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Abstract. This paper describes the integration of XML data sources
within the AutoMed heterogeneous data integration system. The paper
presents a description of the overall framework, as well as an overview of
and comparison with related work and implemented solutions by other
researchers. The main contribution of this research is an algorithm for
the integration of XML data sources, based on graph restructuring of
their schemas.

1 Introduction

The advent of XML as a new data format has given rise to new research issues.
XML is the first step towards the realization of the Semantic Web vision. It
is a markup language designed to structure and transmit data in an easy to
manipulate form, however it is not the total solution — it does not do anything
by itself. The second step consists of logic inference tools and tools that automate
tasks which have been manual up to now. For this, well-studied research issues
concerning mostly relational data need to be explored in the context of XML
data. Such issues include schema matching and data integration, both virtual and
materialized. In this paper we focus on the virtual integration of heterogeneous
XML data sources by transforming the schemas of XML documents using graph
restructuring techniques.

Section 2.1 provides an overview of the AutoMed system, and the AutoMed
approach to data integration. Section 2.2 presents the schema definition lan-
guage used for XML data, specifies its representation in terms of AutoMed’s
Common Data Model and presents the unique IDs used in our framework. Sec-
tion 3 presents the schema transformation algorithm and describes the query
engine and wrapper architecture. Section 4 reviews related work, while Section
5 gives our concluding remarks.

2 Our XML Data Integration Framework

2.1 Overview of AutoMed

AutoMed is a heterogeneous data integration system that supports a schema-
transformation approach to data integration (see http://www.doc.ic.ac.uk/a-



utomed). Figure 1 shows the AutoMed integration approach in an XML setting.
Each data source is described by a data source schema, denoted by Si, which
is transformed into a union-compatible schema USi by a series of reversible
primitive transformations, thereby creating a transformation pathway between
a data source schema and its respective union-compatible schema. All the union
schemas1 are syntactically identical and this is asserted by a series of id transfor-
mations between each pair USi and USi+1 of union schemas. id is a special type
of primitive transformation that ‘matches’ two syntactically identical constructs
in two different union schemas, signifying their semantic equivalence. The trans-
formation pathway containing these id transformations can be automatically
generated. An arbitrary one of the union schemas can then be designated as the
global schema GS, or selected for further transformation into a new schema that
will become the global schema.

The transformation of a data source schema into a union schema is accom-
plished by applying a series of primitive transformations, each adding, deleting or
renaming one schema construct. Each add and delete transformation is accom-
panied by a query specifying the extent of the newly added or deleted construct
in terms of the other schema constructs. This query is expressed in AutoMed’s
Intermediate Query Language, IQL [16, 8]. The query supplied with a primitive
transformation provides the necessary information to make primitive transfor-
mations automatically reversible. This means that AutoMed is a both-as-view
(BAV) data integration system [14]. It subsumes the local-as-view (LAV) global-
as-view (GAV) and GLAV approaches, as it is possible to extract a definition of
the global schema as a view over the data source schemas, and it is also possible
to extract definitions of the data source schemas as views over the global schema
[14, 9].

In Figure 1, each USi may contain information that cannot be derived from
the corresponding Si. These constructs are not inserted in the USi through an
add transformation, but rather through an extend transformation. This takes
a pair of queries that specify a lower and an upper bound on the extent of the
new construct. The lower bound may be Void and the upper bound may be
Any, which respectively indicate no known information about the lower or upper
bound of the extent of the new construct. There may also be information present
in a data source schema Si that should not be present within the corresponding
USi, and this is removed with a contract transformation, rather than with a
delete transformation. Like extend, contract takes a pair of queries specifying
a lower and upper bound on the extent of the deleted construct.

In our XML data integration setting, each XML data source is described by
an XML DataSource Schema (a simple schema definition language presented in
Section 2.2), Si, and is transformed into an intermediate schema, Ii, by means
of a series of primitive transformations that insert, remove, or rename schema
constructs. The union schemas USi are then automatically produced, and they
extend each Ii with the constructs of the rest of the intermediate schemas. After
that, the id transformation pathways between each pair USi and USi+1 of union

1 Henceforth we use the term ‘union schema’ to mean ‘union-compatible schema’.
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Fig. 1. XML integration in AutoMed

schemas are also automatically produced. Our XML integration framework sup-
ports both top-down and bottom-up schema integration. With the top-down
approach, the global schema is predefined, and the data source schemas are
restructured to match its structure. With the bottom-up approach, the global
schema is not predefined and is automatically generated. Both approaches are
described in Section 3.1.

2.2 A Schema for Representing XML Data Sources

When encoding data in XML, there two ways to enforce the intended struc-
ture and types over the XML files: DTD and XML Schema. However, as these
technologies provide a complex grammar for the file, they describe the possible
structure of a file, not the actual one. The structure of an XML file is very im-
portant in data integration, both for schema integration and in optimizing query



processing. It is also possible that the XML file may have no referenced DTD
or XML Schema. For these reasons, we introduce the XML DataSource Schema,
which abstracts only the structure of an XML file, omitting information such as
data types. The concept of XML DataSource Schema is similar to DataGuides
[6]. However, XML DataSource Schemas are XML trees whereas DataGuides are
OEM graphs.

To obtain an XML file’s XML DataSource Schema, we first copy the XML
file into memory, in its DOM representation. This copy will then be modified and
become the XML DataSource Schema, according to the following pseudocode:

1. Get the root R. If it has child nodes, get its list of children, L.

(a) Get the first node in L, N. For every other node N’ in L that has the same tag
as N do:

– copy any of the attributes of N’ not present in N to N
– copy and append the list of children of N’ to the list of children of N
– delete N’ and its subtree

(b) Get the next child from the list of children and process it in the same way as
the first child, L, in step (a) above.

2. Treat each one of the nodes in the new list of children of R, as R in step 1.

AutoMed has as its common data model a Hypergraph Data Model (HDM).
This is a low-level data model that can represent higher-level modelling languages
such as ER, relational, object-oriented and XML [12]. HDM schemas consist of
nodes, edges and constraints. The selection of a low-level common data model
for AutoMed was intentional, so as to be able to better represent high-level
modelling languages without semantic mismatches or ambiguities.

Table 1 shows the representation of XML DataSource Schema constructs in
terms of the HDM. XML DataSource Schemas consist of four constructs:

1. An element e can exist by itself and is a nodal construct. It is represented
by the scheme 〈〈e〉〉.

2. An attribute a belonging to an element e is a nodal-linking construct and
is represented by the scheme 〈〈e, a〉〉. In terms of the HDM this means that
an attribute actually consists of a node representing the attribute, an edge
linking the attribute node to its owner element, and a cardinality constraint.

3. The parent-child relationship between two elements ep and ec is a linking
construct with scheme 〈〈ep, ec, i〉〉, where i is the order of ec in the list of
children of ep. In terms of the HDM, this is represented by an edge between
ep and ec and a cardinality constraint.

4. Text in XML is represented by the PCDATA construct. This is a nodal con-
struct with scheme 〈〈PCDATA〉〉. In any schema, there is only one PCDATA
construct. To link the PCDATA construct with an element we treat it as an
element and use the nest-list construct.

Note that this is a simpler XML schema language than that given in [12].
In our model here, we make specific the ordering of children elements under
a common parent in XML DataSource Schemas (the identifiers i in NestList



Table 1. XML DataSource Schema representation in terms of HDM

Higher Level Construct Equivalent HDM Representation

Construct: Element Node 〈〈xml:e〉〉
Class nodal
Scheme 〈〈e〉〉
Construct: Attribute Node 〈〈xml:e:a〉〉
Class: nodal-linking, constraint Edge 〈〈 , xml:e, xml:e:a〉〉
Scheme: 〈〈e, a〉〉 Links 〈〈xml:e〉〉

Cons makeCard(〈〈 , xml:e, xml:e:a〉〉, 0:1, 1:N)

Construct NestList Edge 〈〈i, xml:ep, xml:ec〉〉
Class linking, constraint Links 〈〈xml:ep〉〉, 〈〈xml:ec〉〉
Scheme 〈〈ep, ec, i〉〉 Cons makeCard(〈〈i, xml:ep, xml:ec〉〉, 0:N, 1:1)

Construct: PCDATA Node 〈〈xml:PCDATA〉〉
Class nodal
Scheme 〈〈PCDATA〉〉

schemes) whereas this was not captured by the model in [12]. Also, in that
paper it was assumed that the extents of schema constructs are sets and therefore
extra constructs ‘order’ and ‘nest-set’ were required, to respectively represent the
ordering of children nodes under parent nodes, and parent-child relationships
where ordering is not significant. Here, we make use of the fact that IQL is
inherently list-based, and thus use only one NestList construct. The nth child of
a parent node can be specified by means of a query specifying the corresponding
nest-list, and the requested node will be the nth item in the IQL result list.

A problem when dealing with XML DataSource Schema is that multiple XML
elements can have the same name. The problem is amplified when dealing with
multiple files, as in our case. To resolve such ambiguities, a unique IDs assignment
technique had to be devised. For XML DataSource Schemas, the assignment
technique is 〈schemaName〉:〈elementName〉:〈count〉, where 〈schemaName〉 is
the schema name as defined in the AutoMed repository and 〈count〉 is a counter
incremented every time the same 〈elementName〉 is encountered, in a depth-
first traversal of the schema. As for XML documents themselves, the same
technique is used, except that the unique identifiers for elements are of the
form 〈schemaName〉:〈elementName〉:〈count〉:〈instance〉 where 〈instance〉 is a
counter incremented every time a new instance of the corresponding schema
element is encountered in the document.

After a modelling language has been defined in terms of HDM via the API of
AutoMed’s Model Definition Repository [1], a set of primitive transformations
is automatically available for the transformation of the schemas defined in the
language, as discussed in Section 2.1.

3 Framework Components

Our research focuses on the development of semi-automatic methods for gen-
erating the schema transformation pathways shown in Figure 1. The first step



is a schema matching [17] process, using for example data mining, or semantic
mappings to ontologies. Both approaches can be used to automatically generate
fragments of AutoMed transformation pathways — see for example [19]. Once
this process reveals the semantic equivalences between schema constructs, the
algorithm we describe in Section 3.1 integrates the XML DataSource Schemas
by transforming each one into its respective union schema, using graph restruc-
turing techniques. When several sources have been integrated, the global schema
can be used for querying the data sources, as described in Section 3.2.

3.1 Schema Transformation Algorithm

Our schema transformation algorithm can be applied in two ways: top-down,
where the global schema is predefined and the data source schemas are trans-
formed to match it, regardless of any loss of information; or bottom-up, where
there is no predefined global schema and the information of all the data sources
is preserved. Both approaches create the transformation pathways that produce
intermediate schemas with identical structure. These schemas are then auto-
matically transformed into the union schemas USi of Figure 1, including the id
transformation pathways between them. The transformation pathway from one
of the USi to GS can then be produced in one of two ways: either automatically,
using ‘append’ semantics, or semi-automatically, in which case the queries sup-
plied with the transformations that specify the integration need to be supplied
by the user. By ‘append’ semantics we mean that the extents of the constructs
of GS are created by appending the extents of the corresponding constructs of
US1, US2, . . . , USn in turn. Thus, if the XML data sources were integrated in
a different order, the extent of each construct of GS would contain the same
instances, but their ordering would be different.

Top-down approach: Consider a setting where a global schema GS is given,
and the data source schemas need to be conformed to it, without necessarily
preserving their information capacity. Our algorithm works in two phases. In
the growing phase, GS is traversed and every construct not present in a data
source schema Si is inserted. In the shrinking phase, each schema Si is traversed
and any construct not present in the global schema is removed.

The algorithm to transform an XML DataSource Schema S1 to have the same
structure as an XML DataSource Schema S2 is specified below. This algorithm
considers an element in S1 to be equivalent to an element in S2 if they have
the same element name. As specified below, the algorithm assumes that element
names in both S1 and S2 are unique. We discuss shortly the necessary extensions
to cater for cases when this does not hold.

Growing phase: consider every element E in S2 in a depth-first order:

1. If E does not exist in S1:

(a) Search S1 to find an attribute a with the same name as the name of E in S2

i. If such an attribute is found, add E to S1 with the extent of a and add an
edge from the element in S1 equivalent to owner(a, S2) to E.



ii. Otherwise, extend E. Then find the equivalent element of parent(E, S1)
in S2 and add an edge from it to E with an extend transformation.

iii. In both cases, insert the attributes of E from schema S2 as attributes to
the newly inserted element E in S1 with add or extend transformations,
depending on if it is possible to describe the extent of an attribute using
the rest of the constructs of S1. Note that one or more of these insertions
might result in the transformation of an element in S1 into an attribute.

(b) If E is linked to the PCDATA construct in S2:
i. If the PCDATA construct is not present in S1, insert it with an extend

transformation, then insert an edge from E to the PCDATA construct,
also with an extend transformation.

ii. Otherwise, add an edge from E to the PCDATA construct.
2. If E exists in S1 and parent(E, S2) = parent(E, S1):

(a) Insert any attributes of E in S2 that do not appear in E in S1, similarly to
1(a)iii.

(b) If E is linked to the PCDATA construct in S2, do the same as in 1b.
3. If E exists in S1 and parent(E, S2) 6= parent(E, S1):

(a) Insert an edge from EP to E, where EP is the equivalent element of parent(E, S2)
in S1. This insertion can either be an add or an extend transformation, de-
pending on the path from EP to E. The algorithm finds the shortest path from
EP to E, and, if it includes only parent-to-child edges, then the transformation
is an add, otherwise it is an extend.

(b) Insert any attributes of E in S2 that do not appear in E in S1, similarly to
1(a)iii.

(c) If E is linked to the PCDATA construct in S2, do the same as in 1b.

Shrinking phase: traverse S1 and remove any constructs not present in S2.

Renaming phase: traverse S1 and rename edge labels as necessary to create a con-

tiguous ordering of identifiers.

In step 3a, the algorithm decides whether to issue an add or an extend
transformation, depending on the type of edges the path from EP to E contains.
To explain this, suppose that the path contains at some point an edge (B, A),
where actually, in S1, element A is the parent of element B. It may be the case
that in the data source of S1, there are some instances of A that do not have
instances of B as children. As a result, when migrating data from the data source
of S1 to schema S2, some data will be lost, specifically those A instances without
any B children. To remedy this, the extend transformation is issued with both a
lower and an upper bound query. The first query retrieves the actual data from
the data source of S1, but perhaps losing some data because of the problem just
described. The second query retrieves all the data that the first query retrieves,
but also generates new instances of B (with unique IDs) in order to preserve the
instances of A that the lower bound query was not able to. Such a behaviour
may not always be desired, so the user has the option of telling the algorithm to
just use Any as the upper bound query in such cases.

An example application of the algorithm is illustrated in Figure 2. The cor-
responding transformation pathway is shown in Table 2 and is divided into three
sections. The first one illustrates the growing phase, where schema S1 is aug-
mented with the constructs from schema S2. The second illustrates the shrinking
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Fig. 2. Example Schema Transformation.

phase, where the constructs of S1 that do not appear in S2 are removed. The first
one illustrates the growing phase, the second the shrinking phase, and the third
the renaming phase. The generateElemUID function generates element instances
from attribute instances and is useful whenever an attribute is transformed into
an element, and vice versa — see g7–g9 and s2–s4 in Table 2.

Combining AutoMed’s insert and remove operations allows more complex
transformations to be achieved. For instance, in step 1(a)i of the algorithm, an
attribute is transformed into an element, e.g. see g7 in Table 2; in step 1(a)iii,
elements may be transformed into attributes, e.g. see g2. Finally, step 3a of the
algorithm simulates a move operation [3], e.g. see g3.

The algorithm presented above assumes that element names in both S1 and
S2 are unique. In general, this may not be the case and we may have (a) multiple
occurrences of an element name in S1 and a single occurrence in S2, or (b)
multiple occurrences of an element name in S2 and a single occurrence in S1, or
(c) multiple occurrences of an element name in both S1 and S2.

For case (a), the algorithm needs to generate a query that constructs the
extent of the single element in S2 by combining the extents of all three elements
from S1. For case (b), the algorithm needs to make a choice of which of the
elements from S1 to migrate the extent of the single element in S2 to. For this,
a heuristic can be applied which favours (i) paths with the fewest extend steps,
and (ii) the shortest of such paths. For case (c), a combination of the solutions
for (a) and (b) needs to be applied.



Table 2. Transformations for Figure 2.

g1: addNestList(〈〈root:1〉〉, 〈〈author:1〉〉, 2, [{r, a}|{r, b} ← 〈〈root:1, book:1, 1〉〉;
{b, a} ← 〈〈book:1, author:1, 1〉〉])

g2: addAttribute(〈〈author:1〉〉, 〈〈author:1, name〉〉,
[{a, p}|{a, n} ← 〈〈author:1, name:1〉〉; {n, p} ← 〈〈name:1,PCDATA〉〉])

g3: extendNestList(〈〈author:1〉〉, 〈〈book:1〉〉, 2,
[{a, b}|{b, a} ← 〈〈book:1, author:1, 1〉〉], Any)

g4: extendElement(〈〈publisher:1〉〉, V oid, Any)
g5: extendNestList(〈〈book:1〉〉, 〈〈publisher:1〉〉, 4, V oid, Any)
g6: extendNestList(〈〈publisher:1〉〉, 〈〈PCDATA〉〉, 1, V oid, Any)
g7: addElement(〈〈ISBN :1〉〉,

[{o}|{b, i} ← 〈〈book:1, ISBN〉〉; {o} ← generateElemUID {b, i} 〈〈ISBN :1〉〉])
g8: addNestList(〈〈book:1〉〉, 〈〈ISBN :1〉〉, 5,

[{b, o}|{b, i} ← 〈〈book:1, ISBN〉〉; {o} ← generateElemUID {b, i} 〈〈ISBN :1〉〉])
g9: addNestList(〈〈ISBN :1〉〉, 〈〈PCDATA〉〉, 1,

[{o, i}|{b, i} ← 〈〈book:1, ISBN〉〉; {o} ← generateElemUID {b, i} 〈〈ISBN :1〉〉])
s1: deleteNestList(〈〈root:1〉〉, 〈〈book:1〉〉,

[{r, b}|{r, a} ← 〈〈root:1, author:1, 2〉〉; {a, b} ← 〈〈author:1, book:1, 2〉〉])
s2: deleteNestList(〈〈author:1〉〉, 〈〈name:1〉〉,
[{a, o}|{a, n} ← 〈〈author:1, name〉〉; {o} ← generateElemUID {a, n} 〈〈name:1〉〉])
s3: deleteNestList(〈〈name:1〉〉, 〈〈PCDATA〉〉,
[{o, n}|{a, n} ← 〈〈author:1, name〉〉; {o} ← generateElemUID {a, n} 〈〈name:1〉〉])
s4: deleteElement(〈〈name:1〉〉,

[{o}|{a, n} ← 〈〈author:1, name〉〉; {o} ← generateElemUID {a, n} 〈〈name:1〉〉])
s5: deleteAttribute(〈〈book:1:ISBN〉〉,

[{o}|{b, i} ← 〈〈book:1, ISBN :1〉〉; {i, p} ← 〈〈ISBN :1,PCDATA〉〉])
s6: contractNestList(〈〈book:1〉〉, 〈〈author:1〉〉,

[{b, a}|{a, b} ← 〈〈author:1, book:1, 2〉〉], Any)
s7: contractNestList(〈〈book:1, genre:1, 3〉〉, V oid, Any)
s8: contractNestList(〈〈genre:1,PCDATA, 1〉〉, V oid, Any)
s9: contractElement(〈〈genre:1〉〉, V oid, Any)

r1: renameNestList(〈〈root:1, author:1, 2〉〉, 〈〈root:1, author:1, 1〉〉)
r2: renameNestList(〈〈author:1, book:1, 2〉〉, 〈〈author:1, book:1, 1〉〉)
r3: renameNestList(〈〈book:1, title:1, 2〉〉, 〈〈book:1, title:1, 1〉〉)
r4: renameNestList(〈〈book:1, publisher:1, 4〉〉, 〈〈book:1, publisher:1, 2〉〉)
r5: renameNestList(〈〈book:1, ISBN :1, 5〉〉, 〈〈book:1, ISBN :1, 3〉〉)



Bottom-up approach: In this approach, a global schema GS is not present
and is produced automatically from the source schemas, without loss of informa-
tion. A slightly different version of the above schema transformation algorithm
is applied to the data source schemas in a pairwise fashion, in order to incre-
mentally derive each one’s union-compatible schema (Figure 3). The data source
schemas Si are first transformed into intermediate schemas, ISi. Then, the union
schemas, USi, are produced along with the id transformations. To start with,
the intermediate schema of the first data source schema is itself, S1 = IS1

1 . Then,
the schema transformation algorithm is employed on IS1

1 and S2 (see annota-
tion 1 in Figure 3) The algorithm augments IS1

1 with the constructs from S2

it does not contain. It also restructures S2 to match the structure of IS1
1 , also

augmenting it with the constructs from IS1
1 it does not contain. As a result,

IS1
1 is transformed to IS2

1 , while S2 is transformed to IS1
2 . The same process is

performed between IS1
2 and S3, resulting in the creation of IS2

2 and IS1
3 (an-

notation 2). The algorithm is then applied between IS2
1 and IS2

2 , resulting only
in the creation of IS3

1 , since this time IS2
1 does not have any constructs IS2

2

does not contain (annotation 3). The remaining intermediate schemas are gen-
erated in the same manner: to produce schema ISi, the schema transformation
algorithm is employed on IS1

i−1 and Si, resulting in the creation of IS2
i−1 and

IS1
i ; all other intermediate schemas except IS2

i−1 and IS1
i are then extended

with the constructs of Si they do not contain. Finally, we automatically gen-
erate the union schemas, USi, the id transformations between them, and the
global schema (by using append semantics).
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3.2 Querying XML Files

AutoMed’s query engine and wrapper architecture are shown in Figure 4. The
AutoMedWrapperFactory and AutoMedWrapper classes are abstract classes that
implement some of the abstract methods, while the XMLWrapperFactory and
XMLWrapper classes implement the remaining abstract methods. Factories deal
with model specific aspects, e.g. primary keys for relational databases. The XML-
specific factory class contains a validating switch. When it is on, the parsing of
the XML file the XMLWrapper object is attached to is performed by consulting
the DTD/XML Schema the file references. A number of switches, e.g. a switch
for collapsing whitespace, will be added in the future. As Figure 4 indicates, the
architecture is extensible with wrappers for new data source models.

After the generation of transformation pathways by either top-down or bottom-
up integration, queries submitted to the global schema can be evaluated. A query
submitted to the query engine is first processed by the query processor, which
is responsible for reformulating it into a query that can be evaluated over the
data sources. This is accomplished by following the reverse transformation path-
ways from the global schema to the data source schemas. Each time a delete,
contract or rename transformation is encountered, it replaces any occurrences
of the removed or renamed scheme with the query supplied with the transfor-
mation. As a result, the original query is turned into a query that can be eval-
uated on the data sources — see [16, 9]. The fragment processor replaces IQL
subqueries by XML wrapper objects. The evaluator then evaluates the query,
making a call to the XML wrapper object where necessary. At present, querying



of XML files is performed by translating IQL queries into XPath. Future plans
include XQuery support.

As an example, suppose that schemas S1 and S2 of Figure 2 have been inte-
grated into the global schema GS of Figure 5 which is the global schema in this
integration scenario. In order to retrieve the title and genre of each book in the
global schema, the following query is submitted to GS (for simplicity, we omit
here the element counter from each element name):

[{b, t}|{b, i} ← 〈〈book, title〉〉; {i, t} ← 〈〈title, PCDATA〉〉] + +
[{b, g}|{b, i} ← 〈〈book, genre〉〉; {i, g} ← 〈〈genre, PCDATA〉〉]

The fragments of the transformation pathways from S1 and S2 to GS of rel-
evance to this query are:

S1 → GS:
extendElement(〈〈publisher:1〉〉, V oid, Any)
extendNestList(〈〈book:1〉〉, 〈〈publisher:1〉〉, V oid, Any)
extendNestList(〈〈publisher:1〉〉, 〈〈PCDATA:1〉〉, V oid, Any)

S2 → GS:
extendElement(〈〈genre:1〉〉, V oid, Any)
extendNestList(〈〈book:1〉〉, 〈〈genre:1〉〉, V oid, Any)
extendNestList(〈〈genre:1〉〉, 〈〈PCDATA:1〉〉, V oid, Any)

Traversing the pathways GS → US1 and GS → US2, the above query is
reformulated to:
[{b, t}|{b, i} ← (US1:〈〈book, title〉〉 + + US2:〈〈book, title〉〉);

{i, t} ← (US1:〈〈title, PCDATA〉〉 + + US2:〈〈title, PCDATA〉〉)] + +
[{b, g}|{b, i} ← (US1:〈〈book, genre〉〉 + + US2:〈〈book, genre〉〉);

{i, g} ← (US1:〈〈genre, PCDATA〉〉 + + US2:〈〈genre, PCDATA〉〉)]
Then, traversing the pathways US1 → S1 and US2 → S2, we obtain:

[{b, t}|{b, i} ← (S1:〈〈book, title〉〉 + + S2:〈〈book, title〉〉);
{i, t} ← (S1:〈〈title, PCDATA〉〉 + + S2:〈〈title, PCDATA〉〉)] + +

[{b, g}|{b, i} ← (S1:〈〈book, genre〉〉 + + (V oid, Any));
{i, g} ← (S1:〈〈genre, PCDATA〉〉 + + (V oid,Any))]

Instances of (Void,Any) can be eliminated, using the techniques described
in [9], giving the following final query:
[{b, t}|{b, i} ← (S1:〈〈book, title〉〉 + + S2:〈〈book, title〉〉);

{i, t} ← (S1:〈〈title, PCDATA〉〉 + + S2:〈〈title, PCDATA〉〉)] + +
[{b, g}|{b, i} ← S1:〈〈book, genre〉〉;

{i, g} ← S1:〈〈genre, PCDATA〉〉]

4 Related Work

Schema matching is a problem well-studied in a relational database setting. A re-
cent survey on schema matching is [17]. A machine-learning approach to schema
matching is [4] and an approach using neural networks is [11]; however both
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approaches are semi-automatic. In [10], the schema authors provide themselves
the semantics of the schema elements, by providing mappings between elements
of their schemas to a global ontology.

Concerning schema integration, Clio [15] first transforms the data source
schemas, XML or relational, into an internal representation. Then, after the map-
pings between the source and the target schemas have been semi-automatically
derived, Clio materializes the target schema with the data of the source, using
a set of internal rules, based on the mappings. DIXSE [20] follows a similar ap-
proach, as it transforms the DTD specifications of the source documents into an
inner conceptual representation, with some heuristics to capture semantics. Most
work, though, is done semi-automatically by the domain experts that augment
the conceptual schema with semantics. The approach in [18] has an abstract
global DTD, expressed as a tree, very similar to a global ontology. The con-
nection between this DTD and the DTDs of the data sources is through path
mappings: each path between two nodes in a source DTD is mapped to a path
in the abstract DTD. Then, query rewriting is employed to query the sources.

In the context of virtual data integration, SilkRoute [5] and XPERANTO
[2] are both middleware systems that use query rewriting to translate user
queries submitted in XML query languages to the language of the underlying
data sources. These systems are GAV. The approach in [7] on the other hand
combines GAV, LAV and GLAV integration rules in a peer-to-peer setting.

The framework we have presented in this paper approaches the XML data
integration problem using graph restructuring techniques. Our approach allows
for the use of multiple types of schema matching methods (use of ontologies,
semantics provided in RDF, data-mining), which can all serve as an input to
the schema integration algorithm. The main contributions of the work presented
here is the automatic integration of XML data using a purely XML solution.



5 Concluding Remarks

This paper has presented a framework for the virtual integration of XML data
within the AutoMed heterogeneous data integration system. Assuming a semi-
automatic schema matching process, the schema transformation algorithm suc-
ceeds in integrating XML data sources automatically. The algorithm makes use
of a simple schema definition language for XML data sources and an assignment
technique for unique identifiers, both developed specifically for the purposes of
XML data integration. The novelty of the algorithm is the use of XML-specific
graph restructuring techniques. Our framework also supports the materialization
of the virtual global schema, as discussed in [21].

We note that our schema transformation algorithm can also be applied in a
peer-to-peer setting. Suppose there is a peer PT that needs to query XML data
stored at a peer PS . We can consider PS as the peer whose XML DataSource
Schema needs to be transformed to the XML DataSource Schema of peer PT .
After the application of our algorithm, PT can then query PS for the data it
needs via its own schema, since AutoMed’s query engine can treat the schema
of PT as the ‘global’ schema and the schema of PS ’ as the ‘local schema’.

Evolution of applications or changing performance requirements may cause
the schema of a data source to change. In the AutoMed project, research has
already focused on the schema evolution problem in the context of virtual data
integration [13, 14]. For future work we will investigate the application of these
general solutions specifically for XML. The main advantage of AutoMed’s both-
as-view approach in this context is that it is based on pathways of reversible
schema transformations. This enables the development of algorithms that update
the transformation pathways and the global schema, instead of regenerating
them when data source schemas are modified. These algorithms can be fully
automatic if the information content of a data source schema remains the same or
contracts, though require domain knowledge or human intervention if it expands.
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