
i

Jamie T. Walters

MSc Advanced Information Systems Project Report

School of Computer Science and Information Systems

Birkbeck, University of London

2007

IMPLEMENTATION OF AN SQL TO IQL QUERY

TRANSLATION COMPONENT FOR THE AUTOMED

TOOLKIT

This report is substantially the result of my own work

except where explicitly indicated in the text. I give my

permission for it to be submitted to the JISC

Plagiarism Detection Service.

The report may be freely copied and distributed

provided the source is explicitly acknowledged.

ii

I. TABLE OF CONTENTS

I. Table of Contents .. ii

II. Table of Figures ... v

III. List of Tables .. vi

IV. Abstract ... vii

V. Correction Page .. viii

1 Introduction .. 1

1.1 Description .. 1

1.2 Objectives .. 1

1.3 Methodology ... 1

2 Background Research .. 4

2.1 Automata .. 4

2.2 Grammars ... 5

2.3 Backus-Naur Form (BNF) ... 6

2.4 JavaCC ... 8

2.5 Lexical Analysis and Parsing .. 10

2.5.1 Lexical Analysis .. 10

2.5.2 Parsing ... 12

2.6 Database Systems ... 13

2.6.1 Database ... 13

2.6.2 Relational Database .. 13

2.7 Mediators .. 14

2.7.1 Global-as-View .. 15

2.7.2 Local-as-View .. 15

2.8 AutoMed Heterogeneous Data Integration System ... 16

3 Approach ... 18

4 Structured Query Language .. 20

iii

4.1 SQL .. 20

4.2 Select Statement ... 20

4.2.1 Select Clause ... 21

4.2.2 From Clause .. 22

4.2.3 Where Clause .. 22

4.2.4 Aggregation ... 22

4.2.5 Nested Queries ... 23

4.2.6 Set Operators .. 24

5 Intermediate Query Language .. 26

5.1 IQL Structure ... 26

5.2 IQL in AutoMed ... 28

6 Translating SQL to IQL ... 30

6.1 Data Types ... 30

6.2 Relational Calculus .. 30

7 Implementation .. 38

7.1 Implemented Solution .. 38

7.2 Tools .. 38

7.3 Structure ... 39

7.4 Grammar ... 40

7.5 Translation .. 41

7.6 Results ... 47

7.7 Error Reporting ... 47

7.8 Supported Query Types .. 48

8 Testing ... 50

8.1 Testing Results .. 51

8.1.1 Simple SELECT FROM .. 51

8.1.2 Simple SELECT FROM WHERE (Evaluating Numbers) ... 52

8.1.3 Simple SELECT FROM WHERE (Evaluating Strings) ... 53

8.1.4 Nested Queries in WHERE Clause. .. 54

8.1.5 Set Operators in the Outer Statement .. 56

iv

8.1.6 Nested Queries in the FROM Clause ... 57

8.1.7 Select With Aggregation ... 59

8.1.8 Select With Group By .. 60

8.1.9 Nested Set Operators .. 61

8.1.10 Aggregation over Grouping ... 63

8.1.11 Statement Validity Checking ... 64

9 Conclusion ... 68

9.1 Critical Review and Analysis .. 68

9.1.1 Background Research .. 68

9.1.2 Approach ... 69

9.1.3 Input .. 69

9.1.4 Translation .. 69

9.1.5 Results ... 71

9.1.6 Error Reporting ... 71

9.2 Future Work .. 71

10 References .. 73

v

II. TABLE OF FIGURES

2.1 - Simple Automaton ... 4

2.2 - Parsed Sentence .. 12

2.3 - Mediator Based Integration ... 14

2.4 - AutoMed Integration Model ... 16

2.5 - AutoMed Global Query Processor (GQP) ... 17

7.1 - The SQL Translator in AutoMed ... 38

vi

III. LIST OF TABLES

6-1 - SQL to IQL Set Operators ... 32

6-2 - SQL to IQL Comparison Operators ... 35

7-1 Created Java Classes .. 39

7-2 - Generated Java Classes .. 39

7-3 Supported Arithmetic and Aggregation Functions .. 49

7-4 Supported Query Types ... 49

vii

IV. ABSTRACT

IQL as AutoMed’s query language presents itself as a potential barrier to users. As a functional language

it is more expressive than SQL but is also more complicated to learn and understand. Its lower level

implementation however, allows for it to be readily translated to and from the higher level query

languages. This project, through background research, sought to establish the most suitable approach

towards implementing a solution for translating input queries from SQL to IQL. As the most suitable

approach, JavaCC, a parser generator was used to specify the grammar and translation rules. The

complexity of these rules varied with the types of queries being translated, however the underlying

support for relational algebra in both IQL and SQL created a common base for the translation process.

Although the resulting translator supports only subset of SQL queries, its modularity allows for it to be

readily extended to support any subset ANSI compliant SQL.

viii

V. CORRECTION PAGE

 1 of 74

1 INTRODUCTION

1.1 Description

The AutoMed Heterogeneous Data Integration System (AutoMed) developed by Birkbeck and

Imperial College, is an advanced heterogeneous data integration system implemented in Java using a

functional query language, IQL. IQL is a potential obstacle for users more familiar with the commonly

used Structured Query Language (SQL). This obstacle could be removed if users were able utilize the

AutoMed toolkit while using SQL. This project will develop a translator of SQL into the IQL language

used for executing queries on the AutoMed system (1).

1.2 Objectives

The main objective of this project is to develop an SQL-to-IQL query translator component for the

AutoMed toolkit. This will benefit AutoMed in two ways. Firstly, AutoMed will be more easily used

and learned as users will not need to learn a new query language. Secondly, it will make it easier for

AutoMed to interoperate with other existing SQL-based systems.

1.3 Methodology

1. Obtain an understanding of the AutoMed system

This will be achieved through literature review of the technical reports on AutoMed. There will be

a review of journals and conference reports from AutoMed developers. Further understanding

will be gained through examining the source libraries and practical work.

2. Examine the structure of IQL queries

IQL queries will be examined through review of AutoMed technical reports along with practical

exercises using the sample data distributed with AutoMed. A Tutorial on the IQL Query Language

(2)will be taken as the current technical report on the IQL language.

3. Examine the structure of SQL statements.

 2 of 74

SQL statements will be examined through a review of journals and books. Being the de facto

standard for queries, a thorough knowledge on the structure of SQL can be gleaned from its

grammar definition and BNF specification.

4. Investigate previous work on translating from other query languages into functional query

languages.

Literature review of any previous work done on query translations as well as any test suites,

source codes, procedures and problems encountered. Any previous work in the area would be

critically reviewed to refine the approach needed for this project.

5. Explore ways of translating between the structures of SQL and IQL

The previous step would provide a starting point for exploring the ways of implementing the

translation. Previous works on translating queries as well as the current environment in which

AutoMed is used are factors which need to be examined in order to decide on a suitable means

of translation.

6. Understand the use of parser generators and identify the most notable parser generator tools

currently available.

Parser generators are relatively underutilized development tools. Literature review and basic

practical use will be needed in order to determine the most suitable tools available.

7. Specify a parser generator specification for producing a translator that will translate SQL to IQL

Queries.

This step is entirely practical. The grammar for the translator will be specified incrementally and

the parser developed in stages. This will allow the developer to fully appreciate the issues

involved in creating a parser. This resulting modular parser that can then be readily extended as

support for different SQL features are added.

8. Test and improve the translator.

Test the accuracy of the translator in identifying components of a SQL statement and producing

an accurate IQL equivalent. The translator is continually checked and improved to achieve

maximum accuracy.

 3 of 74

9. To develop a suite of SQL test queries to (a) test the correctness of the translator component

(b) compare user SQL queries submitted to an AutoMed global schema to the SQL queries

submitted to local relational DBMSs

A test suite of different SQL statement types, conforming to ANSI SQL 1992 standard will be

developed to test the correctness of the input queries after being translated to the source

databases. The test suite should be comprehensive but not overly exhaustive as there is a time

constraint on the development of the translator. The results, with actual data, can be further

used to improve the accuracy of the translator.

 4 of 74

2 BACKGROUND RESEARCH

2.1 Automata

Automata Theory is the study of the abstract mathematical models of machines and the problems

they are capable of solving. Automata are used to study and test the limitations of computation and

focus on the decidability and the intractability of computers. Decidability tests whether or not a

problem can be solved while intractability determines the efficiency of the computer with respect to

the increase in size or complexity of the problem.

An automaton is a self operating electronic or mechanical device. An automaton consists of a finite

set of internal states which accept and respond to an external stimulus to produce an output based

on the transition rules applied to the internal states.

2.1 - Simple Automaton

Figure 2.1 is an example of a simple automaton. It accepts an input at s0 or the start state and

switches to a new state within the automaton based on the evaluation of the stimulus. The output

of each state determines the next state of the automaton. Figure 2.1, can be classified as a finite

automaton as there are a finite number of possible states (4) of the automaton. Finite automata

define a class of automata for which there exists a finite number of states, transitions and actions.

 5 of 74

The main concepts of the automata theory are alphabet, strings and languages. The alphabet may be

defined as some finite set of symbols; strings as a finite sequence of symbols derived from this

alphabet and the language as a set of strings such that all the symbols of the strings are derived

from this alphabet. In Figure 2.1, the alphabet is {A, B, C, D} while the strings, as shown could be

{AB}, {C D} or any combination of members of the alphabet.

Alan Turing attempted to define the boundaries of computing machines and created Turing

machines which exist as the most general form of automata. These machines could compute the

same types of algorithms as modern computers and as such, his tests and theories still apply to

modern computation. Turing machines can simulate the functionality of modern computers which

implement a category of automata called finite automata. These machines implement algorithms

defined in regular languages and grammars and are employed in the design and implementation of

modern computing languages and software solutions.

2.2 Grammars

Precisely defining natural languages has long been regarded as the primary work of linguist Noam

Chomsky. Chomsky sought to use mathematical representation to create a structured, flexible and

defined model for natural languages. One of his approaches, context-free grammars, was later

adopted for modelling computer languages where a grammar may be defined as:

… A quadruple (∑; V; S; P), where:

1. ∑ is a finite nonempty set called the terminal alphabet. The elements of ∑ are called the terminals.

2. V is a finite nonempty set disjoint from ∑. The elements of V are called the non terminals or

variables.

3. S ∈ V is a distinguished non terminal called the start symbol.

4. P is a finite set of productions (or rules) of the form

𝛼  𝛽

where α ∈ ∪ V *V ∪ V * is a string of terminals and non terminals at least one non terminal

and β is a string of terminals and non terminals. (3)

 6 of 74

There are four distinct types of grammars: type 3 or regular grammars, type 2 or context free

grammars, type 1 or context sensitive grammars and type 0 or unrestricted .This research is focused

on parsers created using context free grammars.

A Context-free grammar (CFG), more generally called a grammar is such that every production is

represented by the Backus-Naur form:

𝑉  𝑡

Where V is a non terminal and t is a terminal symbol from the language’s alphabet. Context free

grammars allow for flexible syntax structures and the definition strings in natural language. This is

then converted into the strict mathematical structures envisioned by Backus (see section 2.3).

Productions in CFG are generally in one of the two approaches; recursive inference or derivation. In

recursive inference, strings of the language body variables are concatenated with any terminals in

the body. From this it is inferred that the resulting string is in the language of the variable in the

head. Derivation involves expanding the start symbol and all subsequent strings by substituting

variables with a production until the string is comprised entirely of terminals.

Derivation grammars exist as either Leftmost (LL) grammars or rightmost LR grammars. In LL

grammars, the production rules are applied on the left most variable in the body of a production.

The leftmost variable must always be expressed as terminals before proceeding since left recursion

is not permitted. The production is resolved using the lookahead values LL(k) specified in the

grammar. Most LL grammars use a value of LL(1), with localised values to resolve ambiguities.

In LR grammars, the converse takes place. The grammar is read from left to right; however the

production rules are applied from right to left such that the rightmost variable must always be firstly

resolved to a terminal. Like LL grammars, the default lookahead value is LR(k), however, localised

values can be used to resolve ambiguities. LR grammars, are relatively easy to implement and can

detect syntactic errors more readily than LL grammars, however LL grammars are more easily

written.

2.3 Backus-Naur Form (BNF)

The Backus-Naur form of BNF is a system of representing context free grammars using metasyntax

notation. Created by John Backus and extended by Peter Naur, it was firstly used as a means of

describing the grammar of the Algorithmic Language (ALGOL). However BNF notation is now widely

 7 of 74

used to construct the grammars of programming languages, communication protocols and

instruction sets.

Backus-Naur notation (more commonly known as BNF or Backus-Naur Form) is a formal

mathematical way to describe a language, which was developed by John Backus (and possibly Peter

Naur as well) to describe the syntax of the Algol 60 programming language. (4)

The production rules of BNF define the syntax of the language being parsed. Each production

defines a category in the language and the strings which are valid instances of each category along

with the metasymbols used to define the structure of such the category.

The production is of the form:

< 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 >∶: = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 | 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑎𝑙

The category is a non terminal left of the metasymbol “: : =”, while to the right is its production rule.

The metasymbol “|” indicates an alternative terminal or non terminal and the productions can be

increasingly nested until it is expressed by a sequence of language terminals only.

Such that:

< 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 >∶: = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 | 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

Is resolved to:

< 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 >∶: = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 | (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 | 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)

and further:

< 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 >∶: = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 | (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 | (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙))

 BNF grammars typically consist of two main types: terminals and non terminals. Terminals are

defined as strings of the language for which there exists no production rules and as such cannot be

redefined with respect to the language. They are the alphabet of a language; defined by (3) as: “… a

finite nonempty set of symbols … assumed to be indivisible”. In standard programming languages

including Java, a terminal could be language reserved words such as do and for or simply an integer.

This is in contrast to language non terminals which cannot be consumed as tokens.

Non terminals are the symbols of the language for which there exists some production rule, such

that they can be substituted with a series of terminal or non terminal symbols or a combination of

both, to produce consumable language tokens by a lexical analyzer or parser. Non terminals, in BNF

 8 of 74

representation, are to the left of the production rules indicating that they must be substituted with

the symbols on the right.

The Extended Backus-Naur form (EBNF), provided for more flexible grammar constructs by allowing

for simple operators to be added to the grammar definition. It introduced metasymbols to specify

cardinality of the terminals and non terminals in a production rule. These new metasymbols include

“?” representing zero or more occurrences of a symbol, “*” representing zero or one occurrences of

a symbol or “+” representing one for more occurrences of a symbol. The metasymbol “*+” is used to

indicate that a symbol is optional in the production.

2.4 JavaCC

Java Compiler Compiler (JavaCC) is a parser generator and lexical analyser. Grounded in the Java

Language, JavaCC allows for the creation of parsers based on grammars defined using the Extended

Backus-Naur Notation (EBNF). As the products of the parser generation process, JavaCC builds Java

classes to implement lexical analysis, parsing, error and exception handling. This enables the

compiler to inherit the desirable characteristics of the Java language such as platform independence,

robustness and versatility.

Extended BNF notations are allowed in the JavaCC grammars. The support of eBNF (section 2.3)

enables the creation of many easily read grammars, and to an extent negates the need for left-

recursion grammar.

JavaCC EBNF Notation:

𝑆𝑡𝑟𝑖𝑛𝑔 𝑅𝑒𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑁𝑎𝑚𝑒():
{}
{
 (< 𝑆_𝑄𝑈𝑂𝑇𝐸𝐷_𝐼𝐷𝐸𝑁𝑇𝐼𝐹𝐼𝐸𝑅 > | < 𝑆_𝐼𝐷𝐸𝑁𝑇𝐼𝐹𝐼𝐸𝑅 >) ∗

{
}

JavaCC allows for the definition of context free grammars based on this general notation. The

language of the grammar can be defined as tokens of the form:

𝑇𝑂𝐾𝐸𝑁:

{

 < #𝐷𝐼𝐺𝐼𝑇: ["0" − "9"] >

}

 9 of 74

with the productions defined as simple Java methods of the form:

𝒗𝒐𝒊𝒅 𝑒𝑙𝑒𝑚𝑒𝑛𝑡() ∶ {}

{

(

 < 𝐶𝑂𝑁𝑆𝑇𝐴𝑁𝑇 >

)

}

This implementation of the production rules allows for the embedding of pure Java code at any level

of the compiler. This additional code is directly inherited by the resulting classes and allow for more

customized parsing, exception handling, user or machine interaction with the compiler.

However, more importantly it enables the use of “companion tools” such as Java Trees (JJTree) to

construct parse trees or binary abstract trees at runtime. Alternately embedded Java code can be

used to create any desired output based on the parsed source.

Context free grammars are produced by the JavaCC compiler using the top-down or LL approach (see

section 2.2). Using this approach, JavaCC grammars inherit the many advantages of LL grammars as

described in section 2.2 Owing to Java’s cross platform compatibility, a JavaCC generated parser may

be expected to parse any commonly used language, an advantage of LL grammars. Another key

advantage of the LL grammar in JavaCC, being its ability to pass attributes in both directions along

the parse tree. This is a useful feature for embedded companion tools such as JJTree, its tree

building pre-processor and JJDoc, its documentation generating tool. JJTree is used to build abstract

syntax tree (see section 2.5.2) outputs from the parser. This is not used in this project as an IQL

string is the required output format and any tree structure created would have to be deconstructed

into IQL string. Therefore an IQL string will be created as the direct output of the parsing process.

JavaCC allows for the grammar and the lexical specification to be included in a single source file. This

feature builds on the flexibility of JavaCC since a source file can contain at any level, regular

expressions and non terminal strings interwoven with the grammar specification. The grammar by

extension becomes much easier to develop, understood and maintained.

Another key feature of JavaCC is the ability of the programmer to define lookahead specifications at

both the local and global scope. JavaCC compiles parsers which by default use a lookahead value of

one. However as with many LL grammars, there often exist localized ambiguities where the default

lookahead value is insufficient for the analyser to deduce the underlying terminal or non terminals.

JavaCC provides for localized lookahead values (k), such that the default lookahead value is

maintained while the locally defined values are used to resolve these ambiguities. Where (k)

 10 of 74

represents the lookahead value or the number of tokens the parser needs to examine in advance

before deciding on the current token.

The case-sensitive property of the Java Language can be exploited in creating grammar specifications

which define strict case sensitive tokens. The tokens can be defined at both the local or global level

by setting the Boolean property ignore_case. This can be used to enforce the case of keywords or for

parsing case sensitive languages.

The debugging capabilities of JavaCC are more advanced than similar compiler compilers. Enabling

debugging options such as the debug_lookahead and debug_parser provides for a detailed overview

and analysis of the lexical analysis and parsing process. Debugging options allow for a JavaCC

developer to trace and identify consumed tokens and evaluate the accuracy of the parser. This is

particularly useful for resolving shift-shift ambiguities and determining localized lookahead values.

Error reporting is a vital requirement of parsers or lexical analysers. In this respect, JavaCC

implements advanced error reporting superior to most compiler compilers or parser generators. As

standard in any JavaCC parser generation, the TokenMgrError and ParseException error classes are

produced. By default, these classes produce highly detailed reports with error location and expected

tokens. These classes however, can be extended or directly modified to produce customized and

more detailed error reports and diagnostic information.

2.5 Lexical Analysis and Parsing

2.5.1 Lexical Analysis

Lexical analysis is one of the main stages of modern language translation: see (5) who state that

Language translation has three phases: lexical analysis, parsing, and code generation. Lexical

analysis is usually the first stage of the translation process and involves the reading of the source

code and producing, a formatted source according the grammar specification.

The lexical analyser may be summarised as

… the first phase of a compiler *whose+ main task is to read the input characters and produce as

[the] output, a sequence of tokens that the parser uses for syntax analysis. (6)

The lexical analyser also has the ability to execute certain secondary tasks at this early stage of the

process and enhance the compilers’ user interface.

 11 of 74

The lexical analyser strips the input source code of new line characters, white space, blank lines, and

tabs. In JavaCC these are defined as skip tokens at the beginning of the grammar specification in the

form:

𝑆𝐾𝐼𝑃:

{

 " "

|"\𝑟"

|"\𝑡"

|"\𝑛"

}

The analyser can maintain source code information such as line and character counts which can aid

in providing the compiler with an accurate error report to the user. This may be manipulated by the

developer to produce more specific error reports. The lexical analyser can also be used to implement

pre-processor functions during this phase, provided it is a supported feature of the compiler.

Lexical analysis may take place as two separate phases, the scanning and lexical analysis phase or as

a single harmonised phase. In the double phased approach, the scanning phase may be used for

stripping the source code while the actual analysis takes place in the second phase. The double

phased method allows for simplification of one of the phases such as removing non tokens in the

scanning phase and creates a more efficient analyser. Platform compatibility of the compiler is also

enhanced since platform dependent elements of the source code can be removed or substituted at

the lexical phase. JavaCC gains no real benefit from this since its Java source is natively platform

independent.

 Lexical analysis however, is very restricted in its ability to detect compiler or runtime errors. While

some stripping and substitution can take place, tokens such as strings or integers could have an

infinite number of matches, and an analyser is incapable of filtering such tokens. There is also the

limited ability to enforce agreement or select tokens based on the entire source structure. Such

properties of lexical analysers are inherently a result of having a localized view of the source. (6)

 12 of 74

2.5.2 Parsing

Parsing, which follows the lexical analysis phase, is used to determine if the strings given as input are

valid in the languages specified by the parser. The parser creates an abstract syntax tree in the

language of the grammar specified. An abstract syntax tree is an internal representation of a parsed

input. It is a data structure that can be envisioned as an inverted tree, with the parsed data

represented as the leaves.

2.2 - Parsed Sentence

In Figure 2.2, an English sentence, “Computers are interesting”, is represented in a parsed tree

according to the grammar of the English language. The leaves contain the parsed data from the input

sentence, while the root of the tree represents the input type being parsed. For this project, the

output is required in the format of an IQL string and as such a parse tree is not created as a part of

the translation process (see section 2.4).

As described in section 2.2, there exist primarily two forms of grammars; top-down or LL grammars

and bottom-up or LR grammars. As such there exist two types of parsing, top-down and bottom-up

parsing for the respective grammars. In the top-down approach, the root of the parse tree is first

resolved and this proceeds down to the leaves, while the alternative approach of resolving from the

leaves up the root is taken in the bottom-up approach. Most grammars, for development simplicity,

employ a top-down approach as these grammars are more easily constructed. However as discussed

in section 2.2, LR or bottom-up parsers are capable of handling a wider range of grammars but are

more difficult to construct.

Context free grammars (see section 2.2) are generally used to define modern programming

languages. These grammars are constructed by hand and then the corresponding parsers are

generated using parser generators such as JavaCC (see section 2.2) rather than coding the parser

 13 of 74

manually. This removes the need to create basic parser components such as a lexical analyser and

parser compiler which are already readily available.

2.6 Database Systems

2.6.1 Database

Data persistence at some level has always been a requirement in programming. Early primitive

systems stored data in ad-hoc flat files. These databases were designed for purpose, and with

minimal interoperability, required a recompilation of client programs subsequent to any semantic or

syntactic changes in the database. The lack of optimization, which was inherent in these databases,

resulted from the challenges associated with their fragmentation and redundancy.

A database is a formally defined, organized collection of related data about the real world which can

be accessed, shared and manipulated by users. In order to achieve this, modern databases are

required to store data in a defined format, as prescribed by its related metadata and schema. The

data must be stored independent of programs and users while remaining fully secured and

accessible to both. The Database Management System (DBMS), the component responsible for this,

further manages disk storage and optimization techniques for fast and efficient data management.

2.6.2 Relational Database

The Relational Database (RDBMS) exists as the most common database, with its basic object being

the table or relation. Each table is structured with a number of rows (tuples) along with columns

(attributes) with values describing each row. The relational model enforces constraints such as

unique identifiers, required attributes and table referencing where a tuple 𝑁 is related to some

other tuple 𝑀 in another table.

Through relational algebra, it supports the five basic operations of union, selection, difference,

projection and product. However, most RDBMSs implement a higher level language such as SQL to

allow users to express queries in a more meaningful manner. Common RDBMSs include Oracle,

Microsoft SQL Server and Postgre SQL

 14 of 74

2.7 Mediators

Heterogeneous database integration inherently poses problems of heterogeneity and autonomy. To

create a common data model and schema, integration takes three main approaches: Warehouse

integration, where all the data from the underlying local databases are imported into a central

database from where queries are executed. [This] emphasizes data translation, as opposed to query

translation in mediator-based integration (7). There is the Navigational Approach, a link-based

approach where users are required to manually browse WebPages until the desired data is found.

There is no relational model, and each link is simply a source satisfying the querying to different

degrees. The mediator approach occupies the middle ground with respect to these two approaches.

Client Client

Mediator Catalog

Wrapper WrapperWrapper

DatabaseDatabaseDatabase

2.3 - Mediator Based Integration

Mediator based integration, employs a series of transformation steps to map local data sources to a

common data model (CDM). Database wrappers encapsulate the heterogeneity of the local

databases. They translate queries, requests and the result set between the mediator and the

sources. The CDM, also used in data warehouses, harmonises the varied heterogeneous data models

such as SQL, Object-oriented and XML of the source databases. It is also used to express a global

schema over which queries are written. The conceptual schemas are the point of translation

between the local schemas and the CDM.

 15 of 74

The Mediator …concentrate[s] on query translation (7) and does not influence local data storage or

store data from the local sources. It is responsible for accepting and optimising global queries. The

mediator however, maintains a catalogue of wrappers, schemas and data sources (see Figure 2.3). It

passes sub-queries to the relevant wrappers, integrates the result sets and performs post query

functions such as grouping and sorting. The mediator cannot resolve source specific instructions or

queries aimed at specific sources.

2.7.1 Global-as-View

Integrating the databases involves using one of two main methods of mapping the schemas: the

Global as View approach (GAV) or the Local as View approach (LAV). In the GAV approach, the global

schema is defined as constructs over each local schema and a global query is simply a query over the

local schemas (8). The GAV approach thus facilitates querying across the local schemas, however, it

makes for a more difficult system to maintain since the addition or removal of sources requires a

redefinition of the global schema with respect to the current sources. This renders the GAV

approach to meditation less optimal for a large and diverse integration but recommended for a

mediator with a stable set of sources.

2.7.2 Local-as-View

In The LAV approach, however, the local export schemas are defined with respect to the global

schema. This improves the extensibility across large or ad-hoc databases since the onus is on the

local sources to create the export schemas as described by the global schema. Sources can be

readily added or removed with little or no changes to the system other than the changes in the

underlying data. However, this simplicity in integrating schemas makes the processing of queries a

more difficult process since the export schemas only represent the data in terms of the knowledge

of the global schema. This often represents only a partial view of all the underlying data and

extracting all the information from the sources becomes a complex task because one has to answer

queries with incomplete information (9).

The basic problem of LAV is that in order to answer a query on the global schema, the LAV rules

(defined as views of local schema constructs over the global schema) need to be rewritten somehow

and this problem is difficult.

 16 of 74

The disadvantages of both methods have prompted the suggestion for a combination of both views.

(10) The GAV and LAV are combined to create the both as view (BAV) integration as used in the

AutoMed mediator to create a reliable and scalable integration system while maintaining speed and

usability

2.8 AutoMed Heterogeneous Data Integration System

AutoMed is a mediator developed by Birkbeck and Imperial Colleges. Traditional heterogeneous

integration involved the use of a Common Data Model (CDM) using relational, object –oriented or

graph based approaches. The main drawback with this approach is the existence of a single data

model and by extension a single global schema.

The AutoMed approach implements a low level Hypergraph-based Data Model (HDM) to define the

higher level languages of Object Oriented, Relational or XML using the AutoMed Model Definitions

Repository (MDR) (11). This removed the limits of a single Data Model, but rather permits the use of

any model defined within the MDR. The HDM consists of nodes and edges in a Hypergraph such that

each higher level language is defined as a combination of these.

USnUSiUS3US2US1

LSnLSiLS3LS2LS1

GLOBAL SCHEMA

UNION

COMPATIBLE

SCHEMAS

LOCAL SCHEMAS

GS

id id

2.4 - AutoMed Integration Model

 17 of 74

AutoMed provides primitive transformations which can be applied to the constructs of a schema

expressed in any modelling language, 𝑀 . Through a series of transformations or composite

transformation, each local schema, 𝐿𝑆𝑖, in Figure 2.4, is transformed into a union compatible schema

𝑈𝑆𝑖 where 𝐿𝑆1𝑈𝑆1, 𝐿𝑆2  𝑈𝑆2, 𝐿𝑆𝑛 𝑈𝑆𝑛.

The resulting union schemas 𝑈𝑆1 … 𝑈𝑆𝑛 are syntactically identical. The transformation pathway is

expressed in terms of the changes in the constructs of the schemas where 𝑈𝑆𝑖  𝑈𝑆(𝑖 + 1) consist

of the transformation steps:𝑖𝑑(𝑈𝑆𝑖 ∶ 𝐶, 𝑈𝑆(𝑖 + 1) ∶ 𝐶). Where the 𝑖𝑑 is an additional type of

primitive transformation and the notation 𝑈𝑆𝑖 ∶ 𝐶 is used to denote the construct C appearing in

schema 𝑈𝑆𝑖 .This approach constitutes AutoMed’s both-as-view or BAV approach to schema

integration. The BAV approach is much superior to the GAV and the LAV approaches since it is

possible to define the global schema in terms of the source local schemas as well as define the

source schemas as views over the global schema. BAV represents a more expressive integration

approach since mappings can be expressed in both directions with no limits on the number of source

schemas that can be integrated (12).

Data source
Automed

Wrapper

Query

Processor
resultresult

queryquery
IQL IQL

IQL IQL

2.5 - AutoMed Global Query Processor (GQP)

AutoMed includes the AutoMed Global Query Processor (AQP) to evaluate mediator queries across

the global schemas. The AQP accepts queries which are reformulated, optimised and annotated

before being submitted to the AutoMed wrapper objects for evaluation against the local schemas.

AutoMed queries natively are expressed in the Intermediate Query Language (IQL), a lower level

functional language. However this maybe modified to accept higher level languages such as SQL and

XQuery (1).

 18 of 74

3 APPROACH

Implementing an SQL to IQL component for the AutoMed toolkit is potentially a complex task

requiring a lot of research, planning and implementation. The chosen approach, must be rigorous in

its reliability, accuracy and efficiency while remaining flexible towards customisation and

extensibility. The time constraints on the project require that any chosen approach also be modular

to enable usability of parts the solution while allowing for future completion. It should also be a

documented approach which would require minimal new knowledge to implement or modify.

The first possible approach examined, was the creation of a translator component in Java to accept

and convert SQL to IQL. With this approach the solution would be written in the same language as

AutoMed and could be simply added to the existing libraries. Implementation would require minimal

new knowledge with respect to the languages and would be relatively easier to maintain on

completion. Along with the inherited benefits of Java, the component would also benefit from being

written in the native language of the AutoMed toolkit. A disadvantage of this approach would be the

considerable programming effort needed to implement a translator for all possible combinations of

SQL statements. Achieving this would also result in a relatively complex and slow component which

would be challenging to maintain and extend. This defeats one of the main objectives of an

approach: to have a minimum implementation and maintenance time factor. To avoid this, a parser

generator could be used to generate a translator from a grammar specification.

Bison as a GNU parser generator was examined as the second possible approach. It is maintained by

Paul Eggert and Akim Demaille and available from http://www.gnu.org/software/bison.Creating a

parser specification would resolve the time constraint factor since it requires relatively less effort

than specifying a translator in raw code. Bison grammars are specified in BNF notation to generate

LALR (1) C or C++ parsers for varying language complexity. Bison requires that lexical analysis be

done by a third party tool such as The Fast Lexical Analyser (Flex) available from

http://flex.sourceforge.net. The reliability and speed of the C-based languages allows Bison to create

superior parsers which, with recompilation can be executed on any platform. As a disadvantage, the

use of C-based parsers would limit integration into AutoMed which is a Java based program. The

resulting parser would have to be re-compiled for all possible platforms. Adding an external lexical

analyser also creates an extra layer of complexity. This would reduce compatibility and increase

maintenance requirements, defeating the objectives of the chosen approach. The LALR (1) parsers

generated, are less efficient in resolving ambiguities than the LL grammars used in JavaCC (2.4), since

in comparison all tokens must be consumed before a choice is made (2.2). Although Bison parsers

 19 of 74

are also created in BNF notation, this falls short in specifying choices, sequences, loops and number

of terminals. As a result the grammars are more complex, difficult to understand and maintain. This

further limits the benefits of this approach which requires more advanced and compatible parser

generator.

Building a parser generator using JavaCC from https://javacc.dev.java.net/ or Java Cup from

http://www2.cs.tum.edu/projects/cup was taken as the most suitable approach. As discussed in 2.4,

the advantages of JavaCC make it a suitable tool for generating parsers. They key difference between

JavaCC and Java Cup being that JavaCC supports internationalization. This advantage is crucial if the

resulting parser is to be used for languages outside of the English language. Unlike pure Java, and

like Bison, JavaCC simplifies creating the translator through a relatively generic specification. This

obeys the time constraints of with respect to the implementation and maintenance of any complex

code. The Java background of JavaCC enhances compatibly with the toolkit and would require

minimal new knowledge. The resulting parser could be as simple as needed and readily extended

beyond the original specification. These advantages make JavaCC the most suitable approach for

implementation.

 20 of 74

4 STRUCTURED QUERY LANGUAGE

4.1 SQL

Structured Query Language (SQL) was developed by IBM in the mid 1970’s as means of querying

relational databases. SQL, over a short period of time, had become the de facto query language for

relational database management systems. It subsequently gained acceptance by the American

National Standards Institute and the International Organization for Standardization in 1986 and 1987

respectively. Further revisions were adopted in 1989, 1992, 1999, 2003 and 2006. This scope of this

paper is restricted to ANSI compliant SQL 1992.

As a declarative language, SQL remains confined to “what” instead of “how” when querying

databases. The advantage being simplicity as the user defines the conditions for the data set to be

returned, but almost always never provides any instructions on how the data is to be retrieved. This

task is undertaken by the database engine and varies with the Database Management Software. SQL

can be subdivided into two main parts; the Data Definition Language (DDL), and the Data

Manipulation Language (DML) for database management.

The DDL is used to define the database and its constituent objects. It is not involved in data

manipulation and includes the commands: 𝐶𝑅𝐸𝐴𝑇𝐸, 𝑈𝑆𝐸, 𝐴𝐿𝑇𝐸𝑅, 𝑎𝑛𝑑 𝐷𝑅𝑂𝑃. DDL is restricted to

database administrators is used to manipulate the database objects and schemas and to set

constraints, relationships, indices and namespaces.

The DML is the more commonly used sub-language and is routinely used by all database users for

inserting, retrieving, manipulating data. The DML includes the commands:

𝐼𝑁𝑆𝐸𝑅𝑇, 𝑈𝑃𝐷𝐴𝑇𝐸, 𝐷𝐸𝐿𝐸𝑇𝐸 and the most frequently used 𝑆𝐸𝐿𝐸𝐶𝑇. This project will be focused

on the translation of the 𝑆𝐸𝐿𝐸𝐶𝑇 statement subset of the DML sub-language.

4.2 Select Statement

The select statement comprises of three distinct parts: select, from and where. These parts can be

directly linked to the structure of relational algebra constructs, where the select clause is the

implementation of the projection operation. The from clause is the implementation of the Cartesian

product operation. The where clause corresponds with the selection predicate of the relational

algebra involving the attributes of the relations expressed in the where clause (13).

 21 of 74

For two collections M and N, both having attributes {𝑎, 𝑏, 𝑐} a typical SQL query, selecting {𝑎, 𝑏, 𝑐}

from M and N joining on attribute {𝑐} would be expressed as:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑎, 𝑏, 𝑐 Attributes- Select Clause

𝐹𝑅𝑂𝑀 𝑀, 𝑁 Relation – From Clause

𝑊𝐻𝐸𝑅𝐸 𝑀. 𝑐 = 𝑁. 𝑐; Predicate – Where Clause

The from clause is firstly evaluated, followed by the where clause and finally the select clause.

4.2.1 Select Clause

The select clause contains the list of attributes or columns that will be returned from the underlying

query. The standard select statement implies a 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 operation aimed at reducing the cost

overheads of eliminating duplicates from result set. The 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 function can be optionally applied

to remove duplicate tuples.

It may also contain aggregation and grouping functions that are applied to the attributes before

projection. These include numeric operators +, -, * and / as well as aggregators: sum, avg, min, max

and count. SQL allows for aggregation to be applied between attributes or a combination of

attributes and real numbers (e.g. 1.2, 2.5) or integers (e.g. 1, 2, and 3). A query, returning the

average of the sum of the attributes {a, b} of all tuples in M may be expressed as:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑎𝑣𝑔(𝑎 + 𝑏)

𝐹𝑅𝑂𝑀 𝑀;

With the exception of nested queries, SQL does not require fully qualified attributes, however where

attributes are common across multiple relations, this maybe done to reduce any potential

ambiguities. The select statement above could be expressed fully qualified as:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑎𝑣𝑔(𝑀. 𝑎 + 𝑀. 𝑏)

𝐹𝑅𝑂𝑀 𝑀;

In order to return all the attributes, the asterisk symbol could be substituted for attributes names

indicating that all the attributes resulting from the from clause be returned by the query. This is

expressed as:

𝑆𝐸𝐿𝐸𝐶𝑇𝑀.∗

𝐹𝑅𝑂𝑀 𝑀;

 22 of 74

4.2.2 From Clause

The from clause of the select statement contains the relations to be scanned while evaluating the

underlying query expression. An example is as follows:

𝐹𝑅𝑂𝑀 𝑀, 𝑁

When expressed as a statement with only select and from clauses, the from clause is evaluated as

the cartesian product of all the relations. Further filtering can be achieved by explicitly defining joins

or filtering in the where clause. Nested queries are fully supported in the from clause and like the

relations, can be manipulated within the query.

4.2.3 Where Clause

The where clause of the select statement is the filtering clause allowing a query to return those

tuples which are of interest to the user. It is expressed as follows:

𝑊𝐻𝐸𝑅𝐸 𝑀. 𝑎 > 5 𝑎𝑛𝑑 𝑁. 𝑏 < 10

This clause follows the from clause and consists of filtering conditions using the logical connectives

(and, not and or) as well as string and numeric comparison operators (<, >, =, >=, <=, <>). Both

string and numeric expressions can be evaluated as well as special types such as dates (13). Nested

queries are fully supported in the where clause and like the relations, can be manipulated within the

query.

4.2.4 Aggregation

SQL provides for five built in aggregation functions: avg, min, max, sum and count. Aggregation is

supported across different data types including strings and numeric types. However, the functions

avg and sum can only operate on numeric data types. A query, returning the average of the sum of

the attributes {a, b} of all tuples in M may be expressed as:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑎𝑣𝑔(𝑀. 𝑎 + 𝑀. 𝑏)

𝐹𝑅𝑂𝑀 𝑀;

 23 of 74

This query produces a result set containing a single value for the average value. The aggregation

function is more commonly used with group by functions to produce averages based on a common

grouping of tuples instead of the entire relation.

The retention of duplicate tuples will affect the accuracy of any aggregation function executed. In

relations, this maybe done on a commonly repeated attribute, such as a sales item attribute in a

sales table, the removal of any sales item tuple based on this attribute could result in an inaccurate

aggregate returned. Duplicates however can be eliminated using the distinct function when needed.

The distinct function, while legal by the SQL BNF, effects no changes to the result of max and min

and is not permitted with the count (*) function.

Where grouping is used along with an aggregation, further filtering can be accomplished by means

of the 𝑕𝑎𝑣𝑖𝑛𝑔 clause. This clause allows a higher level of filtering based on the values returned and

unlike the where clause, filters on groups of tuples rather than individually. The 𝑕𝑎𝑣𝑖𝑛𝑔 clause is

outside the scope of this implementation.

4.2.5 Nested Queries

SQL provides full support for the arbitrary nesting of sub-queries. A sub-query is a select-from-where

expression that is nested within another query (13). The nested query may be used in the from

clause in instead of a schema relation. The result set produced from the execution of the nested

query provides the tuples for the outer query. A query with nesting in the from clause may be

expressed as:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑇. 𝑎, 𝑇. 𝑏

𝐹𝑅𝑂𝑀

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑀. 𝑎, 𝑀. 𝑏

𝐹𝑅𝑂𝑀 𝑀

𝑊𝐻𝐸𝑅𝐸 𝑀. 𝑎 > 10

) 𝑎𝑠 𝑇; ~

When nested in the 𝑓𝑟𝑜𝑚 clause as a derived relation, the nested query must be renamed using

the 𝑎𝑠 clause and the attributes may also be renamed to avoid ambiguities in the result set. This

renaming can occur within the derived query or in the select clause of the outer query.

 24 of 74

SQL further allows for testing set membership using the 𝑖𝑛 or 𝑛𝑜𝑡 𝑖𝑛 functions. This is typically

employed in the 𝑤𝑕𝑒𝑟𝑒 clause for filtering. An example of testing for test membership is:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑎, 𝑏

𝐹𝑅𝑂𝑀 𝑁

𝑊𝐻𝐸𝑅𝐸 𝑎 𝑁𝑂𝑇 𝐼𝑁

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑎

𝐹𝑅𝑂𝑀 𝑀

𝑊𝐻𝐸𝑅𝐸 𝑎 > 10

);

Where, for each tuple in M, its attribute is evaluated for membership in the set returned from the

sub-query. The sub-query could return a single aggregate value and as such the where clause could

evaluate this using the standard comparison operators. Such an example would be:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑎, 𝑏

𝐹𝑅𝑂𝑀 𝑁

𝑊𝐻𝐸𝑅𝐸 𝑎 >

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑀𝐴𝑋(𝑎)

𝐹𝑅𝑂𝑀 𝑀

);

4.2.6 Set Operators

SQL supports full set operations including union, intersection, union all and minus. SQL requires that

the relations participating in the operation must be compatible. They must have the same number

and types of attributes.

The union and union all operators append both the results of both queries to produce a result set.

The union query by default eliminates duplicate tuples, however union all may be used when

needed to retain all tuples. A simple union query on all the attributes of M and N maybe expressed

as:

(𝑆𝐸𝐿𝐸𝐶𝑇 ∗

𝐹𝑅𝑂𝑀 𝑁)

𝑈𝑁𝐼𝑂𝑁

(𝑆𝐸𝐿𝐸𝐶𝑇 ∗

 25 of 74

𝐹𝑅𝑂𝑀 𝑀);

All the set operators can be similarly used. They can both be nested or contain full SQL nested

queries.

These represent the basic structure of SQL statements. More complex statements may be

constructed and are compared in section 6 below and tested in section 8 below.

 26 of 74

5 INTERMEDIATE QUERY LANGUAGE

5.1 IQL Structure

The AutoMed Intermediate Query Language (IQL) is a typed, comprehension-based functional query

language (1). IQL provides for a more expressive query language than higher level languages which

makes it ideal for querying mediators systems such as AutoMed.

Data in IQL can be expressed as strings in single quotes (e.g. ‘Jamie Walters’); real numbers such as

10.25; Boolean values (True, False) and integers (1, 2, 3…). A data collection is represented as tuples,

lists, sets or bags which can be nested or manipulated using the built-in functions and operators as

well as custom user defined functions (14).

As a functional language, IQL contains the basic built-in operators and functions (e.g. +, -, *, and,

not). These operators can be expressed in prefix form where they are enclosed in brackets, (-) 10 7,

or in the infix form, 10 – 7 where both expressions are equivalent and yield the same results (14).

As a query language, it can be used to express relational algebra constructs as is expressed in the

higher level languages such as SQL. These include operators, selection, projection and joins. For two

lists M and N consisting of tuples of the form {a, b, c}, an example set operation:

Union All of M and N is expressed as:

𝑀 𝑢𝑛𝑖𝑜𝑛 𝑁

Or

𝑢𝑛𝑖𝑜𝑛 𝑀 𝑁

The same applies for the remaining set operators: intersect (intersect), union (++) and minus (--).

Using IQL, a comprehension can be used to express selection or projection of tuples in a collection.

For the collection M as stated above, a projection returning all components {b, c} from all the tuples

in collection M may be expressed as:

[{𝑏, 𝑐} | 𝑎, 𝑏, 𝑐 𝑀]

The comprehension can be further used to express a selection of the tuples in M based on some

specified filtering restrictions. For the collection M as stated above, a projection returning the

 27 of 74

components {b, c} from all the tuples in collection M where the component c has a value greater

than ‘6 ‘ may be expressed as:

 𝑏, 𝑐 𝑎, 𝑏, 𝑐 𝑀; 𝑐 > 6]

Where relational data exists across several collections, the IQL comprehension syntax fully supports

the use of Cartesian products and joins to project a single collection of tuples over components from

all joined tables. A join of collection M and N on their c components, with a projection on {a, b},

maybe expressed in IQL comprehension as:

[{𝑎1, 𝑏1} | {𝑎1, 𝑏1, 𝑐1} 𝑀; {𝑎2, 𝑏2, 𝑐2} 𝑁; 𝑐1 = 𝑐2]

The built in functions and, or and not maybe used to create more complex joins using the Boolean

result of a combination of sub-filters in the join and selection clause. A more complex join of M and

N could be on both their b and c components:

[{𝑎1, 𝑏1} |{𝑎1, 𝑏1, 𝑐1}𝑀; {𝑎2, 𝑏2, 𝑐2}𝑁; ((𝑏1 = 𝑏2)𝑎𝑛𝑑 (𝑐1 = 𝑐2))]

Collections in IQL can be successively nested to build more detailed and useful result sets. This

permits IQL to support the nesting of any query that return a valid collection of tuples which can

then become the input for the outer query. The above query nested and filtered by the tuples with

b = 10 could be expressed in IQL comprehension as:

[{𝑎1, 𝑏1}|

{𝑎, 𝑏}  𝑎, 𝑏 𝑎1, 𝑏1, 𝑐1 𝑀; 𝑎2, 𝑏2, 𝑐2 𝑁; 𝑏1 = 𝑏2 𝑎𝑛𝑑 𝑐1 = 𝑐2 ;

 𝑏 = 10]

The IQL comprehension supports grouping and aggregation operations (14). These include: count,

sort, distinct, max, min, avg, sum and group. To count all the tuples in collection M:

𝑐𝑜𝑢𝑛𝑡 𝑀

To find the maximum value of component {a1} of all the tuples in M:

𝑚𝑎𝑥 [𝑎1 | {𝑎1, 𝑏1, 𝑐1} 𝑀]

 28 of 74

A comprehension, grouping on the components {a1, c1} in M and returning all components could be

expressed as:

𝑔𝑟𝑜𝑢𝑝 [{{𝑎1, 𝑐1}, 𝑏1} | {𝑎1, 𝑏1, 𝑐1}  𝑀]

 To apply both grouping and aggregation to a collection, the gc function is used along with the

aggregation function. For example, a query that groups collection M by its components {a1, b1} and

return the sum of {c1} across the resulting tuples would be expressed as:

𝑔𝑐 𝑠𝑢𝑚 [{{𝑎1, 𝑏1}, 𝑐𝑏1} | {𝑎1, 𝑏1, 𝑐1}  𝑀]

5.2 IQL in AutoMed

In AutoMed, IQL is used to express the add, contract, extend and delete transformations used to

create the global schema. However, it is also the language used to express queries over the any of

the schemas defined within the AutoMed Schema Transformation Repository (2.8).

An example of an AutoMed IQL query is:

(𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 [{𝑐𝑛, 𝑢} | {𝑐, 𝑐𝑛}  ‹‹𝑐𝑜𝑢𝑟𝑠𝑒, 𝑐𝑜𝑢𝑟𝑠𝑒𝑛𝑎𝑚𝑒››; {𝑐, 𝑢}  ‹‹𝑐𝑜𝑢𝑟𝑠𝑒, 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒››; 𝑐 > 10)]

This statement returns a unique list of coursenames and programmes where the value of the key of

each tuple is greater than 10.

The comprehension consists of primarily two parts

{𝑐𝑛, 𝑢} | Head

{𝑐, 𝑐𝑛}  ‹‹𝑐𝑜𝑢𝑟𝑠𝑒, 𝑐𝑜𝑢𝑟𝑠𝑒𝑛𝑎𝑚𝑒››; {𝑐, 𝑢} ‹‹𝑐𝑜𝑢𝑟𝑠𝑒, 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒››; 𝑐 >

 10)]

Body

The head of the IQL comprehension is equivalent to the select clause in a standard SQL query. It

contains the attributes to be returned from the resulting result list along with any functions and

aggregation to be done on the columns or the result set.

 29 of 74

The body of the comprehension is the section of the IQL query contained after the “|” character. The

body comprises of the generators and the filters:

 𝑐, 𝑐𝑛  ‹‹𝑐𝑜𝑢𝑟𝑠𝑒, 𝑐𝑜𝑢𝑟𝑠𝑒𝑛𝑎𝑚𝑒››;

 {𝑐, 𝑢} ‹‹𝑐𝑜𝑢𝑟𝑠𝑒, 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒››;

Generators

𝑐 > 10 Filters

Each generator consists of a schema construct and the pattern of the attributes being returned:

 𝑐, 𝑐𝑛

Pattern

‹‹𝑐𝑜𝑢𝑟𝑠𝑒, 𝑐𝑜𝑢𝑟𝑠𝑒𝑛𝑎𝑚𝑒››; Scheme

The generator returns a list of tuples with two attributes: the key of the schema construct and the

attribute. This limits each generator to returning a single attribute, requiring a new generator for

each attribute to be returned from a table. There is no requirement for the variable names of the

attributes in the pattern to match the names in the schema. The relation between both is resolved

by the position of each variable name in the pattern. Variable names are local to a schema or a

comprehension and any external reference is resolved using the variable patterns.

The filter in an IQL query equates to the where clause of SQL statements. The filter clause is used for

refining selection or creating joins. The structure of filter is discussed in more detail in section 6.2.

The AutoMed implementation supports the arbitrary nesting of queries, the use of functions and the

supported relational algebra constructs of IQL. A comparison of the languages and the translation

issues involved is discussed in the following chapter. The SQL must be translated accurately by

adhering to the definition of an IQL comprehension.

 30 of 74

6 TRANSLATING SQL TO IQL

The AutoMed Intermediate Query Language (IQL) is a typed, comprehension-based functional query

language. As a functional language, IQL provides for a more expressive language for querying which

makes it ideal for use in mediator environments such as AutoMed (1). IQL is a common language

which can be readily translated to and from higher level languages such as SQL and XQuery (1).

Previous work has been done in this area however; there is need for an SQL translator to make

AutoMed more accessible to users

6.1 Data Types

IQL like SQL supports integers (e.g. 0, 1, and 2) and Boolean types (e.g. True | False) as well as floats

(e.g. 1.5, 0.012); implemented as Java primitives. It also supports strings enclosed in single quotes

(‘e.g. Jamie’) and date time objects (e.g. dt ‘2007-08-14’), both of which are represented as Java

String objects. Other data types supported include lists (e.g. 1, A, C), bags and sets

6.2 Relational Calculus

Like the higher level languages such as SQL, IQL provides full support for relational calculus. For

simplicity and to aid in formatting, some columns have not been expressed in this section in a fully

qualified format. However, the translator requires fully qualified SQL statements and produces fully

qualified IQL queries. The following SQL statement:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑖𝑑, n𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓

𝑊𝐻𝐸𝑅𝐸 𝑖𝑑 > 5;

Would be expressed in IQL as:

[{𝑖𝑑, 𝑛𝑎𝑚𝑒}| 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑛𝑎𝑚𝑒  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑖𝑑  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››; 𝑖𝑑 > 5]

The simple select statement in IQL consist of a head: (𝐼𝐷 𝑁𝑎𝑚𝑒 |) This equates to the 𝑆𝐸𝐿𝐸𝐶𝑇

clause the SQL query statement and contains the attribute of the tuples to be returned by the query.

The second part of the query is the

 31 of 74

comprehension: ({𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑛𝑎𝑚𝑒}  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››; {𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑖𝑑}  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››;) which equates

to the 𝐹𝑅𝑂𝑀 clause and the filter: (𝑖𝑑 > 5]) which equates to the 𝑊𝐻𝐸𝑅𝐸 clause of the query

statement.

IQL supports all the functions of relational algebra which are also supported by the higher level

query languages. It supports the set operators 𝑈𝑁𝐼𝑂𝑁 , 𝑈𝑁𝐼𝑂𝑁 𝐴𝐿𝐿 , 𝐼𝑁𝑇𝐸𝑅𝑆𝐸𝐶𝑇 and

𝐷𝐼𝐹𝐹𝐸𝑅𝐸𝑁𝐶𝐸.

For example the following SQL UNION ALL statement:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑖𝑑, 𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓

𝑊𝐻𝐸𝑅𝐸 𝑖𝑑 > 5;

𝑈𝑁𝐼𝑂𝑁 𝐴𝐿𝐿

𝑆𝐸𝐿𝐸𝐶𝑇 𝑖𝑑, 𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ;

𝑊𝐻𝐸𝑅𝐸 𝑖𝑑 > 5;

would be expressed in IQL as:

([{𝑖𝑑, 𝑛𝑎𝑚𝑒}| {s𝑡𝑎𝑓𝑓𝑃𝐾, n𝑎𝑚𝑒}  ‹‹𝑠𝑡𝑎𝑓𝑓, n𝑎𝑚𝑒››;

 {𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑖𝑑}  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››; 𝑖𝑑 > 5])

 + +

([{id, 𝑛𝑎𝑚𝑒}| {𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑃𝐾, 𝑛𝑎𝑚𝑒}  ‹‹𝑠𝑡𝑢𝑑𝑒𝑛𝑡, n𝑎𝑚𝑒››;

 {𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑃𝐾, 𝑖𝑑}  ‹‹𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑖𝑑››; 𝑖𝑑 > 5])

The second list or bag is simply appended to the first maintaining duplicate tuples. The SQL 𝑈𝑁𝐼𝑂𝑁

has an equivalent operator in IQL. Where a query such as 𝑈𝑁𝐼𝑂𝑁 𝐴𝐿𝐿 returns duplicates, the

DISTINCT function 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑠𝑒𝑡1 + + 𝑠𝑒𝑡2 can be used to remove duplicates and create the

equivalent UNION result list. Alternatively the 𝑈𝑁𝐼𝑂𝑁 operator in IQL (𝑈𝑁𝐼𝑂𝑁 𝑠𝑒𝑡1 𝑠𝑒𝑡2) creates

an SQL 𝑈𝑁𝐼𝑂𝑁 equivalent result set.

The SQL INTERSECT statement:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑖𝑑, 𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓

𝑊𝐻𝐸𝑅𝐸 𝑖𝑑 > 5;

𝐼𝑁𝑇𝐸𝑅𝑆𝐸𝐶𝑇

 32 of 74

𝑆𝐸𝐿𝐸𝐶𝑇 𝑖𝑑, 𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝑊𝐻𝐸𝑅𝐸 𝑖𝑑 > 5;

Is represented in IQL as

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

[𝑖𝑑, n𝑎𝑚𝑒 | {𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑛𝑎𝑚𝑒}" " ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑖𝑑  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››; 𝑖𝑑 > 5]

 {𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑃𝐾, 𝑛𝑎𝑚𝑒}" " ‹‹𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑛𝑎𝑚𝑒››;

 {𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑃𝐾, 𝑖𝑑}" " ‹‹𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑖𝑑››; 𝑖𝑑 > 5]

The intersect operator produces a similar result set as its SQL equivalent, the only difference being in

the construct of the query. Other set operators can be easily translated into an IQL equivalent

construct. The complete translation functions for the SQL union operators are listed in table

6-1 - SQL to IQL Set Operators

.

SQL IQL

UNION union

UNION ALL ++

INTERSECTION intersection

MINUS --

6-1 - SQL to IQL Set Operators

Like SQL, IQL can be used to express projection over the tuples of a list or table. For any result set or

table T, containing columns {𝑎, 𝑏, 𝑐} and SQL projection of {𝑎, 𝑐} across the tuples, would be

expressed as:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑎, 𝑐

𝐹𝑅𝑂𝑀 𝑡;

In IQL this is represented as:

[{𝑎, 𝑐} | 𝑎, 𝑏, 𝑐  𝑇]

For specifying components of the tuples in both languages, translation is relatively easy in both

directions. However, one limitation of the lower-level IQL language is the inability to simply project

 33 of 74

on all the components of the tuple with no knowledge of the underlying schema. This is an option

frequently used in SQL and is expressed as:

𝑆𝐸𝐿𝐸𝐶𝑇 ∗

𝐹𝑅𝑂𝑀 𝑇;

The equivalent IQL projection would require knowledge of the components of the tuple and

expressed more precisely as:

[{𝑎, 𝑏, 𝑐} | 𝑎, 𝑏, 𝑐  𝑇]

Translating this SQL command would require pre-fetching of the IQL schema to resolve the tuple

components. However this would only be possible where a projection is being made across a known

table or view and require a complex task of maintaining the flow of tuples up the query structure

from the lowest nested table. Projection is usually the done over some underlying selection function.

Selection in SQL is represented in the body of the query statement as the FROM and WHERE clauses

combined. For example in the SQL statement:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑖𝑑, 𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓

𝑊𝐻𝐸𝑅𝐸 𝑖𝑑 > 5;

This selection is interpreted as returning the id and name components of all tuples in the relation

staff, where the id component is greater than 5. IQL similarly supports selection in comprehension

as:

[{𝑖𝑑, 𝑛𝑎𝑚𝑒}│ 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑛𝑎𝑚𝑒}" " ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑖𝑑  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››; 𝑖𝑑 > 5]

This is a relatively straightforward translation of the select statement into an IQL comprehension.

The comparison operators (e.g. <>) of IQL differ from that of standard SQL (e.g. <>, ! =) and would

require translation and decomposition of the 𝑊𝐻𝐸𝑅𝐸 clause to create an IQL compatible filter.

IQL supports the relational algebra Cartesian product and joins. Cartesian products are cost intensive

database queries where each row of the first table is joined with every row of the second table to

create all possible combinations of the two tables. An example of the cartesian product of two tables

in SQL is represented as:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑛𝑎𝑚𝑒, 𝑖𝑑

 34 of 74

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡;

In IQL this is represented as:

[{𝑖𝑑, 𝑛𝑎𝑚𝑒}│ {𝑥𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑛𝑎𝑚𝑒}" " ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 {𝑥𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑃𝐾, 𝑖𝑑}" " ‹‹𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑖𝑑››]

A standard join is expressed as

𝑆𝐸𝐿𝐸𝐶𝑇 𝑠𝑡𝑎𝑓𝑓. 𝑛𝑎𝑚𝑒, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡. 𝑖𝑑

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝑊𝐻𝐸𝑅𝐸 𝑠𝑡𝑎𝑓𝑓. 𝑖𝑑 = 𝑠𝑡𝑢𝑑𝑒𝑛𝑡. 𝑖𝑑;

Is expressed in IQL as:

[𝑖𝑑, 𝑛𝑎𝑚𝑒 | 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑛𝑎𝑚𝑒  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑃𝐾, 𝑝𝑖𝑑  ‹‹𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑖𝑑››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑖𝑑  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››;

 𝑝𝑖𝑑 = 𝑠𝑖𝑑]

This query joins the staff and student table over the id column and projection on the 𝑖𝑑, 𝑛𝑎𝑚𝑒

tuple components. This is an extended method of creating joins on tables in IQL as its variable

unification support allows for simple, compact and optimized query writing. Duplicate variable

names are allowed in comprehensions, where a duplicate variable indicates a join on table using the

tuple components represented by the duplicate variables. The IQL query processor will rename the

variables, eliminating duplicates and creating the fully qualified comprehension. The IQL query:

[{𝑖𝑑 𝑛𝑎𝑚𝑒}| 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑛𝑎𝑚𝑒  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑃𝐾, 𝑝𝑖𝑑  ‹‹𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑖𝑑››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑖𝑑  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››

 ; 𝑝𝑖𝑑 = 𝑖𝑑]

Could be written by a user as:

[𝑖𝑑, 𝑛𝑎𝑚𝑒 | 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑛𝑎𝑚𝑒  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑃𝐾, 𝑖𝑑  ‹‹𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑖𝑑››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑖𝑑  ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››]

 35 of 74

This would be resolved by IQL to the longer formed query which is then passed on to the query

processor.

One of the main differences in the translation of the where clause is the set membership function.

This common SQL function is used to test the membership of tuples to a specified collection which

could be another derived table. In SQL this is represented as:

𝑊𝐻𝐸𝑅𝐸 𝑥 𝐼𝑁 𝑅;

The IN function does not exist in IQL and the alternative member function or its negated form is

used. This query would be expressed in IQL simply as:

𝑚𝑒𝑚𝑏𝑒𝑟 𝑅 𝑥

The NOT IN SQL function would be expressed as:

𝑛𝑜𝑡 (𝑚𝑒𝑚𝑏𝑒𝑟 𝑅 𝑥)

The complete list of comparison operators as translated in the where clause is listed on table 6-2

- SQL to IQL Comparison Operators

.

> >

< <

<> <>

= =

in member

not in not(member)

like like

not not

6-2 - SQL to IQL Comparison Operators

Like SQL, IQL can be arbitrarily nested to include ad hoc derived tables in both the FROM and

WHERE clauses. The key difference in IQL being that unlike, SQL, the outer query must accept all

the columns returned by the nested query. This as IQL implements a list collection to return the

results, and the names of variables or columns are local to a comprehension and cannot be seen

 36 of 74

by the outer query. The order of the columns must be maintained so that the columns are

correctly assigned.

The SQL query:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀

(𝑆𝐸𝐿𝐸𝐶𝑇 𝑠𝑡𝑎𝑓𝑓. 𝑛𝑎𝑚𝑒, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡. 𝑖𝑑

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠

𝑊𝐻𝐸𝑅𝐸 𝑠𝑡𝑎𝑓𝑓. 𝑖𝑑 = 𝑠𝑡𝑢𝑑𝑒𝑛𝑡. 𝑖𝑑)𝐴𝑆 𝑝𝑒𝑜𝑝𝑙𝑒;

Would be represented in IQL as:

[{ 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒 } | {𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑} ←

 [{ 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑖𝑑 } | 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒 ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑃𝐾, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑖𝑑 ← ‹‹𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑖𝑑››;

 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑 = 𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑖𝑑]

Unlike the SQL statement, both attributes from the derived IQL comprehension

{𝑃𝑒𝑜𝑝𝑙𝑒. 𝑛𝑎𝑚𝑒, 𝑃𝑒𝑜𝑝𝑙𝑒. 𝑖𝑑} are referenced in the outer query. This difference would require

additional translation rules to maintain, track and reference all nested queries.

Grouping and aggregation remains relatively similar to SQL queries. IQL allows for grouping or

aggregation on single or multiple columns, with a change in the syntax. While an SQL statement

allows grouping over aggregation over multiple columns in a single statement, IQL only allows a

single aggregation in each comprehension and multiple aggregation is represented as a series of

nested comprehensions where the outer comprehension returns each a list of all the aggregation as

a single result set. This makes it more complicated to manage multiple aggregations the SQL

statement:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑚𝑎𝑥(𝑝𝑒𝑜𝑝𝑙𝑒. 𝑖𝑑), 𝑚𝑖𝑛(𝑝𝑒𝑜𝑝𝑙𝑒. 𝑛𝑎𝑚𝑒)

𝐹𝑅𝑂𝑀 𝑝𝑒𝑜𝑝𝑙𝑒;

Would be represented in IQL as:

[{ 𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑,

𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒 } |

{ 𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑 } ←

 [𝑚𝑎𝑥 { 𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑 } | 𝑝𝑒𝑜𝑝𝑙𝑒𝑃𝐾, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑 ← ‹‹𝑝𝑒𝑜𝑝𝑙𝑒, 𝑖𝑑››;

 𝑝𝑒𝑜𝑝𝑙𝑒𝑃𝐾, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒 ← ‹‹𝑝𝑒𝑜𝑝𝑙𝑒, 𝑛𝑎𝑚𝑒››];

 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒 ←

 37 of 74

 [𝑚𝑖𝑛 { 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒 } | 𝑝𝑒𝑜𝑝𝑙𝑒𝑃𝐾, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑 ← ‹‹𝑝𝑒𝑜𝑝𝑙𝑒, 𝑖𝑑››;

 𝑝𝑒𝑜𝑝𝑙𝑒𝑃𝐾, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒 ← ‹‹𝑝𝑒𝑜𝑝𝑙𝑒, 𝑛𝑎𝑚𝑒››];]

Group by functions are relatively similar between IQL and SQL.

The SQL:

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑖𝑑, 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑜𝑝𝑙𝑒

𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑖𝑑;

Would be translated as:

𝑔𝑟𝑜𝑢𝑝 [{𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑,

 {𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒 }} |

{𝑝𝑒𝑜𝑝𝑙𝑒𝑃𝐾, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑} ← ‹‹𝑝𝑒𝑜𝑝𝑙𝑒, 𝑖𝑑››;

 {𝑝𝑒𝑜𝑝𝑙𝑒𝑃𝐾, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑜𝑝𝑙𝑒, 𝑛𝑎𝑚𝑒››]

The group by clause is moved to the head of the comprehension and the grouping co column

separated using parenthesis and commas. This is straightforward and requires simple rules, while

making no changes to the body of the comprehension.

Having identified the possible areas for attention in translating from IQL to SQL, the translator can

be implemented based in these defined rules. The approach provides a suitable development

environment and language to create an accurate and useable solution.

 38 of 74

7 IMPLEMENTATION

The approach chosen for the implementation was the creation of a parser generator using the

JavaCC tool. This required the specification of an LALR grammar which would then be compiled into

a Java class and integrated into the AutoMed toolkit. The implementation required several steps and

methods. The translator is platform independent; however it requires Java virtual machine.

7.1 Implemented Solution

7.1 - The SQL Translator in AutoMed

Using the approach chosen, an SQL translator would be integrated into the AutoMed toolkit as

shown in figure 7.1. The translator, created using Java would accept the SQL queries, translate them

to the equivalent IQL representation and submit them to the AutoMed Query Processor. The AQP

would return the IQL formatted query results to the translator. The results would then be formatted

by the translator and returned to the user.

7.2 Tools

The JavaCC grammar was specified using the Eclipse IDE tool (http://www.eclipse.org) and the

Eclipse JavaCC plug-in (http://sourceforge.net/projects/eclipse-javacc). The plug-in allows for the

specification of grammars in an interactive and efficient environment. The grammars can be created

as classes in a Java project and compiled and tested incrementally. The compilers used for the

project were JavaCC 4.0 for compiling the grammars and Java SE 1.4.2 for compiling the generated

classes. This was done as AutoMed is compatible with this version and any differences would reduce

the stability and compatibility of the translator.

 39 of 74

7.3 Structure

The parser is constructed as two separate Java files, a JavaCC and a main Java file for executing the

translator and passing the IQL query back to the requestor. The JavaCC compiler creates, as part of

the compilation process, multiple Java classes for parsing and error handling. The resulting files may

be manually edited to improve the quality of the translation process.

Created

parseSql.jj

ParserMain.Java

7-1 Created Java Classes

Generated

ParseException.Java

parseSqlConstants.Java

parseSQLTokenManager.Java

SimpleCharStream.Java

Token.Java

TokenMgrError.Java

7-2 - Generated Java Classes

The main class, ParserMain.Java, contains the methods needed to receive an SQL statement from

another program or command line user. This class, when run independently prompts the user for a

complete SQL statement which is determined by checking for the input of a semicolon. It then

invokes the parserSQL class which translates the SQL and returns the IQL to the requestor. The error

handling classes ParseException.Java and TokenMgrError.Java are used to catch and report errors

from the parsing process. The generic error reporting features of JavaCC are further improved to

provide a less generic error message and aid the user in identifying where problems were detected

in the SQL statement. This is achieved by caching the user input and comparing this with the location

of any lexical or parser errors reported by the translator.

 40 of 74

The parser was incrementally developed to allow for a smoother development process and for the

developer to adjust to, and fully appreciate the JavaCC environment. The development involved the

following stages:

 Identify tokens and keywords

 Create specification for basic SQL statement: 𝑆𝐸𝐿𝐸𝐶𝑇 𝐹𝑅𝑂𝑀

 Add support for aggregation

 Add support for nested queries in 𝐹𝑅𝑂𝑀 clause

 Add support for set operators

 Add support for 𝑊𝐻𝐸𝑅𝐸 clause

 Add support for nested queries in 𝑊𝐻𝐸𝑅𝐸 clause

 Add support for 𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 clause

 Implement parsing rules in the same order

7.4 Grammar

The first stage of the implementation was to define the grammar of the translator. The grammar is

constructed as a JavaCC class file which is then compiled into a Java class file. The structure of the

grammar consists of the options, class declaration, lexical specification and the syntax specification.

The options section, defines any parser specific option including cases sensitivity and debugging

options. The parser was set to ignore case as SQL has no cases sensitivity.

The class declaration section was used to declare any methods needed by the translator. The lexical

analyser required no additional methods; however, this section was used for the translation process.

The lexical specification consists of both terminals and non-terminals defining the rules of SQL. The

grammar was created from a base SQL grammar created by John Kristian and obtained from the

JavaCC repository at https://Javacc.dev.Java.net/files/documents/17/38413/PlSql.jj. This was aimed

at PL/SQL and was modified to remove unnecessary code and lexical rules. The grammar declares all

keywords using the notation <K_SELECT> and all operators using the notation <S_QUOTED_STRING>.

This reduces any ambiguities in writing the grammar and makes it easier to understand and develop.

The keywords were used to create the rules of the grammar using the standard JavaCC notation:

𝑆𝑡𝑟𝑖𝑛𝑔 𝑆𝑄𝐿𝑆𝑖𝑚𝑝𝑙𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛():

{𝑆𝑡𝑟𝑖𝑛𝑔 𝑠1; }

 41 of 74

{

 𝑠1

= 𝑆𝑄𝐿𝑆𝑖𝑚𝑝𝑙𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠()

{𝒓𝒆𝒕𝒖𝒓𝒏 𝑠1; }

}

The grammar was kept simplified and modular, enabling the reuse of non-terminals. The grammar

kept strict, with local lookahead values defined to ensure that the correct token was chosen on

scanning. In most instances, the standard lookahead value of two was sufficient to resolve any

localized problems. The ordering of grammar was not a factor and the components of SQL clauses

were kept together making it easier to develop and read.

The design of the grammar incurred relatively few problems and any issues were easily debugged by

enabling the debugging options in the file. After successfully specifying the grammar, the translation

rules were applied.

7.5 Translation

The JavaCC grammar allows the embedding of translation rules into the lexical analysis stage. Each

non-terminal was implemented as a Java method which allowed for the embedding of Java code to

handle the translation rules. The translation process was done in several stages. Firstly, on being

invoked and passed an SQL statement, a lexical analysis is performed to check for statement

structure and validity against the specified grammar. The SELECT clause is used to derive the

attributes and the source relations. Each item in the select clause is determined using the non-

terminal:

LinkedList SelectItem():

{String s1, s2;

 Token t1;

LinkedList selectList = new LinkedList();

s1 = "";}

{

(

(

 //the select item is a fully qualified table

 s1 = RelObjectName()

 {

 42 of 74

 selectList.add(s1);

 }

 "."

 s2 = DotObjectName()

 {

 selectList.add(s2);

 }

)

 |

 //or a number

 t1=<S_NUMBER>

 {

 selectList.add(t1.image.toString());

 }

)

{

 return selectList;}

}

//valid arithmetic operators.

String arithmeticOp():

{

Token t1;

}

{

(

 t1 = "+" | t1="*" | t1="/" | t1="-"

)

The select item can be a fully qualified table column or a number. Numbers are allowed for instances

where aggregation may be applied to a column. This rule is strictly enforced and no other variables

are allowed as in the select clause. The returned column is used to build a list of select items and any

aggregation applied as shown below.

[s1=operator()]

 ["("]

 tempList=SelectItem()

 {

 selectList.add(s1 + "|" + tempList.getFirst().toString() +

"." + tempList.getLast().toString());

 s1 = null;

 if (tempList.size() > 1)

 {

 fromList.add(tempList.getFirst().toString() + "|" +

tempList.getLast().toString());

 }

 }

 //some arithmetic is allowed

 [s1=arithmeticOp(){s2=selectList.getLast().toString();

selectList.removeLast(); selectList.add(s2 + s1);}

 43 of 74

 //second item in the arithmetic equation

 tempList=SelectItem(){

 s2=selectList.getLast().toString();

selectList.removeLast();selectList.add(s2 +

tempList.getFirst().toString() + "." + tempList.getLast().toString());

 if (tempList.size() > 1)

 {

 fromList.add(tempList.getFirst().toString() + "|" +

tempList.getLast().toString());

 }

 }]

 [")"]

 //multiple select items allowed.

returnList = createHead(selectList);

returnList.put("FROMLIST", new LinkedList(fromList));

returnList.put("SELECTLIST", new LinkedList(selectList));

return returnList;

}

The select item is used to create two lists; the SELECTLIST list is used for creating the head of the IQL

query while the FROMLIST is used to create the body of the comprehension. Any aggregation

functions (s1=operator (), s1=arithmeticOp ()) applied are also added to the SELECTLIST to be used in

creating the IQL head. Operators are delimited using the “|” character which separates from the

column names.

The translator then attempts to build the IQL head. This is created using a method in the parser class

but outside the grammar specification. It takes as a single argument, the SELECTLIST and assembles

the parts of the head as shown below:

 public static HashMap createHead(LinkedList selectList)

 {

 for (int i=0; i < selectList.size(); i++)

 {

 a = selectList.get(i).toString().indexOf ("|");

 b = selectList.get(i).toString().indexOf (".");

 tempList.add(selectList.get(i).toString().substring(b+1));

 s1 = selectList.get(i).toString().substring(a+1);

 if (agregList.size() > 1)

 {

 …***code omitted***…

}

 else if (agregList.size() < 1)

 {

 …***code omitted***…

 44 of 74

 else if ((agregList.size() < 2) && (agregList.size() > 0))

 {

 …***code omitted***…

 agregReturn.add(iqlHead1.toString());

 }

 }

 returnMap.put("IQLHEAD", new LinkedList(agregReturn));

 returnMap.put("IQLCOLUMNS", new LinkedList(tempList));

 return returnMap;

 }

The method firstly creates two lists, one with all the attributes (selectList) and the second list

(agregList) with all the attributes requiring an aggregation function. It then checks for the number of

attributes with aggregation functions applied, and decides how the IQL head should be created.

There are three distinct ways in which the head is created: where there is no aggregation it is of the

format {𝑎, 𝑏, 𝑐, } | , where there is a single aggregation it is of the format 𝑠𝑢𝑚[{𝑎, {𝑏, 𝑐}| . Where

there are multiple aggregation functions, the IQL head is unable to accommodate this. The lower

level of IQL requires that a comprehension is created for aggregate function. The comprehensions

are then nested within a single comprehension and the aggregated columns returned

𝑠𝑢𝑚[{𝑦, {𝑥, 𝑧}} |𝑠𝑢𝑚[{𝑦, {𝑥, 𝑧}} | 𝑠𝑢𝑚[{𝑧, {𝑦, 𝑥}} |

This method returns the IQL head along with the list of attributes. This list of attributes is used to

resolve the group by clause of the query. The group by clause is created by applying a similar set of

rules; however the group or gc functions are appended.

The translator then proceeds to build the comprehension using the from and where clauses. It uses

the list of tables in the SELECTLIST along with a list of nested queries to resolve the comprehension.

The translator assumes that all attributes in the select clause must be in the from clause and as such

does not check for this.

 for (int i=0; i < bodyList.size(); i++)

 {

 a = bodyList.get(i).toString().indexOf ("|");

 //create list of relations and attributes

 String fromTable_a = bodyList.get(i).toString().substring(0,a);

 String fromTable_b = bodyList.get(i).toString().substring(a+1);

 boolean existsInMap = tableList.containsValue(fromTable_a);

 if (existsInMap == false)

 {

 tableList.put(i, new String (fromTable_a));

 45 of 74

 }

code omitted

 //iterate through the list of relations and build

generators

 while (iT.hasNext())

 {

 Object o1 = iT.next();

 String tbl = tableList.get(o1).toString().trim();

 outer:

 for (int j=0; j < columnList.length; j++)

 {

 if (columnList[j][0].equals(tbl))

 {

 //if the current relations is an aliased nested query, build

the generator for this

 if (nestedList.get(tbl)!=null)

 {

 colList = nestedList.get(tbl + "COLUMNS");

 iqlBuffer.append("{");

 for (int k=0; k < colList.size(); k++)

 {

 code omitted

}

 //otherwise build a standard generator

 else

 {

code omitted

 }

 }

 }

 }

code omitted

 return iqlBody;

 }

The method used to create the generators, accepts as its arguments, a HashMap of the nested

queries (nestedList) and the SELECTLIST. In the code snippet above, it first uses the select list to

derive the attributes and the relations to be used in the generators. The translator then attempts to

iterate through the list of relations and their attributes, building generators for each. When building

the generator, the translator uses the HashMap of nested queries to determine whether the relation

 46 of 74

in the current scheme is an aliased nested query. If it is, then the associated query is substituted

instead of the scheme. The generators, called iqlBody in the code, are returned as single String.

The 𝑤𝑕𝑒𝑟𝑒 clause is then resolved, with little changes made. Syntactic differences are resolved such

as the 𝑖𝑛 function being converted to the IQL 𝑚𝑒𝑚𝑏𝑒𝑟 function. The 𝑔𝑟𝑜𝑢𝑝 𝑏𝑦 clause is then

resolved. This modifies the select clause to add groupings and any group level aggregation required.

The translation differences between IQL and SQL are discussed in greater detail in section 6 above.

The code snippet below, shows the simpler transformations applied to the where clause.

 (s1=WhereItem())

 [(s2=NullWhere() | s2=numericComparisonOperator(){s2 =

Comp.get(s2.trim()).toString().toLowerCase();} |

s2=stringComparisonOperator(){s2 =

Comp.get(s2.trim().toLowerCase()).toString();})

 (s3=WhereItem()

 {

System.out.println(s3);

//handle set membership in the where clause

 if (s2.toLowerCase().trim().equals("in"))

 {

 s4 = " member " + s3 + " " + s1;

 }

 else if (s2.toLowerCase().trim().equals("not in"))

 {

 s4 = " not (member " + s3 + " " + s1 + ")";

 }

//Handles null value comparisons in the where clause.

 else if (s3.toLowerCase().trim().equals("null"))

 {

 if (s2.toLowerCase().trim().equals("is"))

 {

 s4 = s1 + " = Null ";

 }

 else if (s2.toLowerCase().trim().equals("is not"))

 {

 s4 = s1 + " <> Null ";

 }

 }

 else

 {

//return the where clause

 s4 = s1 + s2 + s3;

 47 of 74

 }

 })

]

{

 return s4;}

}

The where clause resolves differences in the structure of filters testing set membership as well as

resolving the correct IQL comparison operator. The operators are translated using a Hash Map,

which acts as a lookup table, substituting the correct operators.

Finally, the translator combines all three components into a single IQL query and returns this, which

is then passed onto the AQP.

In order to successfully parse the statement, some symbols are used as delimiters and identifiers.

The reserved word of the resulting translator is: “|” which is used as a list delimiter as well as the

SQL and IQL reserved words list. The parser was implemented as discussed above and tested

thoroughly with the results and comments detailed in chapter 8 below

7.6 Results

The translator component requires two main methods in order to integrate with AutoMed. The first

method 𝑔𝑒𝑡𝐼𝑄𝐿() is used to translate and return the translated IQL query to the AQP. The second

method 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡(𝐴𝑆𝐺 𝑔) is used to translate the query results to an SQL compatible type.

The method used to translate the results is currently being implemented. This is a relatively trivial

part of the implementation process as results can still be viewed in IQL format.

7.7 Error Reporting

The translator implements two types of error reports. This achieved by using the parserMain class to

call the translator as a runtime object. This allowed for the error messages to be customised and

shown where possible.

} catch (ParseException e) {

 int line_index = inputQuery.lastIndexOf("\n");

 if (line_index> 0)

 {

 48 of 74

//attempt to return a useful error message, if this fails return a

generic message as returned from the parser.

 try {

 System.out.println("Error After: " +

inputQuery.substring(0,(line_index + e.getCol_num())) + " *** ");

 } catch (RuntimeException e1) {

 System.out.println("Error After: " +

inputQuery.substring(0,(e.getCol_num())) + " *** ");

 }

As shown in the code above, the translator maintains a copy of original input query (inputQuery)

before parsing and uses that to return a more precise error message. For command line usage,

outside of the AutoMed toolkit, the translator is then reinitialized using the code below and prompts

for another input query.

//reinitialise the parser and prompt for another SQL statement.

 inputQuery = inString();

 parseSQL.ReInit(parseStringToIS(inputQuery));

7.8 Supported Query Types

The translator was created to support as a large a subset as possibly from the SQL ANSI 1992

standard. The development time and effort needed, meant it was kept confined to a more focused

subset. The subset of queries supported includes:

The SELECT FROM WHERE GROUP BY structure.

The select clause requires fully qualified column names of the form table.name. It allows for

aggregation over the columns returned as well as arithmetic operations involving one ore more

columns. Aggregation and arithmetic functions supported are:

sum

count

 49 of 74

avg

max

min

+

-

*

/

7-3 Supported Arithmetic and Aggregation Functions

The FROM clause supports the use of both tables and nested queries. Queries can be arbitrarily

nested; however nested queries with aggregate columns would return longer columns names since

they cannot be aliased. Therefore a nested query which performs some aggregation on two columns

{a, b} would have the resulting column referenced in the outer query as {a_b}. This holds true for

nested queries in the WHERE clause. Correlated queries are not supported by the translator in both

the FROM and WHERE clauses. The translator supports the standard WHERE clause, including set

membership and comparisons. However it does not support the SQL functions “EXISTS” or

“BETWEEN” as well as their negated forms. The GROUP BY clause is supported by the translator,

however aggregation is only allowed over a single column and the HAVING clause is not supported.

The translator supports the distinct function across the entire result set, however does not allow a

count (*) as is used in SQL without specifying a column. The list below shows the general types of

queries supported:

Simple SELECT FROM

Simple SELECT FROM WHERE (Evaluating Numbers)

Simple SELECT FROM WHERE (Evaluating Strings)

Nested Queries in WHERE Clause.

Set Operators in the Outer Statement

Nested Queries in the FROM Clause

Select With Aggregation

Select With Group By

Nested Set Operators

Aggregation over Grouping

7-4 Supported Query Types

 50 of 74

8 TESTING

Testing of the translator was done in stages, progressively testing the capabilities of the translator.

IQL queries were created for the University databases supplied with the standard distribution of

AutoMed. Queries were written in SQL to specifically test each implemented query type and its

conversion to the IQL language. The testing phase was not done with the translator integrated into

the AutoMed system but rather as a standalone translator, accepting inputs from the command line

and returning the IQL equivalent.

The testing of the translator, does not involve the successful execution of the queries as this is

outside the scope of the project. The testing phase checks the validity of the IQL equivalent

comprehension and the resulting IQL queries cannot therefore be guaranteed to return actual

results from the university databases. Owing to the size and schema of the database, the SQL

statements used may not be optimized and in some cases, could be further simplified while

remaining SQL compliant. However, this is also outside the scope of the project, and the statements

though appearing to be badly constructed, are simply used to establish the translation accuracy.

Some SQL queries are inaccurate by definition and are used to check the strictness and error

trapping capabilities of the translator. This noted where applicable in the test results.

The accuracy of the IQL queries in each instance was verified by attempting to create an Abstract

Syntax Graph (ASG) representation of the query. This was achieved using the following code:

𝒑𝒖𝒃𝒍𝒊𝒄 𝒔𝒕𝒂𝒕𝒊𝒄 𝒗𝒐𝒊𝒅 𝑚𝑎𝑖𝑛 (𝑆𝑡𝑟𝑖𝑛𝑔[] 𝑎𝑟𝑔𝑠)
{
𝑆𝑦𝑠𝑡𝑒𝑚. 𝑜𝑢𝑡. 𝑝𝑟𝑖𝑛𝑡𝑙𝑛("𝐶𝑕𝑒𝑐𝑘𝑖𝑛𝑔 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 ");

𝑆𝑡𝑟𝑖𝑛𝑔[] 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 = {
"𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 𝐹𝑅𝑂𝑀 𝑑𝑒𝑝𝑡; ",
"𝑆𝐸𝐿𝐸𝐶𝑇 𝑓𝑒𝑚𝑎𝑙𝑒. 𝑖𝑑 𝐹𝑅𝑂𝑀 𝑓𝑒𝑚𝑎𝑙𝑒;”,
"𝑆𝐸𝐿𝐸𝐶𝑇 𝑚𝑎𝑙𝑒. 𝑖𝑑 𝐹𝑅𝑂𝑀 𝑚𝑎𝑙𝑒; "

} ;

𝐴𝑆𝐺 𝑔;
𝒇𝒐𝒓(𝒊𝒏𝒕 𝑖 = 0; 𝑖 < 𝑞𝑢𝑒𝑟𝑖𝑒𝑠. 𝑙𝑒𝑛𝑔𝑡𝑕; 𝑖 + +) {
 𝒕𝒓𝒚 {
 𝑔 = 𝒏𝒆𝒘 𝐴𝑆𝐺(𝑞𝑢𝑒𝑟𝑖𝑒𝑠[𝑖]);
 } 𝒄𝒂𝒕𝒄𝒉(𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑒) {
 𝑆𝑦𝑠𝑡𝑒𝑚. 𝑜𝑢𝑡. 𝑝𝑟𝑖𝑛𝑡𝑙𝑛("𝑆𝑦𝑛𝑡𝑎𝑥 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑞𝑢𝑒𝑟𝑦: " + 𝑞𝑢𝑒𝑟𝑖𝑒𝑠[𝑖]);
 𝑒. 𝑝𝑟𝑖𝑛𝑡𝑆𝑡𝑎𝑐𝑘𝑇𝑟𝑎𝑐𝑒();
 }
}

𝑆𝑦𝑠𝑡𝑒𝑚. 𝑜𝑢𝑡. 𝑝𝑟𝑖𝑛𝑡𝑙𝑛("𝐴𝑙𝑙 𝐷𝑜𝑛𝑒! ");

}

 51 of 74

Successfully creating an ASG indicates that the IQL query is syntactically correct; however it does not

test its ability to be executed across the schema.

8.1 Testing Results

8.1.1 Simple SELECT FROM

Single Attribute Returned:

SQL A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑝𝑡;

IQL A

[{ 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 } | {𝑑𝑒𝑝𝑡𝑃𝐾, 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑝𝑡, 𝑑𝑛𝑎𝑚𝑒››]

Multiple Attributes Returned:

SQL B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑔𝑟𝑒𝑒;

IQL B

[{ 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒,

 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒,

 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒 } |

{𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑐𝑜𝑑𝑒››;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑛𝑎𝑚𝑒››;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡𝑖𝑡𝑙𝑒››]

Both queries were translated as expected. The PK annotation is used to generically refer to the key

of the schema being used for the query. The attributes returned for each tuple is translated using

the fully qualified notation to reduce any potential ambiguities as discussed in section 7.

 52 of 74

8.1.2 Simple SELECT FROM WHERE (Evaluating Numbers)

This checks the ability to translate a SELECT FROM WHERE statement where a number is being

evaluated in the WHERE clause. Translated correctly, the where clause is appended to the

comprehension as the filter separated by a semi-colon.

Single Attribute Evaluated:

SQL A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

𝑊𝐻𝐸𝑅𝐸 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑 = 4;

IQL A

[{ 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑,

𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒,

𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒 } |

 𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑 ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑖𝑑››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑑𝑛𝑎𝑚𝑒››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑛𝑎𝑚𝑒››;

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑 = 4]

Multiple Attributes Evaluated:

SQL B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

𝑊𝐻𝐸𝑅𝐸 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑 = 4 𝑜𝑟 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑 = 6;

IQL B

[{ 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑,

𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒,

𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒 } |

{𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑖𝑑››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑑𝑛𝑎𝑚𝑒››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑛𝑎𝑚𝑒››;

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑 = 4 𝑜𝑟 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑 = 6]

Queries were translated as expected. Both attributes were included in the filter.

 53 of 74

8.1.3 Simple SELECT FROM WHERE (Evaluating Strings)

This checks the ability to translate a SELECT FROM WHERE statement where a string is evaluated in

the WHERE clause. Translated correctly, the where clause is appended to the comprehension as the

filter separated by a semi-colon.

Single Attribute Evaluated:

SQL A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑝𝑡

𝑊𝐻𝐸𝑅𝐸 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 <> ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 − 𝐼𝐶′;

IQL A

[{ 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 } | {𝑑𝑒𝑝𝑡𝑃𝐾, 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑝𝑡, 𝑑𝑛𝑎𝑚𝑒››;

 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 <> ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 − 𝐼𝐶′]

Multiple Attributes Evaluated:

SQL B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑝𝑡

𝑊𝐻𝐸𝑅𝐸 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 𝑙𝑖𝑘𝑒 ′𝑀𝑎𝑡𝑕%′

𝐴𝑁𝐷 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 <> ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 − 𝐼𝐶′

𝐴𝑁𝐷 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 <> ′𝐸𝑛𝑔𝑙𝑖𝑠𝑕′;

IQL B

[{ 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 } | {𝑑𝑒𝑝𝑡𝑃𝐾, 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑝𝑡, 𝑑𝑛𝑎𝑚𝑒››;

 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 𝑙𝑖𝑘𝑒 ′𝑀𝑎𝑡𝑕%′

𝑎𝑛𝑑 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 <> ′ 𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 − 𝐼𝐶′

𝑎𝑛𝑑 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 <> ′𝐸𝑛𝑔𝑙𝑖𝑠𝑕′;]

The SQL queries were translated correctly. Like SQL, strings are enclosed in single quotes and the

pattern matching allowed using the “*”. The LIKE operator remains unchanged and translated

directly across to IQL.

 54 of 74

8.1.4 Nested Queries in WHERE Clause.

This tests the ability to translate queries where there is a nested of derived query in the WHERE

clause. Nested queries in the WHERE clause typically checks for set membership and should allow

arbitrary nesting.

Single Nested Query

SQL A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑔𝑟𝑒𝑒

𝑊𝐻𝐸𝑅𝐸 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒 𝑁𝑂𝑇 𝐼𝑁

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑝𝑡

𝑊𝐻𝐸𝑅𝐸 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 <> ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 − 𝐼𝐶′

) ;

IQL A

[{ 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒,

 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒,

𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒} |

{𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑐𝑜𝑑𝑒››;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡𝑖𝑡𝑙𝑒››;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑛𝑎𝑚𝑒››;

 𝑛𝑜𝑡 (𝑚𝑒𝑚𝑏𝑒𝑟

[{ 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 } |

{𝑑𝑒𝑝𝑡𝑃𝐾, 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑝𝑡, 𝑑𝑛𝑎𝑚𝑒››;

 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 <> ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 − 𝐼𝐶′]

 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒)]

Multiple Nested Queries

SQL B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑔𝑟𝑒𝑒

𝑊𝐻𝐸𝑅𝐸 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒 𝑁𝑂𝑇 𝐼𝑁

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑝𝑡

 55 of 74

𝑊𝐻𝐸𝑅𝐸 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 <> ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 − 𝐼𝐶′

)

𝐴𝑁𝐷

𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒 𝐼𝑁

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑝𝑡

𝑊𝐻𝐸𝑅𝐸 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 = ′𝑀𝑎𝑡𝑕 − 𝐼𝐶′

);

IQL B

[{ 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒,

 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒,

𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒} |

{𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑐𝑜𝑑𝑒››;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡𝑖𝑡𝑙𝑒››;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑛𝑎𝑚𝑒››;

 𝑛𝑜𝑡 (𝑚𝑒𝑚𝑏𝑒𝑟

[{ 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 } |

{𝑑𝑒𝑝𝑡𝑃𝐾, 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑝𝑡, 𝑑𝑛𝑎𝑚𝑒››;

 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 <> ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 − 𝐼𝐶′]

 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒)] 𝑎𝑛𝑑

 𝑚𝑒𝑚𝑏𝑒𝑟

 [{ 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 } |

{𝑑𝑒𝑝𝑡𝑃𝐾, 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑝𝑡, 𝑑𝑛𝑎𝑚𝑒››;

 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 = ′𝑀𝑎𝑡𝑕 − 𝐼𝐶′] 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒]

The nested queries in the where clauses are translated correctly. The IN function of SQL is correctly

translated to the member function of IQL. The logical operator is correctly translated and the

functions are translated into lowercase as required by IQL. These queries are of the correct syntax

and would be correctly executed against the schema. This query could be further optimized to use a

single query joining both tables; however for the purpose of the translation testing it is accurate.

 56 of 74

8.1.5 Set Operators in the Outer Statement

This tests for the ability to translated set operations in the outermost query. The set operation

translation is relatively straightforward.

Single Set Operator

SQL A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

𝑈𝑁𝐼𝑂𝑁 𝐴𝐿𝐿

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑠𝑡𝑎𝑓𝑓. 𝑖𝑑, 𝑠𝑡𝑎𝑓𝑓. 𝑛𝑎𝑚𝑒, 𝑠𝑡𝑎𝑓𝑓. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓

);

IQL A

[{ 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑,

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒,

𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒 } |

{𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑖𝑑››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑛𝑎𝑚𝑒››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑑𝑛𝑎𝑚𝑒››]

++

([{ 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑,

𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒,

𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒 } |

{𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››;

 {𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 {𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑑𝑛𝑎𝑚𝑒››])

Multiple Set Operators

SQL B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

𝑈𝑁𝐼𝑂𝑁 𝐴𝐿𝐿

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑠𝑡𝑎𝑓𝑓. 𝑖𝑑, 𝑠𝑡𝑎𝑓𝑓. 𝑛𝑎𝑚𝑒, 𝑠𝑡𝑎𝑓𝑓. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓

𝐼𝑁𝑇𝐸𝑅𝑆𝐸𝐶𝑇

(

 57 of 74

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

)

);

IQL A

[{ 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑,

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒,

𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒 } |

{𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑖𝑑››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑛𝑎𝑚𝑒››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑑𝑛𝑎𝑚𝑒››]

++

([{ 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑,

𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒,

𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒 } |

{𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››;

 {𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 {𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑑𝑛𝑎𝑚𝑒››]

intersect

([{ 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑,

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒,

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒 } |

{𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑖𝑑››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑛𝑎𝑚𝑒››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑑𝑛𝑎𝑚𝑒››]))

Set operations were translated correctly as expected. Operators were converted to the correct lower

case and the parenthesis maintained.

8.1.6 Nested Queries in the FROM Clause

This checks for the ability of the translator to correctly translate nested queries in the FROM clause

of the SQL statement. As discussed in section 5, IQL fully supports nested queries. Where queries are

nested, all the attributes returned by the inner query must be handled in the outer query (see

section 6). The translation resolves this, allowing the user to continue specifying only the columns

needed.

 58 of 74

Single Nested Query

SQL A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

)𝐴𝑆 𝑝𝑒𝑜𝑝𝑙𝑒

𝑊𝐻𝐸𝑅𝐸 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑑𝑛𝑎𝑚𝑒 𝐿𝐼𝐾𝐸 ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔%′;

IQL A

[{ 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒,

 𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒 } |

{𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒} ←

 [{ 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑,

𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒,

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒 } |

{𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑖𝑑››;

 𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒 ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑛𝑎𝑚𝑒››;

 𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒 ← ‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑑𝑛𝑎𝑚𝑒››];

 𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒 𝑙𝑖𝑘𝑒 ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔%′]

Multiple Nested Queries

SQL B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑑𝑛𝑎𝑚𝑒, 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

)𝐴𝑆 𝑝𝑒𝑜𝑝𝑙𝑒,

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑝𝑡

𝑊𝐻𝐸𝑅𝐸 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 = ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔′

)𝐴𝑆 𝑑𝑒𝑝𝑡;

IQL B

 59 of 74

[{ 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒,

 𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒,

 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 } |

 𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒 ←

 [{ 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑,

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒,

𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒 } |

{𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑖𝑑››;

 {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑛𝑎𝑚𝑒››;

 𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒 ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑑𝑛𝑎𝑚𝑒››];

 {𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒} < −

 [{ 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 } | {𝑑𝑒𝑝𝑡𝑃𝐾, 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑝𝑡, 𝑑𝑛𝑎𝑚𝑒››;

 𝑑𝑒𝑝𝑡_𝑑𝑛𝑎𝑚𝑒 = ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔′]]

The nested queries where translated correctly and as expected. The nested tables were fully

resolved and all the columns from the nested query referenced in the outer queries.

8.1.7 Select With Aggregation

This test checks for aggregation support in the translation process from SQL to IQL. Aggregation over

a single attribute is relatively straightforward in the translation process; however, IQL’s lower level

implementation requires that multiple comprehensions are generated for each aggregation.

Single Column Aggregation

SQL A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑀𝐴𝑋 (𝑑𝑒𝑔𝑟𝑒𝑒. 𝑖𝑑)

𝐹𝑅𝑂𝑀 𝑑𝑒𝑔𝑟𝑒𝑒

𝑊𝐻𝐸𝑅𝐸 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑖𝑑 < 10;

IQL A

 𝑚𝑎𝑥 [{ 𝑑𝑒𝑔𝑟𝑒𝑒_𝑖𝑑 } | {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑖𝑑} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑖𝑑››;

 𝑑𝑒𝑔𝑟𝑒𝑒_𝑖𝑑 < 10]

Multiple Column Aggregation

SQL B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑀𝐴𝑋(𝑠𝑡𝑎𝑓𝑓. 𝑛𝑎𝑚𝑒), 𝑀𝐼𝑁(𝑠𝑡𝑎𝑓𝑓. 𝑖𝑑), 𝑠𝑡𝑎𝑓𝑓. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓

𝑊𝐻𝐸𝑅𝐸 𝑠𝑡𝑎𝑓𝑓. 𝑛𝑎𝑚𝑒 <> ′𝐽𝑎𝑚𝑖𝑒′;

 60 of 74

IQL B

[{ 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒,

𝑠𝑡𝑎𝑓𝑓_𝑖𝑑,

 𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒 } |

{ 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒 } ←

 𝑚𝑎𝑥 [{ 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒 } | 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒 ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 {𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒 ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑑𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒 <> ′𝐽𝑎𝑚𝑖𝑒′];

 { 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑 } ←

 𝑚𝑖𝑛 [{ 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑 } | {𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 {𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒 ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑑𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒 <> ′𝐽𝑎𝑚𝑖𝑒′]]

Aggregation over single and multiple columns translated as expected.

8.1.8 Select With Group By

This tests the ability of the translator to handle SQL statements with a GROUP BY clause.

Grouping by Single Attribute

SQL A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑔𝑟𝑒𝑒

𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒;

IQL A

𝑔𝑟𝑜𝑢𝑝

 [{𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒,

 {𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒,

𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒 }} |

{𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑐𝑜𝑑𝑒››;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑛𝑎𝑚𝑒››;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡𝑖𝑡𝑙𝑒››]

Grouping by Multiple Attributes

 61 of 74

SQL B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑔𝑟𝑒𝑒

𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒;

IQL B

𝑔𝑟𝑜𝑢𝑝

[{{𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒,

𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒},

 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒 } |

{𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑐𝑜𝑑𝑒››;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑛𝑎𝑚𝑒››;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒} ← ‹‹𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡𝑖𝑡𝑙𝑒››]

GROUP BY clause translated correctly and as expected.

8.1.9 Nested Set Operators

This tests the ability of the translator is correctly translate SQL statements with set operations

nested in the from clause. The set operators should be correctly substituted.

SQL A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

𝑈𝑁𝐼𝑂𝑁 𝐴𝐿𝐿

(𝑆𝐸𝐿𝐸𝐶𝑇 𝑠𝑡𝑎𝑓𝑓. 𝑖𝑑, 𝑠𝑡𝑎𝑓𝑓. 𝑛𝑎𝑚𝑒, 𝑠𝑡𝑎𝑓𝑓. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓)

)𝐴𝑆 𝑝𝑒𝑜𝑝𝑙𝑒

𝑊𝐻𝐸𝑅𝐸 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑑𝑛𝑎𝑚𝑒 𝐿𝐼𝐾𝐸 ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔%′;

IQL A

[{ 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒,

𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒 } |

{𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒} ←

 [{ 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑,

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒,

 62 of 74

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒 } | {𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑖𝑑››;

 𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒 ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑛𝑎𝑚𝑒››;

 𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒 ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑑𝑛𝑎𝑚𝑒››]

 ++

 ([{ 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑,

𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒,

𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒 } |

{𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒 ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑑𝑛𝑎𝑚𝑒››]);

 𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒 𝑙𝑖𝑘𝑒 ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔%′]

SQL B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

𝑀𝐼𝑁𝑈𝑆

(𝑆𝐸𝐿𝐸𝐶𝑇 𝑠𝑡𝑎𝑓𝑓. 𝑖𝑑, 𝑠𝑡𝑎𝑓𝑓. 𝑛𝑎𝑚𝑒, 𝑠𝑡𝑎𝑓𝑓. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓)

)𝐴𝑆 𝑝𝑒𝑜𝑝𝑙𝑒

𝑊𝐻𝐸𝑅𝐸 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑑𝑛𝑎𝑚𝑒 𝐿𝐼𝐾𝐸 ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 ∗ ′;

IQL B

IQL A

[{ 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒,

𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒 } |

{𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒_𝑛𝑎𝑚𝑒} ←

 [{ 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑,

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒,

 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒 } |

{𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑} ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑖𝑑››;

 𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑛𝑎𝑚𝑒 ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑛𝑎𝑚𝑒››;

 𝑝𝑒𝑟𝑠𝑜𝑛𝑃𝐾, 𝑝𝑒𝑟𝑠𝑜𝑛_𝑑𝑛𝑎𝑚𝑒 ← ‹‹𝑝𝑒𝑟𝑠𝑜𝑛, 𝑑𝑛𝑎𝑚𝑒››]

 --

 ([{ 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑,

𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒,

𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒 } |

{𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑖𝑑} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑖𝑑››;

 63 of 74

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑛𝑎𝑚𝑒 ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑛𝑎𝑚𝑒››;

 𝑠𝑡𝑎𝑓𝑓𝑃𝐾, 𝑠𝑡𝑎𝑓𝑓_𝑑𝑛𝑎𝑚𝑒} ← ‹‹𝑠𝑡𝑎𝑓𝑓, 𝑑𝑛𝑎𝑚𝑒››]);

 𝑝𝑒𝑜𝑝𝑙𝑒_𝑑𝑛𝑎𝑚𝑒 𝑙𝑖𝑘𝑒 ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔%′]

The results were as expected and the queries were correctly translated.

8.1.10 Aggregation over Grouping

This tests the ability of the translator is correctly translate SQL statements with aggregation over

grouped attributes.

SQL A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑀𝐴𝑋(𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒), 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑔𝑟𝑒𝑒

𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒;

IQL A

𝑔𝑐 max⁡[{{𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒},

 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒} |

𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒} < − << 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑐𝑜𝑑𝑒 >>;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒} < − << 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑛𝑎𝑚𝑒 >>;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒} < − << 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡𝑖𝑡𝑙𝑒 >>]

SQL B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒, 𝑀𝐴𝑋(𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒)

𝐹𝑅𝑂𝑀 𝑑𝑒𝑔𝑟𝑒𝑒

𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒;

IQL B

𝑔𝑐 max⁡

[{{𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒}

, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒} |

{𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑐𝑜𝑑𝑒} < − << 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑐𝑜𝑑𝑒 >>;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑛𝑎𝑚𝑒} < − << 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑛𝑎𝑚𝑒 >>;

 {𝑑𝑒𝑔𝑟𝑒𝑒𝑃𝐾, 𝑑𝑒𝑔𝑟𝑒𝑒_𝑡𝑖𝑡𝑙𝑒} < − << 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡𝑖𝑡𝑙𝑒 >>]

The SQL statements were translated correctly and as expected.

 64 of 74

8.1.11 Statement Validity Checking

This section tests the statement validity checking of the lexical analyser and parser. All the

statements used are invalid SQL statements and should generate and error message from the

translator. The translator firstly attempts to report the exact location of the error with a more

friendly error message and asterisks at the point of the error. In some instances, the location of the

error cannot be correctly determined and the entire statement is returned instead. This is a bug in

the error reporting feature of the translator and does not affect its overall accuracy.

Test A

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑔𝑟𝑒𝑒;

Result A

Error After:

SELECT degree.dcode,degree ***

As expected, an error was returned for column 28. The translator requires fully qualified column

references (see section 7).

Test B

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒;

Result B

Error After:

SELECT degree.dcode, degree.dname, degree.title*

Error correctly reported. The SQL statement is incomplete as a FROM clause was not included. The

translator is expecting this after the list of tables.

Test C

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑑𝑛𝑎𝑚𝑒, 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒

 65 of 74

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

),

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑝𝑡

𝑊𝐻𝐸𝑅𝐸 𝑑𝑒𝑝𝑡. 𝑑𝑛𝑎𝑚𝑒 = ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔′

)𝐴𝑆 𝑑𝑒𝑝𝑡

;

Result C

Error After:

SELECT people.name, people.dname, dept.dname

FROM

(

SELECT person.id, person.name, person.dname

FROM person

),

(

SELECT dept.dname

FROM dept

WHERE dept.dname = 'Computing'

)AS dept

; ***

Error correctly detected in the SQL statement. The derived query was not correctly aliased. However

the, error reporting tool was unable to correctly report the location of the error. In such a case, the

entire input statement is returned.

Test D

𝑆𝐸𝐿𝐸𝐶𝑇 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑡𝑖𝑡𝑙𝑒

𝐹𝑅𝑂𝑀 𝑑𝑒𝑔𝑟𝑒𝑒

𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑐𝑜𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒. 𝑑𝑛𝑎𝑚𝑒;

Result D

Error After:

SELECT degree.dcode, degree.dname, degree.title

FROM degree

GROUP BY degree.dcode ***

 66 of 74

The missing comma separator in the list of group by tables was correctly reported. The translator is

expecting either a separator or the terminal semi-colon character.

Test E

𝑆𝐸𝐿𝐸𝐶𝑇 𝑀𝐴𝑋(𝑠𝑡𝑎𝑓𝑓. 𝑛𝑎𝑚𝑒), 𝑠𝑡𝑎𝑓𝑓. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓

𝑊𝐻𝐸𝑅𝐸 𝑠𝑡𝑎𝑓𝑓. 𝑠𝑒𝑥 <> ′𝐹;

Result E

Error After:

SELECT MAX(staff.name), staff.dname

FROM staff

WHERE staff.sex <> ***

The translator has correctly reported the incomplete SQL statement. There is a comparison operator

with no valid comparison field such as a number, string or column reference. The location of the

error has been correctly reported.

Test F

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀

(

𝑆𝐸𝐿𝐸𝐶𝑇 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑖𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑛𝑎𝑚𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑝𝑒𝑟𝑠𝑜𝑛

𝐼𝑁𝑇𝐸𝑆𝐸𝐶𝑇

(𝑆𝐸𝐿𝐸𝐶𝑇 𝑠𝑡𝑎𝑓𝑓. 𝑖𝑑, 𝑠𝑡𝑎𝑓𝑓. 𝑛𝑎𝑚𝑒, 𝑠𝑡𝑎𝑓𝑓. 𝑑𝑛𝑎𝑚𝑒

𝐹𝑅𝑂𝑀 𝑠𝑡𝑎𝑓𝑓)

)𝐴𝑆 𝑝𝑒𝑜𝑝𝑙𝑒

𝑊𝐻𝐸𝑅𝐸 𝑝𝑒𝑜𝑝𝑙𝑒. 𝑑𝑛𝑎𝑚𝑒 𝐿𝐼𝐾𝐸 ′𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 ∗ ′;

Result F

Error After:

SELECT people.name, people.dname

FROM

(

SELECT person.id, person.name, person.dname

FROM person

INTESECT

(SELECT staff.id, staff.name, staff.dname

 67 of 74

FROM staff)

)AS people

In this test, the keyword INTERSECT was incorrectly spelt. The translator correctly reported an error

in the SQL statement, however, was unable to report the error location correctly. The complete

input statement was returned included in the error report.

The testing was successful and produced the required results. The extended test results are

contained in the appendix and includes the results listed above. Any accuracy in the execution of

the queries will always be undermined if the user fails to adhere to the schema. The translator,

having no means of confirming the validity of the query against the underlying schema, simply serves

to produce an IQL equivalent of the user input. Further improvements on the translator could be

used to resolve this, however, as it stands, the translator component meets the intended aims and

objectives.

 68 of 74

9 CONCLUSION

The aim of the project was to create an SQL to IQL translator for the AutoMed toolkit. The translator

should be able to accept SQL queries as detailed in the implementation section, and convert these

queries into the IQL equivalent for evaluation across the chosen schema. The background research

carried out for the project was relatively detailed and allowed for a choice of feasible approaches.

Building on the chosen approach, the implementation process was relatively smooth. The

construction of the grammar required a good grasp of EBNF and JavaCC development procedures;

however these were easy to grasp and use. The grammar was developed using a publicly available

SQL grammar which required extensive changes to the structure and types of non-terminals.

However, it had clearly defined the terminal symbols and provided a good base for the specification

of the non-terminals. JavaCC provided useful debugging options to continually check the accuracy of

the translator. The grammar was kept as concise and accurate as possible to create a class with the

smallest memory footprint while fulfilling requirements.

The implementation of the translation rules was met, with some problems with regards to the

choice of data structures. The aim was to utilize data structures that would remain highly accurate,

while requiring a relatively small amount of memory. This could reduce any potential errors the

parser may encounter with memory leaks when implemented in a server environment with multiple

concurrent executions. Strings, lists, maps and arrays were declared with minimal allocated memory

and wherever possible were destroyed when not needed. This was also in keeping with good

programming practices. The Eclipse JavaCC plug-in, during development and testing, was at times

unreliable and failed to maintain the operating system environment by terminating instances of the

Java compiler. This often resulted in memory issues, with the system failing after any amount of

extended development. To resolve this issue a command line script was used to periodically

terminate any orphaned compiler instances.

9.1 Critical Review and Analysis

9.1.1 Background Research

The background research was thorough relative to the aims of the project and created a well defined

foundation for the selection of a suitable approach. The limited information available on JavaCC

 69 of 74

negatively affected the ability to examine all the possible approaches to creating and optimising the

grammar. However, from the information gleaned during the research, JavaCC surpassed the

alternatives which were limited in compatibility as discussed in section 3 above.

9.1.2 Approach

While using only Java, rather than the JavaCC tool would have required more development time, the

need to learn the JavaCC language would have been negated, allowing for faster development.

However, JavaCC, while requiring the learning of a relatively new language, which was slow and time

consuming, was a more compatible and easier to use development tool. It required fewer lines of

code and produced a leaner, more robust program. The resulting parser requires no additional code

or classes to be executed. The parser can be independently executed outside of the AutoMed toolkit

and allows users to enter queries on the command line and obtain the retuned translation. This is a

potentially useful feature as it can allow for practising and learning of IQL outside of the AutoMed

environment such as in a standalone translator. It could be incorporated with other translators to

create translators several languages including SQL IQLOQL or SQLIQL XQUERY.

9.1.3 Input

The translator accepts SQL queries either as a single line queries or as a multi line query. This allows

users to format the SQL queries similarly to most DBMSs available. Queries can be formatted in a

more visually appealing way so that errors can be more readily detected and prevented. The queries

can span as many lines as needed and complete query is read until a semi-colon is detected, again

mirroring the user experience with industry standard SQL databases. Submitting queries using

another program or file will also result in the number of lines being ignored and standard SQL

formatting being accepted. The query input, however does not allow a user to backspace or undo a

previous line entered. As a result of this, if an error is detected in a previous line the user will have to

execute the query and then try again. A more interactive approach to this part of the process could

be implemented.

9.1.4 Translation

The IQL grammar specification and translation rules were written together in a single file, this

allowed for fast development and writing of the specification. However it created very long and

complex code which was prone to bugs and errors; requiring more detailed and thorough testing. An

 70 of 74

approach separating the lexical analysis and translation phases could have been adopted to remove

this issue. Adequate commenting of the grammar and source files reduced the impact of the

complex class files and should allow for easy maintenance and extension of the translator.

The translator can translate statements as described in section 7 above. SQL translations are

currently restricted to a subset of the SQL 92 standard. While this is sufficient for most common

queries, the translator would be unable to support more complex queries as would be needed

across data warehousing environments which often includes the now standard ROLLUP function. The

grammar however can be readily modified to accept any constructs of the higher level language.

One limitation of the translator is its ability to fetch and resolve the underlying schema. This could

enable more complex queries as well as the validation of queries before being submitted to the AQP.

This could serve to reduce query errors including the available tables, columns and data type and

create more accurate queries over the global schema. The translator could cache the schema and

automatically assign columns to tables. This would remove the requirement for fully qualified

columns in the SELECT statement, as discussed in 6 above, allowing for more compact and efficient

queries. This caching feature would however, reduce the overall speed of the translator as each

translation would first require a query to the database and resolving the schema to SQL standard. As

implemented, it relies on the users to submit correct queries based on the schema. This however, is

not critical to the accuracy and functionality of the translator since the AQP checks for query validity

against the schema.

The translator inherently enforces some level of strictness with respect to the grammar. This is

achieved in some areas of the code where the risk of localized ambiguities is higher than normal or

where the translator has difficulty distinguishing the tokens. The lookahead value is modified so that

the grammar examines more or fewer tokens before making a decision. The grammar could be

further modified to improve strictness of the lexical analyser and the translator for trivial areas such

as agreement between comparison operators and the type of data being compared. This could be

used in the where clause to ensure that string operators such as “like” would be followed by only

string values.

The grammar was written using a modular approach, resulting in longer but more structured parser.

As an advantage, this allows the grammar to be more readily extended, reusing defined methods,

terminals and non-terminals.

The parser is implemented in two primary classes and other supporting classes. The main class

creates and instance of the parser at runtime and interfaces with it to execute the translation

 71 of 74

process. In doing this, all code non-parsing code is kept separate and in a smaller class file. As an

advantage, this encapsulates the parser, and allows users to easily reuse the parser class without

needed to make and modifications.

9.1.5 Results

By default, the parser only returns the resulting IQL query to the AQP for evaluation or to the user or

viewing. As a component in AutoMed, the results would either be a result set or some error message

thrown by the translator. The parser however, can be modified to enable a more verbose view of the

translation process. This can be used for debugging or resolving and translation errors. Currently,

this option has to be enabled by editing the source code and recompiling the classes. The potential

for using command switches for toggling this option is discussed in section 9.2.

The translator meets its aims and objectives. It can successfully translate SQL statements from the

subset described in the implementation. While there are sometimes, noticeably time differences

between submitting a query and receiving its IQL equivalent, the translated queries are accurate and

from the testing can be successfully queried against the underlying schema.

9.1.6 Error Reporting

The parser uses friendly error messages to encapsulate the more advance messages output. Instead

of displaying detailed parsing reports on the consumption of tokens or the list of tokens expected,

the user is presented with a simple error message indicating the likely position of the error detected

within the SQL statement. The customised error messages could be modified to notify the user on

the token that the parser was expecting and suggest a correction.

9.2 Future Work

The parser can be further developed to extend its support for the SQL language. Since IQL in

AutoMed is primarily used as a database query tool, shot-term work to the translator could seek to

implement rules to fully support the SELECT subset of the SQL DML. Key areas of this

implementation would be the full support for nested queries with the same attributes appearing in

both nested and outer query. Other features of SQL could be the support of the EXIST / NOT EXIST

and the BETWEEN functions in the where clause. These features would improve the querying

 72 of 74

capabilities of the SQL supported AutoMed implementation. Further changes in the short term could

include support for the HAVING clause which could simply be implemented as a filter on a nested

group-by comprehension. Currently, users are required to explicitly nest a group-by comprehension

to achieve this.

In the medium term, the translator could be extended to add a pre-processing component. This

would involve pre-fetching the underlying AutoMed schema and validating queries before

translating and passing them to the AQP. This would remove the need to support only fully qualified

attributes since the translator would be able to resolve the attributes to their tables and build the

corresponding query based on this. The pre-processor could also be used to validate data types and

attribute lengths, and reduce any errors being passed onto the AQP. The error handling and

reporting classes could be further customised to provide different levels of error reporting based on

user preferences. Since the translator is implemented with Java code embedded in the grammar, the

rules for each non-terminal can be modified to throw specific exceptions detailing the terminals

expected at the point of error. The translator could also be extended to accept command line

switches to select error levels and any other allowed user options.

In the long term, the translator could be extended to support the INSERT, DELETE and UPDATE

subsets of the DML. Supporting these features of SQL would require that the short and medium term

proposals are implemented first since features such as pre-fetching the schemas would be required

in order to reliably support function such as update and insert. This extension of the parser could be

more reliably and efficiently implemented as separate classes to support each major feature of the

SQL DML. This would maintain the initial aim of having source code which is easily modified and

maintained. The parser could also be extended to support SQL beyond the ANSI 92 standard. This

would allow for the translator to be more efficiently used in data warehousing as it could support

the newer features of standard SQL such as window and group by rollup queries.

 73 of 74

10 REFERENCES

1. Jasper, Edgar; Zamboulis, Lucas; Mittal, Sandeep; Fan, Hao; Poulovassili, Alexandra. Processing

IQL Queries and Migrating Data in the AutoMed toolkit. 2007. pp. 3 - 28.

2. Poulovassilis, Alex and Zamboulis, Lucas. A Tutorial on the IQL Query Language. 2007. pp. 1 - 12.

3. Jiang, Tao; Li, Ming; Regan, Kenneth W; Bala, Ravikumar Formal Grammars and Languages. pp. 6

- 10.

4. Garshol, Lars M. BNF and EBNF: What are they and how do they work? Lars Marius Garshol.

[Online] 21 07 2003. [Cited: 23 07 2007.] http://www.garshol.priv.no/download/text/bnf.html.

5. Story, Clifford. Lexical Analysis. www.mactech.com. [Online] 29 July 2007. [Cited: 29 July 2007.]

http://www.mactech.com/articles/mactech/Vol.06/06.04/LexicalAnalysis/index.html.

6. Aho, Alfred V, Sethi, Ravi and Ullman, Jeffrey D. Compilers: Principles, Techniques and Tools. s.l. :

Addison-Wesley Publishing Company, 1986.

7. Hernandez, Thomas and Subbarao, Kambhampati. Integration of Biological Sources: Current

Systems and Challenges Ahead. s.l. : Sigmod Record, 2004. pp. 1 - 5. Vol. 33.

8. Calvanese, Diego; Guiseppe, De Giacomo; Lenzerini, Maurizio; Nardi, Daniele; Rosati, Riccardo.

Data Integration in Data Warehousing. International Journal of Cooperative Information Systems,

2001. Vol. 10.

9. van der Wielen, Marc. Improving the quality of data integration systems using the Both-as-View

approach. Emphasizing data lineage in integration systems. 2005. pp. 16 - 30.

10. Friedman, Marc, Levy, Alon and Millstein, Todd. Navigational Plans for Data Integration. s.l. :

AAAI/IAAI, 1999, pp. 1 - 2 .

11. Boyd, Michael; Lazanitis, Charalambos; Kittivoravitkul, Sasivimol; McBrien, Peter; Rizopoulos,

Nikos. An Overview of The AutoMed Repository. London : Dept. of Computing, Imperial College,

2004.

12. Jasper, Edgar; Tong, Nerissa; McBrien, Peter; Poulovassilis, Alexandra. Generating and

Optimising Views from Both as View Data Integration Rules. 2004. pp. 1 - 18.

 74 of 74

13. Silberschatz, Abraham, Korth, Henry and Sudarshan, S. Database Systems and Concepts. s.l. :

McGraw-Hill Book Co., 1997.

14. Zamboulis, Lucas and Poulovassilis, Alex. A Tutorial on the IQL Query Language. 2007. pp. 1 - 10.

	Table of Contents
	Table of Figures
	List of Tables
	Abstract
	Correction Page
	Introduction
	Description
	Objectives
	Methodology

	Background Research
	Automata
	Grammars
	Backus-Naur Form (BNF)
	JavaCC
	Lexical Analysis and Parsing
	Lexical Analysis
	Parsing

	Database Systems
	Database
	Relational Database

	Mediators
	Global-as-View
	Local-as-View

	AutoMed Heterogeneous Data Integration System

	Approach
	Structured Query Language
	SQL
	Select Statement
	Select Clause
	From Clause
	Where Clause
	Aggregation
	Nested Queries
	Set Operators

	Intermediate Query Language
	IQL Structure
	IQL in AutoMed

	Translating SQL to IQL
	Data Types
	Relational Calculus

	Implementation
	Implemented Solution
	Tools
	Structure
	Grammar
	Translation
	Results
	Error Reporting
	Supported Query Types

	Testing
	Testing Results
	Simple SELECT FROM
	Simple SELECT FROM WHERE (Evaluating Numbers)
	Simple SELECT FROM WHERE (Evaluating Strings)
	Nested Queries in WHERE Clause.
	Set Operators in the Outer Statement
	Nested Queries in the FROM Clause
	Select With Aggregation
	Select With Group By
	Nested Set Operators
	Aggregation over Grouping
	Statement Validity Checking

	Conclusion
	Critical Review and Analysis
	Background Research
	Approach
	Input
	Translation
	Results
	Error Reporting

	Future Work

	References

