
The AutoMed Query Processor

Previous Architecture
n Query reformulator: reformulates the

input query q by following the
transformation pathways from the GS to
LSi

n Fragment processor: replaces each
scheme s with a wrapper containing s

n Evaluator: evaluates q

New Architecture
n Query reformulator: same functionality
n Logical optimiser: performs various logical

optimisations
n Query annotator: detects the largest subtrees

ti translatable by the datasource wrappers
and inserts a wrapper object as the root of ti

n Physical Optimiser: performs datasource
specific optimisations

n Evaluator: same functionality

Logical Optimisations
n Rule application using templates

n Disjunction optimiser – see DBIS’04
n Nil optimiser – see DBIS’04
n Comprehensions optimiser. Example:

[{h}|q1; {x}ß(DS1++DS2); q2] à
[{h}|q1; {x}ßDS1; q2] ++ [{h}|q1; {x}ßDS2; q2]

n Java code to modify ASG structure
n Datasource reorganiser
n Common sub-expression elimination

Datasource Reorganiser
n Java-based optimisation
n Examples:

n DS1:A ++ DS2:B ++ DS1:C à
(DS1:A ++ DS1:C) ++ DS2:B

n [{h}|DS1:A;DS2:C;DS1:B;DS2:D;p1;p2;p12]
à
[{h}|{h1}ß[{h1}|DS1:A;DS1:B;p1];

{h2}ß[{h2}| DS2:C; DS2:D;p2];
p12]

Common Sub-Expression
Elimination

n Input query may
contain multiple
identical
subqueries

n Transform input
query into a DAG
to avoid
evaluation of the
same subquery

q

q

q

Logical Optimiser
n Applies logical optimisations using the

following policy:
n Step 1: apply each logical optimisation until

an application does not modify the query
n Step 2: apply step 1 until the query is not

modified by any logical optimisation
n Step 3: apply common sub-expression

elimination

Query Annotator
n Detects the largest subqueries which

can be translated by the datasource
wrappers

n Once the annotator detects a
translatable subtree, it inserts a
wrapper object

Query Annotator - Example

q

q1:PSQL3

@

@

q2:DOM1

Nil

q @

@

Nil

@

q1:PSQL3

@

q2:DOM1

$w

@

w.o.

$w

@

w.o.

Query Annotator – Detection
n Each wrapper is capable of translating a

subset of IQL
n Each subset of IQL is represented in the

query processor by a parser p
n When a query q is submitted to p, if it is not

part of this subset of IQL, a syntax error is
thrown

n Each wrapper defines the subset of IQL it can
translate by selecting a parser; if no parser is
selected, the default parser is used

Query Annotator – Detection
n Each Cell in the input query defines a

subtree t
n The Query Annotator traverses the input

query once for every datasource wrapper
w and for every t checks whether it is
translatable by w

Physical Optimiser
n Currently consists of a single optimiser, the dual

model optimiser:
n Some datasources are modeled using two modeling

layers: datasource-oriented & AutoMed-oriented à
may cause unnecessary self-joins of schema
constructs:

Original:
[{id,name}|{i,id}ß<<person,id>>;{i,name}ß<<person,dname>>]

Reformulated:
[{id,name}|{i,id}ß[{k1,k1}|{k1,a1,a2}ß<<person,3>>];

{i,name}ß[{k1,a2}|{k1,a1,a2}ß<<person,3>>]]
Optimised: [{id,name}|{k,id,name}ß<<person,3>>]

External Functions
n Currently, the Evaluator handles only

built-in and user-defined functions – all
written in Java

n We are currently extending the
evaluator to use external functions
written in other programming
languages, such as C, C++ and Perl

Lazy Evaluation
n The Evaluator currently fully evaluates a

query submitted to it.
n This may be inadequate for queries that

return large result sets which do not fit into
the available memory.

n Thus, once the above functionality is fully
implemented and tested, we will modify the
evaluator to incrementally evaluate queries
and to return fragments of result sets.

Type System – Type Checker
n Devise a unified type system for

AutoMed
n Implement type checker which type

checks input queries and queries
supplied with transformations

Open Issues
n Dual model optimiser
n External functions
n Lazy evaluation
n Type system – type checker

