
Concurrency Implementation

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) Concurrency Implementation 1



REDO and UNDO

Topic 27: REDO and UNDO logs

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 1



REDO and UNDO

DBMS Architecture

disc

data manager

buffer
manager

memory

recovery manager

scheduler

transaction manager

read✲

write
✛

write✲

read
✛

read ✻ write❄
flush
fetch ❄

read
write

begin

abort
commit❄

execute
❄

result
reject

delay

✻

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 2



REDO and UNDO

Recovery Manager (RM)

RM should protect the DBMS against failures

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 3



REDO and UNDO

Recovery Manager (RM)

RM should protect the DBMS against failures

system failures

loss of volatile storage

1 committed transactions written to disc

2 uncommitted transactions not written to disc
OR

3 sufficient information such that (1) and (2) may be met by a recovery

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 3



REDO and UNDO

Recovery Manager (RM)

RM should protect the DBMS against failures

system failures

loss of volatile storage

1 committed transactions written to disc

2 uncommitted transactions not written to disc
OR

3 sufficient information such that (1) and (2) may be met by a recovery

media failures

loss of stable storage

1 committed data is held on multiple devices

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 3



REDO and UNDO

Before and After Images

before image

branch

sortcode bname cash

56 ’Wimbledon’ 94340.45

34 ’Goodge St’ 8900.67

67 ’Strand’ 34005.00

⇓
w1[b56]

⇓

branch

sortcode bname cash

56 ’Wimbledon’ 84340.45

34 ’Goodge St’ 8900.67

67 ’Strand’ 34005.00

after image

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −10000.00
WHERE so r t c od e=56

UPDATE branch
SET cash=cash +10000.00
WHERE so r t c od e=34

COMMIT TRANSACTION

before image allows RM to
undo w1[b56]

after image allows RM to redo

w1[b56]

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 4



REDO and UNDO

Enhanced Data Manager Architecture

data

disc

log

disc

data manager

cache
manager

memory

log data

recovery manager recover✛

read✲

write

✻ ✻
write✲

read
✛

read ✻ write
❄

flush
fetch ❄

read
write

begin

abort
commit
❄

Need to cache log as well

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 5



REDO and UNDO

Need to REDO

data
disc
b56
b34
b67

log

disc

data manager

cache
manager

memory

log data

recovery manager

scheduler
b1, r1[b56], w1[b56], r1[b34], w1[b34], c1

read✲

write

✻ ✻

❄

✻

✲
✛

✻
❄❄

LOG b1
REDO w1[b56, cash=84340.45]
REDO w1[b34, cash=18900.67]
LOG c1

REDO required if committed transactions not in stable storage

must write all REDO to log before commit of transaction

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 6



REDO and UNDO

Need to UNDO

data
disc
b56
b34
b67

log

disc

data manager

cache
manager

memory

log data

recovery manager

scheduler
b1, r1[b56], w1[b56], r1[b34], w1[b34]

read✲

write

✻ ✻

❄

✻

✲
✛

✻
❄❄

LOG b1
UNDO w1[b56, cash=94340.45]
UNDO w1[b34, cash=8900.67]
LOG c1

UNDO required if non-committed transactions in stable storage

Must flush UNDO to log before corresponding write to data

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 7



REDO and UNDO Logs

Database Logs: REDO/UNDO Log

LOG b1
REDO w1[b56, cash=84340.45]
REDO w1[b34, cash=18900.67]
LOG c1

LOG b1
UNDO w1[b56, cash=94340.45]
UNDO w1[b34, cash=8900.67]
LOG c1

LOG b1
UNDO w1[b56, cash=94340.45]
REDO w1[b56, cash=84340.45]
UNDO w1[b34, cash=8900.67]
REDO w1[b34, cash=18900.67]
LOG c1

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 8



REDO and UNDO Logs

Quiz 27.1: Contents of Data Disc After a Transaction with REDO/UNDO
Log

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56

UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34

COMMIT TRANSACTION T1

branch 1
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

branch 2
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

branch 3
sortcode bname cash

56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

branch 4
sortcode bname cash

56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

What must the contents of the branch table on the data disc be after the
transaction commits?

A

4

B

1 or 4

C

1 , 3 or 4

D

1 , 2 , 3 or 4

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 9



REDO and UNDO Logs

Quiz 27.2: Contents of REDO/UNDO Log Disc After a Transaction

Data Disc Before Transaction

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56

UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34

COMMIT TRANSACTION T1

Data Disc At Commit Time

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

What must be on the log disc after commit time?

A

REDO r56
REDO r34
UNDO r56
UNDO r34

B

REDO r56
UNDO r34

C

UNDO r34

D

REDO r56

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 10



REDO and UNDO Logs

What must a complete REDO/UNDO log contain?

Must contain

REDO information for each update

UNDO information for each update

commit of each transaction

Might contain

begin of each transaction
can be inferred from first REDO/UNDO
presence useful to stop search of UNDO records

abort of each transaction
can be inferred from lack of commit
presence useful to indicate UNDO already done

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 11



REDO and UNDO Logs

Rules for log and data updates

write ahead logging (WAL)

Redo rule

commit → flush log of transaction to disc

never respond to scheduler before log written

Undo rule:

flushing uncommitted data → flush log of operations

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 12



REDO and UNDO Recovery Procedure

Basic Recovery Procedure

initial
state

⇒ wv [o1], cv, wx[o2], wy [o1], cy , wz[o2] ⇒ final
state

1 UNDO → Scan back through the log

Collect set of committed transactions C
Collect set of incomplete transactions I
Perform UNDO for any transaction in I

2 REDO → Scan forward through the log

Perform REDO for any transaction in C

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 13



REDO and UNDO Recovery Procedure

Basic Recovery Procedure

initial
state

⇒ wv [o1], cv, wx[o2], wy [o1], cy , wz[o2] ⇒ final
state

1 UNDO → Scan back through the log

Collect set of committed transactions C = {v, y}
Collect set of incomplete transactions I
Perform UNDO for any transaction in I

2 REDO → Scan forward through the log

Perform REDO for any transaction in C

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 13



REDO and UNDO Recovery Procedure

Basic Recovery Procedure

initial
state

⇒ wv [o1], cv, wx[o2], wy [o1], cy , wz[o2] ⇒ final
state

1 UNDO → Scan back through the log

Collect set of committed transactions C = {v, y}
Collect set of incomplete transactions I = {x, z}
Perform UNDO for any transaction in I

2 REDO → Scan forward through the log

Perform REDO for any transaction in C

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 13



REDO and UNDO Recovery Procedure

Basic Recovery Procedure

initial
state

⇒ wv [o1], cv, wx[o2], wy [o1], cy , wz[o2] ⇒ final
state

1 UNDO → Scan back through the log

Collect set of committed transactions C = {v, y}
Collect set of incomplete transactions I = {x, z}
Perform UNDO for any transaction in I = wz[o2], wx[o2]

2 REDO → Scan forward through the log

Perform REDO for any transaction in C

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 13



REDO and UNDO Recovery Procedure

Basic Recovery Procedure

initial
state

⇒ wv [o1], cv, wx[o2], wy [o1], cy , wz[o2] ⇒ final
state

1 UNDO → Scan back through the log

Collect set of committed transactions C = {v, y}
Collect set of incomplete transactions I = {x, z}
Perform UNDO for any transaction in I = wz[o2], wx[o2]

2 REDO → Scan forward through the log

Perform REDO for any transaction in C = wv[o1], wy[o1]

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 13



REDO and UNDO Recovery Procedure

Basic Recovery Procedure

initial
state

⇒ wv [o1], cv, wx[o2], wy [o1], cy , wz[o2] ⇒ final
state

1 UNDO → Scan back through the log

Collect set of committed transactions C = {v, y}
Collect set of incomplete transactions I = {x, z}
Perform UNDO for any transaction in I = wz[o2], wx[o2]

2 REDO → Scan forward through the log

Perform REDO for any transaction in C = wv[o1], wy[o1]

final
state

⇒ UNDO(wz [o2]),UNDO(wx[o2]),REDO(wv [o1]),REDO(wy [o1]) ⇒
recovered

state

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 13



REDO and UNDO Recovery Procedure

Example of Recovery

Log
LOG b4
LOG b1
UNDO w1[b56, cash=94340.45]
REDO w1[b56, cash=84340.45]
LOG b2
UNDO w2[b34, cash=10900.67]
REDO w2[b34, cash=8900.67]
UNDO w2[b67, cash=34005.00]
REDO w2[b67, cash=36005.25]
LOG b7
LOG c2
UNDO w1[b34, cash=8900.67]
REDO w1[b34, cash=18900.67]
UNDO w7[b67, cash=36005.25]
REDO w7[b67, cash=37005.25]
LOG c7
LOG c4

Disc Before Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

Disc After Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 00000.00
34 ’Goodge St’
67 ’Strand’

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 14



REDO and UNDO Recovery Procedure

Example of Recovery

Log
LOG b4
LOG b1
UNDO w1[b56, cash=94340.45]
REDO w1[b56, cash=84340.45]
LOG b2
UNDO w2[b34, cash=10900.67]
REDO w2[b34, cash=8900.67]
UNDO w2[b67, cash=34005.00]
REDO w2[b67, cash=36005.25]
LOG b7
LOG c2
UNDO w1[b34, cash=8900.67]
REDO w1[b34, cash=18900.67]
UNDO w7[b67, cash=36005.25]
REDO w7[b67, cash=37005.25]
LOG c7
LOG c4

Disc Before Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

Disc After Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 00000.00
34 ’Goodge St’ 8900.67
67 ’Strand’

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 14



REDO and UNDO Recovery Procedure

Example of Recovery

Log
LOG b4
LOG b1
UNDO w1[b56, cash=94340.45]
REDO w1[b56, cash=84340.45]
LOG b2
UNDO w2[b34, cash=10900.67]
REDO w2[b34, cash=8900.67]
UNDO w2[b67, cash=34005.00]
REDO w2[b67, cash=36005.25]
LOG b7
LOG c2
UNDO w1[b34, cash=8900.67]
REDO w1[b34, cash=18900.67]
UNDO w7[b67, cash=36005.25]
REDO w7[b67, cash=37005.25]
LOG c7
LOG c4

Disc Before Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

Disc After Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 14



REDO and UNDO Recovery Procedure

Example of Recovery

Log
LOG b4
LOG b1
UNDO w1[b56, cash=94340.45]
REDO w1[b56, cash=84340.45]
LOG b2
UNDO w2[b34, cash=10900.67]
REDO w2[b34, cash=8900.67]
UNDO w2[b67, cash=34005.00]
REDO w2[b67, cash=36005.25]
LOG b7
LOG c2
UNDO w1[b34, cash=8900.67]
REDO w1[b34, cash=18900.67]
UNDO w7[b67, cash=36005.25]
REDO w7[b67, cash=37005.25]
LOG c7
LOG c4

Disc Before Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

Disc After Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 14



REDO and UNDO Recovery Procedure

Example of Recovery

Log
LOG b4
LOG b1
UNDO w1[b56, cash=94340.45]
REDO w1[b56, cash=84340.45]
LOG b2
UNDO w2[b34, cash=10900.67]
REDO w2[b34, cash=8900.67]
UNDO w2[b67, cash=34005.00]
REDO w2[b67, cash=36005.25]
LOG b7
LOG c2
UNDO w1[b34, cash=8900.67]
REDO w1[b34, cash=18900.67]
UNDO w7[b67, cash=36005.25]
REDO w7[b67, cash=37005.25]
LOG c7
LOG c4

Disc Before Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

Disc After Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 36005.25

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 14



REDO and UNDO Recovery Procedure

Example of Recovery

Log
LOG b4
LOG b1
UNDO w1[b56, cash=94340.45]
REDO w1[b56, cash=84340.45]
LOG b2
UNDO w2[b34, cash=10900.67]
REDO w2[b34, cash=8900.67]
UNDO w2[b67, cash=34005.00]
REDO w2[b67, cash=36005.25]
LOG b7
LOG c2
UNDO w1[b34, cash=8900.67]
REDO w1[b34, cash=18900.67]
UNDO w7[b67, cash=36005.25]
REDO w7[b67, cash=37005.25]
LOG c7
LOG c4

Disc Before Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

Disc After Recovery
branch

sortcode bname cash
56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 37005.25

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 14



REDO and UNDO Recovery Procedure

Omitting the REDO Log

If no REDO records kept

must flush committed transactions to data disc

1 C = ∅, D = ∅

2 Scan the log backwards from the end.

3 commit entry → add to C

4 undo entry for member of C → add object to D without making changes to the
data.

5 perform undo entry for object not of member D

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 15



REDO and UNDO Recovery Procedure

Omitting the UNDO Log

If no UNDO records kept

transaction must never write uncommitted data

add fix command between RM and CM to stop CM flushing data

commit is followed by flush or unfix of fixed objects

Omitting UNDO and REDO

atomic commit → out of place updating

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 16



REDO and UNDO Recovery Procedure

Quiz 27.3: Contents of Disc Before Commit if no UNDO log

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56

UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34

COMMIT TRANSACTION T1

branch 1
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

branch 2
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

branch 3
sortcode bname cash

56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

branch 4
sortcode bname cash

56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

What must the contents of the branch table on disc be before the transaction
commits?

A

1

B

1 or 4

C

4

D

1 , 2 , 3 or 4

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 17



REDO and UNDO Recovery Procedure

Quiz 27.4: Contents of Disc After Commit if no REDO log

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56

UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34

COMMIT TRANSACTION T1

branch 1
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

branch 2
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

branch 3
sortcode bname cash

56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

branch 4
sortcode bname cash

56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

What must the contents of the branch table on disc be after the transaction
commits?

A

1

B

1 or 4

C

4

D

1 , 2 , 3 or 4

P.J. McBrien (Imperial College London) 27: REDO and UNDO logs 18



Checkpoints

Topic 28: Checkpoints

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) 28: Checkpoints 1



Checkpoints Definition

Checkpointing

. . . , wx[o1] ⇒ random
state

⇒ cp ⇒ known
state

⇒ wy [o1], . . .

Forces the database into some known state

Recovery limited to only look back to checkpoint (or a ‘bit’ before!)
speeds the recovery operation
limits the size of log

The more consistent this known state
the easier it is to recover
the longer it takes to perform the checkpoint

P.J. McBrien (Imperial College London) 28: Checkpoints 2



Checkpoints Types of Checkpointing

Commit Consistent Checkpoint

Generating a Commit Consistent Checkpoint

1 Stop accepting new transactions

2 Finish existing transactions.

3 Flush all dirty data cache objects to disc.

4 Write a checkpoint to stable log.

recovery now only needs to scan back to cp in log ✔

possible long hold-up at checkpoint ✖

P.J. McBrien (Imperial College London) 28: Checkpoints 3



Checkpoints Types of Checkpointing

Cache Consistent Checkpoint

Generating a Cache Consistent Checkpoint

1 Suspend all transactions

2 Flush all dirty cache objects to disc

3 Write a checkpoint + active transactions to stable log

Recovery from Cache Consistent Checkpoint records

1 perform UNDOs of non-committed transactions back to cp

2 perform UNDO of non-committed transactions before cp if they were active at cp

3 perform REDOs of committed transactions after cp

could still have delay whilst flushing cached objects

P.J. McBrien (Imperial College London) 28: Checkpoints 4



Checkpoints Types of Checkpointing

Worksheet: Cache Consistent Checkpoint

LOG b7
UNDO w7[b67, cash=34005.25]
REDO w7[b67, cash=37005.25]
LOG b2
UNDO w2[b34, cash=10900.67]
REDO w2[b34, cash=8900.67]
LOG b6
UNDO w6[a101, rate=5.25]
REDO w6[a101, rate=6.00]
LOG b1
UNDO w1[b56, cash=94340.45]
REDO w1[b56, cash=84340.45]
LOG a7

LOG cp{1, 2, 6}
...

...
UNDO w6[a119, rate=5.50]
REDO w6[a119, rate=6.00]
LOG c6
UNDO w2[b67, cash=34005.00]
REDO w2[b67, cash=36005.25]
LOG b8
LOG c2
UNDO w1[b34, cash=8900.67]
REDO w1[b34, cash=18900.67]
LOG b9
UNDO w9[b67, cash=36005.00]
REDO w9[b67, cash=20000.00]
LOG c9

P.J. McBrien (Imperial College London) 28: Checkpoints 5



Checkpoints Types of Checkpointing

Fuzzy Checkpointing

Generating a Fuzzy Checkpoint

1 Suspend all transactions

2 Flush any dirty cache objects to disc not flushed in previous cp

3 Write a checkpoint + active transactions to stable log

Recovery from Fuzzy Checkpoint records

Recovery works like cache consistent checkpoint, but working with penultimate cp

1 perform UNDOs of non-committed transactions back to penultimate cp

2 perform UNDO of non-committed transactions before penultimate cp if they
were active at cp

3 perform REDOs of committed transactions after penultimate cp

P.J. McBrien (Imperial College London) 28: Checkpoints 6



Media Failures

Media Failures: Mirroring (RAID-1)

data
disc1

log

disc1

data
disc2

log

disc2

cache
manager

read✲

write

✻

❄

✻

❄

Keep more than one active copy of data and log

Writes sent to both

Read from either

P.J. McBrien (Imperial College London) 28: Checkpoints 7



Media Failures

Media Failures: Dumping

data
disc

log

disc

data
tape

log
tape

cache
manager

read✲

write

✻

dump ✻

✻

dump ✻

‘tape’ might also be a external file server, removable HD, etc.

To use normal OS backup procedure
DBMS must not be still running
raw partition must not be used

P.J. McBrien (Imperial College London) 28: Checkpoints 8



Media Failures

Checkpoints and Dumps

Dump must do a checkpoint

Restore involves:
1 copy tape to disc
2 undo transactions active at the archive time
3 redo transactions that committed after the archive

commit consistent checkpoint obvious choice

P.J. McBrien (Imperial College London) 28: Checkpoints 9



Media Failures

Media Failures: Archive Database

active
data
disc

log

disc1

archive
data
disc

log

disc2

cache
manager

read✲

write

✻

❄

✻

❄

mirror log, but only have one active database

periodically archive updates onto archive database

failure of active database disc involves restore of archive database using logs

P.J. McBrien (Imperial College London) 28: Checkpoints 10



Media Failures

THE END

Content of the course is what has been presented in the lectures

Revise by reviewing worksheets and courseworks

2011 to 2019 exam papers good for revision

Revision exercises will be made available on the course homepage

P.J. McBrien (Imperial College London) 28: Checkpoints 11


	REDO and UNDO
	Logs
	Recovery Procedure

	Checkpoints
	Definition
	Types of Checkpointing

	Media Failures

