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Abstract. This paper presents an extensible architecture that can be
used to support the integration of heterogeneous biological data sets.
In our architecture, a clustering approach has been developed to sup-
port distributed biological data sources with inconsistent identification
of biological objects. The architecture uses the AutoMed data integra-
tion toolkit to store the schemas of the data sources and the semi-
automatically generated transformations from the source data into the
data of an integrated warehouse. AutoMed supports bi-directional, ex-
tensible transformations which can be used to update the warehouse
data as entities change, are added, or are deleted in the data sources.
The transformations can also be used to support the addition or removal
of entire data sources, or evolutions in the schemas of the data sources
or of the warehouse itself. The results of using the architecture for the
integration of existing genomic data sets are discussed.

1 Introduction

This paper presents work on an architecture for integrating biological data
sources, and reports our experience in applying it to an existing application
aimed at providing an integrated sequence/structure/function resource that sup-
ports analysis, mining and visualisation of functional genomics data (transcrip-
tomic and proteomic).

Biological data sources are characterised by a very high degree of hetero-
geneity in terms of the type of data model used, the schema design within a
given data model, as well as incompatible formats and nomenclature of values.
Further, such data sources frequently make use of large numbers of unstable,
inconsistent identifiers for biological entities. Our architecture addresses these
two issues by combining two data integration techniques supporting both data
heterogeneity and inconsistent identifiers.

The database community has done much work on integration of data from
heterogeneous data sources. Examples of significant applications to biological
data sources include DiscoveryLink [8], K2/Kleisli [12] and Tambis [5]. In prac-
tice, the most widely used system is Sequence Retrieval System (SRS) [30]. A
recent survey is provided by [17].



SRS represents one approach to integration: it acts as a portal to data sources
exploiting indexes built by the system. It therefore has a more restricted aim
than DiscoveryLink, K2/Kleisli and Tambis which are all aimed at supporting
higher level query facilities across data sources. DiscoveryLink and Tambis aim
to achieve this without users needing to be aware of source data schemas: in our
own work we also aim to insulate users in this way.

The two traditional approaches to providing such transparent access are to
materialise the integrated data in a warehouse, or alternatively to provide virtual
integration with mediator software supporting access to data in the original data
sources. Materializing integrated data in a warehouse is usually done on perfor-
mance grounds: not only is distributed access to remote data sources avoided,
but also centralised database query optimisation techniques can be applied to
enable complex queries to be supported more efficiently. Maintaining a mate-
rialised warehouse to correctly reflect updates in data sources can be complex,
however. While access to a virtual warehouse is likely to be less efficient than
with a materialised warehouse, it may be the only option if it is not possible
to extract data from the underlying data sources, or if the storage overheads of
materialisation would be too high.

In our own work we have chosen to exploit the AutoMed data integration
toolkit3 to support the integration of heterogeneous biological data sources. The
particular strength of AutoMed for this application area is that it supports
bi-directional, extensible transformations from data source schemas to an inte-
grated schema enabling integration both through explicit materialisation in a
data warehouse as well as virtual integration of data remaining in the original
data resources. The extensibility of AutoMed transformations is also the basis for
update of schemas within both the data sources and any materialised warehouse.

AutoMed does not in itself provide a solution for transformations between
unstable, inconsistent identifiers. There are a number of significant initiatives
within the Life Sciences community to address the problem of inconsistent iden-
tifiers. For example, the Life Sciences Identifiers (LSID) initiative [25] is aimed
at a standardised scheme for assigning and recognising identifiers for biological
entities, while the International Protein Index (IPI) [10] is developing stable iden-
tifiers for human, mouse and rat proteomes. Meeting the needs of applications
that process and analyze transcriptomics and proteomics data is a particular
motivation for such work. Extensive work has also been done on standardisation
in more specialised areas, for example the work of the Microarray Gene Expres-
sion Data (MGED) Society on MAGE-ML for standardised recording of data
related to microarray gene expression experiments [11]. However, the legacy of
very large numbers of inconsistent non-standardised identifiers will remain.

Hence, in our work we have combined AutoMed with a clustering approach
to associate biological entities independently of their identifiers. In our applica-
tion of this approach so far, we have used gene sequence clustering to establish
associations, but the approach is not limited to sequence-based clustering.

3 See http://www.doc.ic.ac.uk/automed/



The remainder of the paper is organised as follows. Section 2 introduces those
features of AutoMed which have been exploited in our work, together with the
basis for combining AutoMed with a clustering approach. Section 3 presents
our data integration framework. Section 4 reports on our experience applying
this framework to the integration of biological data sources in a warehouse being
constructed to support the mining and visualisation of functional genomics data.
Conclusions and a discussion of ongoing work are given in Section 5.

2 Background

2.1 The AutoMed Toolkit

AutoMed is a heterogeneous data transformation and integration system which
offers the capability to handle virtual, materialised and indeed hybrid data inte-
gration across multiple data models. AutoMed supports a low-level hypergraph-
based data model (HDM), and provides facilities for specifying higher-level mod-
elling languages in terms of this HDM. These specifications are stored within
AutoMed’s Metadata Repository [1]. In the specific application described in this
paper, the problem addressed has been the integration of relational data sources
into a relational data warehouse.

AutoMed provides a set of primitive schema transformations that can be
applied to schema constructs. In particular, for every construct of a modelling
language M there is an add and a delete primitive transformation which add
to/delete from a schema an instance of that construct. For those constructs of
M which have textual names, there is also a rename primitive transformation.
For example, in a simple relational model there may be four kinds of modelling
construct, Rel, Att, primaryKey and foreignKey.

Instances of modelling constructs within a particular schema are uniquely
identified by their scheme, enclosed within double chevrons 〈〈...〉〉. AutoMed
schemas can be incrementally transformed by applying to them a sequence of
primitive transformations, each adding, deleting or renaming just one schema
construct (thus, in general, AutoMed schemas may contain constructs of more
than one modelling language). Each add or delete transformation is accompa-
nied by a query specifying the extent of the new or deleted construct in terms
of the rest of the constructs in the schema. This query is expressed in a func-
tional query language, IQL4. AutoMed also provides contract and extend prim-
itive transformations which behave in the same way as add and delete except
that they indicate that their accompanying query may only partially specify the
extent of the new/removed schema construct. Their query may just be the con-
stant Void, indicating that the extent of the new/removed construct cannot be
specified even partially, in which case the query can be omitted.

4 IQL is a comprehensions-based functional query language, and we refer the reader to
[18] for details of its syntax, semantics and implementation. Such languages subsume
query languages such as SQL and OQL in expressiveness [2].



A sequence of primitive transformations from one schema S1 to another
schema S2 is termed a transformation pathway from S1 to S2, denoted by
S1 → S2. All source, intermediate, and global schemas, and the pathways be-
tween them, are stored in AutoMed’s Metadata Repository.

AutoMed has its theoretical foundations in the schema transformation and
integration framework described in [22] where it was shown that this approach
generalises all the previous notions of ‘schema equivalence’. Intuitively, this is
because: (a) sequences of the primitive transformations are able to express syn-
tactically any transformation from one schema to another, with first a ‘growing’
phase which adds missing schema constructs and then a ‘shrinking’ phase which
removes redundant schema constructs; (b) IQL queries are able to express the
semantic relationships between a new schema construct and the existing con-
structs, or between a removed schema construct and the remaining constructs.

The IQL queries present within transformations that add or delete schema
constructs mean that each primitive transformation has an automatically deriv-
able reverse transformation. In particular, each add/extend transformation is re-
versed by a delete/contract transformation with the same arguments, while each
rename transformation is reversed by swapping its two arguments. [19] discusses
how the queries present within these reversible schema transformation pathways
can be used to generate view definitions for global schema constructs in terms of
source schema constructs. Essentially, this is by means of query unfolding using
the queries within delete, contract and rename transformations along the set of
reverse pathways from a global schema to a set of source schemas.

AutoMed pathways can be used to express the data cleansing, transformation
and integration processes involved in heterogeneous data integration. The queries
within transformations also allow the pathways to be used for materialising and
incrementally maintaining a materialised global database, and any materialised
databases derived from it, in the face of insertions/ deletions/ updates to the
data sources. The queries within transformations also allow the pathways to be
used for tracing the lineage of data in a materialised global database, or any
materialised databases derived from it, to the data sources. We refer the reader
to [13, 14] for details of these uses of AutoMed pathways.

In any heterogeneous data integration environment, it is possible for either a
data source schema or the global database schema to evolve. This schema evolu-
tion may be a change in the schema, or a change in the data model in which the
schema is expressed, or both. An AutoMed pathway can be used to express the
schema evolution in all of these cases. Once the current transformation network
has been extended in this way, the actions taken to evolve the rest of the trans-
formation network and schemas, and any materialised derived data, are localised
to just those schema constructs that are affected by the evolution. We refer the
reader to [23, 24, 15] for details of how this can be achieved in both virtual [23,
24] and materialised [15] integration scenarios. The algorithms used are mainly
automatic, except for input of domain or expert human knowledge regarding the
semantics of new schema constructs added to a local or global schema which are
not semantically equivalent to any existing constructs in the schema.



For our particular application here, the task has been to support the trans-
formation of biological data source schemas into a global warehouse schema. The
data source and warehouse schemas were relational, while we have used an XML-
based unifying data model for the intermediate schemas. We made this choice
in order to allow the use of AutoMed’s facilities for automatically transforming
and integrating XML data, which are discussed in detail in [28, 29].

The standard schema definition languages for XML are DTD and XML
Schema. However, both of these provide grammars to which conforming doc-
uments adhere to, and do not summarise the tree structure of the data sources.
In our schema transformation setting, schemas of this type are preferable as
this facilitates schema traversal, structural comparison between a source and
a target schema, and restructuring the source schema(s) that are to be trans-
formed and/or integrated. Moreover, such a schema type means that the queries
supplied with AutoMed primitive transformations are essentially path queries,
which are easily generated.

The AutoMed toolkit therefore supports a modelling language XML Data-
Source Schema (XMLDSS) which summarises the tree structure of XML doc-
uments, much like DataGuides [16]. XMLDSS schemas consist of four kinds
of constructs (see [28] for details of their specification in terms of the HDM):
Element, Attribute, PCData and NestList. The last of these are parent-child re-
lationships between two elements ep and ec and are identified by a scheme of
the form 〈〈i, ep, ec〉〉, where i is the position of ec within the list of children of ep

in the XMLDSS schema. In an XML document there may be elements with the
same name occurring at different positions in the tree. To avoid ambiguity, in
XMLDSS schemas we use an identifier of the form elementName$count for each
element, where count is a counter incremented every time the same elementName
is encountered in a depth-first traversal of the schema. An XMLDSS schema can
be automatically derived from an XML document, as discussed in [28], and it
is also possible to automatically derive an XMLDSS schema from a DTD or an
XML Schema specification, if available.

2.2 Clustering for Supporting Multiple IDs

While AutoMed is well-suited to the task of supporting transformations of data
source schemas into a global warehouse schema, it provides no mechanisms for
supporting the equivalence of inconsistent identifiers. Integrating data sources
usually results in incomplete matching of related entities in the different data
sets, either due to identifier redundancy or due to the use of different reference
identifiers. In the case of some biological databases, the percentage of entities
that can be matched using a single identifier can be very low. When trying to
match proteins from KEGG Gene to the Gene Ontology Gene Products less than
40% match, despite the sources nominally describing the same entities.

Data-based entity clustering provides a general approach to integrating any
set of logically related entities and hence supporting multiple identifiers. Under
this approach, an appropriate relatedness measure is developed (for example se-
quence or structure similarity), allowing each entity in the data being integrated



to be compared to each of the other entities and a similarity index derived. Once
the similarity measure values have been obtained they can be used to organise
the entities hierarchically into nested sets. Each level of nesting represents an
increasing degree of similarity between the entities contained in the set, allowing
each application built on the integrated data source to determine what is an
appropriate degree of clustering for that application. In the context of biological
data, for example, protein structure is conserved at low levels of sequence simi-
larity compared to function and therefore clusters with lower levels of similarity
can be used when structural annotation is desired rather than functional.

Having generated such sets of related entities, information applicable to each
set may be extracted and associated with that set. Moreover, an attribute which
is only defined for a subset of members may be inferred for remaining members
of a set if it is known that the attribute will be shared amongst similar entities.

Use of an appropriate similarity measure and clustering algorithm provides
sets of entities that represent the same ‘real world’ entity that may never have
been associated based purely on an identifier mapping. Sets of entities with a
lower level of similarity represent entities that are less closely related. While
this approach does not allow identification of identical entities, in biological
contexts it is often at least, if not more useful to identify similar entities, given
the incomplete knowledge about any individual entity.

This type of approach is applicable to many types of data. There is no in-
herent limitation on the type of clustering or the type or types of similarity
measures used to compare entities. For example given a measure of similarity
of scientific publications was available, the related articles could be organised
into clusters providing links between articles on similar topics. In the simplest
case this might be based on keyword matching, but other far more sophisticated
approaches are available.

3 Our Data Integration Framework
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Fig. 1. Architectural Overview of the Data Integration Framework



The architecture of our biological data integration framework is illustrated in
Figure 1. There are two principal sources of information for the Global Schema —
data sources and cluster data — which are processed in the same way but contain
different types of information. Each Data Source is an externally maintained re-
source that is to be integrated as part of the global database. A data source could
be a conventional relational or other structured database, or a semi-structured
data source, such as an XML file. Conceptually, a data source describes facts
about biological entities. Each Cluster Data resource is constructed from one or
more data sources and provides the basis for a generally applicable approach to
the integration of data lacking a common reference identifier as discussed in Sec-
tion 2.2 above. Conceptually, a cluster data resource provides a data-dependent
classification of the entities within data sources into related sets.

Each data source is either a structured data source such as a relational
database (in which case its associated Schema is a relational schema) or a semi-
structured file (in which case it may or may not have an associated schema). In
the latter case a schema appropriate for the data source can be generated by the
appropriate AutoMed wrapper (see [28, 1] for details of extracting schemas from
semi-structured data). Cluster data resources are maintained as relational data
with an associated relational schema. The schemas of data source and cluster
data resources are processed in the same way, and an arbitrary number of data
sources and methods of clustering can be integrated.

Some data sources do not contain a primary key identifier that is persistent
between versions of the resource. The lack of a persistent primary key identifier
makes the identification of changes between each version difficult. For such data
sources a non-volatile, primary key identifier is generated for each entity and
added to the data source. Persistent primary key identifiers provide a simple,
generic primary key for the higher level tools to use and enables synchronisation
of the warehouse with the changing content of the underlying data source.

Wrappers provided by the AutoMed Toolkit automatically generate the Au-
toMed internal representations of the Schemas and the Global Schema, and store
these in the AutoMed Metadata Repository. The AutoMed toolkit is then used to
generate the transformation pathways from the Schemas to the Global Schema.
These are described in detail with illustration from the example application in
Section 4.3 below.

Virtual Integration. After the integration process has been completed,
and the transformation pathways from a set of data source schemas to a global
schema have been set up, queries formulated with respect to the global schema
can be evaluated. Such a query is submitted to AutoMed’s Global Query Proces-
sor (see [18]) which first reformulates it into a query that can be evaluated over
the data sources. This is accomplished by following the reverse transformation
pathways from the global schema to the data source schemas in order to generate
view definitions of global schema constructs in terms of data source constructs.
These view definitions are substituted into the original query, which is then op-
timised. The query evaluator then interacts with the data source wrappers in
submitting to them IQL subqueries which they translate into the local query



language for evaluation, returning sub-query results back to the evaluator for
any further necessary post-processing and merging.

Materialised Integration. The current version of the BioMap warehouse
(see Section 4 below) was materialised using conventional SQL queries on re-
lational sources, before the AutoMed components of our architecture were in
place. This approach is labour intensive as the queries must all be manually
designed. Upcoming iterations of the warehouse will however be able to ben-
efit from AutoMed’s facilities for incrementally maintaining the warehouse. In
general, the data sources may be updated by the insertion, deletion or mod-
ification of data. Deltas on data sources may result in deltas on cluster data
resources also. Both kinds of deltas can be propagated through the AutoMed
transformation pathways up to the materialised global database (and to any
other materialised databases derived from it). In particular, the queries within
add and extend transformation steps can be used to compute a new set of deltas
from the current set of deltas, all the way up to the target database (see [14]).

4 Application of the Framework to Gene Family Based
Integration

The above architecture has been applied to biological data sources integrated
within the BioMap data warehouse. In this section we describe how the archi-
tecture has been applied and the results of the work to date.

4.1 The BioMap Warehouse

BioMap is a collaborative project to develop a warehouse integrating protein
family, structure, function and pathway/process data with gene expression and
other experimental data. The aim is to provide an integrated sequence/structure/
function resource that supports analysis, mining and visualisation of functional
genomics data (transcriptomic and proteomic). The warehouse is implemented
within Oracle, extending techniques developed for the CATH-PFDB database
[26] and is designed to serve as a source for data marts which will themselves be
constructed using the AutoMed techniques presented in this paper.

Current data sources include the CATH protein structure family database
[6], KEGG pathway database [20], Gene3D annotated protein sequence database
[21], Gene Ontology [9], EBI Macromolecular structure database (MSD) [4] and
ten other resources. Thus far, we have taken CATH, Gene3D, KEGG Gene,
KEGG Genome, KEGG Orthology, and also a CLUSTER data source discussed
below, representing a significant subset of BioMap data sources describing struc-
tural, functional, sequence and ontological information. These contain a diverse
set of data structures, formatting conventions and sizes to use for evaluation of
our data integration framework.



4.2 The Clustering Approach

There are a variety of methods for classifying biological entities into sets and
these methods can be used on the facts within the data warehouse. The facts
concerning individual entities within a set will not all derive from precisely the
same biological entity, but by choosing an appropriate algorithm to create the
sets, the set will contain valuable information about biological entities that are
similar (in some way) to each other. One such categorisation method is UniGene
[7]. Our categorisation method is based on the PFScape protocol [21] which is
in turn based on the TRIBE-MCL algorithm [3]. The PFScape protocol was
developed for Gene3D and has been adapted and improved for BioMap. In brief,
to construct Gene3D the peptide sequences of more than 120 completed genomes
were obtained from the NCBI and from ENSEMBL. An ‘all vs all’ BLAST
was performed using the blastpgp program from the NCBI. The BLAST was
performed using a cluster of 50 dual processor machines running GNU/Linux
using Sun Grid Engine. An e-value cut off of 0.001 was used. The results were
used to create a similarity matrix which was used by TRIBE-MCL to create
protein families.

Since then, many more completed genomes have become available, in partic-
ular the genome of the Rat. Other genomes have been revised. For the BioMap
project an extension of the PFScape protocol has been developed to update the
Gene3D families.

The complete genomes of more than 203 Archea, Prokaryotes and Eukaryotes
were downloaded from the EBI. For each sequence in Gene3D and the down-
loaded proteomes an md5 was calculated and an ‘all vs all’ BLAST performed.
The BLAST results were filtered using an 80 percent overlap cutoff to select only
the BLAST hits that represented whole chain matches. Each novel sequence was
assigned into the best hit family for each of the new sequences, or if no fam-
ily was identified then a new family was created. Within the protein families
multi-linkage clustering was performed based on sequence identity using clus-
ter thresholds of 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. The clustering was
performed using TCluster, a locally developed program.

To integrate the other data sources, a representative sequence was obtained
for each entity in the data source and a md5 calculated. The set of md5s that
were not present in the genomic sequences was then obtained. The sequences
corresponding to those md5s were then compared to the genomic sequences
using BLAST as described above. The entities were then classified in terms of
the genomic clusters based on their best hits.

4.3 The Integration Process

The integration process consists of the following steps, of which steps 3 to 6 are
explained in more detail below. Steps 1 and 2 are carried out automatically by
AutoMed’s relational wrapper, as mentioned in Section 3.

1. Automatic generation of the AutoMed relational schemas, LS1, . . . , LSn,
corresponding to the Data Source and Cluster Data Schemas.



2. Similarly, automatic generation of the AutoMed relational schema, GS, cor-
responding to the Global schema.

3. Automatic translation of schemas LS1, . . . , LSn and GS into the correspond-
ing XMLDSS schemas X1, . . . , Xn and GX.

4. Partial conformance of each schema Xi to GX by means of appropriate
rename transformations, to ensure that only semantically equivalent schema
constructs share the same name, and that all equivalent schema constructs
do share the same name. This results in a set of new schemas X ′

1, . . . , X
′
n.

5. Completing the conformance of each schema X ′
i to GX by applying an au-

tomatic XMLDSS schema transformation algorithm to each pair of schemas
X ′

i, GX, creating a set of new schemas X ′′
1 , . . . , X ′′

n .
6. Application of any necessary data cleansing transformations on each X ′′

i ,
creating a set of schemas GX1, . . . , GXn. As the integration of the schemas
up to this point does not involve any reference to the actual data, the data
cleansing does not have to be performed prior to this step.

In Steps 4 - 6, the pathways LS1 → X1, . . . , LSn → Xn generated by Step
3 are extended with further primitive transformations, leading finally to the
schemas GX1, . . . , GXn in Step 6.

Each GXi is identical to the global XMLDSS schema GX from Step 3. The
reverse of the pathway GS → GX generated in Step 3 can finally be appended
to each GXi to transform it into the relational global schema GS.

Step 3: Translating AutoMed relational to XMLDSS schemas. To
translate a relational schema into an XMLDSS schema we first generate a graph,
G, from the relational schema. There is a node in G corresponding to each table
in the relational schema. There is an edge from R1 to R2 in G if there is a foreign
key in R2 referencing the primary key of R1. In the given relation schemas there
are no cycles in G — in a general setting, we would have to break any cycles
at this point. We create a set of trees, T , obtained by traversing G from each
node that has no incoming edges, and we convert T into a single tree by adding a
generic root. We finally use T to generate the pathway from the relational schema
to its corresponding XMLDSS schema. This last phase consists of traversing T
and, for each node t encountered, doing the following:

(i) If t is the root, insert a PCData construct into the current schema, and then
insert the root itself as an Element construct.

(ii) else:
(a) insert t as an Element
(b) insert a NestList construct from the parent of t to t
(c) find the columns ci belonging to the table that corresponds to t, and

for each ci: insert ci as an Element construct; insert a NestList construct
from t to ci; and insert NestList constructs from ci to PCData.

(iii) For each child of t, t′i, treat t′i as t in step (i).
(iv) Remove the now redundant relational constructs from the schema.

To illustrate the translation, the top of Figure 2 illustrates a part of the
schema of the CLUSTER data source (where ASSIGNMENT TYPE ID in AS-
SIGNMENT TYPES is referenced by CLUSTER TYPE in CLUSTER DATA,



and the rest of the foreign keys have the same name as the primary keys they
reference). At the bottom, the XMLDSS schema that corresponds to this rela-
tional schema is illustrated. Similarly, Figure 3 illustrates a part of the relational
global schema and the corresponding AutoMed XMLDSS schema.
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Fig. 2. Top: part of the CLUSTER relational schema. Bottom: corresponding part of
the CLUSTER XMLDSS schema.

Step 4: Schema Matching. The XMLDSS schema transformation algo-
rithm used in Step 5 of the integration process assumes that if two schema con-
structs in a local schema and in the global schema, respectively, have the same
name, then they refer to the same real-world concept, and if they do not have the
same name, they do not. We do not currently support automatic schema match-
ing in our integration process. Thus, after the XMLDSS schemas are produced,
and before the application of the schema transformation algorithm in Step 5,
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Fig. 3. Left: part of the global relational schema. Right: corresponding part of the
XMLDSS schema.

the necessary rename transformations must be manually issued on each source
XMLDSS schema. These rename transformations effectively simulate a schema
matching phase and in our case they have been produced by a domain expert.
However, the AutoMed toolkit also offers a tool for performing semi-automatic
schema matching and generating the corresponding AutoMed transformation
pathways [1]. We also note that this schema matching step does not have to
be performed on the XMLDSS schemas, but could instead be performed on the
source relational schemas. The only necessity is for this step to be performed
before the application of the schema transformation algorithm.

In our running example, the domain expert produced the following rename
transformations on the XMLDSS schema in Figure 2:

rename(<<CLUSTER$1>>,<<GLOBAL$1>>);

rename(<<DESCRIPTION$1>>,<<ASSIGNMENT_DESCRIPTION$1>>);

rename(<<SEQUENCE_SOURCE_ID$1>>,<<PSEQID>>);

rename(<<SEQUENCE_SOURCE_ID$2>>,<<SEQUENCE_SOURCE_ID$1>>);

rename(<<SEQUENCE_SOURCE_ID$3>>,<<SSEQID>>);

rename(<<SEQUENCE_SOURCE_ID$4>>,<<SEQUENCE_SOURCE_ID$2>>);

rename(<<ASSIGNMENT_TYPE_ID$2>>,<<PASSID>>);

rename(<<ASSIGNMENT_TYPE_ID$3>>,<<ASSIGNMENT_TYPE_ID$2>>)

and the following rename transformation on the XMLDSS schema in Figure 3:

rename(<<SEQUENCE_SOURCE_ID$2>>,<<SSEQID>>)

Step 5: Automatic XMLDSS-based integration. The algorithm for
automatically transforming a source XMLDSS schema S into a target XMLDSS
schema T has three phases:

Growing phase: Traverse T in a depth-first fashion and for every schema
construct encountered that is not present in S, issue an add or extend transfor-
mation, resulting in an intermediate schema S1.



Shrinking phase: Traverse S1 in a depth-first fashion and for every schema
construct encountered that is not present in T , issue a delete or contract trans-
formation, resulting in an intermediate schema S2.

Renaming phase: Traverse S2 in a depth-first fashion and issue the neces-
sary rename transformations needed to rename the ordering labels of the NestList
constructs in order to create the correct ordering of these constructs, resulting
in a final schema ST syntactically identical to the target XMLDSS schema T .

For reasons of space, we refer the reader to [29] for a detailed description of
this algorithm. To illustrate the algorithm, we list below a part of the pathway
generated to transform the XMLDSS schema in Figure 2 to the XMLDSS schema
in Figure 3, after the earlier rename transformations of Step 4 have first been
applied. Here makelist is a built-in IQL function that takes a value v and a
number n and produces a list consisting of n copies of v:

add(<<0,GLOBAL$1,CLUSTER_DATA$1>>,

[{v0,v2}|{v0,v1}<-<<GLOBAL$1,SEQUENCE_SOURCES$1>>;

{v1,v2}<-<<SEQUENCE_SOURCES$1,CLUSTER_DATA$1>>]);

add(<<0,GLOBAL$1,SEQUENCES$1>>,

[{v0,v2}|{v0,v1}<-<<GLOBAL$1,SEQUENCE_SOURCES$1>>;

{v1,v2}<-<<SEQUENCE_SOURCES$1,SEQUENCES$1>>]);

extend(<<0,CLUSTER_DATA$1,ASSIGNMENT_DESCRIPTION$1>>,

[{v1,v2}|{v0,v1}<-<<ASSIGNMENT_TYPES$1,CLUSTER_DATA$2>>;

{v0,v2}<-<<ASSIGNMENT_TYPES$1,ASSIGNMENT_DESCRIPTION$1>>);

delete(<<1,GLOBAL$1,SEQUENCE_SOURCES$1>>,

makelist {’GLOBAL$1’,’SEQUENCE_SOURCES$1’}

(count <<SEQUENCE_SOURCES$1>>));

delete(<<1,SEQUENCE_SOURCES$1,PSEQID>>,

makelist {’SEQUENCE_SOURCES$1’,’PSEQID’}

(count <<PSEQID>>));

contract (<<1,PSEQID,PCData>>);

contract (<<PSEQID>>);

delete(<<2,SEQUENCE_SOURCES$1,CLUSTER_DATA$1>>,

makelist {’SEQUENCE_SOURCES$1’,’CLUSTER_DATA$1’}

(count <<CLUSTER_DATA$1>>));

delete(<<3,SEQUENCE_SOURCES$1,SEQUENCES$1>>,

makelist {’SEQUENCE_SOURCES$1’,’SEQUENCES$1’}

(count <<SEQUENCES$1>>));

contract(<<SEQUENCE_SOURCES$1>>);

The unwanted edges on the RHS of the XMLDSS schema of Figure 2 are
deleted/contracted similarly. A series of rename transformations then follows to
create a contiguous ordering of edges beneath a parent element.

Step 6: Data cleansing. After the local XMLDSS schemas have been con-
formed with the global XMLDSS schema, the domain expert can manually issue
any further necessary transformations to remove any representational hetero-
geneities at the data level. AutoMed transformations can express the transfor-
mation of data from one format to another in the same way as they can express
the transformation of schema structures. For example, consider in our running
example attribute DESCRIPTION in relation ASSIGNMENT TYPES (see Figure 2).
The extent of this attribute in the data source consists of mixed case strings.



In the CLUSTER XMLDSS schema this attribute is called DESCRIPTION$1. Af-
ter the partial conformance step (Step 4 in Section 4.3), the attribute has been
renamed to ASSIGNMENT DESCRIPTION$1. To turn the extent of this attribute
to uppercase strings before merging with the other data sources in the global
schema, the following transformations can be appended to the transformation
pathway resulting from the conformance step (Step 5 in Section 4.3):

add(<<0,ASSIGNMENT_DESCRIPTION$1,PCData>>,

[{v0,stringUpper v1} |

{v0,v1}<-<<1,ASSIGNMENT_DESCRIPTION$1,PCData>>]);

contract(<<1,ASSIGNMENT_DESCRIPTION$1,PCData>>);

rename(<<0,ASSIGNMENT_DESCRIPTION$1,PCData>>,

<<1,ASSIGNMENT_DESCRIPTION$1,PCData>>)

Here stringUpper is a built-in IQL function that converts all the alphabetic
characters in a string to upper-case. Several other string-handling functions are
supported by IQL e.g. stringLower, stringConcat and stringSplit. The IQL
query processor is implemented in such a way that extending it with new built-in
functions is straightforward.

In general with AutoMed, these kinds of data cleansing transformations can
take place at any stage of the integration process. It is also possible to incorporate
materialised correspondences between data values in source and target schemas
into data cleansing transformations — this extensional information is treated as
another data source.

Implementation and Results. The above integration process was car-
ried out on a Pentium 4 2.8Ghz, with 1Gb RAM and Linux as the operating
system. The Gene3D, KEGG Gene, KEGG Genome, KEGG Orthology, CATH
and CLUSTER data sources, and the global database are all Oracle databases.
The AutoMed repository is stored in a PostgreSQL database, and the AutoMed
toolkit itself is written in Java. The integration of each data source took under 15
minutes, resulting in a total running time of about 85 minutes. Many of the algo-
rithms are not yet fully optimised and therefore we expect a major performance
improvement as more optimisations are built into the AutoMed toolkit.

5 Conclusions and Future Work

This paper has presented a data integration framework for biological data sources
that combines techniques to support the diversity of data models, schemas and
formats which are characteristic of biological data together with a clustering ap-
proach developed to support distributed biological data sources with inconsistent
identification of biological objects.

The work we have described is this paper is currently being extended in a
number of areas. First, the approach is being applied to the other data sources
noted in Section 4 with further detailed evaluation of the results obtained. The
clustering approach is also being extended: while the use of sequence families
is described here, other methods of classification could be used including struc-
tural and many other approaches. We are currently working on a method that



integrates feature and domain recognition (hidden Markov model) approaches
to identify attributes of sequences. These attributes (i.e. a structural domain,
or a protein active site) can be used to form clades, within which the exist-
ing clustering information can be organised. This combination of two clustering
approaches will provide the best features of the extremely sensitive, but time
consuming scanning approaches with the less sensitive, but much faster simple
sequence comparisons.

In the BioMap warehouse we have so far successfully applied the AutoMed-
based techniques for the data cleansing, transformation and integration processes
as presented in Section 4. We are currently implementing AutoMed-based ma-
terialisation and maintenance of the global database, which have been manual
processes to date. Use of AutoMed will enable delta changes to be automati-
cally propagated to the global database as well as allowing schema changes to
accommodated.

The techniques presented on this paper have not so far been applied to inte-
grating textual data sources such as PubMed abstracts within BioMap. However,
work has already been done on extending AutoMed with facilities for integrating
unstructured text with structured data [27], and these techniques will be applied
to textual biological data sources.

A further collaborative project, ISPIDER, aims to develop Grid-based data
integration of biological data resources. The strengths of AutoMed for support-
ing bi-directional and incrementally constructed transformation pathways are of
particular value in a Grid environment, and work is being pursued on develop-
ing these techniques and integrating them with existing Web Service and Grid
middleware components for service discovery and metadata management.
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