Functional Dependencies and Normalisation

P.J. McBrien

Imperial College London

Topic 18: Functional Dependencies

P.J. McBrien

Imperial College London

				ba	ank_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

2

イロト イロト イヨト イヨト

				ba	nk_data				
no	sortcode	bname	cash	type	cname	rate?	<u>mid</u>	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00		McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A		1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A	5.50	1009	5600.00	1999-01-18
					cash				
SELE	ECT ca	- h			34005.00				
FROM		nk data			34005.00				
			,		34005.00				
WHE	KE SO	rtcode=67			34005.00				
					34005.00				

				ba	ank_data				
no	sortcode	bname			cname	rate?		amount	
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

SELECT	DISTINCT cash
FROM	bank₋data
WHERE	sortcode=67

cash
34005.00

2

イロト イヨト イヨト イヨト

				ba	ank_data				
no	sortcode	bname	cash	type	cname	rate?		amount	
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

SELECT DISTINCT rate FROM bank_data

WHERE account=107

rate null

P.J. McBrien (Imperial College London)

2

イロト イヨト イヨト イヨト

Problems with Updates on Redundant Data

```
INSERT INTO bank_data
VALUES (100,67, 'Strand',33005.00, 'deposit', 'McBrien, P.', null,
1017, -1000.00, '1999-01-21')
```

UPDATE bank_data SET rate=1.00 WHERE mid=1007

				b;	ank_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	1.00	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

Problems with Updates on Redundant Data

```
INSERT INTO bank_data
VALUES (100,67,'Strand',33005.00,'deposit','McBrien, P.',null,
1017,-1000.00,'1999-01-21')
```

UPDATE bank_data SET rate=1.00 WHERE mid=1007

					ba	ank_data				
I	no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
1(00	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
10	01	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
10	00	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
10	07	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
10	03	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
10	00	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
10	07	56	Wimbledon	84340.45	current	Poulovassilis, A.	1.00	1007	345.56	1999-01-15
10	01	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
12	19	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
10	00	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21
10 10 10 10 10	03 00 07 01 19	34 67 56 67 56	Goodge St Strand Wimbledon Strand Wimbledon	6900.67 34005.00 84340.45 34005.00 84340.45	current current deposit deposit	Boyd, M. McBrien, P. Poulovassilis, A. McBrien, P. Poulovassilis, A.	null null 1.00 5.25 5.50	1005 1006 1007 1008 1009	145.50 10.23 345.56 1230.00 5600.00	1999-01-12 1999-01-15 1999-01-15 1999-01-15 1999-01-18

SELECT	DISTINCT cash	cash
FROM	bank_data	34005.00
WHERE	<pre>sortcode=67</pre>	33005.00

Problems with Updates on Redundant Data

```
INSERT INTO bank_data
VALUES (100,67,'Strand',33005.00,'deposit','McBrien, P.',null,
1017,-1000.00,'1999-01-21')
```

UPDATE bank_data SET rate=1.00 WHERE mid=1007

				ba	ank_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	1.00	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

SELECT	DISTINCT rate	rate	
FROM	bank_data	null	
WHERE	account=107	1.00	

How do you know what is redundant?

Functional Dependency

A functional dependency (fd) $X \to Y$ states that if the values of attributes X agree in two tuples, then so must the values in Y.

Using an FD to find a value

If the FD no \rightarrow rate holds then x in the table below must always take the value 5.25, but y and z may take any value.

bank_data								
no	<u>mid</u>	rate						
101	1001	5.25						
101	1008	x						
119	1009	y						
z	1010	5.25						

3

< ロト (同) (三) (三) (二) (-)

Quiz 18.1: FDs that hold in bank_data

bank_data									
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

Which set of FDs below does not hold for the data?

A	В	С	D
$no \to rate$	no o type	$no \to type$	$amount \to rate$
$no\tobname$	$bname \to no$	$mid \to bname$	$bname \to sortcode$

2

イロト イヨト イヨト イヨト

Quiz 18.2: Deriving FDs from other FDs

 $\mathsf{sortcode} \to \mathsf{bname}$

- $\mathsf{no}\to\mathsf{sortcode}$
- $\mathsf{no}\to\mathsf{cname}$
- $\mathsf{no}\to\mathsf{rate}$

 $\mathsf{mid}\to\mathsf{no}$

Given the FDs above, which FD below might not hold?

A	В
$no \to bname$	$no, sortcode \to cname, sortcode$
С	D
amount.tdate \rightarrow amount	amount.tdate \rightarrow mid

2

イロト イヨト イヨト イヨト

Armstrong's Axioms

X,Y and Z are sets of attributes, and XY is a shorthand for $X\cup Y$

Reflexivity

 $Y \subseteq X \models X {\rightarrow} Y$

Such an FD is called a **trivial** FD

Applying reflexivity

If amount,tdate are attributes By reflexivity amount \subseteq amount,tdate \models amount,tdate \rightarrow amount tdate \subseteq amount,tdate \models amount,tdate \rightarrow tdate

イロト イポト イヨト イヨト

Armstrong's Axioms

X,Y and Z are sets of attributes, and XY is a shorthand for $X\cup Y$

Augmentation

 $X \to Y \models XZ \to YZ$

Applying augmentation

If no,cname,sortcode are attributes and $\mathsf{no}\to\mathsf{cname}$

By augmentation

 $\mathsf{no} \rightarrow \mathsf{cname} \models \mathsf{no}, \mathsf{sortcode} \rightarrow \mathsf{cname}, \mathsf{sortcode}$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Armstrong's Axioms

X,Y and Z are sets of attributes, and XY is a shorthand for $X\cup Y$

Transitivity

 $X \to Y, Y \to Z \models X \to Z$

Applying transitivity

If no \rightarrow sortcode and sortcode \rightarrow bname By transitivity

 $\mathsf{no} \rightarrow \mathsf{sortcode}, \mathsf{sortcode} \rightarrow \mathsf{bname} \models \mathsf{no} \rightarrow \mathsf{bname}$

イロト イロト イヨト イヨト 二日

Union Rule

Armstrong's Axioms

Reflexivity: $Y \subseteq X \models X \to Y$ Augmentation: $X \to Y \models XZ \to YZ$ Transitivity: $X \to Y, Y \to Z \models X \to Z$

Union Rule

If $X \to Y, X \to Z$ If XBy augmentationBy r $X \to Y \models XZ \to YZ$ YZ $X \to Z \models X \to XZ$ By tBy transitivity $X \to XZ, XZ \to YZ \models X \to YZ$

If $X \to YZ$ By reflexivity $YZ \models YZ \to Y, YZ \to Z$ By transitivity $X \to YZ, YZ \to Y \models X \to Y$ $X \to YZ, YZ \to Z \models X \to Z$

イロト イヨト イヨト イヨト

 $\therefore X \to Y, X \to Z \equiv X \to YZ$

• Note that the union rules means that we can restrict ourselves to FD sets containing just one attribute on the RHS of each FD without loosing expressiveness

3

Quiz 18.3: Deriving FDs from other FDs

Given a set $S = \{A \to BC, CD \to E, C \to F, E \to F\}$ of FDs

 $A \rightarrow BF, A \rightarrow CF, A \rightarrow ABCF$

 $A \rightarrow BD, A \rightarrow CF, A \rightarrow ABCF$

 $A \rightarrow BD, A \rightarrow BF, A \rightarrow ABCF$

 $A \to BD, A \to BF, A \to CF$

イロト イロト イヨト イヨト 二日

Pseudotransitivity Rule

Armstrong's Axioms

Reflexivity: $Y \subseteq X \models X \to Y$ Augmentation: $X \to Y \models XZ \to YZ$ Transitivity: $X \to Y, Y \to Z \models X \to Z$

Pseudotransitivity Rule

If $X \to Y, WY \to Z$ By augmentation $X \to Y \models WX \to WY$ By transitivity $WX \to WY, WY \to Z \models WX \to Z$

 $\therefore X \to Y, WY \to Z \models WX \to Z$

イロト イロト イヨト イヨト 三日

Decomposition Rule

Armstrong's Axioms

Reflexivity: $Y \subseteq X \models X \to Y$ Augmentation: $X \to Y \models XZ \to YZ$ Transitivity: $X \to Y, Y \to Z \models X \to Z$

Decomposition Rule

If $X \to Y, Z \subseteq Y$ By reflexivity $Z \subseteq Y \models Y \to Z$ By transitivity $X \to Y, Y \to Z \models X \to Z$

$\therefore X \to Y, Z \subseteq Y \models X \to Z$

Topic 19: FDs and Keys

P.J. McBrien

Imperial College London

<ロト <回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Super-keys and minimal keys

- If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a **super-key** of R
- If it is not possible to remove any attribute from X to form X', and X' functionally determine all attributes, then X is a **minimal key** of R

3

イロト 不得 トイヨト イヨト

Super-keys and minimal keys

- If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a **super-key** of R
- If it is not possible to remove any attribute from X to form X', and X' functionally determine all attributes, then X is a **minimal key** of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set {sortcode \rightarrow bname, bname \rightarrow sortcode, bname \rightarrow cash}

イロト イポト イヨト イヨト

Super-keys and minimal keys

- If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a **super-key** of R
- If it is not possible to remove any attribute from X to form X', and X' functionally determine all attributes, then X is a **minimal key** of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set {sortcode \rightarrow bname, bname \rightarrow sortcode, bname \rightarrow cash}

 $\blacksquare \ \{ \mathsf{sortcode}, \mathsf{bname} \} \ is \ a \ \mathsf{super-key} \ \mathsf{since} \ \{ \mathsf{sortcode}, \mathsf{bname} \} \rightarrow \mathsf{cash} \\$

イロト イポト イヨト イヨト

Super-keys and minimal keys

- If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a **super-key** of R
- If it is not possible to remove any attribute from X to form X', and X' functionally determine all attributes, then X is a **minimal key** of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set {sortcode \rightarrow bname, bname \rightarrow sortcode, bname \rightarrow cash}

- $\blacksquare \ \{ \mathsf{sortcode}, \mathsf{bname} \} \ is \ a \ \mathsf{super-key} \ \mathsf{since} \ \{ \mathsf{sortcode}, \mathsf{bname} \} \rightarrow \mathsf{cash} \\$
- ☑ However, {sortcode, bname} is not a minimal key, since sortcode → {bname, cash} and bname → {sortcode, cash}

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Super-keys and minimal keys

- If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a **super-key** of R
- If it is not possible to remove any attribute from X to form X', and X' functionally determine all attributes, then X is a **minimal key** of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set {sortcode \rightarrow bname, bname \rightarrow sortcode, bname \rightarrow cash}

- $\blacksquare { sortcode, bname} is a super-key since { sortcode, bname} \rightarrow cash$
- **2** However, {sortcode, bname} is not a minimal key, since sortcode \rightarrow {bname, cash} and bname \rightarrow {sortcode, cash}
- \blacksquare sortcode and bname are both minimal keys of branch

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quiz 19.1: Deriving minimal keys from FDs

Suppose the relation R(A,B,C,D,E) has functional dependencies $S=\{A\rightarrow E,B\rightarrow AC,C\rightarrow D,E\rightarrow D\}$

Which of the following is a minimal key?

イロト イポト イヨト イヨト 二日

Quiz 19.2: Keys and FDs

Suppose the relation R(A, B, C, D, E) has minimal keys AC and BC

Which FD does not necessarily hold?							
А	В	C	D				
$ABC \rightarrow DE$	$AC \rightarrow BDE$	$AB \rightarrow DE$	$BC \rightarrow DE$				

2

イロト イヨト イヨト イヨト

Closure of a set of attributes with a set of FDs

Closure X^+ of a set of attributes X with FDs S

1 Set $X^+ := X$

2 Starting with X^+ apply each FD $X_s \to Y$ in S where $X_s \subseteq X^+$ but Y is not already in X^+ , to find determined attributes Y

$$X^+ := X^+ \cup Y$$

- $\blacksquare If Y not empty go o (2)$
- **5** Return X^+

Closure of attributes

Relation R(A, B, C, D, E, F) has FD set $S = \{A \to BC, CD \to E, C \to F, E \to F\}$ To compute A^+

- Start with $A^+ = A$, just $A \to BC$ matches, so Y = BC
- $A^+ = ABC$, just $C \to F$ matches, so Y = F
- $A^+ = ABCF$, no FDs apply, so we have the result

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Closure of a set of attributes with a set of FDs

Closure X^+ of a set of attributes X with FDs S

1 Set $X^+ := X$

- 2 Starting with X^+ apply each FD $X_s \to Y$ in S where $X_s \subseteq X^+$ but Y is not already in X^+ , to find determined attributes Y
- $X^+ := X^+ \cup Y$
- $\blacksquare If Y not empty go o (2)$
- **5** Return X^+

Closure of a set of attributes

Relation R(A, B, C, D, E, F) has FD set $S = \{A \to BC, CD \to E, C \to F, E \to F\}$ To compute AD^+

- Start with $AD^+ = AD$, just $A \to BC$ matches, so Y = BC
- $AD^+ = ABCD, CD \rightarrow E, C \rightarrow F$ matches, so Y = EF
- $AD^+ = ABCDEF$, no FDs apply, so we have the result

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quiz 19.3: Closure of Attribute Sets

Given a relation R(A, B, C, D, E, F) and FD set $S = \{A \rightarrow BC, C \rightarrow D, BA \rightarrow E, BD \rightarrow F, EF \rightarrow B, BE \rightarrow ABC\}$

Which closure of attributes of S does not cover R?

Closure of a set of Functional Dependencies

The **closure** S^+ of a set of FDs S is the set of all FDs that can be inferred from S. For speed, we ignore:

- trivial FDs (e.g. ignore $A \to A$)
- FDs with a LHS that is not minimal (e.g. ignore $AB \to C$ if $A \to C$)
- FDs that have multiple attributes on RHS (*e.g.* consider $A \to CD$ as $A \to C$ and $A \to D$)

FDs and Keys Closure

Closure of a set of Functional Dependencies

The **closure** S^+ of a set of FDs S is the set of all FDs that can be inferred from S. For speed, we ignore:

- trivial FDs (e.g. ignore $A \to A$)
- FDs with a LHS that is not minimal (e.g. ignore $AB \to C$ if $A \to C$)
- FDs that have multiple attributes on RHS (*e.g.* consider $A \to CD$ as $A \to C$ and $A \to D$)

 $S = \{A \to B, A \to C, B \to A, B \to D\}$

The **closure** S^+ of a set of FDs S is the set of all FDs that can be inferred from S. For speed, we ignore:

- trivial FDs (e.g. ignore $A \to A$)
- FDs with a LHS that is not minimal (e.g. ignore AB → C if A → C)
- FDs that have multiple attributes on RHS (*e.g.* consider $A \to CD$ as $A \to C$ and $A \to D$)

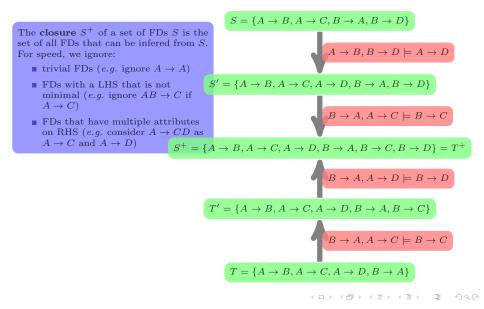
$$S = \{A \to B, A \to C, B \to A, B \to D\}$$
$$A \to B, B \to D \models A \to D$$
$$Y = \{A \to B, A \to C, A \to D, B \to A, B \to D\}$$

3

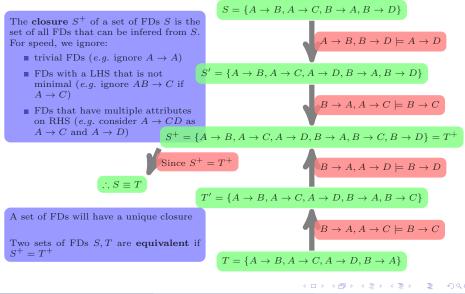
The closure S^+ of a set of FDs S is the set of all FDs that can be infered from S. For speed, we ignore: • trivial FDs (e.g. ignore $A \to A$) • FDs with a LHS that is not minimal (e.g. ignore $AB \to C$ if $A \to C$) • FDs that have multiple attributes on RHS (e.g. consider $A \to CD$ as $A \to C$ and $A \to D$) • $S^+ = \{A \to B, A \to C, A \to D, B \to A, B \to C, B \to D\}$

イロト 不得 トイヨト イヨト

The closure S^+ of a set of FDs S is the set of all FDs that can be infered from S. For speed, we ignore: • trivial FDs (e.g. ignore $A \to A$) • FDs with a LHS that is not minimal (e.g. ignore $AB \to C$ if $A \to C$) • FDs that have multiple attributes on RHS (e.g. consider $A \to CD$ as $A \to C$ and $A \to D$) $S^+ = \{A \to B, A \to C, A \to D, B \to A, B \to C, B \to D\}$


$T = \{A \to B, A \to C, A \to D, B \to A\}$

イロト 不得 トイヨト イヨト


The closure S^+ of a set of FDs S is the set of all FDs that can be infered from S. For speed, we ignore: • trivial FDs (e.g. ignore $A \to A$) • FDs with a LHS that is not minimal (e.g. ignore $AB \to C$ if $A \to C$) • FDs that have multiple attributes on RHS (e.g. consider $A \to CD$ as $A \to C$ and $A \to D$) • $S^+ = \{A \to B, A \to C, A \to D, B \to A, B \to C, B \to D\}$

$$T' = \{A \to B, A \to C, A \to D, B \to A, B \to C\}$$
$$B \to A, A \to C \models B \to C$$
$$T = \{A \to B, A \to C, A \to D, B \to A\}$$

Closure of a set of Functional Dependencies

Closure of a set of Functional Dependencies

A minimal cover S_c of FD set S has the properties that:

- All the FDs in S can be derived from S_c (*i.e.* $S^+ = S_c^+$)
- It is not possible to form a new set S'_c by deleting an FD from S_c or deleting an attribute from an FD in S_c , and S'_c can still derive all the FDs in S

In general, a set of FDs may have more than one minimal cover

A minimal cover S_c of FD set S has the properties that:

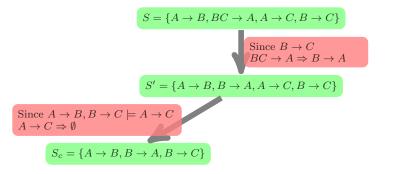
- All the FDs in S can be derived from S_c (*i.e.* $S^+ = S_c^+$)
- It is not possible to form a new set S'_c by deleting an FD from S_c or deleting an attribute from an FD in S_c , and S'_c can still derive all the FDs in S

In general, a set of FDs may have more than one minimal cover

 $S = \{A \rightarrow B, BC \rightarrow A, A \rightarrow C, B \rightarrow C\}$

A minimal cover S_c of FD set S has the properties that:

- All the FDs in S can be derived from S_c (*i.e.* $S^+ = S_c^+$)
- It is not possible to form a new set S'_c by deleting an FD from S_c or deleting an attribute from an FD in S_c , and S'_c can still derive all the FDs in S


In general, a set of FDs may have more than one minimal cover

$$S = \{A \to B, BC \to A, A \to C, B \to C\}$$

Since $B \to C$
 $BC \to A \Rightarrow B \to A$
 $S' = \{A \to B, B \to A, A \to C, B \to C\}$

A minimal cover S_c of FD set S has the properties that:

- All the FDs in S can be derived from S_c (*i.e.* $S^+ = S_c^+$)
- It is not possible to form a new set S'_c by deleting an FD from S_c or deleting an attribute from an FD in S_c , and S'_c can still derive all the FDs in S

In general, a set of FDs may have more than one minimal cover

A minimal cover S_c of FD set S has the properties that:

- All the FDs in S can be derived from S_c (*i.e.* $S^+ = S_c^+$)
- It is not possible to form a new set S'_c by deleting an FD from S_c or deleting an attribute from an FD in S_c , and S'_c can still derive all the FDs in S

In general, a set of FDs may have more than one minimal cover

$$S = \{A \rightarrow B, BC \rightarrow A, A \rightarrow C, B \rightarrow C\}$$

Since $B \rightarrow C$
 $BC \rightarrow A \Rightarrow B \rightarrow A$
$$S' = \{A \rightarrow B, B \rightarrow A, A \rightarrow C, B \rightarrow C\}$$

Since $A \rightarrow B, B \rightarrow C \models A \rightarrow C$
 $A \rightarrow C \Rightarrow \emptyset$
Since $A \rightarrow B, B \rightarrow C \models A \rightarrow C$
 $S_c = \{A \rightarrow B, B \rightarrow A, B \rightarrow C\}$
Since $A \rightarrow B, B \rightarrow A, A \rightarrow C$
 $S_c = \{A \rightarrow B, B \rightarrow A, B \rightarrow C\}$
Since $A \rightarrow B, B \rightarrow A, A \rightarrow C$

3

Worksheet: Minimal Cover (Step 3)

 $AB^+ = ABDEHGFC$ Try removing $AB \to D$: find $AB^+ = ABEH$, so can't remove. Try removing $AB \to E$: find $AB^+ = ABDHEGFC$, so remove it from S'' to get S''' Try removing $AB \to H$: find $AB^+ = ABDEGFHC$, so remove it from S''' to get $S'''' = \{AB \rightarrow D, EF \rightarrow A, FG \rightarrow C, D \rightarrow E, D \rightarrow G, EG \rightarrow B, EG \rightarrow F, F \rightarrow B, F \rightarrow B,$ H $EF^+ = EFABHDGC$ Try removing $EF \to A$: find $EF^+ = EFBH$, so can't remove. $FG^+ = FGCBH$ Try removing $FG \to C$: find $FG^+ = FGBH$, so can't remove. $D^+ = DEGBFHAC$ Try removing $D \to E$: find $D^+ = DG$, so can't remove. Try removing $D \to G$: find $D^+ = DE$, so can't remove. **5** $EG^+ = EGBFHADC$ Try removing $EG \to B$: find $EG^+ = EGFBHADC$, so remove it from S'''' to get S''''' Try removing $EG \to F$: find $EG^+ = EG$, so can't remove. $F^+ = FBH$ Try removing $F \to B$: find $F^+ = FH$, so can't remove. Try removing $F \to H$: find $F^+ = FB$, so can't remove. Thus S''''' is a minimal cover

Topic 20: Normalisation

P.J. McBrien

Imperial College London

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Using FDs to Formalise Problems in Schemas

				ba	nk_data				
no	sortcode	bname	cash	type	cname	rate?	<u>mid</u>	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

イロト イヨト イヨト イヨト 二日一

Using FDs to Formalise Problems in Schemas

				ba	ank_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

Formalise the intuition of redundancy by the statements of FDs $mid \rightarrow \{tdate, amount, no\},\$

```
no \rightarrow \{type, cname, rate, sortcode\},\
```

```
\{cname, type\} \rightarrow no,
```

```
sortcode \rightarrow {bname, cash}
```

 $\mathsf{bname} \to \mathsf{sortcode}$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Using FDs to Formalise Problems in Schemas

				ba	ank_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

Formalise the intuition of redundancy by the statements of FDs $mid \rightarrow \{tdate, amount, no\},\$

```
no \rightarrow \{type, cname, rate, sortcode\},\
```

```
\{cname, type\} \rightarrow no,
```

```
sortcode \rightarrow {bname, cash}
```

 $\mathsf{bname} \to \mathsf{sortcode}$

1st Normal Form (1NF)

Every attribute depends on the key

3

Quiz 20.1: 1st Normal Form

				ba	nk_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
mid	$ ightarrow$ {tdate	, amount, no) },						
no –	→ {type, c	name, rate, s	sortcode},						
	me, type]		,						
sorto	$code \to \{I$	oname, cash	}						
	ne ightarrow sort		,						

Is bank_data in 1st Normal form? True False

2

Prime and Non-Prime Attributes

Prime Attribute

An attribute A of relation R is **prime** if there is some minimal candidate key X of R such that $A \subseteq X$ Any other attribute $B \in Attrs(R)$ is **non-prime**

Prime and non-prime attributes of bank_data

 $\label{eq:bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate) \\ Has FDs mid \rightarrow \{tdate, amount, no\}, no \rightarrow \{type, cname, rate, sortcode\}, \\ \{cname, type\} \rightarrow no, \ sortcode \rightarrow \{bname, cash\}, \ bname \rightarrow sortcode \\ Then \\ \end{cases}$

- **1** the only minimal candidate key is mid
- **2** the only prime attribute is mid
- non-prime attributes are no,sortcode,bname,cash,type,cname,rate,amount,tdate

Quiz 20.2: Prime and nonprime attributes

Given a relation R(A, B, C, D, E, F) and an FD set $A \rightarrow BCE, C \rightarrow D, BD \rightarrow F, EF \rightarrow B, BE \rightarrow A$

А		
DEF		
В		
B BC		
C CDF		
D		
CD		

イロト イロト イヨト イヨト 二日

3rd Normal Form (3NF)

3rd Normal Form (3NF)

For every non-trivial FD $X \to A$ on R, either

- **1** X is a super-key
- 2 A is prime

Every non-key attribute depends on the key, the whole key and nothing but the key

Failure of bank_data to meet 3NF

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

- Has the following FDs where the LHS is not a super-key: no → {type, cname, rate, sortcode}, {cname, type} → no, sortcode → {bname, cash}, bname → sortcode
- Each of the above FD causes the relation not to meet 3NF since the RHS contains non-prime attributes

Quiz 20.3: 3rd Normal Form

Given a relation R(A, B, C, D, E, F) and an FD set $A \rightarrow BCE, C \rightarrow D, BD \rightarrow F, EF \rightarrow B, BE \rightarrow A$

Which decomposition is not in 3NF?

 $R_1(B, D, F), R_2(A, B, C, D, E)$

В

 $R_1(A, B, C, E, F), R_2(C, D)$

C

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

Boyce-Codd Normal Form (BCNF)

Boyce-Codd Normal Form (BCNF)

For every non-trivial FD $X \to A$ on R, X is a super-key. Every attribute depends on the key, the whole key and nothing but the key

BCNF schema

branch(sortcode, bname, cash) with FDs sortcode \rightarrow {bname, cash}, bname \rightarrow sortcode is in BCNF since sortcode and bname are both candidate keys

account(no, type, cname, rate, sortcode) with FDs no \rightarrow {type, cname, rate, sortcode}, $\{cname, type\} \rightarrow no is in BCNF since no and cname, type are both candidate keys$

movement(mid, amount, no, tdate) with FD mid \rightarrow {tdate, amount, no} is in BCNF since mid is key

Lossless-join decomposition of relations

Lossless-join decomposition of a Relation

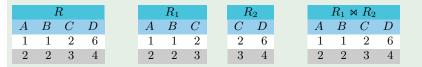
A lossless-join decomposition of a relation R with respect to FDs S into relations R_1, \ldots, R_n has the properties that:

- $Attrs(R_1) \cup \ldots \cup Attrs(R_n) = Attrs(R)$
- For all possible extents of R satisfying S, $\pi_{Attrs(R_1)} R \bowtie \ldots \bowtie \pi_{Attrs(R_n)} R = R$

Lossless-join decomposition of bank_data

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

 $\label{eq:has FDs mid} \begin{array}{l} \blacksquare \ \mathrm{Has \ FDs \ mid} \rightarrow \{\mathsf{tdate}, \mathsf{amount}, \mathsf{no}\}, \ \mathsf{no} \rightarrow \{\mathsf{type}, \mathsf{cname}, \mathsf{rate}, \mathsf{sortcode}\}, \\ \{\mathsf{cname}, \mathsf{type}\} \rightarrow \mathsf{no}, \ \mathsf{sortcode} \rightarrow \{\mathsf{bname}, \mathsf{cash}\}, \ \mathsf{bname} \rightarrow \mathsf{sortcode} \end{array}$


 Decomposing bank_data into branch = π_{sortcode,bname,cash} bank_data account = π_{no,type,cname,rate,sortcode} bank_data movement = π_{mid,amount,no,tdate} bank_data satisfies the lossless-join decomposition property

<ロト <回ト < 回ト < 回ト < 回ト = 三</p>

Problems if not a lossless-join decomposition

If a decomposition of R into R_1, \ldots, R_n is not lossless, then some tuples spread over R_1, \ldots, R_n can result in phantom tuples appearing

$R(A, B, C, D), S = \{A \rightarrow B, B \rightarrow CD\}$

Decomposition on an FD

If $R(A_1 \ldots A_n)$ has FD $A_j \to A_{j+1} \ldots A_n$ then decomposing on the FD to $R_1(A_1 \ldots A_i), R_2(A_i A_{i+1} \ldots A_n)$ is lossless

・ロト ・四ト ・ヨト ・ヨト - ヨ

Lossless Join

Problems if not a lossless-join decomposition

If a decomposition of R into R_1, \ldots, R_n is not lossless, then some tuples spread over R_1, \ldots, R_n can result in phantom tuples appearing

$R(A, B, C, D), S = \{A \rightarrow B, B \rightarrow CD\}$

	j	R			R_1		R	\mathbf{l}_2		R_1 🛛	$\triangleleft R_2$	
A	B	C	D	A	B	C	C	D	A	B	C	D
1	1	2	6	1	1	2	2	6	1	1	2	6
2	2	3	4	2	2	3	3	4	2	2	3	4
3	3	3	5	3	3	3	3	5	3	3	3	5
									2	2	3	5
									3	3	3	4

Decomposition on an FD

If $R(A_1 \ldots A_n)$ has FD $A_j \to A_{j+1} \ldots A_n$ then decomposing on the FD to $R_1(A_1 \ldots A_j), R_2(A_j A_{j+1} \ldots A_n)$ is lossless

イロト イロト イヨト イヨト 三日

Quiz 20.4: Lossless join decomposition

Given a relation R(A, B, C, D, E, F) and an FD set $A \rightarrow BCE, C \rightarrow D, BD \rightarrow F, EF \rightarrow B, BE \rightarrow A$

 $R_1(B, D, F), R_2(A, B, C, D, E)$

 $R_1(A, B, C, E, F), R_2(C, D)$

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

3

Worksheet: Lossless Join Decomposition

- **1** R(A, B, C, D, E) has the FDs $S = \{AB \to C, C \to DE, E \to A\}$. Which of the following are lossless join decompositions?
 - $\mathbb{1}$ $R_1(A, B, C), R_2(C, D, E)$
 - **2** $R_1(A, B, C), R_2(C, D), R_3(D, E)$
- 2 Derive a lossless join decomposition into three relations of R(A, B, C, D, E, F)with FDs $S = \{AB \rightarrow CD, C \rightarrow E, A \rightarrow F\}.$
- **3** Derive a lossless join decomposition into three relations of R(A, B, C, D, E, F) with FDs $S = \{AB \to CD, C \to E, F \to A\}$.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Topic 21: Generating 3NF and BCNF Schemas

P.J. McBrien

Imperial College London

Generating 3NF

Generating 3NF

- **I** Given R and a set of FDs S, find an FD $X \to A$ that causes R to violate 3NF (*i.e.* for which A is not a prime attribute and X is not a superkey).
- **2** Decompose R into $R_a(Attr(R) A)$ and $R_b(XA)$ (Note because the two relations share X and $X \to A$ this is lossless)
- **3** Project the S onto the new relations, and repeat the process from (1)

Note that step (2) ensures that the decomposition is lossless since joining R_a with R_b will share X, and $X \to A$

Canonical Example of 3NF Decomposition

Suppose R(A, B, C) has FD set $S = \{A \to B, B \to C\}$

- The only key is A, and so $B \to C$ violates 3NF (since B is not a superkey and C is nonprime).
- Decomposing R into $R_1(A, B)$ and $R_2(B, C)$ results in two 3NF relations.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

 $\begin{aligned} & \mathsf{bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)} \\ S = \{\mathsf{mid} \rightarrow \{\mathsf{tdate,amount,no}\}, \mathsf{no} \rightarrow \{\mathsf{type},\mathsf{cname},\mathsf{rate},\mathsf{sortcode}\}, \\ & \{\mathsf{cname},\mathsf{type}\} \rightarrow \mathsf{no},\mathsf{sortcode} \rightarrow \{\mathsf{bname},\mathsf{cash}\},\mathsf{bname} \rightarrow \mathsf{sortcode}\} \end{aligned}$

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

 $\begin{aligned} & \mathsf{bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)} \\ S = \{\mathsf{mid} \rightarrow \{\mathsf{tdate},\mathsf{amount},\mathsf{no}\},\mathsf{no} \rightarrow \{\mathsf{type},\mathsf{cname},\mathsf{rate},\mathsf{sortcode}\},\\ & \{\mathsf{cname},\mathsf{type}\} \rightarrow \mathsf{no},\mathsf{sortcode} \rightarrow \{\mathsf{bname},\mathsf{cash}\},\mathsf{bname} \rightarrow \mathsf{sortcode}\} \end{aligned}$

Since sortcode \rightarrow {bname, cash} and sortcode is not superkey and bname, cash nonprime, we should decompose bank_data into

- $1 \ \text{branch}(\text{sortcode}, \text{bname}, \text{cash}) \ \text{with FDs sortcode} \rightarrow \{\text{bname}, \text{cash}\}, \\ \text{bname} \rightarrow \text{sortcode}$
- $\begin{array}{ll} 2 \;\; \mathsf{bank_data'}(\mathsf{no},\mathsf{sortcode},\mathsf{type},\mathsf{cname},\mathsf{rate},\mathsf{mid},\mathsf{amount},\mathsf{tdate}) \;\; \mathsf{with} \; \mathrm{FDs} \\ \mathsf{mid} \to \{\mathsf{tdate},\mathsf{amount},\mathsf{no}\}, \; \mathsf{no} \to \{\mathsf{type},\mathsf{cname},\mathsf{rate},\mathsf{sortcode}\}, \\ \{\mathsf{cname},\mathsf{type}\} \to \mathsf{no} \end{array}$

<ロト <回ト < 回ト < 回ト < 回ト = 三</p>

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

 $\begin{aligned} & \mathsf{bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)} \\ S = \{\mathsf{mid} \rightarrow \{\mathsf{tdate},\mathsf{amount},\mathsf{no}\},\mathsf{no} \rightarrow \{\mathsf{type},\mathsf{cname},\mathsf{rate},\mathsf{sortcode}\},\\ & \{\mathsf{cname},\mathsf{type}\} \rightarrow \mathsf{no},\mathsf{sortcode} \rightarrow \{\mathsf{bname},\mathsf{cash}\},\mathsf{bname} \rightarrow \mathsf{sortcode}\} \end{aligned}$

Since sortcode \to {bname, cash} and sortcode is not superkey and bname, cash nonprime, we should decompose bank_data into

- $1 \ \text{branch}(\text{sortcode},\text{bname},\text{cash}) \ \text{with FDs sortcode} \rightarrow \{\text{bname},\text{cash}\}, \\ \text{bname} \rightarrow \text{sortcode}$
- $\begin{array}{ll} 2 \;\; \mathsf{bank_data'(no, sortcode, type, cname, rate, mid, amount, tdate) \;\; with \; FDs \\ mid \rightarrow \{ \mathsf{tdate, amount, no} \}, \; \mathsf{no} \rightarrow \{ \mathsf{type, cname, rate, sortcode} \}, \\ \{ \mathsf{cname, type} \} \rightarrow \mathsf{no} \end{array}$

branch is in 3NF, but $no \rightarrow \{type, cname, rate, sortcode\}$ makes bank_data' violate 3NF, so we should decompose bank_data' into:

- 3 account(no, type, cname, rate, sortcode) with FDs
 - $\mathsf{no} \rightarrow \{\mathsf{type}, \mathsf{cname}, \mathsf{rate}, \mathsf{sortcode}\}, \, \{\mathsf{cname}, \mathsf{type}\} \rightarrow \mathsf{no}$
- $4 \hspace{0.1 cm} \texttt{movement}(\mathsf{mid}.\mathsf{amount},\mathsf{no},\mathsf{tdate}) \hspace{0.1 cm} \texttt{with} \hspace{0.1 cm} FD \hspace{0.1 cm} \mathsf{mid} \rightarrow \{\mathsf{tdate},\mathsf{amount},\mathsf{no}\}$

The relations branch, account, and movement are all in 3NF

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

э

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

$$\blacksquare S^+ = \{A \to B, A \to C, B \to A, B \to C, C \to A, C \to B\}$$

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

- $\bullet S^+ = \{A \to B, A \to C, B \to A, B \to C, C \to A, C \to B\}$
- The projection of S^+ onto R_a gives $S_a^+ = \{A \to B, B \to A\}$

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

- $\bullet S^+ = \{A \to B, A \to C, B \to A, B \to C, C \to A, C \to B\}$
- The projection of S^+ onto R_a gives $S_a^+ = \{A \to B, B \to A\}$
- The projection of S^+ onto R_b gives $S_b^+ = \{B \to C, C \to B\}$

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

- $\bullet S^+ = \{A \to B, A \to C, B \to A, B \to C, C \to A, C \to B\}$
- The projection of S^+ onto R_a gives $S_a^+ = \{A \to B, B \to A\}$
- The projection of S^+ onto R_b gives $S_b^+ = \{B \to C, C \to B\}$
- Note that the union S_u of the two subsets of S^+ (*i.e.* $S_u = S_a^+ \cup S_b^+$) has the property that $S_u^+ = S^+$, and hence the decomposition preserves functional dependencies.

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

- $\blacksquare S^+ = \{A \to B, A \to C, B \to A, B \to C, C \to A, C \to B\}$
- The projection of S^+ onto R_a gives $S_a^+ = \{A \to B, B \to A\}$
- The projection of S^+ onto R_b gives $S_b^+ = \{B \to C, C \to B\}$
- Note that the union S_u of the two subsets of S^+ (*i.e.* $S_u = S_a^+ \cup S_b^+$) has the property that $S_u^+ = S^+$, and hence the decomposition preserves functional dependencies.

3NF

There is always possible to decompose a relation into 3NF in a manner that preserves functional dependencies. Thus any *good* 3NF decomposition of a relation must also preserve functional dependencies.

Given a relation R(A, B, C, D, E, F) and an FD set $A \rightarrow BCE, C \rightarrow D, BD \rightarrow F, EF \rightarrow B, BE \rightarrow A$

 $R_1(B, D, F), R_2(A, B, C, D, E)$

 $R_1(A, B, C, E, F), R_2(C, D)$

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

3

Preserving FDs, lossless join, and 3NF

Given a relation R(A, B, C, D, E, F) and an FD set $A \rightarrow BCE, C \rightarrow D, BD \rightarrow F, EF \rightarrow B, BE \rightarrow A$

Decomposition	lossless join	3NF	Preserves FDs
$R_1(B, D, F), R_2(A, B, C, D, E)$	1	X	X
$R_1(A, B, C, E, F), R_2(C, D)$	1	1	X
$R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$	1	1	\checkmark
$R_1(B, E, F), R_2(A, C, E), R_3(C, D)$	X	1	X

Decomposing to 3NF

Since it is always possible to decompose a relation into a 3NF form that is both a lossless join decomposition, and preserves FDs, you should always do so.

Suppose the relation R(A, B, C, D, E) has functional dependencies $S = \{AC \to DBE, BC \to DE, B \to A, E \to D\}$ (and hence has minimal keys ACand BC)

Which is a lossless join decomposition to 3NF that preserves FDs?

А	В
$R_a(B,C,E), R_b(A,B,C), R_c(D,E)$	$R_a(A, B, C), R_b(A, C, D, E)$
С	D

3

Suppose the relation R(A, B, C, D, E) has functional dependencies $S = \{AC \to DBE, BC \to DE, B \to A, E \to D\}$ (and hence has minimal keys ACand BC)

Which is a lossless join decomposition to 3NF that preserves FDs?

А	В
$R_a(B,C,E), R_b(A,B,C), R_c(D,E)$	$R_a(A, B, C), R_b(A, C, D, E)$
C	D
С	D

Minimal Cover of S

Because $BC \to E, E \to D \models BC \to D$ $S \equiv \{AC \to DBE, BC \to E, B \to A, E \to D\}$

Suppose the relation R(A, B, C, D, E) has functional dependencies $S = \{AC \to DBE, BC \to DE, B \to A, E \to D\}$ (and hence has minimal keys ACand BC)

Which is a lossless join decomposition to 3NF that preserves FDs?

Α	В
$R_a(B,C,E), R_b(A,B,C), R_c(D,E)$	$R_a(A, B, C), R_b(A, C, D, E)$
С	D

Minimal Cover of S

Because $BC \to E, E \to D \models BC \to D$ $S \equiv \{AC \to DBE, BC \to E, B \to A, E \to D\}$ Because $AC \to E, E \to D \models AC \to D$ $S \equiv \{AC \to BE, BC \to E, B \to A, E \to D\}$

Suppose the relation R(A, B, C, D, E) has functional dependencies $S = \{AC \to DBE, BC \to DE, B \to A, E \to D\}$ (and hence has minimal keys ACand BC)

A	В
$R_a(B,C,E), R_b(A,B,C), R_c(D,E)$	$R_a(A, B, C), R_b(A, C, D, E)$
С	D
$R_a(A, C, D), R_b(A, C, E), R_c(A, B)$	$R_a(A, C, E), R_b(B, D, E)$

Because $BC \to E, E \to D \models BC \to D$ $S \equiv \{AC \to DBE, BC \to E, B \to A, E \to D\}$ Because $AC \to E, E \to D \models AC \to D$ $S \equiv \{AC \to BE, BC \to E, B \to A, E \to D\}$ Because $AC \to B, BC \to E \models AC \to E$ $S \equiv S_c = \{AC \rightarrow B, BC \rightarrow E, B \rightarrow A, E \rightarrow D\}$

Decomposition of Relations into BCNF

Generating BCNF

- **I** Given R and a set of FDs S, find an FD $X \to A$ that causes R to violate BCNF (*i.e.* for which X is not a superkey).
- **2** Decompose R into $R_a(Attr(R) A)$ and $R_b(XA)$ (Note because the two relations share X and $X \to A$ this is lossless)
- **3** Project the S onto the new relations, and repeat the process from (1)

Difference between 3NF and BCNF

Suppose the relation address(no, street, town, county, postcode) has FDs {no, street, town, county} \rightarrow postcode, postcode \rightarrow {street, town, county},

- The relation is in 3NF (alternative keys no, street, town, county and no, postcode).
- The relation is not in BCNF since $postcode \rightarrow \{street, town, county\}$ has a non-superkey as the determinant
 - Decompose the relation address on postcode → {street, town, county} to: postcode(postcode, street, town, county) streetnumber(no, postcode)
 - Note FD {no, street, town, county} \rightarrow postcode cannot be projected over the relations.

Worksheet: Decomposing to Normal Forms

- $S_c = \{AB \to D, EF \to A, FG \to C, D \to EG, EG \to F, F \to BH\}$
 - **1** Decompose the relation into 3NF
 - **2** Decompose the relation into BCNF
 - **E** Determine if your decompositions in (1) and (2) preserve FDs, and if they do not, suggest how to amend you schema to preserve FDs.