Chroniclesfor On-line Diagnosis of Distributed Systems

Xavier Le Guillouwr

Irisa — Université de Rennes 1
Campus de Beaulieu
35042 Rennes Cédex

xleguill @risa.fr

Abstract. The formalism of chronicles has been proposed to monitorcengh
nose dynamic physical systems. Even if efficient chronietegnition algorithms
exist, it is now well-known that distributed approaches lzgtter suited to mon-
itor actual systems. In this article, we adapt the chrorielsed approach to a
distributed context and illustrate this work on the morniitgrof software compo-
nents.

Key words: on-line diagnosis, distributed systems, chronicle redamn

1 Introduction

Monitoring and diagnosing dynamic systems have becomeagatme topics in research
and developmentfor a few years. Besides continuous modséxion differential equa-
tions, essentially used in control theory and discrete esgstems based on finite state
machines (automata, Petri nets, ...), a formalism commasgyl for on-line monitor-
ing, in particular by people from the artificial intelligegmcommunity, is the one of
chronicles. This formalism, proposed in [1], has been widsled and extended [2—4].
A chronicle describes a situation that is worth identifyinghin the diagnosis con-
text. It is made up a set of events and temporal constraintgele® those events. As
a consequence, this formalism fits particularly well protdethat consider a temporal
dimension. The set of interesting chronicles constituteshiase of chronicles. Then,
monitoring the system consists in analyzing flows of eveantd,recognizing on fly pat-
terns described by the base of chronicles. Efficient allgorit exist which explain that
this approach has been used for industrial applicationstisag/medical ones [2, 5, 6].

One of the key issues of model-based approaches for on-limitoning is the size
of the model which is generally too large when dealing withl r@pplications. Dis-
tributed or decentralized approaches have been proposegeowith this problem, like
[7-10]. The idea s to consider the system as a set of initagpobmponents instead of a
unique entity. The behavior of the system is thus descrilyeaidet of local component
models and by the synchronization constraints betweendimponent models.

Considering chronicle-based approaches, to our know|edgdistributed approaches
exist and the contribution of this paper consists in adgptire chronicle-based ap-
proach to distributed systems.

* under the direction of M.-O. Cordier

This work has been motivated by an application that aims aiitmiong the behavior
of software components, and more precisely of web servidsnithe context of the
WS-DIAMOND (Web Service DIAgnosability, MONitoring and Diagnosis)rBpean
project.In this context, a request is sent to a web servidemdollaborates with other
services to provide the adequate reply. Faults may prop#geth one service to another
and diagnosing them is a crucial issue, in order to reactgrshpp/Me use a simplified
example of an e-foodshop to illustrate our proposal.

We first recall the principles of the chronicle recognitiggpeoach and give basic
definitions in Sect. 2. We introduce in Sect. 3 the simplifigdreple that will be used
all along this paper. In Sect. 4, we show how to extend thergbi®based approach to
distributed systems. We first describe the architectureadfranicle-based distributed
system (4.1). Then we extend the chronicle formalism to @etl synchronization
constraints (4.2). We describe in 4.3 a push-pull algorittirie to compute a global di-
agnosis from the local diagnoses, computed by locallyidigied chronicle recognition
systems, by checking the synchronization constraintserAth illustrative example in
4.4, we compare our proposal to related work in Sect. 5 andleda in Sect. 6.

2 Chronicle Recognition Approach

The chronicle recognition approach (first introduced i f&lies on a set of patterns,
named chronicles, which constitutes the chronicle bageud eecall the formalism and
the chronicle recognition algorithm.

2.1 Formalism of Chronicles

A chronicle is a set of observable events which are time{caim&ed and is characteristic
of a situation.

An event type defines what is observed within the systesg, the name of an activity
act, the name augmented with the fact that is starting (namelyict™) or ending
(namelyact™), the name enriched with observable parametet&vary, . .., Tvary,)

or a combination of those possibilitieS.denotes the set of possible event types. An
event is a pair(e, 7t) wheree € £ is an event type and the occurrence date of the
event.

A chronicle (model)C is a pair(S,7) whereS is a set of events and a set of con-
straints between their occurrence dates. When its vasalld its occurrence dates are
instantiated, a chronicle is callecthronicle instance.

2.2 Chronicle Recognition

A chronicle recognition tool, called CRS (Chronicle Recitign System), has been
developed by C. Doussbénit is in charge of analyzing the input stream of events and
of identifying, on the fly, any pattern matching a situaticesdribed by a chronicle.
Chronicles are compiled into temporal constraint netwevkih are processed by ef-
ficient graph algorithms. CRS is based on a complete forefalse possible dates for

L http://crs.elibel.tm.fr/

each event that has not occurred yet. This set (called teahpimdow) is reduced by
propagation of the dates of observed events through theahgonstraint network.
When a new event arrives in the input stream, new instancgwohicles are generated
in the set of hypotheses, which is managed as a tree. Instaneeliscarded as soon as
possible, when constraints are violated or when temporadows become empty.

° 1L.3) ° Chronicle model
.

(@ BPtias . @3 (b5) time

b[24 v).—)’ 34] =P - Discarded -
1n -
.—)' 46] . > h,[s,s]j
12 hie
™
13

Fig. 1. Principle of chronicle recognition

Figure 1 shows the principle of the recognition algorithrmaorery simple example:
a single chronicle model is defined, containing only two ésefa, 7t,) and (b, 7t;),
with 7¢,+1 <?¢, <7t,+3. When even(a, 1) is received, instancgl is created, which
updates the temporal window of the related nbdé/hen a new everl, 3) occurs, a
new instancel/2 is created and the forthcoming temporal windowIafis updated.
When eventb, 5) is received, instancé3 is created (from72) and 71 is destroyed as
no more eventb, 7t,) could match the temporal constraints from now on. Instdizce
is still waiting for another potential eveli, 7t;) before?t, > 6. As all the events of
13 are instantiated, this instance is recognized.

3 Moaotivating Example

To illustrate the ideas developed in this paper, we consadeorchestration of three
web services, a shop, a supplier and a warehouse, that prexgstiopping capabilities
to users. This application keeps the essential propertiteecapplications we aim to

monitor. In particular, we consider closed environmentsre a workflow-like descrip-

tion of each web service (Fig. 2) involved in the processihthe request is supposed
to be available.

A customer wants to place an order and selects items on tlpe $his list of items
is transferred to a supplier which sends a reservation stqaea warehouse, for each
item of the list. The warehouse returns an acknowledgenaetitet supplier for each
item request and, at the end of the item list, the suppliedsenlist of the available
items to the shop which forwards it to the customer. The custagreement terminates
the process.

Faults may happen during this process. Figure 2.a showsftihem (represented
by pentagons), related with the shop. First, when placisghiler, the customer may

?SHOPIlistOut
I »

[ok] [cancel]

| e

| ForwardOrder | | CancelOrder |

I_,®4_I

- ZEUEE‘lS.tLrL;l (@)
?WHitemin
next] timeout T oTTTTTS
[end] ?SUPPitemOut Available?

""""" > hardErr, Lyes]
----------- Ino]
?SUPPitemIn

Available?

[yes] ?WHitemOut
LI gy g .

(03] (b) ©

stockErr

[no]

Fig. 2. (a) Workflow of the SHOP and reduced workflows (@} the SUPP andc) the WH

make a data acquisition error, which may result in unexpukiteans on his reserva-
tion list. Then, a timeout may occur when calling the supph®e consider that only
timeouts may occur on the supplier (Fig. 2.b), when calling warehouse. On the
warehouse (Fig. 2.c), things are more complicated. Firsttean may be out of stock,
resulting in an incomplete reservation list. Then, an imaéerror may happen, resulting
in a denial of service.

Figure 3 presents two processes that may result in the saseevaition on the shop,
i.e. a cancellation of the order due to an incorrect reservaistn(&) a data acquisition
error, ordering “eggs and teak” instead of “eggs and tea"irfstance, andb) a stock
error happening on the warehouse. Here, we notice that tstimdi errors that happen
on two distinct services can result in the same local propleence the necessity of
diagnosing the system globally in order to repair in an adezjway.

SHOP SUPP WH SHOP SUPP WH
@|_{easseakd {eggs.tea}
{eggs} > {eggs}
_aval | avail
ek o N
_ aval | [noavail | @
fegusteak) | {eggs}
@ (b)

Fig. 3. Two scenarii that may result in a cancelled order

4 Extension to Distributed Environments

Diagnosing distributed systems thanks to chronicles regub define a modular di-
agnosis architecture capable of merging diagnoses pridigdocal chronicle-based
diagnosers and to enrich the chronicle formalism with syoiization constraints.

4.1 Architecture

Figure 4 summarizes our chronicle-based approach artinieed his decentralized sys-
tem is composed of a global diagnoser (or broker) in chargeearfjing the local diag-
noses sent by each service and sending global diagnosegpaia module. Services
are composed of the web service itself, logs generated intinea by the web service,
a base of chronicles generated off-line, a local diagndsgiuses the logs to instantiate
chronicles from the base.

Broker
(global diagnoser)

| Local diagnoser 1 | | Local diagnoser 2 |
logs 1 base of chronicles 1 logs 2 base of chronicles 2
7y ry
| Web service 1 I- -I Web service 2 |

Fig. 4. General architecture of a distributed system

4.2 Extension of the Formalism of Chronicles

As a fault occurring on a service often propagates to otheicsss, we base our ap-
proach on the merging of local diagnoses. As a consequerecenvich the initial for-
malism of chronicles with synchronization constraintst tabow the broker to spot
homologous chronicles and merge them.

Before defining a distributed chronicle, let us firstly defivieat is a synchronization
point.
Thestatus of avariableis a boolean that denotes if the value of a chronicle variible
normal Gerr) or abnormal érr) in a given execution case. gynchronization vari-
able is a pair(?var, status) where?var is a (non temporal) chronicle variable and
status the status of this variable inside a given chronicle model.
A synchronization point is a tuple(e, {vars}, servy,,.) Wheree is an event type,
{vars} a set of synchronization variables linked with this evemetyandserv,,,. a
type of remote service the local service communicates withinstance of a syn-
chronization point is a synchronization point in which variables are instaatdaand
serveype IS instantiated as the effective address of the remotecgervi

A synchronization point ishcoming if it corresponds t0 &erv,emote — SETViocal
communicationputgoing for the contrary (see example chronicle below).

Referring to Fig. 2.a and Sect. 3, here is one of the two symshation points on the
SHOP, which is instantiated as follows, in the executioreazsan external error (see
Fig. 6):

(ChkN Reserve™,{(?SHOUPIlistIn,err)}, supplier).

It expresses the fact that the error is coming from the sapphirough the ?SHOPIistin
variable, which is received by the SHOP at the end of the Chéd¢R/e activity.

A distributed chronicle is a classical chronicle enrichathva “color” and a “syn-
chronization” part, so that we can merge it with chronictesrf adjacent services.
Thecolor of a chronicle K represents the degree of importance of a chronicle and its
capacity to trigger a global diagnosis process. Two cologugedired for faults that
may trigger the broker angi-cen for normal behaviors and non critical faults.
Distributed chronicle: a distributed chronicle is a tupte, = (S,7,0,Z, K) where
S is a set of events] a graph of constraints between their occurrence détemdZ
are respectively two sets of outgoing and incoming syndaetion points, and’ is the
color of the chronicle.

Let us consider the chronicle describing the external exase. We have the distributed
chronicle modeCp = (S,7,0,Z,K):
S = { (ReceiveOrder, 7t),
(ChkN Reserve™ (?SHOPIlistOut), 7ts2),
(ChkN Reservet (?SHOPIlistIn),t3),
(SendBill, t4),
(ReceiveCon firm, ts),
(ForwardOrder, 7tg)
¥
T = {?tl <?t2, o <?t3,?t3 <?t4, Tty <75 <?t6}
O = {(ChkN Reserve™,{(?SHOPIlistOut, —err)}, supplier)}
T = {(ChkN Reservet, {(?SHOPIlistIn,err)}, supplier)}
K =red
This chronicle triggers the broker, hencesitsi color. Having defined chronicles
for each behavior of each service taking part in the foodshopestration, we have the
tables shown in Fig. 6, in which we only give the synchronaapart of the chronicles.
red chronicles are written in bold case.

4.3 Algorithms

Our approach consists in merging local chronicles in ordexdmpute a set of can-
didate global diagnoses. This set of diagnoses is repessédayt a diagnosis tree as
explained below. There are two steps in the global diagmsieess (Fig. 5). In a first
step, at “push” time, local diagnosers send recognizednities to the broker, which
triggers the global diagnosis process. In a second steuit time, i.e. when the

A |A
push pull

I Chronicle filter I [Diagnosis tree]
A
integration grafting
Instances of applicant Global diagnoser
chronicles (CRS)

base of chronicles

(@ (b)

Fig. 5. Working of the(a) local and(b) global diagnosers

global diagnoser needs information, it queries local diesgns their chronicles recog-
nized previously or in future. This push-pull mechanismrmipiemented through a filter
as explained below.

The computation of the local diagnosis relies on a CRS mofgualdy the logs of
the web service and sending its recognized chronicles tgltiml diagnoser (Fig. 5).

In order to avoid sending useless chronicles, a fili¢iis set for each running pro-
cess. Infilter mode, onlyred recognized chronicles are sent to the global diagnoser.
Green chronicles are stored in a chronicle buffgr;. Nevertheless, at “pull” time, the
global diagnoser can changde from filter to open, which flushe<, ;s in order to
provide the global diagnoser with all the available infotima. In open mode, both
red or green newly recognized chronicles will be directly sent to thelglbdiagnoser.
Algorithm 1 illustrates this operation.

init: mode M := filter, chronicle seCp, s := 0;

on event chronicle ¢ recognized do

if (M = filter A c.color = red) V M = open then
| Broker.push(c);

ese
| Cous := Cour U{c}

end

end

on event Local Diagnoser.pull() do

foreach ¢ € Cyuy do Broker.push(c);

Cous := 0, M := open;

end
Algorithm 1: Local diagnoser management

The global diagnoser algorithm relies on a diagnosisfrem charge of treasuring
all the candidate diagnoses under the shape of partialygrézed global chronicles
(Fig. 5.(b)). Each candidate diagnosis is represented by a path leednzpnstraintless
node inD;. The global diagnoser algorithm (Algorithm 2) managestiteis and queries
local diagnosers in order to make it grow and complete thelipgrpaths.

The initial diagnosis tree only contains theptynode which, being constraintless,
is compatible with any recognized chronicle. When a recogphchronicle: is sent by
a services to the global diagnoser, two operations are performedt,Fixsis traversed,
trying to combine each nodewith ¢ thanks to the status of corresponding variables. In
case of a compatibility betweenandc, a child node containingand the synchroniza-
tion constraints that remain to check is grafted underD;. Then, the global diagnoser
changes t@pen the mode of all the services mentionedcim order to collect all the
information needed for a global diagnosis (Algorithm 2).

init: diagnosis tre®; := emptynode;
on event Broker.push(chronicle c¢) do
foreach node n of D, do
if ¢ compatible with n then
| n.addChild(c);
end
end
foreach service s mentioned in ¢ do
| s.LocalDiagnoser.pull();
end

end
Algorithm 2: Global diagnoser management

When a candidate diagnosise(a constraintless node) is computedip, the bro-
ker forwards it to an external repair module and proceeds thi exhibition of other
candidate diagnoses.

4.4 [lllustration on the Example

The following example was tested on a distributed chrorielsed diagnosis platform
called ARDECRS [11], developed during this PhD thesis.

We consider a customer placing an order on the SHOP, ordethvidiforwarded
to the SUPPIier. For each product of the item list, the SURR ttee WareHouse so as
to book the corresponding product. Unfortunately, a produaissing which provokes
the recognition of th&H:stockErr chronicle, the color of which igreen, because the
WH doesn’t consider being out of stock as an error. The briskeot triggered and the
execution goes on. But when the SUPP receives the negavesanf the WH, the-ed
chronicleSUPP: extErr is recognized and the SUPP “pushes” this chronicle towduels t
broker, triggering a global diagnosis process while theiserexecution goes on.

D; only contains the root node, at this point. This node is cdibfgwith the con-
straints of SUPP:extErr, listed in Fig.6, and a new node containi8dPP:extErr and
its constraints is grafted under the root node. After tins,liroker changes tgen the
mode of WH, “pulling” the previously recognizétiH: stockErr chronicle towards it.

D, now contains two node¥VH:stockErr is compatible with the empty root node,
which results in the grafting of a child node under the roottainingWH: stockErr

SHOP |[?listOut| ?listin
normal| —err | —err
dataErr| err err
extErr | —merr | err
timeout | —err |undef

SUPP [?listin| ?itemOut| ?itemin | ?listOut
normal|—err| —err | —err | —err
fwdErr | err err err err
extErr |—err| —err err err
timeout| —err| —err |undef|undef

WH | ?itemin|?itemOut
normal | —err | —err
fwdErr | err err
stockErm —err err

hardErr| —err | undef

Fig. 6. Chronicles of the three web services

and its constrainta/VH:stockErr is also compatible witlfBUPP:extErr, as the homol-
ogous variables have the same stat\fdy P PitemQOut and?W HitemIn are—err,
?SU PPitemlIn and?W HitemQOut areerr. This way, a child node is grafted under
SUPP: extErr, containingWWH: stockErr and the remaining unchecked constraints (Fig.
7).

The “pulling” process goes on, interrogating the SHOP anttimgafor its recog-
nized chronicles. At the end of the orchestration executignexhibits a single con-
straintless node, which is then the unique candidate dsigno
SHOP: extErr, SUPP: extErr, WH: stockErr.

I
SUPP:extErr WH:stockErr
?SUPP:listIn(notErr) ?WH:itemIn(notErr)
?SUPP:itemOut(notErr) ?WH:itemOut(err)

?SUPP:itemIn(err)
2SUPP:listOut(err)

WH:stockErr+SUPP:extErr

?SUPP:listin(notErr)
2SUPP:listOut(err)

Fig. 7. Intermediate diagnosis tree

4.5 A Word About Complexity

Let us consider the complexity of such an approach. On the kide, the complexity
only depends on CRS, which has already been successfuthinsrge scale systems.

Some basic rules about chronicle writing allow to optimtzetise of CRS: PID filtering
avoids the recognition of useless cross-process chranidtdays in chronicle models
flush chronicle instances automatically, etc.

On the broker side, the size of the tree only depends on théeuaof chronicles
recognized on each service, hence a need for discriminatidgexclusive chronicles.
In the worst case, considering all the chronicles are coilpatve demonstrate that
the maximum number of nodes 1y is

Nmaz = | [(ICs| + 1)

seS

with S the set of implied services aiiy the set of chronicles recognized en

5 Redated Work and Discussion

Within the context of the supervision of dynamic systemsnpynaorks use the for-
malism of chronicles [4, 2, 3,12, 6]. Nevertheless, few deitth using chronicles in a
distributed context. The approach presented in [13] foewsetemporal aspects and
proposes a distributed checking of temporal constraintsniipoducing both local and
global temporal constraints). In [14], the authors studygtoblem of acquiring chron-
icles from the fault model of a system, described with PedtsnThey use a method
based on unfolding Petri nets. The formalism of chronictesririched with pre- and
post-conditions on the current system state, and the ré@@myalgorithm modified con-
sequently. However, to our knowledge, nobody directly veor&n the use of distributed
chronicles, in particular on the integration of synchrauiian constraints between com-
ponents inside the formalism and on the adaptation of theesponding algorithm, as
we propose in this article.

The way we approach the problem of monitoring dynamic systéom a dis-
tributed chronicle-based modeling of the system may be ewetpwith works dealing
with distributed approaches of monitoring discrete-ewsstems, such as [7-9, 15, 10,
16, 17]. In each of those works, local diagnoses computetiddifferent components
of the system are synchronized in order to compute a diagtalsing into account the
constraints between components. For instance, the agpodd®8] is not so far away
from ours, as they fit parts together to build the system diaignlike in a puzzle. Those
parts, callediles, are labelled by alarms and represent pieces of trajestoflee main
difference between the two approaches, apart from the-Retitbased formalism they
use, is that theirs is fully distributed and uses commuigoatbetween local compo-
nents to do the computations, without any supervisor. Indaeentralized case, a su-
pervisor is in charge of fitting local chronicles togethéeahaving synchronized them,
so that a global chronicle could be built. [18] is also ingteel in software components
monitoring. The components of the system are described toyrfe¢s and each compo-
nentis associated with a local controller that monitorset@ution of this component,
observing the messages exchanged between the componétstaeidghbors.

Concerning web services monitoring, we can cite [19], thipdlve of which is
to acquire a model as automata that will permit to monitor ponents thanks to the
BPEL description of their process. Closer to us, [20] pr@sds use planning tools to

allow the user to express his requests thanks to a highiewgliage and to control the
execution of his plans by interlacing execution and planat@dThe authors of [21]
are interested in checking on line the consistency betwdeat & web service should
do, called a contract, and its effective execution. Comdrace expressed as constraints
in a constraint-oriented language, and integrated in th€lBfi#es under the shape of
annotations. Then, monitors, implemented as web senotsgrve the behavior of the
web services and are capable of detecting timeout problefasctional errors. In [22],
a quite similar approach relies on a monitoring of plans toitoo requests and uses the
KPLTL temporal logic in order to express the specificatidreg have to be respected.
In [23], the decentralized architecture is close to ourshieeb service is equipped
with a local diagnoser generating hypotheses that are stensiwith the local model
and the observations. A supervisor merges local diagnasesmpute a global one,
by propagating hypotheses from a local diagnoser to itshieics. The main differ-
ence is that they rely on a static diagnosis approach: uspgmtiencies between state
variables, their approach consists in explaining the adatmt have arisen at a given
time. In our case, we monitor the behavior of the componesitssvolves. This allows,
on the one hand, to identify problems related to alarm firind,an the other hand, to
forestall a potential problem and avoid its occurrence.

6 Conclusion

Our contribution in this paper is to proposaiatributed chronicle-based monitoring
and diagnosis approach. Even if it is now recognized th#tidiged approaches are the
only realistic way to monitor large-scale systems, no woikteto our knowledge, as
far as chronicle-based approaches are concerned. We praistributed architecture
in which a broker service is in charge of synchronizing thealadiagnoses computed
from chronicles at the component level. We extend the fosmabf chronicles and in-
troduce synchronization points that express the synchation constraints which are
checked by the broker according to a push-pull mechanismdé&¥eribe the main al-
gorithms and illustrate them on a simplified e-shopping gXatmA platform has been
developed and allows us to make experiments in the frameafdie WS-DAMOND
European project, dedicated to the monitoring of softwaramonents.

The main perspectives are twofold. The first one is to coupaliagnosis service
with a repair service (developed by a partner of ours), thed eing to ensure a good
QoS, even in case of fault occurrences. The second one isltbamguisition tools to
help building the set of local chronicles, starting from Witow descriptions. A first
step in this direction can be found in [19].

References

1. Dousson, C., Gaborit, P., Ghallab, M.: Situation rectigni representation and algorithms.
In: Proc. of the Int. Joint Conf. on Atrtificial Intelligenc&ICAI'93). (1993) 166-172

2. Cordier, M.O., Krivine, J., Laborie, P., Thiébaux, S.laBn processing and reconfiguration
in power distribution systems. In: Proc. of IEA-AIE’98. (@8) 230-240

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Dojat, M., Ramaux, N., Fontaine, D.: Scenario recognifa temporal reasoning in medical

domains. Artificial Intelligence in Medicin#4(1-2) (1998) 139-155

. Cordier, M.O., Dousson, C.: Alarm driven monitoring h&m chronicles. In: Proc. of

Safeprocess’2000. (2000) 286—291

. Pencolg, Y., Cordier, M.O., Rozé, L.: Incremental aedized diagnosis approach for

the supervision of a telecommunication network. In: IEEEhCon Decision and Control
(CDC'02). (2002) 435-440

. Aguilar, J., Bousson, K., Dousson, C., Ghallab, M., Ghag., Milne, R., Nicol, C.,

Quevedo, J., Trave-Massuyes, L.: Tiger: real-time sitmeassessment of dynamic systems.
Technical report (1994)

. Baroni, P., Lamperti, G., Pogliano, P., Zanella, M.: Diagis of a class of distributed

discrete-event systems. IEEE Transactions on systems amaeybernetics (2000) 731-752

. Debouk, R., Lafortune, S., Teneketzis, D.: Coordinatecedtralized protocols for failure

diagnosis of discrete event systems. Discrete Event Dyn&ystemd0(1-2) (2000) 33-86

. Aghasaryan, A., Fabre, E., Benveniste, A., Boubour, &d,XC.: Fault detection and diag-

nosis in distributed systems : an approach by partiallytetstic petri nets. Discrete Event
Dynamic System8(2) (1998) 203—-231

Pencolé, Y., Cordier, M.O.: A formal framework for thecgntralised diagnosis of large
scale discrete event systems and its application to telexortation networks. Artificial
Intelligence Journal64(1-2) (2005) 121-170

Le Guillou, X., Cordier, M.O., Robin, S., Roze, L.: Chidas for on-line diagnosis of
distributed systems. Internal IRISA report #1890 (2008)

Quiniou, R., Cordier, M.O., Carrault, G., Wang, F.: Apation of ilp to cardiac arrhythmia
characterization for chronicle recognition. In: ILP’20§2001) 220-227

Boufaied, A., Subias, A., Combaceau, M.: Distributadtfdetection with delays consider-
ation. In: Proc. of the 1% Int. Workshop on Principles of Diagnosis (DX'04). (2004)
Guerraz, B., Dousson, C.: Chronicles constructionistafrom the fault model of the system
to diagnose. In: Proc. of the #5Int. Workshop on Principles of Diagnosis (DX'04). (2004)
51-56

Jiroveanu, G., Boél, R.: Petri net model-based disteith diagnosis for large interacting
systems. In: Proc. of the ¥6Int. Workshop on Principles of Diagnosis (DX’05). (2005)
Roos, N., Teije, A., Bos, A., Witteveen, C.: An analydismulti-agent diagnosis. In: Proc.
of the 2** Int. Joint Conf. on Autonomous Agents and MultiAgent Sysse@AMAS’02).
(2002)

Provan, G.: A model-based diagnosis framework for itisted systems. In: Proc. of the
13" Int. Workshop on Principles of Diagnosis (DX'02). (2002)-25

Grosclaude, I.: Model-based monitoring of componexrstel software systems. In: Proc. of
the 18" Int. Workshop on Principles of Diagnosis (DX'04). (2004)-56

Yan, Y., Pencolé, Y., Cordier, M.O., Grastien, A.: Muoning web service networks in a
model-based approach. I:%3European Conf. on Web Services (ECOWS). (2005)
Lazovik, A., Aiello, M., Papazoglou, M.: Planning and mitoring the execution of web
service requests. In: Proc. of th& Int. Conf. on Service-Oriented Computing (ICSOC’03).
Volume 2910 of Lecture Notes in Computer Science. (2003)-338

Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors fenposed services. In: Proc. of the
2" Int. Conf. on Service-Oriented Computing (ICSOC'04). (2p293-202

Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: nRime monitoring of instances and
classes of web service compositions. In: Proc. of the IEREQonf. on Web Services
(ICWS’06). (2006) 63-71

Ardissono, L., Console, L., Goy, A., Petrone, G., Pigatd Segnan, M., Theseider Dupré,
D.: Cooperative model-based diagnosis of web service®rimceedings of DX'05, Interna-
tional Workshop on the Principles of Diagnosis, Pacific @dvalifornia (2005)

