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Abstract. With the increasing amount and diversity of information available on
the Internet, there has been a huge growth in information systems that need to
integrate data from distributed, heterogeneous data sources. Tracing the lineage
of the integrated data is one of the problems being addressedin data warehousing
research. This paper presents a data lineage tracing approach based on schema
transformation pathways. Our approach is not limited to onespecific data model
or query language, and would be useful in any data transformation/integration
framework based on sequences of primitive schema transformations.

1 Introduction

A data warehousing system collects data from distributed, autonomous and heteroge-
neous data sources into a central repository to enable analysis and mining of the inte-
grated information. However, sometimes what we need is not only to analyse the data in
the integrated database, but also to investigate how certain integrated information was
derived from the data sources, which is the problem ofdata lineage tracing(DLT). Sup-
porting DLT in data warehousing environments has a number ofapplications: in-depth
data analysis, on-line analysis mining (OLAM), scientific databases, authorization man-
agement, and materialized view schema evolution [2, 18, 8, 13, 9].

AutoMed1 is a heterogeneous data transformation and integration system which of-
fers the capability to handle data integration across multiple data models. In the Au-
toMed approach, the integration of schemas is specified as a sequence of primitive
schema transformation steps, which incrementally add, delete or rename schema con-
structs, thereby transforming each source schema into the target schema. We term the
sequence of primitive transformations steps defined for transforming a schemaS1 into
a schemaS2 a transformation pathwayfrom S1 to S2.

In [11] we discussed how AutoMed metadata can be used to express the schemas
and the cleansing, transformation and integration processes in heterogeneous data ware-
housing environments. In this paper, we focus on how AutoMedmetadata can be used
for tracing the lineage of data in an integrated database.

The outline of this paper is as follows. Section 2 gives a review of related work.
Section 3 gives an overview of AutoMed, as well as a data integration example. Section
4 presents our DLT techniques, including the DLT formulae developed to handle virtual

1 Seehttp://www.doc.ic.ac.uk/automed/



intermediate lineage data and the DLT algorithm operating along a general schema
transformation pathway. Section 5 gives our concluding remarks.

2 Related Work

The problem of data lineage tracing in data warehousing environments has been for-
mally studied by Cuiet al. in [8, 6, 7]. In particular, the fundamental definitions regard-
ing data lineage, includingtuple derivation for an operatorandtuple derivation for a
view, were developed in [8], as were methods for derivation tracing with both set and
bag semantics. Their work has addressed the derivation tracing problem using bag se-
mantics and has provided the concept ofderivation setandderivation poolfor tracing
data lineage with duplicate elements. Reference [6] also introduces a way to trace data
lineage for complex views in data warehouses. However, the approach is limited to the
relational data model.

Another fundamental concept of data lineage is discussed byBunemanet al. in
[4], namely the difference between “why” provenance and “where” provenance. Why-
provenance refers to the source data that had some influence on the existence of the
integrated data. Where-provenance refers to the actual data in the sources from which
the integrated data was extracted.

In our approach, both why- and where-provenanceare considered, using bag seman-
tics. Our previous work [10] defines the notions ofaffect-poolandorigin-pool for data
lineage tracing in AutoMed — the former derives all of the source data that had some
influence on the tracing data, while the latter derives the specific data in the sources
from which the tracing data is extracted. In that work we develop formulae for deriv-
ing the affect-pool and origin-pool of a data item in the extent of a materialised schema
construct created by a single schema transformation step. Our DLT approach is to apply
these formulae on each transformation step in a transformation pathway in turn, so as
to obtain the lineage data in stepwise fashion.

Cui and Widom in [7] also discuss the problem of tracing data lineage for gen-
eral data warehousing transformations, that is, the considered operators and algebraic
properties are no longer limited to relational views. However, without a framework for
expressing general transformations in heterogeneous database environments, most of
algorithms in [7] are recalling the view definition and examining each item in the data
source to decide if the item is in the data lineage of the data being traced. This can be
expensive if the view definition is a complex one and enumerating all items in the data
source is impractical for large data sets.

Reference [18] proposes a general framework for computingfine-graineddata lin-
eage,i.e. a specific derivation in the data source, using a limited amount of information,
weakandverified inversion, about the processing steps. Based on weak and verified
inversion functions, which must be specified by the transformation definer, the paper
defines and traces data lineage for each transformation stepin a database visualization
environment. However, the system cannot obtain the exact lineage data, only a number
of guarantees about the lineage is provided. Further, specifying weak and verified in-
version functions for each transformation step is onerous work for the data warehouse
definer. Moreover, the DLT procedures cannot straightforwardly be reused when the



data warehouse evolves. Our approach considers the problemof data lineage tracing at
the tuple level and computes the exact lineage data. Moreover, AutoMed’s ready sup-
port for schema evolution (see [12]) means that our DLT algorithms can be reapplied if
schema transformation pathways evolve.

One limit of our earlier work described in [10] is that we assumed the transforma-
tion pathway used by our DLT algorithm is fully materialised, i.e. new schema con-
structs created along the pathway are materialised. In practice, we need to handle the
situation of virtual or partially materialised transformation pathways, in which interme-
diate schema constructs may or may not be materialised. In this paper, we describe an
approach for tracing data lineage along a general schema transformation pathway.

3 Overview of AutoMed

AutoMed supports a low-level hypergraph-baseddata model (HDM). Higher-level mod-
elling languages are defined in terms of this HDM. For example, previous work has
shown how relational, ER, OO [15], XML [19], flat-file [3] and multidimensional [11]
data models can be so defined. An HDM schema consists of a set ofnodes, edges
and constraints, and each modelling construct of a higher-level modelling language is
specified as some combination of HDM nodes, edges and constraints. For any mod-
elling languageM specified in this way, via the API of AutoMed’s Model Definitions
Repository [3], AutoMed provides a set of primitive schema transformations that can
be applied to schema constructs expressed inM. In particular, for every construct of
M there is anadd and adelete primitive transformation which add to/delete from a
schema an instance of that construct. For those constructs of M which have textual
names, there is also arename primitive transformation.

In AutoMed, schemas are incrementally transformed by applying to them a se-
quence of primitive transformationst1, . . . , tr. Each primitive transformation adds,
deletes or renames just one schema construct, expressed in some modelling language.
Thus, the intermediate (and indeed the target) schemas may contain constructs of more
than one modelling language.

Eachadd or delete transformation is accompanied by a query specifying the extent
of the new or deleted construct in terms of the rest of the constructs in the schema. This
query is expressed in a functional query language IQL2. The queries withinadd and
delete transformations are used by AutoMed’s Global Query Processor to evaluate an
IQL query over a global schema in the case of a virtual data integration scenario. In the
case that the global schema is materialised, AutoMed’s Query Evaluator can be used
directly on the materialised data.

3.1 Simple IQL

In order to illustrate our DLT algorithm, we use a subset of IQL, Simple IQL(SIQL), as
the query language in this paper. More complex IQL queries can be encoded as a series

2 IQL is a comprehensions-based functional query language. Such languages subsume query
languages such as SQL and OQL in expressiveness [5]. We referthe reader to [14, 17] for
details of IQL and references to work on comprehension-based functional query languages.



of transformations with SIQL queries on intermediate schema constructs. We stress
that although illustrated within a particular query language syntax, our DLT algorithms
could also be applied to schema transformation pathways involving queries expressed
in other query languages supporting operations on set, bag and list collections.

SupposingD, D1 . . . , Dn denote bags of the appropriate type (base collections),
SIQL supports the following queries:group D groups a bag of pairsD on their first
component.distinct D removes duplicates from a bag.f D applies an aggregation
functionf (which may bemax, min, count, sum or avg) to a bag.gc f D groups
a bagD of pairs on their first component and applies an aggregation functionf to the
second component.++ is the bag union operator and−− is the bagmonusoperator
[1]. SIQL comprehensions are of three forms:[x|x1 ← D1; . . . ;xn ← Dn;C1; ...;Ck],
[x|x ← D1; member D2 y], and[x|x ← D1; not(member D2 y)]. Here, eachx1,
...,xn is either a single variable or a tuple of variables.x is either a single variable or
value, or a tuple of variables or values, and must include allof variables appearing in
x1, ...,xn. EachC1, ...,Ck is a condition not referring to any base collection. Also, each
variable appearing inx andC1, ...,Ck must also appear in somexi, and the variables in
y must appear inx. Finally, a query of the formmap (λx.e) D applies to each element
of a collectionD an anonymous function defined by a lambda abstractionλx.e and
returns the resulting collection.

Comprehension syntax can express the common algebraic operations on collection
types such as sets, bags and lists [5] and such operations canbe readily expressed
in SIQL. In particular, let us considerselection(σ), projection(π), join (⊲⊳), andag-
gregation(α) (union (

⋃
) and difference(−) are directly supported in SIQL via the

++ and−− operators). The general form of a Select-Project-Join (SPJ) expression is
πA(σC(D1 ⊲⊳ ... ⊲⊳ Dn)) and this can be expressed as follows in comprehension syn-
tax: [A|x1 ← D1; . . . ;xn ← Dn;C]. However, since in general the tuple of variablesA
may not contain all the variables appearing inx1, ...,xn (as is required in SIQL), we
can use the following two transformation steps to express a general SPJ expression in
SIQL, wherex includes all of the variables appearing inx1, . . . .xn:

v1 = [x|x1 ← D1; . . . ;xn ← Dn;C]
v = map (λx.A) v1

The algebraic operatorα applies an aggregation function to a collection and this func-
tionality is captured by thegc operator in SIQL. E.g., supposing the scheme of a col-
lectionD is D(A1,A2,A3), an expressionαA2,f(A3)(D) is expressed in SIQL as:

v1 = map (λ{x1,x2,x3}.{x2,x3}) D
v = gc f v1

3.2 An Example Data Integration

In this paper, we will use schemas expressed in a simple relational data model to illus-
trate our techniques. However, we stress that these techniques are applicable to schemas
defined inanydata modelling language having been specified within AutoMed’s Model
Definitions Repository, including modelling languages forsemi-structured data [3, 19].

In our simple relational model, there are two kinds of schemaconstruct:Rel and
Att. The extent of aRel construct〈〈R〉〉 is the projection of relationR onto its primary
key attributesk1, ..., kn. The extent of eachAtt construct〈〈R, a〉〉 wherea is a non-key



attribute ofR is the projection ofR ontok1, ..., kn, a. We refer the reader to [15] for an
encoding of a richer relational data model, including the modelling of constraints.

Suppose thatMAtab(CID, SID, Mark) and IStab(CID, SID, Mark) are two source
relations for a data warehouse respectively storing students’ marks for two departments
MA and IS, in which CID andSID are the course and student IDs. Suppose also that
a relationCourseSum(Dept, CID, Total, Avg) is in the data warehouse which gives the
total and average mark for each course of each department.

The following transformation pathway expresses the schematransformation and
integration processes in this example. Due to space limitations, we have not given
the steps for removing the source relation constructs (notethat this ‘growing’ and
‘shrinking’ of schemas is characteristic of AutoMed schematransformation pathways).
Schema constructs〈〈Details〉〉 and〈〈Details, Mark〉〉 are temporary ones which are cre-
ated for integrating the source data and then deleted after the global relation is created.
addRel 〈〈Details〉〉 [{’MA’,k1,k2}|{k1,k2}←〈〈MAtab〉〉]

++[{’IS’,k1,k2}|{k1,k2}←〈〈IStab〉〉];
addAtt 〈〈Details, Mark〉〉 [{’MA’,k1,k2,x}|{k1,k2,x}←〈〈MAtab, Mark〉〉]

++[{’IS’,k1,k2,x}|{k1,k2,x}←〈〈IStab, Mark〉〉];
addRel 〈〈CourseSum〉〉 distinct [{k,k1}|{k,k1,k2}←〈〈Details〉〉]
addAtt 〈〈CourseSum, Total〉〉 [{x,y,z}|{{x,y},z}← (gc sum

[{{k,k1},x}|{k,k1,k2,x}←〈〈Details, Mark〉〉])];
addAtt 〈〈CourseSum, Avg〉〉 [{x,y,z}|{{x,y},z}← (gc avg

[{{k,k1},x}|{k,k1,k2,x}←〈〈Details, Mark〉〉])];
delAtt 〈〈Details, Mark〉〉 [{’MA’,k1,k2,x}|{k1,k2,x}←〈〈MAtab, Mark〉〉]

++[{’IS’,k1,k2,x}|{k1,k2,x}←〈〈IStab, Mark〉〉];
delRel 〈〈Details〉〉 [{’MA’,k1,k2}|{k1,k2}←〈〈MAtab〉〉]

++[{’IS’,k1,k2}|{k1,k2}←〈〈IStab〉〉];
...

Note that some of the queries appearing in the above transformation steps are not
SIQL but general IQL queries. In such cases, for the purposesof lineage tracing, we
decompose a general IQL query into a sequence of SIQL queriesby means of a depth-
first traversal of the IQL query tree. For example, the IQL query
[{x,y,z}|{{x,y},z}← (gc avg [{{k,k1},x}| {k,k1,k2,x}←〈〈Details, Mark〉〉])]

is decomposed into following sequence of SIQL queries:
v1 = map (λ{k,k1,k2,x}.{{k1,k2},x}) 〈〈Details, Mark〉〉
v2 = gc avg v1
v = map (λ{{x,y},z}.{x,y,z}) v2

In the rest of the paper, our discussion assumes that all queries in transformation steps
are SIQL queries.

4 Data Lineage Tracing with AutoMed Schema Transformations

In heterogenous data integration environments, the data transformation and integration
processes can be described using AutoMed schema transformation pathways (see [11]).
Our DLT approach is to use the individual steps of these pathways to compute the
lineage data of the tracing data by traversing the pathways in reverse order one step
at a time. In particular, suppose a data sourceLD with schemaLS is transformed into



v DL(t)

group D [{x, y}|{x, y} ← D; x = a]

sort D D|t

distinct D D|t

aggFun D D

gc aggFun D [{x, y}|{x, y} ← D; x = a]

D1 ++ D2 ++ . . . ++ Dn ∀i.Di|t

D1 −− D2 D1|t, D2

[x|x1 ← D1; . . . ;xn ← Dn;C] ∀i.[xi|xi ← Di; xi = ((λx.xi) t)]

[x|x← D1; member D2 y] D1|t, [y|y ← D2; y = ((λx.y) t)]

[x|x← D1; not(member D2 y)] D1|t, D2

map (λx.e) D [x|x← D, e = t]
Table 1. DLT Formulae forMtMs

a global databaseGD with schemaGS, and the transformation pathwayLS → GS is
ts1, ..., tsn. Given tracing datatd belonging to the extent of some schema construct in
GD, we firstly find the transformation steptsi which creates that construct and obtain
td’s lineage,dli, from tsi. We then continue by tracing the lineage ofdli from the
remaining transformation pathwayts1, . . . , tsi−1. We continue in this fashion, until we
obtain the final lineage data from the data sourceLD.

Sincedelete transformations do not create schema constructs, they can be ignored
in the DLT process. Tracing data lineage with respect to a transformationrename(O, O′)
is simple — the lineage data inO is the same as the tracing data inO′. It only remains
to consideradd transformations. A singleadd transformation step can be expressed as
v=q, in which v is the new schema construct created by the transformation and q is
an SIQL query over the current schema constructs. We have developed a DLT formula
for each type of SIQL query which, given tracing data inv, evaluates the lineage of
this data from the extents of the schema constructs referenced inv=q. If these extents
and the tracing data are both materialised, Table 1 gives theDLT formulae for tracing
the affect-pool of a tuplet, DL(t). The DLT formulae for tracing the origin-pool are
similar and we refer the reader to [10] for a discussion of thedifference between the
affect-pool and the origin-pool.

In Table 1,D|t denotes all instances of the tuplet in the bagD (i.e. the result of
the query[x|x ← D; x = t]). Since the results of queries of the formgroup D and
gc f D are a collection of pairs, in the DLT formulae for these two queries we assume
that the tracing tuplet is of the form{a, b}.

The DLT formulae in Table 1 either provide aderivation tracing query[8] specify-
ing the lineage data oft or, in some cases, give the lineage data directly. If a formula
returns a derivation tracing query, we need to evaluate the query to obtain the lineage
data. If a formula returns the lineage data directly, no suchevaluation is needed.

If all schema constructs created byadd transformations are materialised, a sim-
ple way to trace the lineage of data in the global databaseGD is to apply the above
DLT formulae on each transformation step in the transformation LS → GS in reverse
from GS, finally ending up with the lineage data in the original data sourceLD. Such a
DLT method has been described in our previous work [10]. However, in general trans-



formation pathways not all schema constructs created byadd transformations will be
materialised, and the above simple DLT approach is no longerapplicable because it
does not obtain lineage data from a virtual schema construct. In this paper, we propose
a DLT approach that handles such general transformation pathways.

4.1 The Approach

One approach to solving the problem of virtual schema constructs would be to use Au-
toMed’s Global Query Processor to evaluate the query creating the virtual construct and
compute its extent, so that the above simple DLT approach could be applied. However,
this approach is impractical due to the space and time overheads it incurs.

Instead, our approach is to use a data structure,Lineage, to denote lineage data from
the extent of a schema construct. If the construct is materialised,Lineage contains the
actual lineage data. If the construct is virtual,Lineage contains relevant information
for deriving the lineage data. This information will be usedby subsequent DLT steps
to evaluate the final lineage data. EachLineage object contains five attributes:(i)data,
which is a collection of materialised lineage data or, if thelineage data is virtual, the
valuenull; (ii) construct, which is the name of the schema construct whose extent
contains the lineage data;(iii) isVirtual, stating if the lineage data is virtual or not;(iv)
elemStruct, describing the structure of the data in the extent of a virtual schema con-
struct,e.g. a 2-item tuple{x1,x2}, or a 3-item tuple{x1,x2,x3}; (v) constraint,
expressing the constraint specifying the lineage data froma virtual schema construct.

For example, suppose lineage data in a schema constructD is derived from the
query [{x, y}|{x, y} ← D; x = 5], and lp is a Lineage object expressing the lineage
data. IfD=[{1,2},{5,1},{5,2},{3,1}] is materialised, thenlp will be: lp.data =
[{5,1},{5,2}]; lp.construct= ”D”; lp.isVirtual = false; lp.elemStruct= null;
and lp.constraint= null. On the other hand, ifD is a virtual schema construct, then
lp will be: lp.data = null; lp.construct= ”D”; lp.isVirtual = true; lp.elemStruct =
”{x,y}”; and lp.constraint= ”x=5”.

We denote byO|dl a Lineage object in whichO is the name of the schema con-
struct anddl is the data lineage. If the lineage data is materialised,dl will be the
data itself, otherwisedl will be the form of(S, C), whereS denotes theelemStruct
andC the constraint. For example, the above twoLineage objects are denoted by
D|[{5,1},{5,2}] andD|({x,y},x=5), respectively.

4.2 The DLT Formulae

It is necessary that our DLT formulae can handle the following four cases:MtMs —
both the tracing data and the source data are materialised;MtVs — the tracing data is
materialised and the source data is virtual;VtMs — the tracing data is virtual and the
source data is materialised; andVtVs — both the tracing data and the source data are
virtual. The DLT formulae for the case ofMtMs were given in Table 1, and from these
we have derived the DLT formulae for the other three cases:
Case MtVs. There were two kinds of DLT formulae in Table 1: tracing queries and
real lineage data. Since withMtVS the source data is virtual, we cannot evaluate trac-
ing queries and soLineage objects are required to store the information about these



v DL(t)

group D D|({x, y}, x = a)

sort D D|t

distinct D D|t

aggFun D D|(any, true)

gc aggFun D D|({x, y}, x = a)

D1 ++ D2 ++ . . . ++ Dn ∀i.Di|t

D1 −− D2 D1|t, D2|(any, true)

[x|x1 ← D1; . . . ;xn ← Dn;C] ∀i.Di|(xi, xi = ((λx.xi) t))

[x|x← D1; member D2 y] D1|t, D2|(y, y = ((λx.y) t))

[x|x← D1; not(member D2 y)] D1|t, D2|(any, true)

map (λx.e) D D|(x, e = t)
Table 2. DLT Formulae forMtVs

queries. For example, the tracing query[{x, y}|{x, y} ← D; x = a] is expressed as
D|({x, y}, x = a). In the case of real lineage data, the lineage data might be the tracing
data,t, itself or all the items in a source collectionD. If the lineage data ist, it is avail-
able no matter whetherD is materialised or not. If the the lineage data is all items in
a virtual collectionD, it is expressed byD|(any,true). Table 2 illustrates the DLT
formulae for the case ofMtVs.
Case VtMs. Virtual tracing data can be created by virtual source data. In particu-
lar, there are three kinds of virtual lineage data created inTable 2:(any,true),
({x,y},x=a), and(x,e=t)3. The DLT formulae forVtMs can be derived by apply-
ing these three kinds of virtual tracing data to the formulaegiven in Table 1. In this case,
all source data is materialised, there is no virtual intermediate lineage data created.

For example, suppose the query isv=group D. If the virtual tracing tuplet is
(any,true), the lineage dataDL(t) is all data inD, i.e. DL(t) = D. If t is ({x,y},

x=a), DL(t) is all tuples inD with first component equal toa, which is the result of
the query[{x, y}|{x, y} ← D; x = a]. If t is (x,e=t), DL(t) is all tuples inD with
first component equal to the first component of the tracing data t, which is the result of
the query[{x, y}|{x, y} ← D; member [first x|x ← v; e = t]]. We can see that the
virtual view,v, is used in this query. Since the source data is materialised, we can easily
recoverv and evaluate the tracing query.

Table 3 gives the whole list of formulae for the case ofVtMs with virtual tracing
data of the form(x,e=t). The formulae for the other two kinds of virtual tracing data
can easily be derived.
Case VtVs. The DLT formulae forVtVs are similar to the formulae forVtMs but in this
case the source data are unavailable. Thus, we useLineage objects to store the virtual
intermediate lineage data.

3 Note that in Table 2 the lineage data(xi, xi = ((λx.xi) t)) and (y, y = ((λx.y) t)) in
the 8th and 9th lines are not virtual. Sincet is real data and variable tuplex contains
all variables appearing inxi, the expression(λx.xi) t returns real data too. For exam-
ple, supposingx = {x1, x2, x3}, xi = {x1, x3}, and t = {1, 2, 3}, then (λx.xi) t =
(λ{x1, x2, x3}.{x1, x3}) {1, 2, 3} = {1, 3}.



v DL(t)

group D [{x, y}|{x, y} ← D; member [first x|x← v; e = t] x]

sort D [x|x← D; e = t]

distinct D [x|x← D; e = t]

aggFun D D

gc aggFun D [{x, y}|{x, y} ← D; member [first x|x← v; e = t] x]

D1 ++ D2 ++ . . . ++ Dn ∀i.[x|x← Di; e = t]

D1 −− D2 D1|[x|x← v; e = t], D2

[x|x1 ← D1; . . . ;xn ← Dn;C] ∀i.[xi|xi ← Di;
member (map (λx.xi) [x|x← v; e = t]) xi]

[x|x← D1; member D2 y] [x|x← D1; member D2 y; e = t],
[y|y ← D2; member (map (λx.y) [x|x← v; e = t]) y]

[x|x← D1; not(member D2 y)] D1|[x|x← v; e = t], D2

map (λx1.e1) D [x1|x1 ← D; e = t]

Table 3. DLT Formulae forVtMs with tracing data(x, e = t)

For example, suppose the query isv=group D. If the virtual tracing tuplet is
(any,true), the virtual lineage dataDL(t) isD|(any,true). If t is ({x,y},x=a),
the virtualDL(t) is D|({x,y},x=a). If t is (x,e=t), the virtualDL(t) is D|({x,y},

member[first x|x ← v;e=t] x). Note that, the virtual viewv is used in this vir-
tual lineage data expression. However, since the source data D is virtual, we cannot
recoverv by just evaluating the queryv=group D. In this case, AutoMed’s Global
Query Processor can be used to materialisev. Oncev is materialised, the virtual trac-
ing datat can also be recovered and this situation reverts to the case of MtVs which we
discussed earlier. Alternatively, the view definition ofv can be propagated through the
remaining DLT steps until the end of the process. So far we have only implemented the
first approach and it remains to implement the second approach and investigate their
trade-offs.

4.3 DLT for General Transformation Pathways

Having obtained the DLT formulae for above four cases, lineage data based on a sin-
gle transformation step is obtained by applying the appropriate formula to the step’s
query. Our DLT procedure for a single transformation step isDLT4AStep(td, ts) and
its output is the lineage oftd in ts’s data sources i.e. a list ofLineage objects which
might contain either materialised or virtual lineage data.In our DLT algorithms for a
general transformation pathway, there are two further procedures: tracing the lineage
of a single tuple along a transformation pathway and tracingthe lineage of a set of
tuples along a transformation pathway. This is because the lineage of oneLineage
object based on a single transformation step might be a list of Lineage objects, if
the transformation step has multiple data sources. Figure 1gives the two procedures:
oneDLT4APath(td, [ts1, ..., tn]) traces the lineage of a single tracing tupletd along
a transformation pathway[ts1, ..., tn], andlistDLT4APath([td1, ..., tdm], [ts1, ..., tsn])
traces the lineage of a list of tracing tuples along a transformation pathway.



Proc oneDLT4APath(td, [ts1, ..., tsn])
{ lpList = ø;

for i = n downto1, do
if (td.construct is created bytsi)

Num = i;
lpList = DLT4AStep(td, tsi);
continue; //* End thefor loop

restTP = [ts1, ..., tsNum];
return listDLT4APath(lpList, restTP );

}

Proc listDLT4APath([td1, ..., tdm], [ts1, ..., tsn])
{ lpList = ø;

for i = 1 to m, do
lpList = merge(lpList, oneDLT4APath(tdi, [ts1, ..., tsn]));

return lpList;
}

Fig. 1. DLT Algorithms for a general transformation pathway

oneDLT4APath firstly finds the transformation step,tsi, which creates the schema
construct containingtd and then calls the procedureDLT4AStep to obtain the lineage
of td based on this transformation step.DLT4AStep returns a list ofLineage objects.
After that, the procedureoneDLT4APath calls the procedurelistDLT4APath to further
trace the lineage of this list ofLineage objects along the rest of the transformation
pathway (i.e. the steps prior totsi). oneDLT4APath also returns a list ofLineage
objects.listDLT4APath itself calls oneDLT4APath for each itemtdi in the tracing
data list to find the entire lineage of the whole list based on the transformation pathway.
Themerge function is used to avoid duplication of lineage data: A tuple,dl, might be
in the lineage of two different tracing tuples,tdi andtdj (i 6= j). If dl and all its copies
in a source collection have already been added tolpList as the lineage oftdi, we do
not add them again intolpList as the lineage oftdj .

The complexity of the overall DLT process isO(n ×m) wheren is the number of
add transformations in the transformation pathway andm is the number of different
schema constructs referenced in the pathway.

4.4 Example

We use the example described in Section 3.2 to illustrate ourDLT approach. Recall that
some queries appearing in the example are not SIQL queries but general IQL queries. In
such situations, we firstly decompose these IQL queries intosequences of SIQL queries.

Supposingtd = {’MA’,’MAC01’,81} is a tuple in the extent of the construct
〈〈CourseSum, Avg〉〉 in the global databaseGD, the transformation pathway generating
〈〈CourseSum, Avg〉〉 construct can be expressed as following sequence of view defini-
tions, where the intermediate constructsv1, . . ., v4 and〈〈Details, Mark〉〉 are virtual:



v1 = [{’IS’,k1,k2,x}|{k1,k2,x}← 〈〈IStab, Mark〉〉]
v2 = [{’MA’,k1,k2,x}|{k1,k2,x}← 〈〈MAtab, Mark〉〉]
〈〈Details, Mark〉〉 = v1 ++ v2
v3 = map (λ{k,k1,k2,x}.{{k,k1},x}) 〈〈Details, Mark〉〉
v4 = gc avg v3
〈〈CourseSum, Avg〉〉 = map (λ{{x,y},z}.{x,y,z}) v4

Traversing this transformation pathway in reverse, we obtain td’s lineage data,dl,
with respect to each view as follows:

td = 〈〈CourseSum, Avg〉〉|{’MA’,’MAC01’,81}
MtVs
=⇒ v4|dl = v4|{{’MA’,’MAC01’},81}
MtVs
=⇒ v3|dl = v3|({x,y},x={’MA’,’MAC01’})
VtVs
=⇒ 〈〈Details, Mark〉〉|dl = 〈〈Details, Mark〉〉|({k,k1,k2,x},{k=’MA’;k1=’MAC01’})
VtVs
=⇒ v2|dl = v2|({k,k1,k2,x},{k=’MA’;k1=’MAC01’}),

v1|dl = v1|({k,k1,k2,x},{k=’MA’;k1=’MAC01’})
VtMs
=⇒ 〈〈MAtab,Mark〉〉|dl = 〈〈MAtab, Mark〉〉|({k1,k2,x},{’MA’=’MA’;k1=’MAC01’})
〈〈IStab,Mark〉〉|dl = 〈〈IStab, Mark〉〉|({k1,k2,x},{’IS’=’MA’;k1=’MAC01’})

In conclusion, we can see that the lineage from〈〈IStab, Mark〉〉 is empty and the lin-
eage form〈〈MAtab, Mark〉〉 is obtained by evaluating the final tracing query[{k1,k2,x}|
{k1,k2,x}← 〈〈MAtab, Mark〉〉; ’MA’=’MA’;k1=’MAC01’].

5 Concluding Remarks

AutoMed schema transformation pathways can be used to express data transformation
and integration processes in heterogeneous data warehousing environments. This pa-
per has discussed techniques for tracing data lineage alongsuch pathways and thus
addresses the general DLT problem for heterogeneous data warehouses.

We have developed a set of DLT formulae using virtual arguments to handle virtual
intermediate schema constructs and virtual lineage data. Based on these formulae, our
algorithms perform data lineage tracing along a general schema transformation path-
way, in which eachadd transformation step may create either a virtual or a materialised
schema construct. The algorithms described in this paper have been implemented and
tested over simple relational data source and integrated schemas. We are currently de-
ploying them as part of a broader bioinformatics data warehousing project (BIOMAP).

One of the advantages of AutoMed is that its schema transformation pathways can
be readily evolved as the data warehouse evolves [12]. In this paper we have shown how
to perform data lineage tracing along such evolvable pathways.

Although this paper has used IQL as the query language in which transformations
are specified, our algorithms are not limited to one specific data model or query lan-
guage, and could be applied to other query languages involving common algebraic
operations on collections such as selection, projection, join, aggregation, union and
difference.

Finally, since our algorithms consider in turn each transformation step in a transfor-
mation pathway in order to evaluate lineage data in a stepwise fashion, they are useful
not only in data warehousing environments, but also in any data transformation and



integration framework based on sequences of primitive schema transformations. For
example, [19, 20] present an approach for integrating heterogeneous XML documents
using the AutoMed toolkit. A schema is automatically extracted for each XML docu-
ment and transformation pathways are applied to these schemas. Reference [16] also
discusses how AutoMed can be applied in peer-to-peer data integration settings. Thus,
the DLT approach we have discussed in this paper is readily applicable in peer-to-peer
and semi-structured data integration environments.
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