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Functional Dependencies Problems in Schemas

What is wrong with this schema?

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18
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Functional Dependencies Problems in Schemas

What is wrong with this schema?

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18

SELECT cash
FROM bank data
WHERE so r t c od e=67

cash
34005.00
34005.00
34005.00
34005.00
34005.00
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Functional Dependencies Problems in Schemas

What is wrong with this schema?

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18

SELECT DISTINCT cash
FROM bank data
WHERE so r t c od e=67

cash
34005.00
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Functional Dependencies Problems in Schemas

What is wrong with this schema?

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18

SELECT DISTINCT r a t e
FROM bank data
WHERE account=107

rate
null
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Functional Dependencies Problems in Schemas

Problems with Updates on Redundant Data

INSERT INTO bank data
VALUES (100 ,67 , ’ St rand ’ , 33005 .00 , ’ d e p o s i t ’ , ’ McBrien , P . ’ , n u l l ,

1017 ,−1000.00 , ’ 1999−01−21 ’ )

UPDATE bank data
SET r a t e =1.00
WHERE mid=1007

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. 1.00 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18
100 67 Strand 33005.00 deposit McBrien, P. null 1017 -1000.00 1999-01-21
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Functional Dependencies Problems in Schemas

Problems with Updates on Redundant Data

INSERT INTO bank data
VALUES (100 ,67 , ’ St rand ’ , 33005 .00 , ’ d e p o s i t ’ , ’ McBrien , P . ’ , n u l l ,

1017 ,−1000.00 , ’ 1999−01−21 ’ )

UPDATE bank data
SET r a t e =1.00
WHERE mid=1007

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. 1.00 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18
100 67 Strand 33005.00 deposit McBrien, P. null 1017 -1000.00 1999-01-21

SELECT DISTINCT cash
FROM bank data
WHERE so r t c od e=67

cash
34005.00
33005.00
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Functional Dependencies Problems in Schemas

Problems with Updates on Redundant Data

INSERT INTO bank data
VALUES (100 ,67 , ’ St rand ’ , 33005 .00 , ’ d e p o s i t ’ , ’ McBrien , P . ’ , n u l l ,

1017 ,−1000.00 , ’ 1999−01−21 ’ )

UPDATE bank data
SET r a t e =1.00
WHERE mid=1007

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. 1.00 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18
100 67 Strand 33005.00 deposit McBrien, P. null 1017 -1000.00 1999-01-21

SELECT DISTINCT r a t e
FROM bank data
WHERE account=107

rate
null
1.00
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Functional Dependencies Problems in Schemas

How do you know what is redundant?

Functional Dependency

A functional dependency (fd) X → Y states that if the values of attributes X
agree in two tuples, then so must the values in Y .

Using an FD to find a value

If the FD no → rate holds then x in the table below must always take the value 5.25,
but y and z may take any value.

bank data
no mid rate
101 1001 5.25
101 1008 x
119 1009 y

z 1010 5.25
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Functional Dependencies Problems in Schemas

Quiz 18.1: FDs that hold in bank data

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18

Which set of FDs below does not hold for the data?

A

no → rate
no → bname

B

no → type
bname → no

C

no → type
mid → bname

D

amount → rate
bname → sortcode
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Functional Dependencies Problems in Schemas

Quiz 18.2: Deriving FDs from other FDs

sortcode → bname
no → sortcode
no → cname
no → rate
mid → no

Given the FDs above, which FD below might not hold?

A

no → bname

B

no,sortcode → cname,sortcode

C

amount,tdate → amount

D

amount,tdate → mid
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Functional Dependencies Armstrong’s Axioms

Armstrong’s Axioms

X,Y and Z are sets of attributes, and XY is a shorthand for X ∪ Y

Reflexivity

Y ⊆ X |= X→Y

Such an FD is called a trivial FD

Applying reflexivity

If amount,tdate are attributes
By reflexivity
amount ⊆ amount, tdate |= amount, tdate → amount
tdate ⊆ amount, tdate |= amount, tdate → tdate
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Functional Dependencies Armstrong’s Axioms

Armstrong’s Axioms

X,Y and Z are sets of attributes, and XY is a shorthand for X ∪ Y

Augmentation

X → Y |= XZ → Y Z

Applying augmentation

If no,cname,sortcode are attributes and no → cname
By augmentation
no → cname |= no, sortcode → cname, sortcode
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Functional Dependencies Armstrong’s Axioms

Armstrong’s Axioms

X,Y and Z are sets of attributes, and XY is a shorthand for X ∪ Y

Transitivity

X → Y, Y → Z |= X → Z

Applying transitivity

If no → sortcode and sortcode → bname
By transitivity
no → sortcode, sortcode → bname |= no → bname
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Functional Dependencies Deriving Rules from Armstrong’s Axioms

Union Rule

Armstrong’s Axioms

Reflexivity: Y ⊆ X |= X → Y
Augmentation: X → Y |= XZ → Y Z
Transitivity: X → Y, Y → Z |= X → Z

Union Rule

If X → Y,X → Z
By augmentation
X → Y |= XZ → Y Z
X → Z |= X → XZ
By transitivity
X → XZ,XZ → Y Z |= X → Y Z

If X → Y Z
By reflexivity
Y Z |= Y Z → Y, Y Z → Z
By transitivity
X → Y Z, Y Z → Y |= X → Y
X → Y Z, Y Z → Z |= X → Z

∴ X → Y,X → Z ≡ X → Y Z

Note that the union rules means that we can restrict ourselves to FD sets
containing just one attribute on the RHS of each FD without loosing
expressiveness
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Functional Dependencies Deriving FDs

Quiz 18.3: Deriving FDs from other FDs

Given a set S = {A → BC,CD → E,C → F,E → F} of FDs

Which set of FDs below follows from S?

A

A → BF,A → CF,A → ABCF

B

A → BD,A → CF,A → ABCF

C

A → BD,A → BF,A → ABCF

D

A → BD,A → BF,A → CF
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Functional Dependencies Deriving FDs

Pseudotransitivity Rule

Armstrong’s Axioms

Reflexivity: Y ⊆ X |= X → Y
Augmentation: X → Y |= XZ → Y Z
Transitivity: X → Y, Y → Z |= X → Z

Pseudotransitivity Rule

If X → Y,WY → Z
By augmentation
X → Y |= WX → WY
By transitivity
WX → WY,WY → Z |= WX → Z

∴ X → Y,WY → Z |= WX → Z
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Functional Dependencies Deriving FDs

Decomposition Rule

Armstrong’s Axioms

Reflexivity: Y ⊆ X |= X → Y
Augmentation: X → Y |= XZ → Y Z
Transitivity: X → Y, Y → Z |= X → Z

Decomposition Rule

If X → Y,Z ⊆ Y
By reflexivity
Z ⊆ Y |= Y → Z
By transitivity
X → Y, Y → Z |= X → Z

∴ X → Y,Z ⊆ Y |= X → Z
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FDs and Keys

FDs and Keys

Super-keys and minimal keys

If a set of attributes X in relation R functionally determines all the other
attributes of R, then X must be a super-key of R

If it is not possible to remove any attribute from X to form X ′, and X ′

functionally determine all attributes, then X is a minimal key of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set
{sortcode → bname, bname → sortcode, bname → cash}

1 {sortcode, bname} is a super-key since {sortcode, bname} → cash

2 However, {sortcode, bname} is not a minimal key, since sortcode → {bname, cash}
and bname → {sortcode, cash}

3 sortcode and bname are both minimal keys of branch
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FDs and Keys

Quiz 19.1: Deriving minimal keys from FDs

Suppose the relation R(A,B,C,D,E) has functional dependencies
S = {A → E,B → AC,C → D,E → D}

Which of the following is a minimal key?

A

A

B

AB

C

BC

D

B
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FDs and Keys

Quiz 19.2: Keys and FDs

Suppose the relation R(A,B,C,D,E) has minimal keys AC and BC

Which FD does not necessarily hold?

A

ABC → DE

B

AC → BDE

C

AB → DE

D

BC → DE
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FDs and Keys Closure

Closure of a set of attributes with a set of FDs

Closure X+ of a set of attributes X with FDs S

1 Set X+ := X

2 Starting with X+ apply each FD Xs → Y in S where Xs ⊆ X+ but Y is not
already in X+, to find determined attributes Y

3 X+ := X+ ∪ Y

4 If Y not empty goto (2)

5 Return X+

Closure of attributes

Relation R(A,B,C,D,E, F ) has FD set S = {A → BC,CD → E,C → F,E → F}
To compute A+

Start with A+ = A, just A → BC matches, so Y = BC

A+ = ABC, just C → F matches, so Y = F

A+ = ABCF , no FDs apply, so we have the result
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FDs and Keys Closure

Closure of a set of attributes with a set of FDs

Closure X+ of a set of attributes X with FDs S

1 Set X+ := X

2 Starting with X+ apply each FD Xs → Y in S where Xs ⊆ X+ but Y is not
already in X+, to find determined attributes Y

3 X+ := X+ ∪ Y

4 If Y not empty goto (2)

5 Return X+

Closure of a set of attributes

Relation R(A,B,C,D,E, F ) has FD set S = {A → BC,CD → E,C → F,E → F}
To compute AD+

Start with AD+ = AD, just A → BC matches, so Y = BC

AD+ = ABCD, CD → E,C → F matches, so Y = EF

AD+ = ABCDEF , no FDs apply, so we have the result
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FDs and Keys Closure

Quiz 19.3: Closure of Attribute Sets

Given a relation R(A,B,C,D,E, F ) and FD set
S = {A → BC,C → D,BA → E,BD → F,EF → B,BE → ABC}

Which closure of attributes of S does not cover R?

A

A+

B

BC+

C

BE+

D

EF+

P.J. McBrien (Imperial College London) 19: FDs and Keys 6



FDs and Keys Closure

Closure of a set of Functional Dependencies

The closure S+ of a set of FDs S is the
set of all FDs that can be infered from S.
For speed, we ignore:

trivial FDs (e.g. ignore A → A)

FDs with a LHS that is not
minimal (e.g. ignore AB → C if
A → C)

FDs that have multiple attributes
on RHS (e.g. consider A → CD as
A → C and A → D)

S = {A → B,A → C,B → A,B → D}

S′ = {A → B,A → C,A → D,B → A,B → D}

A → B,B → D |= A → D

S+ = {A → B,A → C,A → D,B → A,B → C,B → D}

B → A,A → C |= B → C

T = {A → B,A → C,A → D,B → A}

T ′ = {A → B,A → C,A → D,B → A,B → C}

B → A,A → C |= B → C

B → A,A → D |= B → D

∴ S ≡ T

Since S+ = T+

A set of FDs will have a unique closure

Two sets of FDs S, T are equivalent if
S+ = T+

P.J. McBrien (Imperial College London) 19: FDs and Keys 7
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FDs and Keys Closure
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FDs and Keys Minimal Cover

Minimal cover of a set of FDs

A minimal cover Sc of FD set S has the properties that:

All the FDs in S can be derived from Sc (i.e. S+ = S+
c )

It is not possible to form a new set S′
c by deleting an FD from Sc or deleting

an attribute from an FD in Sc, and S′
c can still derive all the FDs in S

In general, a set of FDs may have more than one minimal cover

S = {A → B,BC → A,A → C,B → C}

S′ = {A → B,B → A,A → C,B → C}

Since B → C
BC → A ⇒ B → A

Sc = {A → B,B → A,B → C}

Since A → B,B → C |= A → C
A → C ⇒ ∅

Sc = {A → B,B → A,A → C}

Since B → A,A → C |= B → C
B → C ⇒ ∅
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FDs and Keys Minimal Cover

Worksheet: Minimal Cover (Step 3)

1 AB+ = ABDEHGFC

Try removing AB → D: find AB+ = ABEH, so can’t remove.

Try removing AB → E: find AB+ = ABDHEGFC, so remove it from S′′ to get S′′′

Try removing AB → H: find AB+ = ABDEGFHC, so remove it from S′′′ to get

S′′′′ = {AB → D,EF → A,FG → C,D → E,D → G,EG → B,EG → F, F → B,F →
H}

2 EF+ = EFABHDGC

Try removing EF → A: find EF+ = EFBH, so can’t remove.

3 FG+ = FGCBH

Try removing FG → C: find FG+ = FGBH, so can’t remove.

4 D+ = DEGBFHAC

Try removing D → E: find D+ = DG, so can’t remove.

Try removing D → G: find D+ = DE, so can’t remove.

5 EG+ = EGBFHADC

Try removing EG → B: find EG+ = EGFBHADC, so remove it from S′′′′ to get S′′′′′

Try removing EG → F : find EG+ = EG, so can’t remove.

6 F+ = FBH

Try removing F → B: find F+ = FH, so can’t remove.

Try removing F → H: find F+ = FB, so can’t remove.

Thus S′′′′′ is a minimal cover

Sc = {AB → D,EF → A,FG → C,D → EG,EG → F, F → BH}
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Normalisation 1NF

Using FDs to Formalise Problems in Schemas

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18

Formalise the intuition of redundancy by the statements of FDs
mid → {tdate, amount, no},
no → {type, cname, rate, sortcode},
{cname, type} → no,
sortcode → {bname, cash}
bname → sortcode

1st Normal Form (1NF)

Every attribute depends on the key

P.J. McBrien (Imperial College London) 20: Normalisation 2



Normalisation 1NF

Using FDs to Formalise Problems in Schemas

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18

Formalise the intuition of redundancy by the statements of FDs
mid → {tdate, amount, no},
no → {type, cname, rate, sortcode},
{cname, type} → no,
sortcode → {bname, cash}
bname → sortcode

1st Normal Form (1NF)

Every attribute depends on the key

P.J. McBrien (Imperial College London) 20: Normalisation 2



Normalisation 1NF

Using FDs to Formalise Problems in Schemas

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18

Formalise the intuition of redundancy by the statements of FDs
mid → {tdate, amount, no},
no → {type, cname, rate, sortcode},
{cname, type} → no,
sortcode → {bname, cash}
bname → sortcode

1st Normal Form (1NF)

Every attribute depends on the key

P.J. McBrien (Imperial College London) 20: Normalisation 2



Normalisation 1NF

Quiz 20.1: 1st Normal Form

bank data
no sortcode bname cash type cname rate? mid amount tdate

100 67 Strand 34005.00 current McBrien, P. null 1000 2300.00 1999-01-05
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-05
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-08
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-11
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-12
100 67 Strand 34005.00 current McBrien, P. null 1006 10.23 1999-01-15
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1007 345.56 1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-18

mid → {tdate, amount, no},
no → {type, cname, rate, sortcode},
{cname, type} → no,
sortcode → {bname, cash}
bname → sortcode

Is bank data in 1st Normal form?

True False
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Normalisation Prime Attributes

Prime and Non-Prime Attributes

Prime Attribute

An attribute A of relation R is prime if there is some minimal candidate key X of R
such that A ⊆ X
Any other attribute B ∈ Attrs(R) is non-prime

Prime and non-prime attributes of bank data

bank data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)
Has FDs mid → {tdate, amount, no}, no → {type, cname, rate, sortcode},
{cname, type} → no, sortcode → {bname, cash}, bname → sortcode
Then

1 the only minimal candidate key is mid

2 the only prime attribute is mid

3 non-prime attributes are no,sortcode,bname,cash,type,cname,rate,amount,tdate
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Normalisation Prime Attributes

Quiz 20.2: Prime and nonprime attributes

Given a relation R(A,B,C,D,E, F ) and an FD set
A → BCE,C → D,BD → F,EF → B,BE → A

What are the nonprime attributes?

A

DEF

B

BC

C

CDF

D

CD
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Normalisation 3NF

3rd Normal Form (3NF)

3rd Normal Form (3NF)

For every non-trivial FD X → A on R, either

1 X is a super-key

2 A is prime

Every non-key attribute depends on the key, the whole key and nothing but the key

Failure of bank data to meet 3NF

bank data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

Has the following FDs where the LHS is not a super-key:
no → {type, cname, rate, sortcode}, {cname, type} → no,
sortcode → {bname, cash}, bname → sortcode

Each of the above FD causes the relation not to meet 3NF since the RHS
contains non-prime attributes
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Normalisation 3NF

Quiz 20.3: 3rd Normal Form

Given a relation R(A,B,C,D,E, F ) and an FD set
A → BCE,C → D,BD → F,EF → B,BE → A

Which decomposition is not in 3NF?

A

R1(B,D,F ), R2(A,B,C,D,E)

B

R1(A,B,C,E, F ), R2(C,D)

C

R1(A,B,C,E, F ), R2(C,D), R3(B,D,F )

D

R1(B,E, F ), R2(A,C,E), R3(C,D)
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Normalisation BCNF

Boyce-Codd Normal Form (BCNF)

Boyce-Codd Normal Form (BCNF)

For every non-trivial FD X → A on R, X is a super-key.
Every attribute depends on the key, the whole key and nothing but the key

BCNF schema

branch(sortcode, bname, cash) with FDs sortcode → {bname, cash}, bname → sortcode
is in BCNF since sortcode and bname are both candidate keys

account(no, type, cname, rate, sortcode) with FDs no → {type, cname, rate, sortcode},
{cname, type} → no is in BCNF since no and cname, type are both candidate keys

movement(mid, amount, no, tdate) with FD mid → {tdate, amount, no} is in BCNF
since mid is key

P.J. McBrien (Imperial College London) 20: Normalisation 8



Normalisation Lossless Join

Lossless-join decomposition of relations

Lossless-join decomposition of a Relation

A lossless-join decomposition of a relation R with respect to FDs S into relations
R1, . . . , Rn has the properties that:

Attrs(R1) ∪ . . . ∪Attrs(Rn) = Attrs(R)

For all possible extents of R satisfying S, πAttrs(R1) R ⋊⋉ . . . ⋊⋉ πAttrs(Rn) R = R

Lossless-join decomposition of bank data

bank data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

Has FDs mid → {tdate, amount, no}, no → {type, cname, rate, sortcode},
{cname, type} → no, sortcode → {bname, cash}, bname → sortcode

Decomposing bank data into
branch = πsortcode,bname,cash bank data
account = πno,type,cname,rate,sortcode bank data
movement = πmid,amount,no,tdate bank data
satisfies the lossless-join decomposition property
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Normalisation Lossless Join

Problems if not a lossless-join decomposition

If a decomposition of R into R1, . . . , Rn is not lossless, then some tuples spread over
R1, . . . , Rn can result in phantom tuples appearing

R(A,B,C,D), S = {A → B,B → CD}

R
A B C D
1 1 2 6
2 2 3 4

3 3 3 5

R1

A B C
1 1 2
2 2 3

3 3 3

R2

C D
2 6
3 4

3 5

R1 ⋊⋉ R2

A B C D
1 1 2 6
2 2 3 4

3 3 3 5
2 2 3 5
3 3 3 4

Decomposition on an FD

If R(A1 . . . An) has FD Aj → Aj+1 . . . An then decomposing on the FD to
R1(A1 . . . Aj), R2(AjAj+1 . . . An) is lossless
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Normalisation Lossless Join

Quiz 20.4: Lossless join decomposition

Given a relation R(A,B,C,D,E, F ) and an FD set
A → BCE,C → D,BD → F,EF → B,BE → A

Which is not a lossless-join decomposition of R?

A

R1(B,D,F ), R2(A,B,C,D,E)

B

R1(A,B,C,E, F ), R2(C,D)

C

R1(A,B,C,E, F ), R2(C,D), R3(B,D,F )

D

R1(B,E, F ), R2(A,C,E), R3(C,D)
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Normalisation Lossless Join

Worksheet: Lossless Join Decomposition

1 R(A,B,C,D,E) has the FDs S = {AB → C,C → DE,E → A}.
Which of the following are lossless join decompositions?

1 R1(A,B,C), R2(C,D,E)
2 R1(A,B,C), R2(C,D), R3(D,E)

2 Derive a lossless join decomposition into three relations of R(A,B,C,D,E, F )
with FDs S = {AB → CD,C → E,A → F}.

3 Derive a lossless join decomposition into three relations of R(A,B,C,D,E, F )
with FDs S = {AB → CD,C → E,F → A}.
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Generating Normal Forms

Generating 3NF

Generating 3NF

1 Given R and a set of FDs S, find an FD X → A that causes R to violate 3NF
(i.e. for which A is not a prime attribute and X is not a superkey).

2 Decompose R into Ra(Attr(R)−A) and Rb(XA) (Note because the two
relations share X and X → A this is lossless)

3 Project the S onto the new relations, and repeat the process from (1)

Note that step (2) ensures that the decomposition is lossless since joining Ra with Rb

will share X, and X → A

Canonical Example of 3NF Decomposition

Suppose R(A,B,C) has FD set S = {A → B,B → C}
The only key is A, and so B → C violates 3NF (since B is not a superkey and C
is nonprime).

Decomposing R into R1(A,B) and R2(B,C) results in two 3NF relations.
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Generating Normal Forms

Example: Decomposing bank data into 3NF

Bank Database as a Single Relation

bank data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)
S = {mid → {tdate, amount, no}, no → {type, cname, rate, sortcode},

{cname, type} → no, sortcode → {bname, cash}, bname → sortcode}

Since sortcode → {bname, cash} and sortcode is not superkey and bname, cash
nonprime, we should decompose bank data into

1 branch(sortcode, bname, cash) with FDs sortcode → {bname, cash},
bname → sortcode

2 bank data′(no, sortcode, type, cname, rate,mid, amount, tdate) with FDs
mid → {tdate, amount, no}, no → {type, cname, rate, sortcode},
{cname, type} → no

branch is in 3NF, but no → {type, cname, rate, sortcode} makes bank data′ violate
3NF, so we should decompose bank data′ into:

3 account(no, type, cname, rate, sortcode) with FDs
no → {type, cname, rate, sortcode}, {cname, type} → no

4 movement(mid.amount, no, tdate) with FD mid → {tdate, amount, no}
The relations branch, account, and movement are all in 3NF
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Generating Normal Forms Preserving FDs

Preserving FDs during decomposition

FD preserving decomposition

A lossless decomposition of R with FDs S into Ra and Rb preserves functional
dependencies S if the projection of S+ onto Ra and Rb is equivalent to S

FD preserving decomposition

Suppose R(ABC) with S = {A → B,B → C,C → A} is decomposed into Ra(AB)
and Rb(BC).

S+ = {A → B,A → C,B → A,B → C,C → A,C → B}
The projection of S+ onto Ra gives S+

a = {A → B,B → A}
The projection of S+ onto Rb gives S+

b = {B → C,C → B}
Note that the union Su of the two subsets of S+ (i.e. Su = S+

a ∪ S+
b ) has the

property that S+
u = S+, and hence the decomposition preserves functional

dependencies.

3NF

There is always possible to decompose a relation into 3NF in a manner that preserves
functional dependencies. Thus any good 3NF decomposition of a relation must also
preserve functional dependencies.
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Generating Normal Forms Preserving FDs

Quiz 21.1: Preserving FDs during Decomposition

Given a relation R(A,B,C,D,E, F ) and an FD set
A → BCE,C → D,BD → F,EF → B,BE → A

Which decomposition preserves FDs?

A

R1(B,D,F ), R2(A,B,C,D,E)

B

R1(A,B,C,E, F ), R2(C,D)

C

R1(A,B,C,E, F ), R2(C,D), R3(B,D,F )

D

R1(B,E, F ), R2(A,C,E), R3(C,D)
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Generating Normal Forms Preserving FDs

Preserving FDs, lossless join, and 3NF

Given a relation R(A,B,C,D,E, F ) and an FD set
A → BCE,C → D,BD → F,EF → B,BE → A

Decomposition lossless join 3NF Preserves FDs
R1(B,D,F ), R2(A,B,C,D,E) ✓ ✗ ✗

R1(A,B,C,E, F ), R2(C,D) ✓ ✓ ✗

R1(A,B,C,E, F ), R2(C,D), R3(B,D,F ) ✓ ✓ ✓

R1(B,E, F ), R2(A,C,E), R3(C,D) ✗ ✓ ✗

Decomposing to 3NF

Since it is always possible to decompose a relation into a 3NF form that is both a
lossless join decomposition, and preserves FDs, you should always do so.
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Generating Normal Forms Preserving FDs

Quiz 21.2: Preserving FDs during Decomposition to 3NF

Suppose the relation R(A,B,C,D,E) has functional dependencies
S = {AC → DBE,BC → DE,B → A,E → D} (and hence has minimal keys AC
and BC)

Which is a lossless join decomposition to 3NF that preserves FDs?

A

Ra(B,C,E), Rb(A,B,C), Rc(D,E)

B

Ra(A,B,C), Rb(A,C,D,E)

C

Ra(A,C,D), Rb(A,C,E), Rc(A,B)

D

Ra(A,C,E), Rb(B,D,E)

Minimal Cover of S

Because BC → E,E → D |= BC → D
S ≡ {AC → DBE,BC → E,B → A,E → D}
Because AC → E,E → D |= AC → D
S ≡ {AC → BE,BC → E,B → A,E → D}
Because AC → B,BC → E |= AC → E
S ≡ Sc = {AC → B,BC → E,B → A,E → D}
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Generating Normal Forms BCNF

Decomposition of Relations into BCNF

Generating BCNF

1 Given R and a set of FDs S, find an FD X → A that causes R to violate BCNF
(i.e. for which X is not a superkey).

2 Decompose R into Ra(Attr(R)−A) and Rb(XA) (Note because the two
relations share X and X → A this is lossless)

3 Project the S onto the new relations, and repeat the process from (1)

Difference between 3NF and BCNF

Suppose the relation address(no, street, town, county, postcode) has FDs
{no, street, town, county} → postcode, postcode → {street, town, county},

The relation is in 3NF (alternative keys no, street, town, county and no, postcode).

The relation is not in BCNF since postcode → {street, town, county} has a
non-superkey as the determinant

Decompose the relation address on postcode → {street, town, county} to:
postcode(postcode, street, town, county)
streetnumber(no, postcode)
Note FD {no, street, town, county} → postcode cannot be projected over the
relations.
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Generating Normal Forms BCNF

Worksheet: Decomposing to Normal Forms

Sc = {AB → D,EF → A,FG → C,D → EG,EG → F, F → BH}
1 Decompose the relation into 3NF

2 Decompose the relation into BCNF

3 Determine if your decompositions in (1) and (2) preserve FDs, and if they do
not, suggest how to amend you schema to preserve FDs.
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