
Chronicles for On-line Diagnosis of Distributed Systems

Xavier Le Guillou⋆

Irisa – Université de Rennes 1
Campus de Beaulieu
35042 Rennes Cédex

xleguill@irisa.fr

Abstract. The formalism of chronicles has been proposed to monitor anddiag-
nose dynamic physical systems. Even if efficient chronicle recognition algorithms
exist, it is now well-known that distributed approaches arebetter suited to mon-
itor actual systems. In this article, we adapt the chronicle-based approach to a
distributed context and illustrate this work on the monitoring of software compo-
nents.

Key words: on-line diagnosis, distributed systems, chronicle recognition

1 Introduction

Monitoring and diagnosing dynamic systems have become veryactive topics in research
and development for a few years. Besides continuous models based on differential equa-
tions, essentially used in control theory and discrete event systems based on finite state
machines (automata, Petri nets, . . .), a formalism commonlyused for on-line monitor-
ing, in particular by people from the artificial intelligence community, is the one of
chronicles. This formalism, proposed in [1], has been widely used and extended [2–4].
A chronicle describes a situation that is worth identifyingwithin the diagnosis con-
text. It is made up a set of events and temporal constraints between those events. As
a consequence, this formalism fits particularly well problems that consider a temporal
dimension. The set of interesting chronicles constitutes the base of chronicles. Then,
monitoring the system consists in analyzing flows of events,and recognizing on fly pat-
terns described by the base of chronicles. Efficient algorithms exist which explain that
this approach has been used for industrial applications as well as medical ones [2, 5, 6].

One of the key issues of model-based approaches for on-line monitoring is the size
of the model which is generally too large when dealing with real applications. Dis-
tributed or decentralized approaches have been proposed tocope with this problem, like
[7–10]. The idea is to consider the system as a set of interacting components instead of a
unique entity. The behavior of the system is thus described by a set of local component
models and by the synchronization constraints between the component models.

Considering chronicle-based approaches, to our knowledge, no distributed approaches
exist and the contribution of this paper consists in adapting the chronicle-based ap-
proach to distributed systems.

⋆ under the direction of M.-O. Cordier

This work has been motivated by an application that aims at monitoring the behavior
of software components, and more precisely of web services within the context of the
WS-DIAMOND (Web Service DIAgnosability, MONitoring and Diagnosis) European
project.In this context, a request is sent to a web service which collaborates with other
services to provide the adequate reply. Faults may propagate from one service to another
and diagnosing them is a crucial issue, in order to react properly. We use a simplified
example of an e-foodshop to illustrate our proposal.

We first recall the principles of the chronicle recognition approach and give basic
definitions in Sect. 2. We introduce in Sect. 3 the simplified example that will be used
all along this paper. In Sect. 4, we show how to extend the chronicle-based approach to
distributed systems. We first describe the architecture of achronicle-based distributed
system (4.1). Then we extend the chronicle formalism to dealwith synchronization
constraints (4.2). We describe in 4.3 a push-pull algorithmable to compute a global di-
agnosis from the local diagnoses, computed by locally distributed chronicle recognition
systems, by checking the synchronization constraints. After an illustrative example in
4.4, we compare our proposal to related work in Sect. 5 and conclude in Sect. 6.

2 Chronicle Recognition Approach

The chronicle recognition approach (first introduced in [1]) relies on a set of patterns,
named chronicles, which constitutes the chronicle base. Let us recall the formalism and
the chronicle recognition algorithm.

2.1 Formalism of Chronicles

A chronicle is a set of observable events which are time-constrained and is characteristic
of a situation.
An event type defines what is observed within the system,e.g. the name of an activity
act, the name augmented with the fact thatact is starting (namelyact+) or ending
(namelyact−), the name enriched with observable parametersact(?var1, . . . , ?varn)
or a combination of those possibilities.E denotes the set of possible event types. An
event is a pair(e, ?t) wheree ∈ E is an event type and?t the occurrence date of the
event.
A chronicle (model)C is a pair(S, T) whereS is a set of events andT a set of con-
straints between their occurrence dates. When its variables and its occurrence dates are
instantiated, a chronicle is called achronicle instance.

2.2 Chronicle Recognition

A chronicle recognition tool, called CRS (Chronicle Recognition System), has been
developed by C. Dousson1. It is in charge of analyzing the input stream of events and
of identifying, on the fly, any pattern matching a situation described by a chronicle.
Chronicles are compiled into temporal constraint networkswhich are processed by ef-
ficient graph algorithms. CRS is based on a complete forecastof the possible dates for

1 http://crs.elibel.tm.fr/

each event that has not occurred yet. This set (called temporal window) is reduced by
propagation of the dates of observed events through the temporal constraint network.
When a new event arrives in the input stream, new instances ofchronicles are generated
in the set of hypotheses, which is managed as a tree. Instances are discarded as soon as
possible, when constraints are violated or when temporal windows become empty.

a b
[1,3] Chronicle model

time(a,1) (a,3) (b,5)

(a,1) b,[2,4] (a,1) b,[3,4] - Discarded -

b,[4,6](a,3) (a,3) b,[5,6]

(a,3) (b,5)

I2

I1

I3

Fig. 1. Principle of chronicle recognition

Figure 1 shows the principle of the recognition algorithm ona very simple example:
a single chronicle model is defined, containing only two events: (a, ?ta) and(b, ?tb),
with ?ta+1 ≤?tb ≤?ta+3. When event(a, 1) is received, instanceI1 is created, which
updates the temporal window of the related nodeb. When a new event(a, 3) occurs, a
new instanceI2 is created and the forthcoming temporal window ofI1 is updated.
When event(b, 5) is received, instanceI3 is created (fromI2) andI1 is destroyed as
no more event(b, ?tb) could match the temporal constraints from now on. InstanceI2
is still waiting for another potential event(b, ?tb) before?tb > 6. As all the events of
I3 are instantiated, this instance is recognized.

3 Motivating Example

To illustrate the ideas developed in this paper, we consideran orchestration of three
web services, a shop, a supplier and a warehouse, that provide e-shopping capabilities
to users. This application keeps the essential properties of the applications we aim to
monitor. In particular, we consider closed environments, where a workflow-like descrip-
tion of each web service (Fig. 2) involved in the processing of the request is supposed
to be available.

A customer wants to place an order and selects items on the shop. This list of items
is transferred to a supplier which sends a reservation request to a warehouse, for each
item of the list. The warehouse returns an acknowledgement to the supplier for each
item request and, at the end of the item list, the supplier sends a list of the available
items to the shop which forwards it to the customer. The customer agreement terminates
the process.

Faults may happen during this process. Figure 2.a shows two of them (represented
by pentagons), related with the shop. First, when placing his order, the customer may

Fig. 2. (a) Workflow of the SHOP and reduced workflows of(b) the SUPP and(c) the WH

make a data acquisition error, which may result in unexpected items on his reserva-
tion list. Then, a timeout may occur when calling the supplier. We consider that only
timeouts may occur on the supplier (Fig. 2.b), when calling the warehouse. On the
warehouse (Fig. 2.c), things are more complicated. First, an item may be out of stock,
resulting in an incomplete reservation list. Then, an internal error may happen, resulting
in a denial of service.

Figure 3 presents two processes that may result in the same observation on the shop,
i.e. a cancellation of the order due to an incorrect reservation list: (a) a data acquisition
error, ordering “eggs and teak” instead of “eggs and tea”, for instance, and(b) a stock
error happening on the warehouse. Here, we notice that two distinct errors that happen
on two distinct services can result in the same local problem, hence the necessity of
diagnosing the system globally in order to repair in an adequate way.

SHOP SUPP WH

{eggs}

avail

{teak}

avail

{eggs,teak}

(a)

SHOP SUPP WH

{eggs}

avail

{tea}

notAvail

{eggs}

(b)

{eggs,teak} {eggs,tea}

Fig. 3. Two scenarii that may result in a cancelled order

4 Extension to Distributed Environments

Diagnosing distributed systems thanks to chronicles requires to define a modular di-
agnosis architecture capable of merging diagnoses provided by local chronicle-based
diagnosers and to enrich the chronicle formalism with synchronization constraints.

4.1 Architecture

Figure 4 summarizes our chronicle-based approach architecture. This decentralized sys-
tem is composed of a global diagnoser (or broker) in charge ofmerging the local diag-
noses sent by each service and sending global diagnoses to a repair module. Services
are composed of the web service itself, logs generated in real time by the web service,
a base of chronicles generated off-line, a local diagnoser that uses the logs to instantiate
chronicles from the base.

Broker
(global diagnoser)

Local diagnoser 1

logs 1 base of chronicles 1

...

Web service 1

Local diagnoser 2

logs 2 base of chronicles 2

Web service 2

...

Fig. 4. General architecture of a distributed system

4.2 Extension of the Formalism of Chronicles

As a fault occurring on a service often propagates to other services, we base our ap-
proach on the merging of local diagnoses. As a consequence, we enrich the initial for-
malism of chronicles with synchronization constraints that allow the broker to spot
homologous chronicles and merge them.

Before defining a distributed chronicle, let us firstly definewhat is a synchronization
point.
Thestatus of a variable is a boolean that denotes if the value of a chronicle variableis
normal (¬err) or abnormal (err) in a given execution case. Asynchronization vari-
able is a pair(?var, status) where?var is a (non temporal) chronicle variable and
status the status of this variable inside a given chronicle model.
A synchronization point is a tuple(e, {vars}, servtype) wheree is an event type,
{vars} a set of synchronization variables linked with this event type andservtype a
type of remote service the local service communicates with.An instance of a syn-
chronization point is a synchronization point in which variables are instantiated, and
servtype is instantiated as the effective address of the remote service.

A synchronization point isincoming if it corresponds to aservremote → servlocal

communication,outgoing for the contrary (see example chronicle below).

Referring to Fig. 2.a and Sect. 3, here is one of the two synchronization points on the
SHOP, which is instantiated as follows, in the execution case of an external error (see
Fig. 6):
(ChkNReserve+, {(?SHOPlistIn, err)}, supplier).
It expresses the fact that the error is coming from the supplier, through the ?SHOPlistIn
variable, which is received by the SHOP at the end of the ChkNReserve activity.

A distributed chronicle is a classical chronicle enriched with a “color” and a “syn-
chronization” part, so that we can merge it with chronicles from adjacent services.
Thecolor of a chronicle K represents the degree of importance of a chronicle and its
capacity to trigger a global diagnosis process. Two colors are used:red for faults that
may trigger the broker andgreen for normal behaviors and non critical faults.
Distributed chronicle: a distributed chronicle is a tupleCD = (S, T ,O, I,K) where
S is a set of events,T a graph of constraints between their occurrence dates,O andI
are respectively two sets of outgoing and incoming synchronization points, andK is the
color of the chronicle.

Let us consider the chronicle describing the external errorcase. We have the distributed
chronicle modelCD = (S, T ,O, I,K):
S = { (ReceiveOrder, ?t1),

(ChkNReserve−(?SHOPlistOut), ?t2),
(ChkNReserve+(?SHOPlistIn), ?t3),
(SendBill, ?t4),
(ReceiveConfirm, ?t5),
(ForwardOrder, ?t6)

}

T = {?t1 <?t2, ?t2 <?t3, ?t3 <?t4, ?t4 <?t5 <?t6}
O = {(ChkNReserve−, {(?SHOPlistOut,¬err)}, supplier)}
I = {(ChkNReserve+, {(?SHOPlistIn, err)}, supplier)}
K = red

This chronicle triggers the broker, hence itsred color. Having defined chronicles
for each behavior of each service taking part in the foodshoporchestration, we have the
tables shown in Fig. 6, in which we only give the synchronization part of the chronicles.
red chronicles are written in bold case.

4.3 Algorithms

Our approach consists in merging local chronicles in order to compute a set of can-
didate global diagnoses. This set of diagnoses is represented by a diagnosis tree as
explained below. There are two steps in the global diagnosisprocess (Fig. 5). In a first
step, at “push” time, local diagnosers send recognized chronicles to the broker, which
triggers the global diagnosis process. In a second step, at “pull” time, i.e. when the

logs base of chronicles

Chronicle filter

Instances of applicant
chronicles (CRS)

integration

push pull

Global diagnoser

Diagnosis tree

grafting

push pull

(a) (b)

Fig. 5. Working of the(a) local and(b) global diagnosers

global diagnoser needs information, it queries local diagnosers their chronicles recog-
nized previously or in future. This push-pull mechanism is implemented through a filter
as explained below.

The computation of the local diagnosis relies on a CRS modulefed by the logs of
the web service and sending its recognized chronicles to theglobal diagnoser (Fig. 5).

In order to avoid sending useless chronicles, a filterM is set for each running pro-
cess. Infilter mode, onlyred recognized chronicles are sent to the global diagnoser.
Green chronicles are stored in a chronicle bufferCbuf . Nevertheless, at “pull” time, the
global diagnoser can changeM from filter to open, which flushesCbuf in order to
provide the global diagnoser with all the available information. In open mode, both
red or green newly recognized chronicles will be directly sent to the global diagnoser.
Algorithm 1 illustrates this operation.

init: modeM := filter, chronicle setCbuf := ∅;
on event chronicle c recognized do

if (M = filter ∧ c.color = red) ∨M = open then
Broker.push(c);

else
Cbuf := Cbuf ∪ {c};

end
end
on event LocalDiagnoser.pull() do

foreach c ∈ Cbuf do Broker.push(c);
Cbuf := ∅, M := open;

end
Algorithm 1: Local diagnoser management

The global diagnoser algorithm relies on a diagnosis treeDt in charge of treasuring
all the candidate diagnoses under the shape of partially recognized global chronicles
(Fig. 5.(b)). Each candidate diagnosis is represented by a path leadingto a constraintless
node inDt. The global diagnoser algorithm (Algorithm 2) manages thistree and queries
local diagnosers in order to make it grow and complete the pending paths.

The initial diagnosis tree only contains theemptynode which, being constraintless,
is compatible with any recognized chronicle. When a recognized chroniclec is sent by
a services to the global diagnoser, two operations are performed. First, Dt is traversed,
trying to combine each noden with c thanks to the status of corresponding variables. In
case of a compatibility betweenn andc, a child node containingc and the synchroniza-
tion constraints that remain to check is grafted undern in Dt. Then, the global diagnoser
changes toopen the mode of all the services mentioned inc in order to collect all the
information needed for a global diagnosis (Algorithm 2).

init: diagnosis treeDt := emptynode;
on event Broker.push(chronicle c) do

foreach node n of Dt do
if c compatible with n then

n.addChild(c);
end

end
foreach service s mentioned in c do

s.LocalDiagnoser.pull();
end

end
Algorithm 2: Global diagnoser management

When a candidate diagnosis (i.e. a constraintless node) is computed inDt, the bro-
ker forwards it to an external repair module and proceeds with the exhibition of other
candidate diagnoses.

4.4 Illustration on the Example

The following example was tested on a distributed chronicle-based diagnosis platform
called CARDECRS [11], developed during this PhD thesis.

We consider a customer placing an order on the SHOP, order which is forwarded
to the SUPPlier. For each product of the item list, the SUPP calls the WareHouse so as
to book the corresponding product. Unfortunately, a product is missing which provokes
the recognition of theWH:stockErr chronicle, the color of which isgreen, because the
WH doesn’t consider being out of stock as an error. The brokeris not triggered and the
execution goes on. But when the SUPP receives the negative answer of the WH, thered
chronicleSUPP:extErr is recognized and the SUPP “pushes” this chronicle towards the
broker, triggering a global diagnosis process while the service execution goes on.

Dt only contains the root node, at this point. This node is compatible with the con-
straints ofSUPP:extErr, listed in Fig.6, and a new node containingSUPP:extErr and
its constraints is grafted under the root node. After this, the broker changes toopen the
mode of WH, “pulling” the previously recognizedWH:stockErr chronicle towards it.

Dt now contains two nodes.WH:stockErr is compatible with the empty root node,
which results in the grafting of a child node under the root, containingWH:stockErr

SHOP ?listOut ?listIn
normal ¬err ¬err

dataErr err err

extErr ¬err err

timeout ¬err undef

SUPP ?listIn ?itemOut ?itemIn ?listOut
normal ¬err ¬err ¬err ¬err

fwdErr err err err err

extErr ¬err ¬err err err

timeout ¬err ¬err undef undef

WH ?itemIn ?itemOut
normal ¬err ¬err

fwdErr err err

stockErr ¬err err

hardErr ¬err undef

Fig. 6. Chronicles of the three web services

and its constraints.WH:stockErr is also compatible withSUPP:extErr, as the homol-
ogous variables have the same status:?SUPPitemOut and?WHitemIn are¬err,
?SUPPitemIn and?WHitemOut areerr. This way, a child node is grafted under
SUPP:extErr, containingWH:stockErr and the remaining unchecked constraints (Fig.
7).

The “pulling” process goes on, interrogating the SHOP and waiting for its recog-
nized chronicles. At the end of the orchestration execution, Dt exhibits a single con-
straintless node, which is then the unique candidate diagnosis:
SHOP:extErr, SUPP:extErr, WH:stockErr.

WH:stockErr

?WH:itemIn(notErr)
?WH:itemOut(err)

WH:stockErr+SUPP:extErr

?SUPP:listIn(notErr)
?SUPP:listOut(err)

SUPP:extErr

?SUPP:listIn(notErr)
?SUPP:itemOut(notErr)

?SUPP:itemIn(err)
?SUPP:listOut(err)

[]

Fig. 7. Intermediate diagnosis tree

4.5 A Word About Complexity

Let us consider the complexity of such an approach. On the local side, the complexity
only depends on CRS, which has already been successfully used in large scale systems.

Some basic rules about chronicle writing allow to optimize the use of CRS: PID filtering
avoids the recognition of useless cross-process chronicles, delays in chronicle models
flush chronicle instances automatically, etc.

On the broker side, the size of the tree only depends on the number of chronicles
recognized on each service, hence a need for discriminatingand exclusive chronicles.
In the worst case, considering all the chronicles are compatible, we demonstrate that
the maximum number of nodes inDt is

nmax =
∏

s∈S

(|Cs| + 1)

with S the set of implied services andCs the set of chronicles recognized ons.

5 Related Work and Discussion

Within the context of the supervision of dynamic systems, many works use the for-
malism of chronicles [4, 2, 3, 12, 6]. Nevertheless, few dealwith using chronicles in a
distributed context. The approach presented in [13] focuses on temporal aspects and
proposes a distributed checking of temporal constraints (by introducing both local and
global temporal constraints). In [14], the authors study the problem of acquiring chron-
icles from the fault model of a system, described with Petri nets. They use a method
based on unfolding Petri nets. The formalism of chronicles is enriched with pre- and
post-conditions on the current system state, and the recognition algorithm modified con-
sequently. However, to our knowledge, nobody directly worked on the use of distributed
chronicles, in particular on the integration of synchronization constraints between com-
ponents inside the formalism and on the adaptation of the corresponding algorithm, as
we propose in this article.

The way we approach the problem of monitoring dynamic systems from a dis-
tributed chronicle-based modeling of the system may be compared with works dealing
with distributed approaches of monitoring discrete-eventsystems, such as [7–9, 15, 10,
16, 17]. In each of those works, local diagnoses computed by the different components
of the system are synchronized in order to compute a diagnosis taking into account the
constraints between components. For instance, the approach of [9] is not so far away
from ours, as they fit parts together to build the system diagnosis, like in a puzzle. Those
parts, calledtiles, are labelled by alarms and represent pieces of trajectories. The main
difference between the two approaches, apart from the Petri-net-based formalism they
use, is that theirs is fully distributed and uses communications between local compo-
nents to do the computations, without any supervisor. In ourdecentralized case, a su-
pervisor is in charge of fitting local chronicles together after having synchronized them,
so that a global chronicle could be built. [18] is also interested in software components
monitoring. The components of the system are described by Petri nets and each compo-
nent is associated with a local controller that monitors theevolution of this component,
observing the messages exchanged between the component andits neighbors.

Concerning web services monitoring, we can cite [19], the objective of which is
to acquire a model as automata that will permit to monitor components thanks to the
BPEL description of their process. Closer to us, [20] proposes to use planning tools to

allow the user to express his requests thanks to a high-levellanguage and to control the
execution of his plans by interlacing execution and plan update. The authors of [21]
are interested in checking on line the consistency between what a web service should
do, called a contract, and its effective execution. Contracts are expressed as constraints
in a constraint-oriented language, and integrated in the BPEL files under the shape of
annotations. Then, monitors, implemented as web services,observe the behavior of the
web services and are capable of detecting timeout problems or functional errors. In [22],
a quite similar approach relies on a monitoring of plans to monitor requests and uses the
KPLTL temporal logic in order to express the specifications that have to be respected.

In [23], the decentralized architecture is close to ours. Each web service is equipped
with a local diagnoser generating hypotheses that are consistent with the local model
and the observations. A supervisor merges local diagnoses to compute a global one,
by propagating hypotheses from a local diagnoser to its neighbors. The main differ-
ence is that they rely on a static diagnosis approach: using dependencies between state
variables, their approach consists in explaining the alarms that have arisen at a given
time. In our case, we monitor the behavior of the components as it evolves. This allows,
on the one hand, to identify problems related to alarm firing and,on the other hand, to
forestall a potential problem and avoid its occurrence.

6 Conclusion

Our contribution in this paper is to propose adistributed chronicle-based monitoring
and diagnosis approach. Even if it is now recognized that distributed approaches are the
only realistic way to monitor large-scale systems, no work exist, to our knowledge, as
far as chronicle-based approaches are concerned. We propose a distributed architecture
in which a broker service is in charge of synchronizing the local diagnoses computed
from chronicles at the component level. We extend the formalism of chronicles and in-
troduce synchronization points that express the synchronization constraints which are
checked by the broker according to a push-pull mechanism. Wedescribe the main al-
gorithms and illustrate them on a simplified e-shopping example. A platform has been
developed and allows us to make experiments in the frameworkof the WS-DIAMOND

European project, dedicated to the monitoring of software components.
The main perspectives are twofold. The first one is to couple the diagnosis service

with a repair service (developed by a partner of ours), the goal being to ensure a good
QoS, even in case of fault occurrences. The second one is to build acquisition tools to
help building the set of local chronicles, starting from workflow descriptions. A first
step in this direction can be found in [19].

References

1. Dousson, C., Gaborit, P., Ghallab, M.: Situation recognition: representation and algorithms.
In: Proc. of the Int. Joint Conf. on Artificial Intelligence (IJCAI’93). (1993) 166–172

2. Cordier, M.O., Krivine, J., Laborie, P., Thiébaux, S.: Alarm processing and reconfiguration
in power distribution systems. In: Proc. of IEA-AIE’98. (1998) 230–240

3. Dojat, M., Ramaux, N., Fontaine, D.: Scenario recognition for temporal reasoning in medical
domains. Artificial Intelligence in Medicine14(1-2) (1998) 139–155

4. Cordier, M.O., Dousson, C.: Alarm driven monitoring based on chronicles. In: Proc. of
Safeprocess’2000. (2000) 286–291

5. Pencolé, Y., Cordier, M.O., Rozé, L.: Incremental decentralized diagnosis approach for
the supervision of a telecommunication network. In: IEEE Conf. on Decision and Control
(CDC’02). (2002) 435–440

6. Aguilar, J., Bousson, K., Dousson, C., Ghallab, M., Guasch, A., Milne, R., Nicol, C.,
Quevedo, J., Travé-Massuyès, L.: Tiger: real-time situation assessment of dynamic systems.
Technical report (1994)

7. Baroni, P., Lamperti, G., Pogliano, P., Zanella, M.: Diagnosis of a class of distributed
discrete-event systems. IEEE Transactions on systems, man, and cybernetics (2000) 731–752

8. Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols for failure
diagnosis of discrete event systems. Discrete Event Dynamic Systems10(1-2) (2000) 33–86

9. Aghasaryan, A., Fabre, E., Benveniste, A., Boubour, R., Jard, C.: Fault detection and diag-
nosis in distributed systems : an approach by partially stochastic petri nets. Discrete Event
Dynamic Systems8(2) (1998) 203–231

10. Pencolé, Y., Cordier, M.O.: A formal framework for the decentralised diagnosis of large
scale discrete event systems and its application to telecommunication networks. Artificial
Intelligence Journal164(1-2) (2005) 121–170

11. Le Guillou, X., Cordier, M.O., Robin, S., Roze, L.: Chronicles for on-line diagnosis of
distributed systems. Internal IRISA report #1890 (2008)

12. Quiniou, R., Cordier, M.O., Carrault, G., Wang, F.: Application of ilp to cardiac arrhythmia
characterization for chronicle recognition. In: ILP’2001. (2001) 220–227

13. Boufaied, A., Subias, A., Combaceau, M.: Distributed fault detection with delays consider-
ation. In: Proc. of the 15th Int. Workshop on Principles of Diagnosis (DX’04). (2004)

14. Guerraz, B., Dousson, C.: Chronicles construction starting from the fault model of the system
to diagnose. In: Proc. of the 15th Int. Workshop on Principles of Diagnosis (DX’04). (2004)
51–56

15. Jiroveanu, G., Boël, R.: Petri net model-based distributed diagnosis for large interacting
systems. In: Proc. of the 16th Int. Workshop on Principles of Diagnosis (DX’05). (2005)

16. Roos, N., Teije, A., Bos, A., Witteveen, C.: An analysis of multi-agent diagnosis. In: Proc.
of the 1st Int. Joint Conf. on Autonomous Agents and MultiAgent Systems (AAMAS’02).
(2002)

17. Provan, G.: A model-based diagnosis framework for distributed systems. In: Proc. of the
13th Int. Workshop on Principles of Diagnosis (DX’02). (2002) 16–25

18. Grosclaude, I.: Model-based monitoring of component-based software systems. In: Proc. of
the 15th Int. Workshop on Principles of Diagnosis (DX’04). (2004) 51–56

19. Yan, Y., Pencolé, Y., Cordier, M.O., Grastien, A.: Monitoring web service networks in a
model-based approach. In: 3rd European Conf. on Web Services (ECOWS). (2005)

20. Lazovik, A., Aiello, M., Papazoglou, M.: Planning and monitoring the execution of web
service requests. In: Proc. of the 1st Int. Conf. on Service-Oriented Computing (ICSOC’03).
Volume 2910 of Lecture Notes in Computer Science. (2003) 335–350

21. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: Proc. of the
2nd Int. Conf. on Service-Oriented Computing (ICSOC’04). (2004) 193–202

22. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of instances and
classes of web service compositions. In: Proc. of the IEEE Int. Conf. on Web Services
(ICWS’06). (2006) 63–71

23. Ardissono, L., Console, L., Goy, A., Petrone, G., Picardi, C., Segnan, M., Theseider Dupré,
D.: Cooperative model-based diagnosis of web services. In:Proceedings of DX’05, Interna-
tional Workshop on the Principles of Diagnosis, Pacific Grove, California (2005)

