datum. Processes are not tied to domains; they may freely choose orchange domains if they hold the relevant permissions. This results in a scheme inwhich address translation and protection are disassociated, which is as it shouldbe since one is concerned with memory management, which is of no concern to theapplication, whilst the other is concerned with security, which is of concern to theapplication.3.6 Fault Toleranceunder a SASA The use of a single address space enables a low cost fault tolerance scheme to beprovided transparently. In essence it relies on two facts; �rst that all interactionsare visible to the DSM system so allowing it to identify co-operating groups ofprocesses that will be a�ected in the event of failure. Second, in a SASA all datais visible to the system|there is no hidden state in the kernel.To protect against failures, periodic checkpoints of dependent process groups,determined by analysis of DSM tra�c, are made to remote memory. When afailure occurs, the processes a�ected are rolled back to the last checkpoint andthe data held on the failed node is restored from the copies made during the lastcheckpoint. By sensible use of intelligent checkpoint, this system can be extremelye�cient [27].3.7 Problems withan SASA Although the adoption of a SASA has many bene�ts, it also produces a number ofcharacteristic problems. These are described below.Limited AddressSpace The most commonly cited problem with a SASA in that the address space could becompletely consumed. This problem does not arise with conventional �lesystemssince the �les are accessed through an unlimited address space, the hierarchicalname of the �le. However, even if addresses are allocated and never released (i.e.the data they contain persisted forever) it would take over one hundred processors6

working in parallel, consuming addresses at the rate of four gigabytes a second,more than a year to use a full 64-bit address space4. This could be consideredto represent a pathological case, such as a program which deliberately �lls updisk space in a conventional system, since in normal operation many addresses arerecycled | e.g. process data objects when the process dies.Fixed Sized Objects When entities that contain data (objects) are created in a SASA they must begiven a �xed length. It is not possible to allow an object to grow since it mightcollide with another. Thus when an object must be extended, a new larger objectmust be created and the old object copied into it5.Persisting Objects The single address space encompasses both temporary and persistent objects. Thisresults in problems when allocating objects and associating them with backingstore. In order to guarantee that data cannot be lost due to lack of disk space, itwould be necessary to preallocate disk space to all created objects. This needs tobe done even if the objects are temporary otherwise paging is impossible. However,if is quite common to allocate very large objects but only make sparse use of them.This would result in the preallocation of disk space which is never used.Alternatively, backing store can be associated with an object page when the pageis �rst modi�ed. This means disk space is only allocated to objects pages whichare actually used. Unfortunately, this makes it possible for a write to memory to\fail" due to lack of disk space (rather like a �le write to a full disk).Needless to say, neither of these options is attractive. Currently, the latter schemeis being used whilst a better scheme is sought.POSIX Support Perhaps the most important obstacle in the adoption of a SASA is its inability tosupport a conventional POSIX-style operating system. On closer examination ofthe problem, it should be possible to support most POSIX programs through theuse of compiler technology [28] and an associated set of libraries and servers.3.8 RelatedResearch There are several research groups that have done work related to our goal ofresource uni�cation, either tackling it in a di�erent manner or developing a similarscheme for di�erent reasons. One area involves unifying the interface to systemresources by developing a single name space in which all system entities reside.The best known example of this is Plan 9 [29, 30] which provides access to all datathrough a con�gurable �lesystem and the single �lesystem interface. This allowsdistributed data to be handled transparently but provides no coherency (making�ne grain data sharing impossible) and still requires complex data structures to bemarshalled before they can be exchanged.Single address spaces have been developed by other researchers, although theirmajor motivation is not that of uni�cation but rather providing a simple modelfor data sharing | Angel does achieve the same goals. These systems includePsyche [31, 32], Opal [33, 34] and work at the University of New South Wales [35],all of which attempt to provide a true single address space shared by all processes.Unlike Angel, they all base their protection scheme around the possession of capa-bilities (in the work at New South Wales they are \password protected" in a mannersimilar to capabilities in Amoeba) rather than around the permissions which havealready been acquired. Only the work at New South Wales provides a process (or4. Alternatively, it would take well over one million full length feature �lms to �ll this address space.5. To speed this procedure, a copy-on-write mechanism should be provided to perform the operation.7

Virtual Processor in Angel terminology) the ability to change protection domainswith ease, or for them to be shared between processes.4 Angel½ASASA ImplementationIn order to demonstrate the bene�ts of the single address space architecture wehave implemented an operating system using the principles described. Currentlythe system exists as a emulator running as a group of processes under SunOS. Thecode for the emulator is in the process of being moved to a native system.4.1 The ProcessModel
Upcall ignore

Upcall pending

Upcall lost

Upcall blocked

Entry point

Data segment

Default user stack

Priority

Current domain

Alarm callUpcall block

State

User state Kernel state

Kernel stack

Default upcall list

Virtual Processor Object

Figure 1: The VP control structure.The process model adopted is derived from a number of systems, but has beensimpli�ed as far as possible. The distinction between single, multi-threaded andmultiple co-operating processes have been eliminated; the operating system pro-vides the same services to all.The kernel does not support threading internally. Instead, it supports virtualprocessors (VPs) which are handled in a similar way to UNIX processes. Howeverwhenever a VP performs an action which would block (eg. a page fault) the VP is\upcalled". This activation allows the VP to decide whether it can continue withanother thread rather than give up the processor to another VP. Hence, whilstthreads are implemented in applications, they are still �rst citizens. The kernelsees the VP as an object in which it can store information about the VP and whichis used by the VP to convey information to the kernel|�gure 1 gives an overviewof the information it contains.Naturally many programs are not interested in such events; those which are singlythreaded are not interested in page faults. The VP object allows �ne control ofwhat events are of interest it and which ones are not.Upcalls The upcall mechanism is used to augment the single address space provided toVPs and is the primary component of the VP object. Pure shared memory isinsu�cient since it provides no way to cause an action on another VP unless it is8

actively waiting for it. Upcalls provide a means of one VP sending an \interrupt"to another, so long as it holds su�cient permissions.Upcalls convey limited information: the sending VP, the upcall type, and anassociated address. This address refers to any additional information required bythe receiver. When an upcall is delivered the VP has the options of ignoring it,queueing it, or queueing it and taking an interrupt. It also has the option to blockfurther upcalls. The delivery is made into an advertised upcall list. Although adefault list is provided in the VP object, a larger one can be installed if required(as it often is in servers). In the event that an upcall cannot be delivered becausethe list is full, an \overow" is indicated. This allows a recovery procedure to beinvoked (so regenerating any lost page faults, lock request, etc.) and so preventdeadlock.The upcall scheme may be considered as a limited message passing mechanism butwith a more exible delivery system|the VP can specify whether or not it wishesto be interrupted on a given upcall. Additionally, the fact that two VPs are ondi�erent processors, or the same processor, is irrelevant to the microkernel; theDSM mechanism handling the di�erence.4.2 The ProtectionScheme A domain lists a set of objects and the access and administration attributes heldon these objects. Thus a domain speci�es which parts of the single address spacemay be utilised, and in what ways. The domain is described in an ordinary object(which is only writable by the Object Manager) and VP is free to specify whichdomain it wishes to execute in, and may change domains at any time, providedthat it has permissions to do so.The attributes that may be associated with an object in a domain include: Readable, the object may be read, Writable, the object may be modi�ed, Executing, this is the code object that a VP started executing from (this maynot be requested), Change Permissions, the permissions associated with the \biscuit" (see below)may be changed, Inspect Permissions, the permissions associated with the biscuit may be seen, Delete Biscuit, the biscuit may be deleted (revoking all other access to theobject using this biscuit), Create Biscuit, a new biscuit with a new set of permissions may be created forthe object, Runnable, this object may be converted to an executing object, Upcallable, an upcall may be performed to this object.The scheme di�ers from conventional protection schemes when one considers howit allows a new object to be placed into the domain. The biscuit, a bit-string, ispresented to the object manager, together with a list of permissions requested onthat object. The object manager inspects the structure associated with the biscuitwhich lists the objects the domain must already contain, and the permissionsthereon, before any given permission for this object can be granted. If the domainmeets all the requirements, then the new object is added to the domain with the9

permissions requested. Thus the scheme is based around the abilities that thedomain already has rather than around user or process identi�ers. It is worthnoting, however, that it is trivial to implement a user identi�er based scheme inthis system simply by creating an object to represent a user. A biscuit is initiallyreturned when an object is created; thereafter they may be made on request bythe object manager if the permission create biscuit is held. Biscuits may be freelyexchanged between processes, or stored in other objects.In this scheme, all the protection mechanisms are \uni�ed" at a single point.This one place could easily be subject to checks or formal veri�cations as deemednecessary to ensure security. Also, as there is only one point, there is no chanceof unexpected interactions between protection points which might breach security.The result is a highly exible system with increased security.4.3 The SASAImplementation The SASA implementation operates as an aliasing cache hierarchy. Figure 2 depictsa simple four module system; at the top of the hierarchy is the single address spaceas seen by VPs, at the root are the disks. In order to explain its operation, considerthe following example. A VP makes an access in the single address space. Thiscorresponds to a virtual address on a speci�c processor. This address is translatedto a physical memory address (if possible), and the access if ful�lled.
Disk Disk DiskDisk

DSM DSM DSM DSM

Physical Mem Physical Mem Physical Mem Physical Mem

Virtual Mem Virtual Mem Virtual Mem Virtual Mem

Single Address Space

Figure 2: The virtual memory hierarchy.If translation is not possible, the microkernel is invoked to establish one. Unfortu-nately this is not trivial since the copy-on-write (COW) mechanism Angel needsresults in the mapping between a virtual address and a datum being many-to-onerather than one-to-one. This is because the COW mechanism can causes a datumto appear in two or more places. Therefore, �rst the virtual address is unaliasedinto a pageID, which does have a one-to-one mapping with data. Next, the pageIDis used to search for the associated data. This is done �rst in local memory (sincethe pageID may already exist), then on local disk, and �nally on the DSM network(causing each remote node to be searched in a similar manner). If found, the data10

is transferred to local memory. If not found, the pageID is a new one, and a zero�lled page is allocated. Finally, a translation is established and the faulting VPrestarted. Note that if data is not initially found in local memory, a VP has theoption to receive two upcalls. The �rst is to allow the scheduling of another threadwhilst the mapping is established, the second to inform the VP that the mappinghas been established.By treating the entire memory as a disk cache hierarchy, the virtual memory andDSM system is kept small and simple. The only complication is the introductionof pageIDs for handling copy-on-write aliasing. It is intended that the use of copy-on-write in Angel will analysed and, if found to be of little worth, the pageIDs willbe removed and a copy-on-reference scheme implemented instead, which providesa one-to-one mapping between addresses and data.4.4 The Code The current microkernel handles virtual memory, distributed shared memory,networking, disk management, virtual processor management and upcalls. In totalit consists of only 3,500 lines of C++ code (2,500 lines of source and 1,000 linesof headers)6. This has taken approximately nine man-months of work and iswell structured to allow easy porting to other systems (88K and Alpha systemsare already under consideration). The SASA nature of the system has greatlysimpli�ed the internal structure of the kernel since address are no longer processdependent and caching schemes are simpli�ed.However, the microkernel is of limited use without services. Work is thereforeunderway to produce a set of libraries, including POSIX.1 and POSIX.4a threads,for use in developing services. Initial services will include an Object Manager anda Namespace manager7.5 ConclusionsAngel, as outlined in this paper, is the basis of SARC's next generation operatingsystem research, building on the lessons of Meshix. Since it is a \research vehicle"rather than a commercial product we had far more exibility in the design. Thisallowed us to drop fundamental POSIX compliance. The result is an operatingsystem architecture which is microkernel based, parallel, replicated, decentralised,and based around the concept of resource uni�cation which we believe will improvee�ciency and simplify the kernel design and implementation.A Unix-hosted implementation is now complete, and work is underway for a nativeimplementation. The speed of development bares out the belief that the single ad-dress space architecture results in a simpler kernel. The reduction of the number ofcomplex areas in the kernel should also improve its reliability and maintainability.The ease with which numerous systems can be built above the single address space,and the e�ciency available in these schemes, shows the performance bene�ts ofthis operating system architecture. Examples are the ease with which LRPC canbe implemented, that load balancing of threads is completely transparent, and thesimple e�cient fault tolerance scheme designed for this architecture. In addition,6. This can be expected to increase when the simulated devices are replaced in a native implementation.7. Probably in the form of a POSIX �lesystem in order ease the development of a standalone system.11

is should still be possible to support a POSIX compliant interface above Angelwithout compromising its design.We are now looking at novel approaches to provide the service layers above theAngel kernel. The scheme currently being worked on is based around a questionspace implemented using the Linda tuplespace [36].Bibliography [1] P. Winterbottom and P. Osmon, \Topsy: An Extensible Unix Multicomputer," inUK IT90 Conference, Southampton University, 1990.[2] P. Osmon, T. Stiemerling, A. Valsamidis, A. Whitcroft, Wilkinson.T., andN. Williams, \The Topsy project: a position paper," in Parle '92, June 1992.[3] N. Accetta, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young, \MACH:A new kernel foundation for UNIX development," in USENIX Summer Conference,July 1986.[4] M. Rozier, \Overview of the CHORUS Distributed Operating Systems," Tech. Rep.CS-TR-90-25, Chorus Systemes, 1990.[5] S. Mullender, G. van Rossum, A. Tanenbaum, R. van Renesse, and H. van Staveren,\Amoeba: A distributed operating system for the 1990's," IEEE Computer, pp. 44{53, June 1990.[6] D. Kuhn, \IEEE's Posix: making progress," IEEE Spectrum. (USA), vol. 28, pp. 36{39, December 1991.[7] Dobberpuhl and others, \A 200Mhz 64-bit Dual Issue CMOS Microprocessor," inInternational Solid-State Circuits Conference, February 1992.[8] MIPS Computer Systems Ltd., RISC Microprocessors, Vr4000 - User's Manual.NEC, 1991.[9] U. Ramachandran, G. Shah, S. Ravikumar, and J. Muthukumarasamy, \Scalabilitystudy of the KSR-1," Tech. Rep. GIT-CC93/03, College of Computing, GeorgiaInstitute of Computing, Atlanta, Georgia, 1993.[10] \Fibre Channel Rev 0.93." Working Draft ANSI, December 1991.[11] T. Wilkinson, T. Stiemerling, P. Osmon, A. Saulsbury, and P. Kelly, \Angel: A Pro-posed Multiprocessor Operating System Kernel (Extended Abstract)," in EuropeanWorkshop on Parallel Computing, March 1992.[12] K. Murray, Wisdom: The Foundation of a Scalable Parallel Operating System.PhD thesis, University of York, Department of Computer Science, 1990.[13] Perihelion Software Ltd., The Helios Operating System. Prentice Hall, 1989.[14] A. Barak and R. Wheeler, \MOSIX: An integrated Multiprocessor UNIX," in Proc.of the Winter 1989 USENIX Conference, pp. 101{112, February 1989.[15] B. Bershad, T. Anderson, E. Lazowska, and H. Levy, \Lightweight remote procedurecall," ACM Operating Systems Review, vol. 23, pp. 102{113, December 1989.[16] A. Bricker, \A new look at micro-kernel-based UNIX operating systems: Lessonsin performance and compatability," in EurOpen Spring'91 Conference, Tromsoe,Norway, May 1991.[17] J. C. Mogul and A. Borg, \The E�ect of Context Switches on Cache Performance,"in ASPLOS, International Conf. on Architectural Support for Programming Lan-guages and Operating Systems, (Santa Clara, CA (USA)), pp. 75{85, April 1991.12

[18] S. Zatti, \A Multivariable Information Scheme to Balance The Load in a DistributedSystem," Tech. Rep. UCB/CSD 85/234, Computer Science Division, EECS UIniver-sity of California, Berkeley, 1985.[19] G. Bell, \Ultracomputers: A Teraop Before Its Time," Communications of theACM, vol. 35, pp. 27{47, August 1992.[20] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,Yale University, Department of Computer Science, 1986.[21] P. Osmon, T. Stiemerling, A. Whitcroft, Wilkinson.T., and N. Williams, \EvaluatingMeshix { a Unix compatible micro-kernel Operating System," in OpenForum'92,November 1992.[22] A. Whitcroft and P. Osmon, \The CBIC: Architectural Support for Message Passingor Shared Memory?," in U.K. Performance Engineering Workshop, September1992.[23] E. Hagersten, A. Landin, and S. Haridi, \DDM { A Cache-only Memory Architecture,"Tech. Rep. Research Report R91:19, SICS, Sweden, November 1991.[24] M. Hill, J. Larus, S. Reinhardt, and D. Wood, \Cooperative shared memory: softwareand hardware for scalable multiprocessors," in ASPLOS V, pp. 262{273, September1992.[25] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy,M. Horowitz, and M. Lam, \The Stanford DASH multiprocessor," IEEE Computer,vol. 25, March 1992.[26] \SCI: Scalable Coherent Interface." IEEE Standards document P1596/D1.7, August1991.[27] T. Wilkinson, \Implementing Fault Tolerance in a 64-bit Distributed OperatingSystem," Tech. Rep., City University, 1993.[28] T. Wilkinson et al., \Compiling for a 64-Bit Single Address Space Architecture," Tech.Rep. TCU/SARC/1993/1, SARC, City University Computer Science Department,March 1993.[29] R. Pike, D. Presotto, K. Thompson, and H. Trickey, \Plan 9 from Bell Labs," inSummer UKUUG Conference, London, pp. 1{9, July 1989.[30] R. Pike, D. Presotto, K. Thompson, and H. Trickey, \Plan 9, A Distributed System,"in Spring EurOpen Conference, Troms., pp. 43{40, May 1991.[31] M. Scott, T. LeBlanc, B. Marsh, T. Becker, C. Dubnicki, E. Markatos, and N. Smith-line, \Implementation Issues for the Psyche Operating System," Tech. Rep., Univer-sity or Rochester, Department of Computer Science, 1988.[32] M. Scott, T. LeBlanc, and B. Marsh, \AMulti-User, Multi-Language, Open OperatingSystem," Tech. Rep., University or Rochester, Department of Computer Science, April1989.[33] J. Chase, H. Levy, M. Baker-Harvey, and E. Lazowska, \How to Use a 64-Bit Vir-tual Address Space," Tech. Rep. 92-03-02, Department of Computer Science andEngineering, University of Washington, March 1992.[34] J. Chase, H. Levy, M. Baker-Harvey, and E. Lazowska, \Lightweight Shared Objectsin a 64-Bit Operating System," Tech. Rep. 92-03-09, Department of Computer Scienceand Engineering, University of Washington, March 1992.[35] G. Heiser, K. Elphinstone, S. Russell, and G. Hellestrand, \A Distributed SingleAddress-Space Operating System Supporting Persistence," Tech. Rep. 9302, Schoolof Computer Science and Engineering, The University of New South Wales, March1993.[36] N. Williams, \Linda Tuplespaces in Angel: A marriage made in Heaven?," Tech.Rep. TCU/SARC/1993/2, Systems Architecture Research Centre, City University,February 1993. 13

