
A Scenario-View Based Approach for
Supporting Mediated Web Service Interaction

Zhangbing Zhou?

Digital Enterprise Research Institute,
National University of Ireland at Galway,

IDA Business Park, Lower Dangan, Galway, Ireland
zhangbing.zhou@deri.org

Abstract. Web service interactions have triggered the initiative to iden-
tify and solve mismatches from a behavioral aspect. However, current
approaches are limited because they mainly focus on control-flow and
largely ignore data-flow. Such ignorance may cause unexpected or wrong,
even unsupported interactions. To address these problems, we propose
a scenario-view based approach, which considers both control-flow and
data-flow, to support Web service interactions. We firstly generate sce-
narios and views for describing a public process. Then, the degree of
compatibility of two public processes is computed based on pairwise
compatibility of their views. A process mediator is generated for com-
patible public processes, and thus an interaction is carried out despite
mismatches exist among them. This novel approach will benefit service
modelers and users not only for a better understanding of public pro-
cesses, but also for improved capability to identify and solve mismatches,
which will further facilitate Web service interactions.

Key words: Public Process; Compatibility; Process Mediator; Medi-
ated Service Interaction; Scenario; View.

1 Introduction

Nowadays, enterprises are able to encapsulate (parts of) their business processes
and publish them as Web services [7]. Then they can discover desired Web ser-
vices, compose them into a new value-added one, and carry out an interaction for
achieving a given goal. An interaction in Web service domain can be described
as a flow of messages, which may contain a set of data, exchanged among Web
services [6]. The major challenging problems that remain are: (1) how to check
whether Web services are compatible [1], (2) how to identify and solve potential
mismatches, and (3) how to conduct a successful interaction. Because of the in-
herent autonomy and heterogeneity of Web services, messages are often different
in format and granularity, and public processes, i.e. the external behavior of
Web services [5], are often diverse in activities and messages in terms of form
and sequence. Thus, it is difficult, if not impossible, to find two public processes
? Advisor: Prof. Dr. Manfred Hauswirth (Email: manfred.hauswirth@deri.org).



2 Proceedings of CAiSE-DC 2008

that are completely compatible [1]. A Web service interaction is usually carried
out with the help of data or process mediators [5], which is called a mediated
service interaction. For simplicity but without loss of generality, we assume that
there is no heterogeneity at a data level among Web services.

Current approaches for checking compatibility, e.g. [1] [10] [11] [13] [18], for
supporting process mediators, e.g. [2] [4] [8] [12], and for facilitating service
interactions, e.g. [3] [15] [18], mainly focus on control-flow but largely ignore
data-flow. They are limited to support mediated service interactions.

To address these problems above, we propose a scenario-view based approach
to support mediated service interactions:

– We automatically generate scenarios and views for a public process consider-
ing both control-flow and data-flow. A scenario is a complete execution path
[1] for a public process. Data dependencies are represented by a data de-
pendency graph, which is optimized into a minimal data dependency graph.
Then reduction rules are proposed to identify and remove unnecessary con-
trol dependencies specified by sequence, And and Loop blocks in a scenario,
and a view is generated to represent this scenario for analysis purposes. A
public process can be described as a finite set of views.

– Based on pairwise compatibility of their views, we compute the degree of
compatibility for two public processes, which indicates whether they can
carry out an interaction with certain conditions. However, for any two views,
compatibility is a binary relation and means that mismatches existing be-
tween them are resolvable [5].

– Based on control dependencies and data dependencies, we propose to gener-
ate a process mediator automatically for facilitating the interaction among
compatible public processes.

To the best of our knowledge, our scenario-view based approach is the first
study to support mediated service interactions considering both control-flow and
data-flow. Because our approach focuses on a behavioral aspect of Web services,
it is very useful to support intra-/inter-organizational workflow cooperation [14].
The major contribution of this work includes four aspects: firstly, it will benefit
service modelers and users for a better understanding of public processes. Sec-
ondly, it will provide guidelines for creation and evolution of public processes.
Thirdly, it will provide a novel approach to compute the degree of compatibil-
ity of public processes although mismatches may exist among them. Finally, it
will generate process mediators for solving resolvable mismatches among public
processes, and thus facilitates mediated service interactions.

Our work in this study will be presented as follows. A motivation example is
presented in Section 2. A definition and graphical notations for a public process
is shown in Section 3. Scenarios and views are generated for describing a public
process in Section 4. Then compatibility of public processes is computed based
on pairwise compatibility of their views in Section 5, and process mediators are
presented in Section 6. Finally, related work is discussed and a conclusion is
drawn in Section 7 and 8.



Proceedings of CAiSE-DC 2008 3

2 A Motivating Example

Figure 1-a, 1-b and 1-c show three public processes for a requestor A (ReqA),
a requestor B (ReqB) and a toy shop (ToyS). A definition for a public process
is presented in Section 3. Since ReqA lacks priori knowledge about the pricing
strategy of its potential providers, to get a potential discount, it is willing to
provide as much information, like ”S: Customer Information”, as possible before
expecting ”R: Price”. Due to the privacy concern, ReqB prefers to provide ”S:
Customer Information” only if ReqB is convinced by the price and committed to
buy, thus ReqB expects ”R: Price” before sending ”S: Customer Information”.
ToyS may give a discount depending on the customer profile. That is why that,
after receiving ”R: Toy Items”, it expects ”R: Customer Information”. However,
a normal price is applied whenever ”R: Customer Information” is not available.
”R: Customer Information” is optional for ”S: Price”, but it is mandatary for
”S: Delivery”.

Fig. 1. Public process for the toy shop, the requestor A and B Web services

2.1 An Interaction Between the Requestor A and the Toy Shop

ReqA expects a discount from ToyS. However, Figure 2 shows a snippet of an
interaction that ReqA gets a normal price: ”S: Customer Information” is sent
out by ReqA. But for some reasons, it is later than ”S: Toy Items” of t1. For
his side, ToyS waits ”R: Customer Information” for t2 after receiving ”R: Toy
Items”. If t1 > t2, ToyS improperly assume that ReqA should not send ”S:
Customer Information” and then give a normal price.

If there is a process mediator in the middle, ToyS will be notified by the
process mediator that ”S: Customer Information” has been sent out by ReqA.
Then ToyS will wait for ”S: Customer Information” and give a discount.

This example indicates that, without the support of a process mediator, Web
services may carry out an unexpected, or wrong, interaction.



4 Proceedings of CAiSE-DC 2008

Fig. 2. A direct service interaction between the requestor A and the toy shop

2.2 An Interaction Between the Requestor B and the Toy Shop

According to current approaches, e.g. [1] [10] [11] [13] [18], for checking com-
patibility, ReqB and ToyS are assumed as incompatible. Process mediation ap-
proaches, e.g. [2] [4] [8] [12], regard this mismatch as unresolvable [5].

If a process mediator exists in the middle considering both control depen-
dencies and data dependencies, a successful interaction is possible. To do this,
ToyS is notified by the process mediator that ReqB will not send ”S: Customer
Information” before receiving ”R: Price”, and thus a null message is sent from
the process mediator to ToyS as ”S: Customer Information”. Then ToyS can ex-
ecutes the following activity ”S: Price”. However, ToyS will update this message
whenever ”S: Customer Information” is provided by ReqB. Figure 3 shows how
this mediated service interaction is carried out. For simplicity, activities that do
not contribute to this interaction are not presented.

2.3 A Short Discussion

Our motivating example shows that current approaches are insufficient to check
compatibility of public processes, and are limited to support mediated service
interactions. Their main shortcoming is that: they only consider control depen-
dencies, but largely ignore data dependencies. As illustrated in the toy shop
shown in Figure 1-c, a sequence constraint between ”R: Customer Information”
and ”S: Price” specifies a control dependency. However, a data dependency be-
tween them is optional. This feature causes that a direct service interaction
shown in Figure 2 is unexpected or wrong, and a mediated service interaction
shown in Figure 3 can be successfully carried out.

3 Public Process: A Definition and Graphical Notations

Below we give a definition for a public process where messages and guard func-
tions are the first-class elements.



Proceedings of CAiSE-DC 2008 5

Fig. 3. A mediated service interaction between the requestor B and the toy shop

Definition 1 (Public Process). A public process p is the five-tuple (MSG,
ACT, CNT, GRD, ARC), where MSG={msg} is is a finite set of messages,
ACT={act} is a finite set of activities for sending or receiving messages, CNT={Start,
Failure, End, Xor Split, Xor Join, And Split, And Join} are control elements,
GRD={grd} is a finite set of guard functions related to control elements, and
ARC={arc} is a finite set of arcs that connect activities and control elements.

Fig. 4. Graphical notations for modeling a public process

We assume that one message contains one data. Both activities and control
elements are the nodes in a public process. Figure 4 shows six basic graphical
notations to model a public process. These notations are supported by JGraph-
Pad 1, based on which our prototype is implemented. In addition, our notations
can model six ordering structures specified by WfMC 2.
1 http://www.jgraph.com/jgraphpad.html.
2 http://www.wfmc.org/standards/docs.htm.



6 Proceedings of CAiSE-DC 2008

4 Generating Scenarios and Views for a Public process

We firstly generate all scenarios for a public process. Data dependencies are pre-
sented as a data dependency graph, which presents a finite set of mandatory or
optional data dependencies in a public process or a scenario. However, a data
dependency is redundant and can be safely removed if it is implicitly specified
by other data dependencies. A minimal data dependency graph is generated
where there are no redundant data dependencies. Then we propose three reduc-
tion rules to identify and remove unnecessary control dependencies specified by
sequence, And and Loop blocks in a scenario. With the help of a minimal data
dependency graph, we generate a view for a scenario by applying three reduction
rules recursively. A public process includes a finite set of scenarios. A scenario
has a corresponding view which represents this scenario for analysis purposes.
A public process can be described as a finite set of views. For the sake of space
limitation, our algorithms are not presented.

4.1 Generating Scenarios for a Public Process

Only one path of a Xor block can be enabled in a given execution depending
on the status of guard functions. Similarly, only one branch can be enabled in
a given execution for a Branch control elements that contribute to exclusive
relation. Then, a finite set of scenarios can be generated for a public process.

Definition 2 (Scenario). A scenario sce is a complete execution path for a
public process p, which is defined by the five-tuple (MSGsce, ACTsce, CNTsce,
GRDsce, ARCsce) generated from those of p. For any node in a scenario ex-
cept Start, Failure/End, And Split, And Join, and Branch control elements for
modeling loops, it has only one entering and one leaving edge.

There are two scenarios for ToyS, and Figure 3-a shows one of them. There
are two scenarios for ReqB, and Figure 3-b shows one of them.

4.2 Optimizing Data Dependencies into a Minimal Data
Dependency Graph

Similar as [19], we assume that data dependencies can be extracted from a public
process with the help of process modelers.

Definition 3 (Data Dependency Graph). A data dependency graph dg for
a public process (MSG, ACT, CNT, GRD, ARC) is a directed, connected and
acyclic graph, which is defined by the two-tuple (DATAdg, DEdg), where DATAdg

= {data} is a finite set of data generated from MSG, which are the nodes in this
graph. DEdg = DE

(M)
dg ∪DE

(O)
dg a finite set of edges, which are the direct links

in this graph specifying the dependency relations among data. DE
(M)
dg is for

mandatory dependencies, and DE
(O)
dg is for optional dependencies.

One data is regarded as dependent on another data if (1) a direct link con-
nects them (directly dependent), or (2) several direct links form a path leading
from one data to another (indirectly dependent). Then a data dependency graph



Proceedings of CAiSE-DC 2008 7

can be represented as a finite set of dependent relations. A data dependency
graph is called functionally equivalent to another data dependency graph if any
dependency relation in one data dependency graph can exist in another data
dependency graph directly or indirectly.

Definition 4 (Minimal Data Dependency Graph). A minimal data dependency
graph dgmin: (DATAmin, DEmin) is generated from a data dependency graph
(DATA, DE), where DATAmin = DATA, DEmin ⊆ DE. (DATAmin, DEmin)
is functionally equivalent to (DATA, DE), but ∀ de ∈ DEmin: (DATAmin,
(DEmin−{de})) is not functionally equivalent to (DATA, DE).

Fig. 5. (Minimal) Data dependency graphs for the toy shop and its scenario

Figure 5 shows a data dependency graph for ToyS, and a data dependency
graph for a scenario shown in Figure 3-a is marked with one or two ∗, and its
minimal data dependency graph is marked with ∗∗.

4.3 Reduction Rules

Control-flow structures of a scenario specify execution orders of activities. How-
ever, the execution of some activities may not follow these orders. An example
is ”R: Toy Items” and ”R: Customer Information” in Figure 3-a since they
are not data dependent on each other. Thus, we present three reduction rules
to identify and remove unnecessary control dependencies specified by Sequence,
And and Loop blocks. In a scenario, only one path is allowed for a Xor block
and a branch for a Branch control element that specifies an exclusive relation.
They are functionally equivalent to Sequences. We follow [16] for the function:
fold, for replacing several contiguous nodes by a single node.

Rule 1 (Sequence). A sequence of activities are folded into a single node if
data dependencies among them are not mandatary.

Rule 2 (And). An And block with its And Split and And Join is folded into
(1) a single node if all activities in each path can be folded into a single node or
(2) a sequence of nodes otherwise.

The rule for And block is shown by Figure 6-a and 6-b. An And block suggests
that all its paths are executed in parallel. However, there are no control and data
dependencies among activities of different paths. This means that an And block
can be converted into a sequence of activities as shown in Figure 6-c.

Rule 3 (Loop). A Loop block is folded into (1) a single node if the Loop body
can be folded into one node or (2) a sequence of nodes otherwise. Guard functions



8 Proceedings of CAiSE-DC 2008

Fig. 6. Reduction rule for And and Loop Blocks

are defined in the last node to specify the exit conditions of the Loop block. There
are possibly multiple instances for any node during execution phases.

This rule is shown by Figure 6-d and 6-e. A Loop block iterates over one or
several nodes until its exit conditions are satisfied, but it doesn’t iterate forever
in real cases. As suggested by [18], a Loop block can be simulated as a sequence of
at most N repetitions of its Loop body, where N depends on a given execution.

4.4 Generating a View for a Scenario

We firstly introduce the concept: view, and its related concept: checkpoint.
Definition 5 (Checkpoint). A checkpoint cp includes a finite set of contiguous

activities in a scenario in which data dependencies among them are not manda-
tory. A checkpoint is defined by the four-tuple (label, ACT, DATA, GRD), where
label for its label. ACT for activities, DATA for required data, and GRD for
guard functions, are generated from those of the scenario.

Required data are generated with the help of the minimal data dependency
graph of a scenario. E.g., according to Figure 5, ”R: Toy Items” is required to
”S: Price”, but ”R: Customer Information” not.

Definition 6 (View for a Scenario). A view vw for a scenario (MSGsce,
ACTsce, CNTsce, GRDsce, ARCsce) is the five-tuple (MSGvw, CP, cp0, cpf ,
DEvw). MSGvw = MSGsce, CP={cp} is a finite set of checkpoints, cp0 is the
initial checkpoint, and cpf is the final one, while DEvw = {de} is a finite set of
direct links connecting checkpoints to specify data dependencies among them.

With the help of a minimal data dependency graph, reduction rules can be
applied to a scenario recursively until no nodes can be folded anymore. Then
checkpoints can be generated and a view can be derived.

5 Computing the Degree of Compatibility

In this section, we focus on the compatibility of two public processes since the
majority of interactions are related to two partners, and an interaction involving
multiple partners can often be decomposed into several pairwise interactions.



Proceedings of CAiSE-DC 2008 9

Compatibility aims to check whether two public processes can carry out a
successful interaction. Before discussing compatibility, we present what an inter-
action is, and how an interaction is regarded as successful. Then we compute the
degree of compatibility of two public processes based on pairwise compatibility
of their views. Due to the space limitation, our algorithms are not presented.

5.1 What is a Successful Interaction?

An interaction means that several public processes, if compatible, can be com-
posed into a complex one for achieving a given goal. Since a scenario represents
a complete execution path of a public process, an interaction of public processes
is actually an interaction among scenarios of these public processes.

A scenario, or a public process, specifies a set of messages sent to or received
from its potential partner(s) following a pre-defined order. Therefore, an inter-
action can be regarded as a flow of messages exchanged among scenarios. If this
flow of message can lead each scenario from its Start control element to its final
control element, this interaction is regarded as successful. Some mismatches may
exist among these scenarios. However, the mismatches are resolvable and can be
handled by a process mediator.

5.2 Computing the Degree of Compatibility

For any two scenarios, if a flow of messages exchanged between them can carry
out a successful interaction, this indicates that this flow of messages can lead
their views from their initial checkpoints to their final checkpoints. In this case,
these two views are regarded as compatible. On the other hand, if two views are
not compatible, these two views cannot interact since at least one checkpoint in
a view cannot be guaranteed.

Based on pairwise compatibility of their views, we can define the degree of
compatibility for two public processes p1 and p2. We assume that there are n1

views in p1. For a view vi (1 ≤ i ≤ n1) in p1, we define a function comp(vi | p2)
to specify whether there is a compatible view in p2 if comp(vi | p2) = 1, or
comp(vi | p2) = 0 otherwise. Thus, the degree of compatibility for p1 to p2 is:

Compatibility(p1, p2) =
∑n1

1 comp(vi | p2)
n1

(1)

Compatibility at a view level is a symmetric relation. However, compatibility
at a public process level is an antisymmetric relation, and Compatibility(p1, p2)
and Compatibility(p2, p1) are often different. Based on the degree of compati-
bility, we define three classes of compatibility for two public processes p1 and
p2:

– No compatibility if Compatibility(p1, p2) = 0.
– Partial compatibility if 0 < Compatibility(p1, p2) < 1.
– Full compatibility if Compatibility(p1, p2) = 1.



10 Proceedings of CAiSE-DC 2008

No compatibility means that two public processes cannot interact in any case,
and full compatibility means that one public process can interact with another in
any case, while partial compatibility means that one public process can interact
with another in at least one but not all cases.

ToyS and ReqB are fully compatible with each other. Since there are two
views for ToyS and two views for ReqB, and any view in ToyS has a compatible
view in ReqB and vise versa.

6 Generating Process Mediators

A process mediator aims to facilitate an interaction if mismatches exist among
public processes. Since how to generate process mediators is our ongoing work,
in this section, we present our strategies:

– There is a space for a process mediator, in which each public process has
a sub-space for saving messages. Public processes do not communicate with
each other directly. Instead, they send or receive messages to or from a
process mediator. This means that production and consumption of messages
are time-independent.

– For any message sent by one public process, (1) a process mediator immedi-
ately forward it to other public processes that are ready to receive it, and (2)
a process mediator checks whether it is potentially expected by other public
processes in the future. If yes, the process mediator saves this message for
these public processes for possible later usage.
It is possible that a message is consumed by several public processes. How-
ever, if no public process interests in this message now and in the future, it
is dropped off immediately and silently.

– In case that a message is expected by a public process and this message is
not available in its sub-space. A process mediator will check whether this
message is sent out by other public processes already. If yes, this public
process blocks and waits until this message is available.

– In case that all public processes are expecting to receive messages and thus
an interaction blocks. A process mediator will check each public process:
whether data dependencies between current activities and their following
activities are not mandatory. If true, the process mediator will generate a
null message (or an ACK message if acknowledgement is needed) for this
public process to execute current activities.

7 Related Work

We discuss the related work from the following four aspects: analysis of public
processes, compatibility, process mediation and service interaction.

Analysis of public processes: This aspect includes: Control-flow based
methods [9] [17] only focus on control-flow and largely ignore data-flow. Depen-
dency based methods [19] analyze dependencies from data, control, service and



Proceedings of CAiSE-DC 2008 11

cooperation aspects. This work benefits much to our dependency analysis. View
based methods [3] [20] investigate the relation of private and public processes
from a control-flow aspect. Current approaches focus on either a control-flow or
data-flow aspect, and are limited to support mediated service interactions.

Compatibility: In [1], the authors presented an analysis for protocol com-
patibility based on several general protocol operators. Two classes of protocol
compatibility are defined: partial or full compatibility. This work presents a solid
theoretic analysis for compatibility from the control-flow aspect. In [10] [11], the
authors checked business process compatibility based on c-graph and u-graph.
Two workflow modules are semantically compatible if they are syntactically com-
patible, and their composed system is usable. In [18], the authors established a
consistent, multi-lateral collaboration by propagating parameter constraints and
execution sequences among local workflows. This work may not fit to Web ser-
vices where trust, privacy, and security are critical issues. In [13], the authors
verified compatibility following a client/server model. However, these approaches
mainly focus on control-flow, and aim to support direct service interactions.

Process mediation: There are mainly two kinds of approaches: in [4] [8],
DERI 3 researchers presented five basic patterns for process mediation, inte-
grated process mediation as a component in WSMX 4, and specified the in-
teraction mode with other components. In [2] [12], Benatallah et al presented
an adapter-based approach to semi-automatically solve business protocol mis-
matches. Mismatch patterns were used to formalize the mismatches and thus to
provide a uniform mechanism to address mismatches. In addition, they proposed
to identify actual mismatches semi-automatically (may need the help of service
providers), and generated adapters to solve them. However, current approaches
are control-flow based and ignore data-flow almost. They are limited to support
mediated service interactions.

Service interaction: In [15], the authors proposed a Public-to-Private ap-
proach for inter-organizational workflow interoperations based on inheritance.
This is a top-down approach and may not fit to Web service domain. In [18], a
bottom-up approach was presented to establish a consistent, multi-lateral col-
laboration in a decentralized way. As discussed previously, it may not fit to Web
service domain. A view-based approach [3] was proposed to support dynamic
inter-organizational workflow cooperation including three steps: advertisement,
interconnection, and cooperation. Taken together, current approaches mainly fo-
cus on control-flow, and aim to support direct service interactions only.

8 Conclusion

In this paper, we firstly identified that, without a process mediator, some Web
service interactions could be unexpected or wrong, and some could fail. We also
revealed that current approaches are insufficient to check compatibility and to
support process mediators because they mainly focus on control-flow and largely
3 http://www.deri.org/.
4 http://www.wsmx.org/.



12 Proceedings of CAiSE-DC 2008

ignore data-flow. To solve these problems, we have proposed a novel approach
to automatically generate scenarios and views for describing public processes,
to compute the degree of compatibility of public processes based on pairwise
compatibility of their views, and to generate process mediators for supporting
mediated service interactions.

We have implemented the prototype to generate scenarios and views for pub-
lic processes, and to compute the degree of compatibility. Furthermore, we pro-
pose to support replacement [1] besides interaction. Due to the space limitation,
we have not presented them in this paper.

Acknowledgments. The work presented in this paper was supported (in part)
by the EU funded TripCom Specific Targeted Research Project under Grant No.
FP6-027324, and (in part) by the Lion project supported by Science Foundation
Ireland under Grant No. SFI/02/CE1/I131.

We thank Sami Bhiri and Laurentiu Vasiliu for their continuous discussion
and valuable comments on purging research problems and solutions.

References

1. Benatallah, B., Casati, F. and Toumani, F.: Representing, analysing and managing
web service protocols. Data and Knowledge Engineering. 58, 3, 327–357 (2006)

2. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M. and Toumani, F.: Develop-
ing Adapters for Web Services Integration. Proc. of CAiSE (2005)

3. Chebbi, I., Dustdar, S. and Tata, S.: The view-based approach to dynamic inter-
organizational workflow cooperation. Data and Knowledge Engineering. 56, 2, 139–
173 (2006)

4. Cimpian, E. and Mocan, A.: WSMX Process Mediation Based on Choreographies.
Proc. of 1st Intl. Workshop on Web Service Choreography and Orchestration for
Business Process Management at the BPM 2005. (2005)

5. Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF. Journal
of Electronic Commerce Research and Applications. 113–137 (2002)

6. Fu, X., Bultan, T. and Su, J.: Analysis of interacting BPEL web services. Proc. of
WWW (2004)

7. Hao, Y., Zhang, Y. and Cao, J.: WSXplorer: Searching for Desired Web Services.
Proc. of CAiSE (2007)

8. Haselwanter, T., Kotinurmi, P., Moran, M., Vitvar, T. and Zaremba, M.: WSMX: A
Semantic Service Oriented Middleware for B2B Integration. Proc. of ICSOC (2006)

9. Kim, K.: WSMX: A Semantic Service Oriented Middleware for B2B Integration.
Proc. of SKG (2005)

10. Martens, A.: On Compatibility of Web Service. Petri Net Newsletter. 65, 12–20
(2003)

11. Martens, A.: Analyzing Web Service based Business Processes. Proc. of FASE’05,
Part of ETAPS’05 (2005)

12. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F. and Casati, F.: Semi-
Automated Adaptation of Service Interactions. Proc. of WWW (2007)

13. Shi, Y., Zhang, L., Liu, F., Lin, L. and Shi, B.: Compatibility Analysis of Web
Services. Proc. of WI (2005)



Proceedings of CAiSE-DC 2008 13

14. van der Aalst, W.M.P.: Modeling and analyzing interorganizational workflows.
Proc. of CSD (1998)

15. van der Aalst, W.M.P. and Weske, M.: The P2P Approach to Interorganizational
Workflows. Proc. of CAiSE (2001)

16. van der Aalst, W.M.P. and Lassen, K.B.: Translating unstructured workflow pro-
cesses to readable BPEL: Theory and implementation. Information and Software
Technology. 50, 3, 131–159 (2008)

17. van der Aalst W.M.P., de Medeiros, A.K.A. and Weijters, A.J.M.M.: Process
Equivalence: Comparing Two Process Models Based on Observed Behavior. Proc.
of BPM (2006)

18. Wombacher, A.: Decentralized establishment of consistent, multi-lateral collabora-
tions. PhD Thesis at Facultiy of Informatics, Technical University Darmstad. (2005)

19. Qinyi Wu, Q., Pul, C., Sahai, A. and Barga, R.: Categorization and Optimization
of Synchronization Dependencies in Business Processes. Proc. of ICDE (2007)

20. Zhao, X. and Liu, C.: Tracking over Collaborative Business Processes. Proc. of
BPM (2006)


